
Type-Directed Code Reuse
using Integer Linear Programming

Yuepeng Wang
University of Texas at Austin
ypwang@cs.utexas.edu

Yu Feng
University of Texas at Austin
yufeng@cs.utexas.edu

Ruben Martins
University of Texas at Austin
rmartins@cs.utexas.edu

Arati Kaushik
University of Texas at Austin

arati@cs.utexas.edu

Isil Dillig
University of Texas at Austin

isil@cs.utexas.edu

Steven P. Reiss
Brown University

spr@cs.brown.edu

ABSTRACT
In many common scenarios, programmers need to imple-
ment functionality that is already provided by some third
party library. This paper presents a tool called Hunter
that facilitates code reuse by finding relevant methods in
large code bases and automatically synthesizing any neces-
sary wrapper code. The key technical idea underlying our
approach is to use types to both improve search results and
guide synthesis. Specifically, our method computes similar-
ity metrics between types and uses this information to solve
an integer linear programming (ILP) problem in which the
objective is to minimize the cost of synthesis. We have im-
plemented Hunter as an Eclipse plug-in and evaluate it
by (a) comparing it against S6, a state-of-the-art code reuse
tool, and (b) performing a user study. Our evaluation shows
that Hunter compares favorably with S6 and significantly
increases programmer productivity.

1. INTRODUCTION
In many common scenarios, programmers need to imple-

ment functionality that is already provided by some third
party library. In such cases, accepted wisdom dictates that it
is preferable to reuse existing code rather than reimplement-
ing the desired functionality from scratch. Indeed, there are
at least two benefits to software reuse: First, it increases
programmer productivity, allowing developers to focus on
more creative tasks. Second, implementations provided by
existing APIs are typically well-tested; hence, code reuse
decreases the likelihood that the implementation is buggy.

Unfortunately, there is often a wide gap between the adage
“software reuse is good” and the reality of software develop-
ment: In many cases, programmers end up reimplementing
functionality that already exists in a library. This duplicated
effort is sometimes inadvertent because programmers may
not know whether the desired functionality exists or which
third-party library provides it. In other cases, the exposed
interface may not quite fit the developer’s needs, tempting
programmers to reimplement the desired functionality.

This paper seeks to address both of these problems by pre-
senting a tool called Hunter for automatically reusing exist-
ing code. Given a few test cases and a search query provided
by the user, Hunter searches existing code bases for can-
didate adaptee methods and automatically synthesizes any
necessary wrapper code. The key technical idea underlying
our approach is to use types to both improve search results
and guide synthesis. Specifically, our method computes sim-

ilarity metrics between types and uses this information to
solve an integer linear programming (ILP) problem in which
the objective is to minimize the cost of synthesis.

The high-level architecture of the Hunter tool is shown
in Figure 1. Our approach consists of three components,
namely code search, interface alignment, and synthesis. Given
a candidate adaptee identified through code search, inter-
face alignment refers to the problem of finding a suitable
mapping from parameters in the adaptee to those in the
adapter. Given a solution to the interface alignment prob-
lem, Hunter uses existing synthesis tools to generate the
desired wrapper code. If the synthesized program does not
pass the provided test cases, Hunter backtracks by find-
ing another candidate adaptee or a different solution to the
interface alignment problem.

The key technical contribution of this paper is a type-
directed approach for solving the interface alignment prob-
lem. Specifically, Hunter computes distance metrics be-
tween types in order to estimate how likely it is that an
object of type τ1 can be used in the place of another object
of type τ2. Specifically, the larger the distance d, the less
likely it is that τ1 can be“converted”to τ2. Given such a type
distance matrix, Hunter solves an optimization problem in
which the goal is to minimize the cost of converting between
the type signature of the adaptee and that of the desired
method. Specifically, we formulate interface alignment as an
integer linear programming problem that is parametrized by
the type distance matrix.

We have implemented Hunter as an Eclipse plug-in and
evaluate it by performing three sets of experiments. First,
we compare Hunter against S6, a state-of-the-art code reuse
tool, and show that Hunter can reuse more code compared
to S6. Second, we perform a user study and show that
Hunter enables users to finish programming tasks quicker
and with fewer bugs. Third, we show that the type distances
computed by Hunter can be gainfully used to improve the
results of existing code search tools. To summarize, this
paper makes the following contributions:

• We describe a novel code reuse tool, Hunter, that
combines code search with program synthesis. Hunter
is available as an Eclipse plug-in and can automat-
ically generate adapter methods that reuse existing
Java methods in massive open source repositories.

• We propose a technique for measuring similarity be-
tween arbitrary Java types and leverage it to re-rank
search results obtained from existing code search tools.

ar
X

iv
:1

60
8.

07
74

5v
1

 [
cs

.S
E

]
 2

7
A

ug
 2

01
6

Tests

Query

Interface
Alignment

Synthesis

Candidate
Program

Run
tests

Program
for reuse

Hunter
Code
search

Type
Distance

Re-rank

Figure 1: Workflow of the Hunter tool

@Test public void test() {

Vector<MyPoint> v1 = new Vector<MyPoint>();

v1.add(new MyPoint(0, 0)); v1.add(new MyPoint(1, 1));

v1.add(new MyPoint(2, 1)); v1.add(new MyPoint(3, 2));

v1.add(new MyPoint(4, 2)); v1.add(new MyPoint(5, 3));

Bresenham.drawLine(new MyPoint(5, 3), res);

assertEquals(v1, res);

}

Figure 2: Test cases for the desired drawLine method

• We define the interface alignment problem for match-
ing a pair of method signatures and show how it can
be solved using integer linear programming (ILP).

• We perform an extensive evaluation of Hunter by
comparing it against a state-of-the-art code reuse tool
(S6), and conducting a user study. Our evaluation
shows that Hunter compares favorably with S6 and
significantly increases programmer productivity.

2. OVERVIEW
In this section, we give a high-level overview of the Hunter

system through a simple motivating example.

2.1 Motivating Example
Consider a user, Alice, who needs to draw a straight line

from the origin to a point. Specifically, Alice would like to
implement in Java the following drawLine method:

void drawLine(MyPoint pt, Vector<MyPoint> res)

Here, pt is the point specified by the user, and res is
a vector of points on the raster that should be selected to
approximate a straight line between the origin and pt. Alice
knows about Bresenham’s line drawing algorithm that could
be used to implement this functionality, but she does not
know exactly how it works. While she would like to reuse
an existing implementation of Bresenham’s algorithm, she
cannot find an implementation that quite fits her needs.

The Hunter tool could help a user like Alice by finding
an existing implementation of Bresenham’s algorithm and
automatically synthesizing all the wrapper code needed to
integrate it into the desired drawLine interface. In order to
use Hunter, Alice needs to provide the method signature
shown above as well as a a brief natural language description,
such as “Draw a line between the origin and specified point
using Bresenham’s algorithm”. Alice also needs to provide
a small test suite (e.g., the one shown in Figure 2) that
Hunter can use to validate the synthesized code.

Hunter first queries a code search engine using Alice’s
description and retrieves the top k results. To simplify the

example, suppose that the search engine yields a single func-
tion with the following signature:

Point[] bresenham(int x0, int y0, int x1, int y1)

Specifically, this function returns an array of Points to
approximate a line starting from (x0, y0) to (x1, y1). Note
that there are several differences between Alice’s desired
drawLine interface and the existing bresenham function:

• Alice’s interface uses MyPoint to represent the user-
specified point, while the existing function uses two
integers (namely, x1 and y1) to represent the end point.

• Alice’s interface assumes the origin as a starting point,
whereas bresenham takes x0 and y0 as input.

• The existing bresenham function returns an array of
Point’s, whereas Alice’s interface “returns” the line
by storing the result in res. Furthermore, Alice rep-
resents points using a custom type called MyPoint,
whereas bresenham uses a different type called Point.

Despite these significant differences, Hunter is able to
to automatically generate the following implementation of
Alice’s drawLine interface:

void drawLine (MyPoint pt, Vector<MyPoint> res) {
int v1 = pt.getX();
int v2 = pt.getY();
Point[] v3 = external.bresenham(0, 0, v1, v2);
for (Point v4 : v3) {

int v5 = v4.getX();
int v6 = v4.getY();
MyPoint v7 = new MyPoint(v5, v6);
res.add(v7);

}
}

Observe that the code generated by Hunter first decon-
structs the MyPoint object pt into a pair of integers by invok-
ing the appropriate getter methods. Also note that Hunter
can supply default values for x0 and y0 even though there are
no corresponding parameters in the drawLine interface. Fi-
nally, after invoking the existing bresenham method, Hunter
can synthesize code to convert the array of points into a vec-
tor of MyPoints.

2.2 System Overview
The high-level structure of our code reuse algorithm is pre-

sented in Algorithm 1. The CodeReuse procedure takes as
input a desired signature S, a natural language description
D, and a test suite T . The return value of CodeReuse is
an implementation R of S that passes all test cases if one
exists, and ⊥ otherwise.

Algorithm 1 Code Reuse Algorithm

1: procedure CodeReuse(S, D, T)

2: Input: Signature S of desired method, natural
3: language description D, and tests T
4: Output: adapter R or failure ⊥
5: [E0] := CodeSearch(S,D)

6: Λ := ComputeTypeDistance(S, [E0])

7: [E] := Rerank([E0],S,Λ)

8: for all E ∈ [E] do

9: do
10: M := GetBestAlign(S, E , Λ)

11: R := AdapterGen(M, E ,S)

12: if RunTests(R, T) then
13: return (R, E)

14: while M 6= ∅
15: return ⊥

As shown in Algorithm 1, our technique first uses a code
search engine to retrieve a ranked list [E0] of relevant meth-
ods that could serve as possible adaptees. Next, we invoke
the ComputeTypeDistance procedure to compute a dis-
tance between each pair of types (τ, τ ′), where τ is a type
used in signature S and τ ′ is a type used in the signature of
some E0 ∈ [E0]. The return value Λ of ComputeTypeDis-
tance is a matrix that maps each pair of types (τ, τ ′) to a
distance. The larger the distance, the less similar τ is to τ ′

and the less likely it is that an argument of type τ will be
mapped to an argument of type τ ′.

Once we compute the type distance matrix Λ, Hunter
re-ranks the original search results and tries to synthesize
wrapper code for each candidate adaptee E ∈ [E]. Towards
this goal, we first solve the interface alignment problem us-
ing integer linear programming. Specifically, the call to the
GetBestAlign procedure at line 10 returns a lowest cost
mapping between the parameters in the adapter and those in
the adaptee. For example, the alignment between drawLine

and bresenham from Section 2.1 is given by the mapping:

x1: int -> pt: MyPoint
y1: int -> pt: MyPoint
v3: Point[] -> res: Vector<MyPoint>

Intuitively, this alignment minimizes the objective func-
tion in our ILP problem according to the costs given by Λ.
Note that every parameter in the adapter must be mapped
to some parameter in the adaptee because an implemen-
tation of R that does not use one of R’s arguments is ex-
tremely unlikely to be correct. On the other hand, we do not
require that every parameter in the adaptee to be mapped
to a parameter in the adapter, since the implementation of
the adaptee may be more generic.

Given a candidate alignment M, our algorithm invokes a
procedure called AdapterGen to synthesize wrapper code
based on this alignment. For instance, for our running ex-
ample, AdapterGen synthesizes code to “convert” the pt

object of type MyPoint to an integer x1 of type int. Since
there are several existing tools [24, 18, 14, 12] for type-
directed code synthesis, our AdapterGen procedure uses
existing synthesis techniques to generate a code snippet for
“converting” an object of type τ to an object of type τ ′.

Once Hunter generates wrapper code for a given candi-
date alignment, we run the provided test cases to check if
any test fails. If so, we backtrack and ask the ILP solver for
the next best alignment, if one exists. If we exhaust all pos-
sible alignments for a given candidate E , we also backtrack
and try the next best candidate adaptee. The CodeReuse
algorithm terminates when we find an implementation that
passes all test cases or we run out of possible adaptees.

3. TYPE DISTANCE
In this section, we describe our technique for computing

distances between a pair of types. As mentioned earlier, our
approach uses type distances to both re-rank search results
and compute a best alignment between the signature of the
desired method and that of the candidate adaptee.

3.1 Multiset Representation of Types
In order to compute a distance metric between a pair of

types, our approach represents each Java type using a multi-
set (bag) representation. Given a type τ , we use the notation
ψ(τ) to denote τ ’s multi-set representation. Intuitively, ψ(τ)
represents τ as a bag of features. In this context, a feature is
either a Java type or a boolean attribute, such as numeric,
collection etc. As we will see in the next subsection, our
approach computes a distance between two types τ and τ ′

using the multi-set representations ψ(τ) and ψ(τ ′).
We define the multiset representation ψ(τ) of each type τ

using the inference rules shown in Figure 3. The first rule,
Primitive I, states that the multi-set representation of a nu-
meric primitive type τ , such as int or double, includes both
the type name as well as the attribute numeric. 1 On the
other hand, if a primitive type is not numeric, then Primitive
II states that its multiset representation consists of only the
type name. For instance, we have ψ(int) = {int, numeric},
and ψ(String) = {String}.

To capture the different collection types, we define cate-

gory(τ) as a function that returns the collection type of τ .
Specifically, we classify Java built-in collections into four
different categories, namely Vector, List, Set, and Map.
For instance, we have category(ArrayList) = List and
category(TreeMap) = Map. Hence, according to the Collec-
tion rule, the multi-set representation for a collection τ is
given by {category(τ), collection}.

The next rule describes the multi-set representation for
arrays. First, since arrays and collections are often used
interchangably, we also represent arrays using the attribute
collection. Second, if τ is an array with element type τ ′,
observe that ψ(τ) also includes the multiset representation
of τ ′. For example, ψ(int[][]) is given by:

{int, numeric, Array, collection, Array, collection}

The next two rules labeled Wildcard and TypeParam allow
us to handle generic types. Specifically, we define ψ(τ) = ∅
for both the wild card type ? as well as a type parameter,
such as E. For parametrized types τ (e.g., List<int>), the
Parametrized rule defines ψ(τ) to be the union of the mul-
tiset representation of the declaring raw type as well as its
type arguments.

Example 1. The multiset representation of a generic list,
List〈E〉, is ψ(List) ∪ ψ(E) = {List, collection}. The

1Boxed types of primitives are considered as their corre-
sponding primitive types.

isPrimitive(τ), isNumeric(τ)

ψ(τ) = {τ, numeric} (Primitive I)

isPrimitive(τ),¬isNumeric(τ)

ψ(τ) = {τ} (Primitive II)

isCollection(τ)

ψ(τ) = {category(τ), collection} (Collection)

isArray(τ), τ = τ ′[]

ψ(τ) = ψ(τ ′) ∪ {Array, collection} (Array)

isWildcard(τ)

ψ(τ) = ∅ (Wildcard)

isTypeParam(τ)

ψ(τ) = ∅ (TypeParam)

isParameterized(τ)
τ = t〈τ1, . . . , τn〉

ψ(τ) = ψ(t) ∪ ψ(τ1) ∪ · · · ∪ ψ(τn)
(Parameterized)

isRef(τ), τ = t{L}
ψ(τ) = {t} ∪ ψ(L)

(RefType)

L = ∅
ψ(L) = ∅ (FieldList I)

L = τ1;L1, isRef(τ1)

ψ(L) = {τ1} ∪ ψ(L1)
(FieldList II)

L = τ1;L1,¬isRef(τ1)

ψ(L) = ψ(τ1) ∪ ψ(L1)
(FieldList III)

Figure 3: Multiset representation of Java types

multiset representation of a parameterized vector, such as
Vector〈Vector〈Integer〉〉, is ψ(Vector〈Vector〈Integer〉〉)
= ψ(Vector)∪ψ(Vector)∪ψ(int) = {Vector, collection,

Vector, collection, int, numeric}.

For reference types (i.e., user-defined classes), we perform
one-level unrolling for the fields using the rules RefType and
FieldList I - III. For example, given a type Point with two
fields of type int, we have ψ(Point) = Point ∪ ψ(int) ∪
ψ(int). Similarly, for a recursive type defined as:

class ListNode { int key; ListNode next; },

we have ψ(ListNode) = {ListNode, int, numeric, ListNode}.

3.2 Computing Distances Between Types
We now consider how to compute the distance between a

pair of types from their multiset representation. Given two
types τ and τ ′, we write δ(τ, τ ′) to denote the distance be-
tween τ and τ ′ and define it to be the normalized cardinality
of the symmetric difference between ψ(τ) and ψ(τ ′). More
formally, δ(τ, τ ′) is defined as follows:

Definition 3.1 (Type distance).

δ(τ, τ ′) =
|(ψ(τ)− ψ(τ ′)) ∪ (ψ(τ ′)− ψ(τ))|

|ψ(τ) ∪ ψ(τ ′)|

Intuitively, δ(τ, τ ′) ∈ [0, 1] represents the fraction of el-
ements in ψ(τ) ∪ ψ(τ ′) that are not shared between ψ(τ)
and ψ(τ ′). Hence, δ(τ, τ ′) is the normalized cardinality of
the symmetric difference between ψ(τ) and ψ(τ ′). Observe
that, if τ and τ ′ are the same type, then δ(τ, τ ′) is always
zero. Also observe that δ(τ, τ ′) is always the same as δ(τ ′, τ).
Furthermore, if δ(τ, τ1) < δ(τ, τ2), this indicates that τ1 is
more similar to τ than τ2 is to τ .

Example 2. Consider the types τ1: ArrayList<Integer>,
τ2: LinkedList<Double>, τ3: HashSet<Double> and their
corresponding multiset representations:

ψ(τ1): {int, numeric, List, collection}
ψ(τ2): {double, numeric, List, collection}
ψ(τ3): {double, numeric, Set, collection}

We have δ(τ1, τ2) = 0.25 and δ(τ1, τ3) = 0.5. Hence, τ2 is
more similar to τ1 compared to τ3.

In the rest of this paper, we will slightly abuse this no-
tation and write δ(x, y) to denote the distance between the
types of variables x and y.

4. INTERFACE ALIGNMENT
We now define the interface alignment problem and show

how to find an optimal alignment using integer linear pro-
gramming.

4.1 Problem Definition
Consider an adapter method with name R and type sig-

nature τ1 × . . . × τn → τ . Also, suppose that we have the
source code of an adaptee method with name E and signa-
ture τ ′1× . . .×τ ′m → τ ′. In order to synthesize an implemen-
tation of R using E as an adaptee, we must first identify a
candidate mapping between the parameters of R and those
of E . For example, the first argument of E may correspond
to the second parameter of R. Furthermore, R and E need
not necessarily have the same number of parameters. For
example, if R has signature Point→ void and E has signa-
ture int×int→ void, we may need to use both parameters
of E to construct the first argument ofR. Hence, a precursor
to synthesizing adapter code is to identify a suitable map-
ping between the parameters of R and E . We refer to this
problem as interface alignment.

Definition 4.1 (Interface alignment). Consider adapter R
and adaptee E with the following signatures:

R : r1 : τ1 × r2 : τ2 × . . .× rn : τn → r0 : τ

E : e1 : τ ′1 × e2 : τ ′2 × . . .× em : τ ′m → e0 : τ ′

where x : τ indicates x has type τ . Let P (R) denote the set
{r1, r2, . . . , rn, r0} if the return value of R is not void and
{r1, r2, . . . , rn} otherwise. The interface alignment problem
is to find a mappingM from P (E) to P (R) such that (i)M
is surjective, and (ii) M is not many-to-many.

Intuitively, we require M to be surjective because all pa-
rameters of R should be used in R’s implementation. Fur-
thermore, we do not require M to be injective because dif-
ferent arguments of the adaptee can be mapped to the same
argument in the adapter. For instance, for the motivating
example from Section 2.1, both x1 and y1 from the adaptee
are mapped to argument pt of the adapter.

It is important to emphasize that a solutionM to the in-
terface alignment problem does not need to be a function.
In particular, we allow many-to-one mappings. To see why
this is necessary, consider an adaptee that has a single ar-
gument pt of type Point and an adapter that takes two
arguments x, y of type int. In this case, since we can con-
struct a Point from two int’s, a suitable alignment maps
pt to both x and y, meaning that we construct pt from x

and y. Finally, since M does not have to be a function,
some parameters of the adaptee may also be unassigned.
For instance, for the motivating example from Section 2.1,
parameters x0 and y0 of bresenham are not assigned to any
parameters of drawLine. If a parameter x of the adaptee is
unassigned in M, we synthesize a constant value of x using
a pre-defined set of constants for each type (e.g., {0, 1} for
int and {true, false} for boolean).

Observe that a given solution M to the interface align-
ment problem describes a particular strategy for generating
wrapper code. In particular, if M(x : τ) = {y1 : τ1, . . . , yn :
τn}, this means that we should construct parameter x of the
adaptee using parameters y1, . . . , yn of the adapter. Our ap-
proach uses an existing type-directed synthesis tool [12] to
generate code snippets that produce an object of type τ us-
ing objects of type τ1, . . . , τn.

4.2 Optimal Interface Alignment
Given an adapter R and a candidate adaptee E , there are,

in general, many possible solutions to the interface align-
ment problem. One of the key insights underlying our ap-
proach is to use type distances to find a good alignment.
Given a mapping M, we define Cost(M) as follows:

Definition 4.2 (Cost of mapping). Let I(x) be 1 if |M(x)| 6=
1 and 0 otherwise. Then, the cost of M is given by: 2

Cost(M) =

(∑
x∈dom(M) I(x) · δ(x,M(x)) +∑
y∈dom(M−1)(1− I(y)) · δ(y,M−1(y))

)
To understand the rationale behind this definition, con-

sider the case where M is a many-to-one mapping (e.g.,
x : int 7→ pt : Point, y : int 7→ pt : Point). In this case, an
argument (e.g., pt) of R corresponds to multiple arguments
(e.g., x, y) of the adaptee E . In our example, this means
that we must “convert” a point object to a pair of integers;
hence, the cost of this mapping should be δ(Point, {int, int})
rather than 2 ∗ δ(int,Point). Hence, intuitively, the cost
of the mapping depends on whether M is one-to-many or
many-to-one. To capture this intuition, we weight each term
δ(x,M(x)) with I(x), meaning that we should only pay the
cost δ(x,M(x)) ifM is one-to-many. Otherwise, we pay the
cost δ(y,M−1(y)) using the reverse mapping.

Example 3. Consider the following signatures:

E : x : int× y : int→ void

R : p : Point→ void

as well as the following mappings:

M1 : [x 7→ {p}, y 7→ {p}]
M2 : [x 7→ {p}, y 7→ ∅]

Here, we have Cost(M1) = δ(p, {x, y}). On the other hand,
Cost(M2) = δ(y, ∅) + δ(p, x).

2If M(x) is not a singleton, we treat M(x) as a list and
compute δ(x,M(x)) using the FieldList rules from Figure 3.

Based on this notion of cost, we can now define what it
means for an alignment to be optimal:

Definition 4.3 (Optimal alignment). M∗ is an optimal
solution to the interface alignment problem if there does not
exist another solution M such that Cost(M) < Cost(M∗).

In other words, an optimal solution minimizes the cost of
the mapping according to the type distance matrix. In the
next section, we show how to find an optimal solution using
0-1 Integer Linear Programming.

4.3 ILP Formulation
A 0-1 Integer Linear Programming (ILP) consists of a set

of linear constraints C over boolean variables and an objec-
tive function c. The goal is to find an assignment such that
all constraints are satisfied and the value of the objective
function c is optimized.

Definition 4.4 (0-1 Integer Linear Programming). The 0-1
ILP problem is defined as follows:

min c :
∑
j

cjxj s.t. C :
∧
i

∑
j

ai,jxj ∆ bi,

with ∆ := {≤,=,≥}, and xj ∈ {0, 1}.

We formulate the problem of finding an optimal interface
alignment using 0-1 ILP. Specifically, constraints C encode
thatM is a surjective mapping from P (E) to P (R) and that
it is not many-to-many. The objective function expresses
that we want to minimize the cost of this mapping. In what
follows, we describe our encoding in more detail.

Variables. The variables in our 0-1 ILP formulation cor-
respond to all possible mappings from P (E) to P (R). In
particular, a boolean variable xe→~r indicates a one-to-many
mapping from parameter e ∈ P (E) to a set of parameters
~r ⊆ P (R). 3 Similarly, boolean variables x~e→r indicate a
many-to-one mapping from parameters ~e ⊆ P (E) to pa-
rameter r ∈ P (R). Note that only parameters of reference
type are allowed to have many-to-one or one-to-many map-
pings: If two parameters r1, r2 ∈ P (R) are mapped to a
parameter e1 ∈ P (E) of reference type, this means that e1
is constructed using r1 and r2. Similarly, if two parameters
e1, e2 ∈ P (E) are mapped to a single parameter r1 ∈ P (R) of
reference type, this means that e1, e2 are deconstructed us-
ing r1 (e.g., via getter methods). Hence, while many-to-one
and one-to-many mappings make sense for reference types,
it does not have a sensible interpretation for primitive types
and collections.

We use V to denote all variables used in the encoding.
Given a parameter r ∈ P (R), Vr denotes the set of variables
where r occurs. Similarly, given a parameter e ∈ P (E), Ve
denotes the set of variables where e occurs.

Example 4. Assume we have an adapter method R with
signature (r1 : Point × r2 : long) → (r0 : void) and an
adaptee method E with signature (e1 : int × e2 : int × e3 :
long)→ (e0 : void). Then we have P (E) = {e1, e2, e3} and
P (R) = {r1, r2}. Thus, the set of variables are:

V = {xe1→r1 , xe1→r2 , xe2→r1 , xe2→r2 , xe3→r1 , xe3→r2

xe1,e2→r1 , xe1,e3→r1 , xe2,e3→r1 , xe1,e2,e3→r1}.
3We consider a one-to-one mapping a particular case of the
one-to-many mapping where ~r only contains one parameter.

Given the parameter e1, Ve1 denotes the set of variables
where e1 occcurs:

Ve1 = {xe1→r1 , xe1→r2 , xe1,e2→r1 , xe1,e3→r1 , xe1,e2,e3→r1}.

A mapping is defined by the variables that are assigned
to 1. For instance, consider an assignment σ that assigns
xe1,e2→r1 and xe3→r2 to 1, and all other variables to 0.
Then, σ corresponds to the following mapping: (e1, e2) →
(r1), (e3)→ (r2).

Observe that the number of variables used in the encod-
ing grows quadratically for non-reference types and expo-
nentially for reference types. However, since the number
of parameters is usually small, our encoding introduces a
manageable number of variables in practice.

Constraints. While the variables describe all possible map-
pings between parameters of an adaptee E and a desired
method R, not all mappings can occur simultaneously. In
particular, we must enforce that any satisfying assignment to
C corresponds to a surjective mapping from P (E) to P (R).
Furthermore, types also impose hard constraints that limit
which variables in P (E) can be mapped to which ones in
P (R). We enforce these hard constraints by generating a
system of linear constraints C as follows:

1. First, we divide all Java types into 3 categories, namely
primitive, collection, and reference, and only allow type
conversions marked as “Y” in the following table:

primitive collection reference
primitive Y N Y
collection N Y N
reference Y N Y

If two parameters r ∈ P (R) and e ∈ P (E) are not
compatible due to their types, the boolean variables
where these parameters occur are always set to 0:

xe→~r = 0 if xe→~r ∈ (Ve ∩ Vr), (type(r), type(e)) is “N”

x~e→r = 0 if x~e→r ∈ (Ve ∩ Vr), (type(r), type(e)) is “N”

We note that the above constraints are somewhat
connected with the power of the synthesis tool used
for generating wrapper code. In particular, we disal-
low mappings between references and collections since
Hunter’s underlying synthesis engine does not sup-
port converting between references and collections.

2. For each parameter r ∈ P (R), we impose that there is
exactly one mapping that contains r:

∀r ∈ P (R).
∑

xe→~r∈Vr

xe→~r +
∑

x~e→r∈Vr

x~e→r = 1

Effectively, these constraints enforce that any solution
of C corresponds to a surjective mapping.

3. For each parameter e ∈ P (E), we impose that there is
at most one mapping that contains e:

∀e ∈ P (E).
∑

xe→~r∈Ve

xe→~r +
∑

x~e→r∈Ve

x~e→r ≤ 1

These constraints enforce that a parameter e ∈ P (E)
can only be used in at most one mapping. In particu-
lar, it is not necessary that every e ∈ P (E) be mapped
to some r ∈ P (R).

Example 5. Consider the same methods R and E from
Example 4. Constraints C for this example are given by:

p1 : xe1→r1 + xe2→r1 + xe3→r1 + xe1,e2→r1+

xe1,e3→r1 + xe2,e3→r1 + xe1,e2,e3→r1 = 1

p2 : xe1→r2 + xe2→r2 + xe3→r2 = 1

p3 : xe1→r1 + xe1→r2 + xe1,e2→r1 + xe1,e3→r1 + xe1,e2,e3→r1 ≤ 1

p4 : xe2→r1 + xe2→r2 + xe1,e2→r1 + xe2,e3→r1 + xe1,e2,e3→r1 ≤ 1

p5 : xe3→r1 + xe3→r2 + xe1,e3→r1 + xe2,e3→r1 + xe1,e2,e3→r1 ≤ 1

Here, p1 and p2 enforce that each parameter r ∈ P (R) ap-
pears in exactly one mapping. Constraints p3, p4, p5 guar-
antee that each parameter e ∈ P (E) appears in at most one
mapping. These constraints enforce that any solution to C
corresponds to a surjective mapping.

Objective function. The goal of the objective function c is
to find an optimal alignment with the lowest cost. Specifi-
cally, we define the objective function c as follows:

∑
e∈P (E)

∑
xe→~r∈Ve

δ(e, ~r) · xe→~r +
∑

r∈P (R)

∑
x~e→r∈Vr

δ(r, ~e) · x~e→r

Each mapping has an associated cost using type distances
from Section 3. Observe that this objective function directly
encodes the cost metric from Definition 4.2.

Example 6. Consider the same methods R and E from
Example 4 and the constraints from Example 5. Here, we
have a total of 9 valid solutions to the constraint system.
Each of these mappings, along with their cost, is listed below:

id mapping cost
m1 (e1, e2)→ (r1), (e3)→ (r2) 1/9 + 0 ' 0.11
m2 (e1)→ (r1), (e3)→ (r2) 3/7 + 0 ' 0.43
m3 (e2)→ (r1), (e3)→ (r2) 3/7 + 0 ' 0.43
m4 (e1, e3)→ (r1), (e2)→ (r2) 3/9 + 2/4 ' 0.83
m5 (e2, e3)→ (r1), (e1)→ (r2) 3/9 + 2/4 ' 0.83
m6 (e1)→ (r1), (e2)→ (r2) 3/7 + 2/4 ' 0.93
m7 (e2)→ (r1), (e1)→ (r2) 3/7 + 2/4 ' 0.93
m8 (e3)→ (r1), (e1)→ (r2) 5/7 + 2/4 ' 1.21
m9 (e3)→ (r1), (e2)→ (r2) 5/7 + 2/4 ' 1.21

Since our objective function is to minimize the cost, the
first result we get is m1, which is exactly what we want.

5. DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation

of the Hunter tool for automated code reuse. Hunter is
publicly available as an Eclipse plug-in at the Eclipse mar-
ketplace and consists of approximately 12,000 lines of Java
code. Our implementation uses the Sat4J [9] tool for solving
0-1 ILP problems.

Hunter can be integrated with any code search engine
that yields results at the granularity of methods. In our cur-
rent implementation, we integrated Hunter with the Pliny
code search engine [7] and use a database of over 12 million
Java methods collected from open source repositories, such
as Github [2] and Bitbucket [1].

Hunter S6

Success rate: 100.0% 37.5%

Id Benchmark Hunter S6

1 SimpleTokenizer 3 3
2 QuoteTokenizer 3 3
3 CheckRobots 3 3
4 LogBase 3 3
5 RomanNumeral 3 3
6 RomanToInt 3 3
7 PrimeNumber 3 3
8 PerfectNumber 3 3
9 DayOfWeek 3 3
10 EasterDate 3 3
11 MatrixMultiplication 3 7
12 LcsInteger 3 7
13 RemoveDuplicates 3 3
14 TransposeMatrix 3 7
15 InvertMatrix 3 7
16 MatrixPower 3 7
17 DotProduct 3 7
18 MatrixDeterminant 3 3
19 CountingSort 3 7
20 MatrixAddition 3 7

Id Benchmark Hunter S6

21 FloodFill 3 7
22 FindMedian 3 7
23 ListAverage 3 7
24 BresenhamLine 3 7
25 BresenhamCircle 3 7
26 Distance 3 7
27 Slope 3 7
28 PrimeSieve 3 3
29 Anagram 3 3
30 Palindrome 3 3
31 PartitionList 3 7
32 RotateList 3 7
33 ListInsertion 3 7
34 PalindromeList 3 7
35 SwapNodesPairs 3 7
36 InvertBinaryTree 3 7
37 MinDepthBinaryTree 3 7
38 BinaryTreePostorder 3 7
39 BinaryTreeInorder 3 7
40 SumRootLeafNumbers 3 7

Table 1: Comparison between Hunter and S6

Re-ranking. Given the initial results provided by the Pliny
search engine, Hunter re-ranks search results using the type
similarity matrix described in Section 3. Specifically, for
each method M in the search result, Hunter computes a
type similarity score between the signature of M and that
of the desired method M∗. The type similarity score is the
multiplicative inverse of the cost for the optimal alignment
between M and M∗. Hence, our re-ranking procedure sorts
the original search results using the techniques described in
Section 4 for finding an optimal alignment. As we demon-
strate in Section 6, our re-ranking algorithm based on type
similarity significantly improves search results.

Synthesis of wrapper code. As mentioned earlier, a so-
lution to the interface alignment problem can be immedi-
ately translated into wrapper code using existing synthesis
tools [12, 24, 18, 14]. Our current implementation utilizes
the SyPet tool for type-directed component-based synthe-
sis [12]. Specifically, let M be a solution to the interface
alignment problem, and let M(x : τ) be {y1 : τ1, . . . , yn :
τn}. In this case, to synthesize the actual value for x, we
ask SyPet to generate a procedure that takes inputs of
type τ1, . . . , τn and produces an output of type τ . Since
there can be many ways to construct an object of type τ
from y1, . . . , yn, our implementation tries the top 100 re-
sults returned by SyPet before moving on to a different
solution to the interface alignment problem (this limit was
never reached during our experiments).

Since most type-directed synthesis tools, including SyPet,
cannot synthesize loops, we have developed a library of tem-
plates for performing conversions between different types of
collections. For example, to generate a collection x of type
Vector<Foo> from another collection y of type Bar[], we
first retrieve the built-in template for converting an array
to a vector and then invoke the procedure synthesized by
SyPet on each element.

As mentioned earlier, Hunter can also synthesize con-
stants in cases where an adaptee parameter is mapped to

the empty set. In our current implementation, each type
has a set of “default” values, including NULL for references,
{true,false} for booleans, and {0, 1} for integers. If an adaptee
parameter x of type τ is mapped to ∅, Hunter tries all de-
fault values associated with type τ .

Dependency resolution. After synthesizing wrapper code
for a candidate alignment, Hunter resolves all dependencies
between classes based on the package hierarchy. Specifically,
Hunter starts from the class C containing the candidate
method and transitively identifies all classes C1, . . . , Cn that
C depends on. Since this procedure can take a long time
for large dependencies, we restrict the maximum number of
classes to 10. If the dependencies of a candidate cannot be
fully resolved within this limit, Hunter backtracks and tries
the next best candidate.

6. EVALUATION
To evaluate the usefulness of Hunter, we perform three

sets of experiments. First, we compare Hunter against
S6 [29], a state-of-the-art code reuse tool that is publicly
available and well-maintained. Second, we use Hunter to
re-rank the search results provided by the Pliny [7] and
Grepcode [3] search engines and compare the results before
and after re-ranking. Finally, we perform a user study and
evaluate how long participants take to complete various al-
gorithmic tasks with and without Hunter. All experiments
are conducted on a Lenovo laptop with an Intel i7-5600U
CPU and 8G of memory running Ubuntu 14.04.

6.1 Comparison with S6

S6 [29] is a state-of-the-art code reuse tool with a web
interface that takes the same set of inputs as Hunter (i.e.,
method signature, natural language description, and test
cases). There are two key differences between S6 and Hunter.
First, S6 directly modifies the search result instead of syn-
thesizing wrapper code. Second, Hunter uses integer linear
programming to measure similarity between type signatures

1 2 3 4 5 6 7 8 9 10 13 18 28 29 30
0

30

60

90

120

150

180

210

240
T

im
e

(s
)

Hunter S6

Figure 4: Comparison of running times between Hunter and S6

and uses this information to re-rank search results and fa-
cilitate integration with synthesis tools.

We compare Hunter against S6 on a variety of bench-
marks collected from three different sources: (i) examples
used to evaluate S6 [29], (ii) challenge problems taken from
the Mining and Understanding Software Enclaves (MUSE)
project [5] and (iii) benchmarks from Leetcode [4], which is
an online resource containing programming problems.

Table 1 describes the 40 benchmarks used in our evalua-
tion in more detail. In this table, a 3 indicates that the tool
was able to successfully synthesize the desired code, and an
7 indicates that synthesis failed. As summarized in Table 1,
Hunter is able to solve all benchmarks with an average
running time of 14 seconds. In contrast, S6 can only solve
37.5% of the benchmarks. Since both tools use the same
underlying code corpus, these results indicate that Hunter
is more successful at reusing existing code compared to S6.

To further investigate running time, Figure 4 compares
the performance of Hunter against that of S6 on the 15
benchmarks that could be successfully solved by both sys-
tems. The numbers on the x-axis refer to the numeric iden-
tifier of each benchmark, as presented in Table 1. The y-axis
shows the corresponding time that each tool took to solve
those benchmarks. As we can see from Figure 4, Hunter
is also much faster compared to S6. On average, Hunter
takes 15 seconds to solve these benchmarks, while S6 takes
an average of 83 seconds.

6.2 Effect of Re-ranking on Search Results
In this paper, we have argued that type similarity met-

rics can be used to improve the quality of results returned
by code search engines. To substantiate this claim, we per-
form an experiment to compare the quality of search results
before and after using our signature-based re-ranking algo-
rithm. Recall that our re-ranking technique sorts search
results based on the cost of the optimal solution to the in-
terface alignment problem. If two methods m,m′ have the
same cost according to our signature similarity metric, our
re-ranking algorithm preserves the relative ordering between
m,m′ based on the original search results.

To evaluate the effectiveness of our re-ranking algorithm,
we compare the ranking of the desired solution before and
after re-ranking 4. To show that this improvement is or-
thogonal to the code search engine, we perform the same

4If there are multiple solutions that match a given query, we
consider the rank of the highest rank solution. Furthermore,
we manually inspected the search results to decide whether
a given method implements the desired functionality.

GrepcodePliny
0

5

10

A
v
g
.

R
a
n
k
in

g

Re-ranked Original

Figure 5: Average ranking of solution

experiment using two different code search engines, namely
Pliny [7] and Grepcode [3]. Since Grepcode does not use
the same database as Pliny, we were only able to find the
correct solution for 24 out of the 40 benchmarks from Ta-
ble 1. Hence, for Grepcode, we only report the ranking of
the solution for the 24 benchmarks. For Pliny, we report
the rank of the solution before and after re-ranking for all
40 benchmarks.

Figure 5 summarizes the results of this experiment. The
green bars (on the right) show the rank of the solution in
the original search results, and the purple bars (on the left)
indicate the rank of the solution after re-ranking. Without
using our re-ranking algorithm, the solution has an average
rank of 10 using Pliny and 11 using Grepcode. On the other
hand, after re-ranking, the solution has an average rank of
3 for Pliny and 2 for Grepcode. Hence, we believe these
results indicate that our signature similarity metric can be
used to improve the results of any code search engine that
yields results at the granularity of methods.

6.3 User Study
To evaluate the impact of Hunter on programmer pro-

ductivity, we conducted a user study involving 16 graduate
students, 2 professional programmers, and 3 undergraduate
students. Among these 21 participants, 13 are experienced
Java programmers, and the remaining 8 have limited expo-
sure to Java.

In our user study, we asked the participants to produce a
Java implementation for each of the following methods:

T1. Double matrix multiplication:
void multiply(Vector<Vector<Double>> first,

Vector<Vector<Double>> second,
Vector<Vector<Double>> res)

T2. Integer longest common subsequence:
void lcs(Vector<Integer> first,

Vector<Integer> second, Vector<Integer> out)

T1 T2 T3
0

200

400

600

800

1,000

1,200

A
v
g
.

T
im

e
(s

)

Hunter Manual

Figure 6: Comparison between Hunter and manual coding

T3. Bresenham Line:
void drawLine(int x, int y, Vector<MyPoint> p)

For each problem, we provided a detailed description of
the task to be performed, including a simple input-output
example. Since our goal is to compare programmer produc-
tivity with and without Hunter, we instructed participants
to complete each task using two different methods:

• Manual: In this scenario, participants were asked to
complete the programming task manually without us-
ing Hunter. However, participants were explicitly
told that they can use any existing code search tool
and adapt the search results to their needs. In other
words, the participants were aware that they do not
have to implement the algorithm from scratch.

• Using Hunter: In this scenario, participants were
asked to use Hunter to automatically synthesize the
desired code by providing a natural language query and
implementing appropriate JUnit tests. Since partici-
pants did not have any prior familiarity with Hunter,
we gave the participants a brief demo of the tool prior
to the user study.

For both scenarios, we asked participants to stop working
on a given task after 30 minutes. Hence, any task that the
users could not complete within 30 minutes was considered
as a “failure”. For the manual implementation case, we did
not require participants to write test cases for their code.
Hence, there was no overlap between the tasks that the users
needed to complete for the two different usage scenarios.
Programmer productivity. Figure 6 shows the average
time for completing each of the three tasks with and with-
out Hunter. Overall, participants took an average of 130
seconds using Hunter and an average of 948 seconds when
writing the code manually. Furthermore, while participants
were able to successfully complete 100% of the tasks us-
ing Hunter, success rate was only 85% without Hunter.
In particular, participants were not able to manually com-
plete 15% of the tasks (4 T1, 4 T2, and 2 T3) within the 30
minute time limit. In summary, these results demonstrate
that Hunter allows programmers to be more productive.

To further validate our claim that these results are sta-
tistically significant, we also performed a two-tailed paired
t-test [11] for each task, ignoring samples that were not com-
pleted within the 30 minute time-limit. Since the t-test for
each task returned p-values smaller than 0.0001, this evalu-

ation supports our claim that there is a significant difference
in average task completion time with and without Hunter.

Quality of solutions. To compare the quality of the so-
lutions implemented manually vs. using Hunter, we also
manually inspected the solution and ran the programs on
a large test suite. While programs synthesized by Hunter
pass all test cases, 19% of the manually written programs are
actually buggy and fail at least one of our test cases. Among
those buggy programs, ten of them contain off-by-one bugs,
one program implementing task T1 throws an exception for
matrices that are not square, and one program implement-
ing task T3 produces the wrong result due to a typo in the
copy-pasted code. In summary, we believe these results show
that programs synthesized by Hunter are less error-prone
compared to their manually written versions.

6.4 Threats to Validity
In this section, we discuss possible threats to the validity

of the experiments.

Comparison with S6. One of the threats to validity in
our evaluation is that we could only compare against a sin-
gle test-driven code reuse tool, namely S6. In particular,
we were not able to compare Hunter against other test-
driven code reuse tools, such as CodeGenie [22] and Code-
Conjurer [20], since they are no longer maintained by the
original developers.

Another threat to validity is the measurement of the run-
ning times when comparing Hunter and S6. Specifically,
S6 is multi-threaded, runs on a remote server, and it ter-
minates when it finds all methods that pass all test cases.
Hunter is single-threaded, runs on a common laptop, and
it terminates when it finds the first method that passes all
test cases. We extended Hunter to terminate after finding
all methods, and the average running time increases from 15
seconds to 25 seconds but it is still much faster compared to
S6 (83 seconds).

Effect of re-ranking. Another threat to validity is that
our re-ranking procedure requires search engines to produce
results at the granularity of methods. However, most search
engines, such as Github [2], OpenHub [6], and CodeEx-
change [25], provide solutions either at the granularity of
files or require an exact match between method names. We
chose to evaluate our type-based re-ranking algorithm using
the Pliny and Grepcode search engines since they provide
finer-grained support for querying methods.

User study. Finally, a threat to the validity of our user
study is the choice of programming tasks as well as the
background of the participants. Specifically, only 62% of
the participants were experienced Java programmers, so it
is conceivable that the participants in our study are not fully
representative of professional Java developers. However, we
believe that the potential users of a tool like Hunter also
include novice programmers.

7. RELATED WORK
In this section, we survey related work on code search,

code reuse, and program synthesis.

Code search and reuse. Existing techniques for code
search and reuse can be divided into several categories, in-

cluding textual [25, 33, 10], graph-based [8, 26, 19], test-
driven [22, 20, 29, 31], and type-based methods [32, 35, 34].

Textual approaches for code search identify relevant methods
using keywords, such as comments and variable names [13,
23, 33]. In more recent work, Chatterjee et al. have proposed
annotating user code with documentations of API meth-
ods in order to improve free-form query search results [10].
Similarly, Exemplar [15] uses help documents to expand
queries and achieves multiple levels of granularity. Code-
Exchange [25] further refines textual methods by exploit-
ing relationships between successive user queries. Unlike
Hunter, none of these techniques enable fully automated
reuse of existing code.

Graph-based approaches to code search represent relation-
ships between software components as a graph and use a
variant of the PageRank algorithm [27] on the resulting
graph representation. For example, Sourcerer [8] models
software components as a directed graph, where nodes de-
note classes and edges represent cross-component usage. This
representation allows Sourcerer to prioritize widely-used soft-
ware components in the search results. Similarly, Portfo-
lio [26] generates a graph representation, where nodes cor-
respond to methods and edges denote caller-callee relation-
ships. The key insight underlying Portfolio is that methods
that are called more frequently in the corpus are likely to be
more relevant.

Type-based approaches allow users to formulate code search
queries involving types. For example, Prospector [24] and
PARSEWeb [32] can synthesize small code snippets that
reuse existing functions based on queries of the form (τin, τout),
where τin, τout denote the desired input and output types re-
spectively. Another related line of work is signature match-
ing, which aims to retrieve methods that (partially) match
a type signature by reducing this problem to first-order uni-
fication [35, 34]. Hunter is closely related to these ap-
proaches in that it performs re-ranking and interface align-
ment based on type signatures. However, our approach dif-
fers from these techniques in that (i) we compute a type sim-
ilarity metric based on multiset representations of classes,
and (ii) solve an integer linear programming problem to find
the best match. It is worth noting that Hunter uses an ap-
proach similar to Prospector and PARSEWeb for automat-
ically synthesizing adapter code in a type-directed manner.

Test-driven approaches use test cases to partially specify
the behavior of the desired method. For example, CodeGe-
nie [22] extracts the method signature and search keywords
from JUnit tests provided by the user and queries Sourcerer
to find relevant methods. It then uses the provided test cases
to validate the search result and merges the code into devel-
opment environment. However, unlike Hunter, CodeGenie
cannot synthesize adapter code.

Another test-driven tool similar to Hunter is CodeCon-
jurer [20], which allows users to specify class components
using test cases and UML-like interface description. Simi-
lar to Hunter, CodeConjurer can find a suitable mapping
between the methods of the candidate class and those of
the desired class. However, CodeConjurer tries all possi-
ble method-mapping permutations and cannot synthesize
adapter code. Since the mapping technique is based on
brute-force search, CodeConjurer’s method matching pro-

cedure can take several hours. In contrast, Hunter solves
a different kind of interface alignment problem and finds an
optimal solution through integer linear programming.

Among automated code reuse tools, S6 [29] is the most
similar to Hunter. Specifically, S6 uses a combination of
test cases, method signatures, and natural language descrip-
tion to find relevant methods. Furthermore, similar to Hun-
ter, S6 can adapt existing code to fit the desired interface by
performing various kinds of transformations (e.g., parameter
re-ordering and renaming). As demonstrated in our exper-
iments, Hunter outperforms S6, both in terms of running
time as well as the amount of code that it can reuse.

Program synthesis and code completion. Hunter is
also related to a long line of work on program synthesis and
code completion. In particular, Hunter uses existing type-
directed synthesis techniques to automatically generate any
necessary adapter code.

In recent years, there has been a flurry of interest in auto-
mated code completion tools [14, 18, 24, 32, 30, 19, 36, 28].
Some of these techniques use type information [18, 24, 32],
while others [36, 28] use statistical information about API
usage patterns to find relevant completions. We believe that
any type-directed code completion tool can be gainfully inte-
grated into Hunter for automatically synthesizing wrapper
code from a candidate alignment.

Another related line of work is component-based synthe-
sis [12, 16, 21, 17], which aims to synthesize programs from
a database of underlying components. Component-based
synthesis techniques have been used in a variety of appli-
cation domains, including bit-vector algorithms [16], deob-
fuscators [21], and geometry constructions [17]. Most re-
cently, Feng et al. have proposed a type-directed approach
to component-based synthesis that utilizes Petri net reacha-
bility analysis [12]. As mentioned earlier, Hunter internally
uses Feng et al.’s SyPet tool in order to synthesize adapter
code in a type-directed manner.

8. CONCLUSION
We have presented a tool called Hunter for finding and

automatically reusing existing methods. Given a search
query and a set of test cases provided by the user, Hunter
searches massive code repositories for candidate adaptee me-
thods and automatically synthesizes any necessary wrapper
code. The key technical idea underlying Hunter is to com-
pute a similarity metric between types and use this infor-
mation for re-ranking search results and finding a suitable
mapping between the parameters of the desired method and
that of the adaptee. We formulate the problem of finding an
optimal (i.e., lowest cost) mapping in terms of integer linear
programming (ILP), and automatically synthesize wrapper
code from the solution to the ILP problem by leveraging
existing type-directed synthesis techniques. Our experimen-
tal evaluation shows that Hunter compares favorably with
existing code reuse tools and that our re-ranking algorithm
improves the quality of the search results. We have also per-
formed a user study involving 21 participants and 3 different
programming tasks. Our study demonstrates that Hunter
increases programmer productivity and helps programmers
write less buggy code. The Hunter tool can be obtained
for free from the Eclipse marketplace and used as an Eclipse
plug-in to aid software development tasks.

9. REFERENCES
[1] Bitbucket. https://bitbucket.org.

[2] GitHub. https://github.com.

[3] Grepcode. http://www.grepcode.com.

[4] Leetcode Online Judge. https://leetcode.com.

[5] Mining and understanding software enclaves.
http://www.darpa.mil/program/
mining-and-understanding-software-enclaves.

[6] OpenHub. https://www.openhub.net.

[7] Pliny Project. http://pliny.rice.edu.

[8] S. K. Bajracharya, J. Ossher, and C. V. Lopes.
Sourcerer: An infrastructure for large-scale collection
and analysis of open-source code. Sci. Comput.
Program., 79:241–259, 2014.

[9] D. L. Berre and A. Parrain. The Sat4j library, release
2.2. Journal on Satisfiability, Boolean Modeling and
Computation, pages 59–6, 2010.

[10] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A
search engine for java using free-form queries. In
FASE, pages 385–400, 2009.

[11] W. J. Dixon and F. J. Massey Jr. Introduction to
statistical analysis. McGraw-Hill, 1957.

[12] Y. Feng, Y. Wang, R. Martins, A. A. Kaushik, and
I. Dillig. Type-directed Component-based Synthesis
using Petri Nets. Technical Report TR-16-01,
Department of Computer Science, UT-Austin, 2016.

[13] W. B. Frakes and T. P. Pole. An empirical study of
representation methods for reusable software
components. Software Engineering, IEEE
Transactions on, 20(8):617–630, 1994.

[14] J. Galenson, P. Reames, R. Bod́ık, B. Hartmann, and
K. Sen. Codehint: dynamic and interactive synthesis
of code snippets. In ICSE, pages 653–663, 2014.

[15] M. Grechanik, C. Fu, Q. Xie, C. McMillan,
D. Poshyvanyk, and C. M. Cumby. A search engine for
finding highly relevant applications. In ICSE, pages
475–484, 2010.

[16] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan.
Synthesis of loop-free programs. In PLDI, pages
62–73, 2011.

[17] S. Gulwani, V. A. Korthikanti, and A. Tiwari.
Synthesizing geometry constructions. In PLDI, pages
50–61, 2011.

[18] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac.
Complete completion using types and weights. In
PLDI, pages 27–38, 2013.

[19] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In ICSE,
pages 117–125, 2005.

[20] O. Hummel, W. Janjic, and C. Atkinson. Code
conjurer: Pulling reusable software out of thin air.

IEEE Software, 25(5):45–52, 2008.

[21] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
ICSE, pages 215–224, 2010.

[22] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, P. C.
Masiero, and C. V. Lopes. Applying test-driven code
search to the reuse of auxiliary functionality. In SAC,
pages 476–482, 2009.

[23] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An
information retrieval approach for automatically
constructing software libraries. Software Engineering,
IEEE Transactions on, 17(8):800–813, 1991.

[24] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle.
In PLDI, pages 48–61, 2005.

[25] L. Martie, T. D. LaToza, and A. van der Hoek.
Codeexchange: Supporting reformulation of
internet-scale code queries in context (T). In ASE,
pages 24–35, 2015.

[26] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie,
and C. Fu. Portfolio: finding relevant functions and
their usage. In ICSE, pages 111–120, 2011.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[28] V. Raychev, M. T. Vechev, and E. Yahav. Code
completion with statistical language models. In PLDI,
page 44, 2014.

[29] S. P. Reiss. Semantics-based code search. In ICSE,
pages 243–253, 2009.

[30] N. Sahavechaphan and K. T. Claypool. Xsnippet:
mining for sample code. In OOPSLA, pages 413–430,
2006.

[31] K. T. Stolee, S. G. Elbaum, and D. Dobos. Solving the
search for source code. ACM Trans. Softw. Eng.
Methodol., 23(3):26, 2014.

[32] S. Thummalapenta and T. Xie. Parseweb: a
programmer assistant for reusing open source code on
the web. In ASE, pages 204–213, 2007.

[33] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In ICSE,
pages 513–523, 2002.

[34] A. M. Zaremski and J. M. Wing. Signature matching:
A tool for using software libraries. ACM Trans. Softw.
Eng. Methodol., 4(2):146–170, 1995.

[35] A. M. Zaremski and J. M. Wing. Specification
matching of software components. In ESEC/FSE,
pages 6–17, 1995.

[36] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
MAPO: mining and recommending API usage
patterns. In ECOOP, pages 318–343, 2009.

https://bitbucket.org
https://github.com
http://www.grepcode.com
https://leetcode.com
http://www.darpa.mil/program/mining-and-understanding-software-enclaves
http://www.darpa.mil/program/mining-and-understanding-software-enclaves
https://www.openhub.net
http://pliny.rice.edu

	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 System Overview

	3 Type Distance
	3.1 Multiset Representation of Types
	3.2 Computing Distances Between Types

	4 Interface alignment
	4.1 Problem Definition
	4.2 Optimal Interface Alignment
	4.3 ILP Formulation

	5 Design and Implementation
	6 Evaluation
	6.1 Comparison with S6
	6.2 Effect of Re-ranking on Search Results
	6.3 User Study
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion
	9 References

