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This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can

only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within

the image. For example, our method can selectively blur or crop specific objects that have a certain property. To

facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL)

that combines pre-trained neural networks for image classification with other language constructs that enable

symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by

utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye

and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of

these tasks.
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1 INTRODUCTION

Because many real-world scenarios require editing a very large number of images, existing photo
editing software provides some support for image processing in batch mode. For example, popular
software like Adobe Photoshop and Luminar allow users to process multiple files at the same time
by specifying actions like resizing or converting to a specified file type.

Despite the popularity of such tools, batch editing capabilities of existing software are extremely
limited and can only perform edits globally to the entire image. However, many image editing
tasks of interest require fine-grained edits to specific parts of the image. For example, consider a
scenario where someone wants to upload a collection of their photos after concealing the identities
of certain people. Such a task requires performing selective edits (e.g., blurring) to certain parts of
the image but not others. As another example, consider a batch processing task where someone
wishes to adjust the white balance of certain types of objects, such as human faces. Because this
requires combining programmatic edits with object classification, existing solutions fall short in
successfully automating such image manipulation tasks.
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In this paper, we propose a new technique, based on program synthesis, for automating selective
image editing tasks. Given a small set of user demonstrations (performed through a graphical user
interface), our approach automatically synthesizes a program that can be applied to a much larger
set of images. Because these programs are expressed in a neuro-symbolic domain-specific language
(DSL) comprised of both logical operators and (pre-trained) neural networks, they can be used to
perform fine-grained edits where different actions can be selectively applied to different parts of
the image. As a result, our approach can automate image processing tasks that are well beyond the
scope of existing tools.
At a high level, programs in our image editing DSL specify what actions (blur, crop etc.) to

apply to what parts of the image. Thus, an image editing program can be viewed as a set of
extractor and action pairs where each extractor selects a part of the image and the action specifies
what operation to apply to that part. Because these extractors are expressed in a rich vocabulary
involving both neural primitives and functional operators, our DSL makes it possible to combine
object classification with relational reasoning.
Beyond proposing a DSL for batch image processing, a key contribution of this paper is a new

program synthesis technique for learning programs in this DSL. At a high level, our approach reduces
this problem to a more standard programming-by-example (PBE) task by utilizing the concept of
symbolic images: rather than representing an image as a set of low-level pixels, we represent images
as a mapping from object identifiers to their symbolic properties. This representation is obtained by
applying segmentation to the input image and utilizing neural object classifiers to extract attributes
of each detected object. Overall, this symbolic representation is crucial to our technique in two
ways: First, it allows defining a formal semantics of our DSL in terms of sets of high-level objects as
opposed to a 2D array of low-level pixels. Second, due to this symbolic representation, the learning
task can be reduced to the problem of synthesizing an extractor function that produces a target set
of objects from among all objects in the input image.

To solve the PBE problem in this context, our approach utilizes top-down enumerative search, as
done in prior work [Feser et al. 2015; Le and Gulwani 2014; Smith and Albarghouthi 2019; Wang
et al. 2017]. As standard, the idea is to maintain a worklist of partial programs (i.e., programs
with unknown parts) that are gradually refined into a concrete implementation. However, basic
enumerative search does not scale to the image manipuation tasks of interest in this work because
images often contain many objects with many different attributes. As a result, the search space
becomes enormous, necessitating novel pruning techniques that can be utilized to rule out redundant
or infeasible partial programs. Specifically, our underlying PBE algorithm addresses scalability
challenges of this domain through two key insights:

(1) Equivalence reductionwith term rewriting and partial evaluation:Many partial programs
enumerated during top-down search are bound to produce the same output image no matter

how the unknown parts are instantiated. In other words, the basic search procedure ends up
enumerating many redundant partial programs that can be safely thrown away. To detect such
redundancies and prune the search space, our method leverages a combination of term rewriting

and partial evaluation to reason about observational equivalence in the context of images. While
prior work on program synthesis has used term rewriting and partial evaluation in isolation,
we show that term rewriting is considerably more effective in this context when it is combined
with partial evaluation.

(2) Abstract semantics for images: Some partial programs enumerated during search can never

produce the target output image no matter how they are refined into a concrete implementation.
To avoid such dead-ends in the search space, our method utilizes a novel abstraction (and
its corresponding abstract semantics) for image editing programs. In particular, reasoning
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backwards from the target image, our method infers the set of objects thatmust andmay appear
in an (unknown) subprogram and uses this information to identify infeasible partial programs
in our image editing DSL.

We have implemented our proposed approach in a tool called ImageEye and evaluated it on 50
image processing tasks inspired by practical tasks and on-line forum discussions. Our evaluation
shows that ImageEye can successfully automate 48 of these tasks and that it can infer the intended
program after a small number of user demonstrations. We also perform comparisons against simpler
synthesis baselines and present ablation studies to demonstrate the usefulness of our proposed
synthesis technique.
To summarize, this paper makes the following key contributions:

• We describe the first solution for automating fine-grained image editing tasks.
• We present an image processing DSL that combines neural computer vision primitives with
programmatic constructs for relational reasoning, and we define the formal semantics of this
DSL in terms of the concept of symbolic images.
• We propose a novel synthesis algorithm for generating programs in our DSL from a set of
user demonstrations. Our technique decomposes the overall synthesis problem into a set of
independent PBE tasks and utilizes two key ideas (namely, abstraction-guided reasoning about
images and combined use of partial evaluation and term rewriting) to allow this approach to
scale to realistic image batches.
• We implement our approach in a new tool called ImageEye and evaluate it experimentally on
dozens of image editing tasks involving a diverse set of images.

2 OVERVIEW

Usage scenario. Suppose that a user has a batch of several hundred images from a school recital.
The user would like to identify all images that feature their daughter playing the violin and crop
everything else out of those images. Our proposed tool, ImageEye, is useful for these types of tasks
that are easy for a small number of images but grueling for a large batch.
To automate this task, the user loads their images into ImageEye and identifies a few images

that feature their daughter playing a violin. For each image, they use the ImageEye graphical
user interface to select their daughter’s face and violin, and choose the “Crop" action to crop the
the selected region. Under the hood, the ImageEye GUI uses computer vision models (for image
segmentation and object recognition) to highlight the detected objects and allows the user to select
each object individually. If the relevant objects are not detected in the current image, the user will
quickly realize that this particular image is not useful for demonstrating their intent and move on
to a different image.

Once the user has edited a few representative images, they press the “Synthesize” button, which
invokes ImageEye’s synthesis engine and searches for a program % that matches the user’s demon-
strations. ImageEye then applies % to all images in the batch, and produces a new set of edited
images. Next, the user inspects the resulting images to decide whether the synthesized program is
correct. If % fails to produce the intended edit for many images in the batch, then the synthesis result
is likely incorrect and the user may provide one or more additional demonstrations as training
examples. On the other hand, if the output images look as intended, the synthesized program likely
captures the user’s intent. However, there may be some imperfections due to shortcomings of the
neural models used in the synthesized program. In this case, the user needs to manually edit a
small number of images where the resulting image differs from the expected output, but this is still
much more convenient than manually editing all images in the batch.
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Shortcomings of existing techniques. While existing image editing tools like Photoshop and
GIMP allow some forms of batch processing, they only support simple manipulations (like resizing
or applying a filter) to the entire image. Notably, such tools do not allow batch processing tasks
that differ based on the content of each image. Because our motivating example requires reasoning
about the presence of specific objects in each image and applying a cropping action accordingly,
such tools are not useful for automating this task.
On the other hand, tools like Amazon Rekognition use pre-trained neural models for object

detection. Given an image, these tools can identify and locate a wide range of objects, including text
and human faces. In addition, they can recognize the same face across different images and discern
several interesting properties of human faces, such as their approximate age and whether the
person is smiling. However, they neither provide functionality for editing individual images nor for
batch processing. Hence, such computer vision models are also not directly useful for performing
the task in our motivating example.

Our approach. In contrast to existing techniques, our approach combines the relative strengths of
programmatic batch image processing with computer vision techniques (image segmentation and
object recognition). Specifically, our approach utilizes a neuro-symbolic DSL that leverages pre-
trained neural networks for perception and higher-level language constructs for symbolic reasoning.
The combination of these symbolic and neural constructs is very powerful in that it enables (a)
reasoning about relationships between different objects in the image, and (b) selectively editing
parts of the image that contain some visual cue of interest.

In more detail, a program in our neuro-symbolic DSL is of the form {� � �, . . . , � � �}, where
� is an action and � is an extractor. An action describes a specific image manipulation (e.g. Crop or
Blur), and an extractor describes the subset of objects to which that action will be applied. As a
simple example, consider the program {Object(cat) → Brighten}, which applies a brightening
filter to all cats in the input image. This DSL also allows combining different objects via standard set
operators. For instance, the extractor Intersect(Is(Smiling),Complement(Is(EyesOpen))) extracts
all human faces that are smiling and do not have their eyes open. In addition, a Find operator can be
used to extract objects based on their relative position within the image. For instance, the extractor
Find(Is(Text("Total")), TextObject,GetRight) first identifies all text objects matching the word
"Total" and then, for each such object > , it extracts the first text object that is to the right of > .

With these basic DSL constructs in mind, let us consider the program that can be used to automate
our target task (i.e., finding and cropping all images that feature the user’s daughter with a violin).
This task can be expressed with the following program in our DSL:

{Union(Find(Is(Face(Id)),Object(violin),GetBelow),

Find(Is(Object(violin)), Face(Id),GetAbove)) → Crop}

Here, the extractor is aUnion of two sub-extractors: Find(Is(Face(Id)),Object(Violin),GetBelow)
and Find(Is(Object(Violin)), Face(Id), GetAbove). The first sub-extractor identifies all human faces
with the identifier Id, where Id corresponds to the face of the user’s daughter. Then, for each such
face, this program extracts the first violin object located below that face. Conversely, the second
sub-extractor identifies all violin objects; then, for each such object, it extracts the first human face
with identifier Id that is located above the violin. In other words, the first sub-extractor extracts the
violin that is played by the user’s daughter, and the second sub-extractor extracts the face of the
user’s daughter when she is holding a violin. The union of these sub-extractors precisely describes
the part of the image that the user wants to select.

Neuro-symbolic program synthesis. To generate the desired program from the user’s demonstra-
tions, our approach first represents the training images in symbolic form. In particular, rather than
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=⇒

Fig. 1. Example input and output.

viewing each image as a set of low-level pixels, our approach generates a symbolic representation of
each image, mapping object identifiers to their properties. This symbolic representation is obtained
by running pre-trained neural networks for image segmentation and object recognition on the
user-provided images.
One of the key advantages of this symbolic image representation is that it allows reducing our

complex learning task to the relatively well-understood programming-by-example (PBE) problem.
In particular, by representing the image in this symbolic form, ImageEye can keep track of which
actions have been applied to which objects. Hence, the learning task reduces to synthesizing a
so-called extractor that can be used to programmatically extract the desired objects among all the
objects comprising the symbolic image.
While our proposed symbolic image representation allows reducing the learning problem to

standard PBE, the resulting PBE task is unfortunately quite challenging. In particular, because
images often contain a very large number of objects, the search space for the underlying synthesis
problem can become quite massive. To make matters worse, each object has a large number of
attributes associated with it, where each attribute corresponds to a pre-trained classifier (e.g., for
detecting whether someone is smiling, whether an object is a guitar, etc.). Because each attribute
corresponds to a built-in function in the underlying DSL, this means that the space of all programs
that the synthesizer needs to consider can be enormous.

As described briefly in Section 1, the PBE technique underlying our synthesis engine is based on
top-down enumerative search, but it utilizes two novel ideas to deal with the scalability challenges
that arise in this setting:

Idea #1: Combining term rewriting with partial evaluation. Despite the large search space, it
turns out that many of the programs in our DSL are redundant. For example, consider the partial
programs %1 = Union(Is(Face(Id)), □) and %2 = Union(□, Is(Face(Id))) where □ indicates a hole (i.e.,
unknown subprogram). Since the Union operator is commutative, any solution to the synthesis
problem that is a completion of %2 will also be a completion of %1. Thus, we can significantly reduce
the search space by detecting such redundant partial programs and pruning them from the search
space. To that end, our method uses term rewriting to reduce each partial program to a canonical
form and discards all non-canonical expressions when performing the search. This idea can be seen
as an instance of equivalence reduction explored in prior work [Smith and Albarghouthi 2019].
While the above idea is quite useful in our setting, it is nonetheless not sufficient to detect all

redundant partial programs of interest. In particular, while two partial programs may not be always
equivalent, they might still be observationally equivalent — that is, they are guaranteed to have the
same behavior on the given set of input images. To gain more intuition, consider the partial extractor
� = Union(Intersect(Is(Smiling), Is(EyesOpen)), □) whose canonical form is itself. However, suppose
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that the example images provided by the user do not contain any human faces that are both smiling
and have their eyes open. Under this assumption, Intersect(Is(Smiling), Is(EyesOpen)) is the empty
set, so � simplifies to □. Motivated by this observation, our method combines partial evaluation
with term rewriting to further reduce the search space. In particular, our method partially evaluates
incomplete programs on the provided input-output examples before reducing them to a canonical
form. Because partial evaluation can greatly simplify incomplete programs, combining term writing
with partial evaluation significantly amplifies the pruning power of this technique. We believe this
insight (namely, combining partial evaluation with term rewriting) could be similarly powerful in
reducing the search space in other synthesis settings beyond our image editing domain.

Idea #2: Goal-directed reasoning via image abstractions. Our synthesis method uses another
key idea, namely goal-directed reasoning via abstraction, to successfully automate image editing
tasks of interest. For example, consider the partial program Intersect(□1, □2), and suppose the goal
output > is the set of all dog objects in the example images. While we cannot infer the exact output
of each hole, we can infer that the □1 and □2 must both produce all dog objects in the image due
to the semantics of set intersection. Using this kind of goal-directed reasoning, we can prune all
partial programs where either hole is instantiated with Is(Object(Cat)) (or any other extractor that
does not produce all dogs). Similarly, consider the partial program Union(□1, □2), and suppose that
the target output is again the set of all dogs in the image (and nothing else). In this case, we can
infer that each hole should not produce anything other than a dog because of the semantics of set
union. Hence, if either hole is instantiated with Is(Object(Cat)) (or any extractor that produces a
non-dog object), we know that the program will be infeasible and can be safely pruned.
Based on this motivation, our synthesis algorithm performs a form of abstract interpretation

over images to facilitate goal-directed reasoning. In particular, starting from the desired output
image, our synthesis technique utilizes the abstract semantics of the image editing DSL to infer
specifications of sub-programs yet to be synthesized. These specifications take the form of pairs of

over- and under-approximations, (Î−, Î+), where Î+ includes all objects that may be present in

the synthesized program and Î− represents those objects that must be present. If a sub-program

with inferred specification (Î−, Î+) ever produces a symbolic image that contains fewer objects
than its over-approximation or more objects than its under-approximation, we know it must be
incorrect. In our setting, this idea can be used to prune large parts of the search space, and we
believe that our proposed abstraction could be similarly useful in other program synthesis tasks
involving images.

3 DOMAIN-SPECIFIC LANGUAGE FOR IMAGE MANIPULATION

In this section, we introduce our domain-specific language for image manipulations. Since inputs
to programs in this DSL are images, we first explain how we represent images and then describe
the constructs in this DSL.

Image representation. A raw image I as a = ×< matrix where each entry corresponds to a pixel.
However, because raw images are quite low level, this work utilizes a more abstract representation
called a symbolic image for formalizing our DSL. Specifically, given a raw image I, we define a

corresponding symbolic image Î as follows:

Definition 3.1. (Symbolic image) A symbolic image Î is a set of objects > where each object is
represented by a pair (Φ,Δ) where Φ is a mapping from the attributes of that object to their values,
and Δ represents the location of the object within the raw image. For simplicity, we represent Δ as
a bounding box ( 9l, 9r, 9C , 91 ) describing the left, right, top and bottom pixels.
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Î = {(Φ1,Δ1), (Φ2,Δ2), (Φ3,Δ3), (Φ4,Δ4)}
Φ1 = { objectType→ person }

Φ2 = { objectType→ face,

faceId→ 1,

Smiling→ true,

EyesOpen→ true }

Φ3 = { objectType→ car }

Φ4 = { objectType→ text,

textBody→ "FDE945" }

Fig. 2. An image and its corresponding symbolic image. Rectangles denote bounding boxes.

% := {� � �, · · · , � � �}
� := Blur | Blackout | Sharpen | Brighten | Recolor | Crop
� := All | Is(i)
| Complement(�) | Union# (�1, · · · , �# ) | Intersect# (�1, · · · , �# )
| Find(�, i, 5 ) | Filter(�, i)

i := Face(# ) | Object($) | Smiling | AboveAge(# ) | Text(, ) | · · ·
5 := GetLe� | GetRight | GetAbove | GetBelow | GetParents

Fig. 3. Image manipulation DSL.

Intuitively, an symbolic image Î corresponds to a more abstract representation of I obtained
through pre-trained neural networks used for classification (to construct Φ) and segmentation (used
to construct Δ). In particular, each element in the domain of Φ is obtained using a different pre-
trained neural network used for classification. For example, consider an attribute called objectType
in the domain of Φ. This attribute identifies the type of the object, which could be a face, cat, dog,
table etc. Some of the attributes are only defined for certain types of objects. For example, the
boolean attribute Smiling only makes sense for human faces. Thus, the domain of Φ may be
different across different objects. Given an object > = (Φ,Δ), we use the notation >.Φ and >.Δ to
refer to Φ and Δ respectively.

Example 3.2. Consider the image in Figure 2, and its corresponding symbolic image Î on the

right. Here, Î contains four objects: the person, their face, the car, and the text on the car’s license
plate. Each object has an attribute called objectType. The face object has the additional attributes
faceId, Smiling, and EyesOpen, and the text object has the additional attribute textBody whose
value is a string that contains the text on the license plate.

In the remainder of this paper, we use a single symbolic image to represent multiple raw input
images. Because a symbolic image is a mapping from object identifiers to their attributes, a symbolic
image can represent multiple raw images without any loss of information. This is because different
occurrences of the same object in different images have different identifiers, and an attribute is used
to track which object identifier originates from which image. This design choice of representing
multiple raw images as a single symbolic image allows simplifying our technical presentation.

DSL Syntax. Our image editing DSL is defined in Figure 3 and is meant to capture a broad class of
selective edits . At the top level, a program is comprised of a set of guarded actions of the form
� � �, where � is an action like Crop or Blur and the guard � is an extractor that specifies what
part of the image to apply that action to. Extractors are defined recursively and have two base
cases: (1) the identity extractor All returns the entire image, and (2) Is(i) returns all objects in the
image for which the predicate i evaluates to true. Extractors can be nested inside one another by
composing them via set operators (complement, intersection, and union) as well as the constructs
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=⇒

{Intersection(
Find(

Object(cat),
Object(cat),
GetRight),

Find(
Object(cat),
Object(cat),
GetLe�))

→ Blur}

Fig. 4. Input and output of a program.

' ∈ {Smiling,AreEyesOpen, · · · }
' ∈ Domain(>.Φ) >.Φ['] = True

> |= '

' ∈ {BelowAge, IsObject, · · · }
' ∈ Domain(>.Φ) >.Φ['] = �

> |= '(�)

Fig. 5. Definition of the entailment relation.

Find(�, i, 5 ) and Filter(�, i). The Find construct first extracts a set of objects $ using the nested
extractor � and then, for each object > ∈ $ , it returns the first element in 5 (>) satisfying predicate
i . Here, 5 is a function that takes as input an object and returns a sorted list of objects. For example,
GetRight(>) returns a list of all objects that are to the right of > , sorted by their G coordinate.
Hence, the extractor Find(Is(Face(=)), Smiling,GetRight) finds the first smiling face to the right of
person =. As another example, Find(All, Smiling,GetLe�) would yield the set of all smiling faces
that are to the left of some object in the input image. Finally, the construct Filter(�, i) filters nested
objects that satisfy predicate i . In particular, given a set of objects $ extracted via �, Filter(�, i)
returns all objects satisfying i contained inside some object > in $ . For instance, the extractor
Filter(Is(Object(car)),Object(person)) will return all people who are inside of cars.

Example 3.3. Consider the image on the left in Figure 4. Given this image as input, the program

{Intersection(

Find(Object(cat),Object(cat),GetRight),

Find(Object(cat),Object(cat),GetLe�)) → Blur}

will output the image on the right. Note that the extractor in this program yields all cat objects that
have a cat to their left and right. In other words, it extracts all cats that are between two other cats.

Predicates in our DSL reflect the capabilities of state-of-the-art computer vision models for object
recognition and classification. In particular, we choose to include certain predicates, such as Face(=)
or Object(cat), but not others (e.g., Angry, Sad), because existing neural networks are good at
detecting the first class of features but not the latter class. Furthermore, the choice of built-in
functions (e.g., GetLe�, GetAbove) is motivated by performing segmentation at the level bounding
boxes. The remaining constructs are either standard set operations (e.g., Union) or well-understood
functional combinators (e.g., Filter).

DSL Semantics. The formal semantics of this DSL are presented in Figure 6. Given a program %

and input image I, J%K(I) produces a new image I ′ by applying each of the actions in % to the

extracted sub-image. Similarly, given an extractor � and symbolic image Î, J�K(Î) returns a set of

objects contained in Î. Because each object stores its corresponding pixels in the original input
image, note that it is trivial to convert a set of objects to pixels of the original image.

The semantics of extractors are defined in terms of symbolic images introduced in Definition 3.1.

In particular, given an image I, Is(i) returns the set of all objects in Î that satisfy i . As defined in
Figure 5, an object > satisfies a predicate of the form '(�), denoted > |= '(�), if >.Φ contains an
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J� � �K(I) = ApplyAction(I, �,
⋃

>∈J�K( Î)
>.Δ)

J� � �, %K(I) = ApplyAction(J%K(I), �,
⋃

>∈J�K( Î)
>.Δ)

JAllK(Î) = Î

JIs(i)K(Î) = {> | > ∈ Î ∧ > |= i}

JUnion(�)K(Î) =
⋃

�∈�
J�K(Î)

JIntersect(�)K(Î) =
⋂

�∈�
J�K(Î)

JComplement(�)K(Î) = Î \ J�K(Î)

JFilter(�, i)K(Î) = flatten(map(J�K(Î), _G . filter(JGetContentsK(G, Î), i))))

JFind(�, i, 5 )K(Î) = map(J�K(Î), _G . J5i (G)K(Î))

J5i (>)K(Î) =

{

( [8] if ∃0≤8< |( |( [8] |= i
∧

∀0≤ 9<8 ( [ 9] ̸|= i

None otherwise
where ( = J5 K(>, Î)

Fig. 6. DSL semantics. Here, map((, 5 ) takes the input ( : Set[) ], 5 : ) � Option[) ] and returns {5 (B) | B ∈
( ∧ 5 (B) ≠ None}. flatten takes in a set of sets (All = {(1, · · · (=} and returns a set that containing
⋃

(8 ∈(All ∪B∈(8 B . Finally, filter is the standard filter operator.

JGetRightK(>, Î) = Sort({> ′ | > ′ ∈ Î ∧ > ′.Δ[ 9l] ≥ >.Δ[ 9l]}, > .Δ[ 9l])

JGetLe�K(>, Î) = SortReverse({> ′ | > ′ ∈ Î ∧ > ′.Δ[ 9r] ≤ >.Δ[ 9r]}, > .Δ[ 9r])

JGetAboveK(>, Î) = Sort({> ′ | > ′ ∈ Î ∧ > ′.Δ[ 9t] ≥ >.Δ[ 9t]}, > .Δ[ 9t])

JGetBelowK(>, Î) = SortReverse({> ′ | > ′ ∈ Î ∧ > ′.Δ[ 9b] ≥ >.Δ[ 9b]}, > .Δ[ 9b])

JGetParentsK(>, Î) = Sort({> ′ | > ′ ∈ Î ∧ JContainsK(> ′.Δ, > .Δ)},GetSize(Δ))

JGetContentsK(>, Î) = [> ′ | > ′ ∈ Î ∧ JContainsK(>.Δ, > ′.Δ)∧
�
>′′∈Î

. > ′′ ≠ > ∧ JContainsK(>.Δ, > ′′.Δ) ∧ JContainsK(> ′′.Δ, > ′.Δ)]

JContainsK(>.Δ, > ′.Δ) = True if

> ′.Δ[ 9l] ≥ >.Δ[ 9l] ∧ >
′.Δ[ 9r] ≤ >.Δ[ 9r]

∧> ′.Δ[ 9t] ≥ >.Δ[ 9t] ∧ >
′.Δ[ 9b] ≤ >.Δ[ 9b] else False

JGetSizeK(Δ) = (Δ[ 9r] − Δ[ 9l]) ∗ (Δ[ 9b] − Δ[ 9t])

Fig. 7. Semantics for the built-in and auxiliary functions 5 in the DSL. Sort((, key) sorts the objects in set (

from smallest to largest with respect to key. SortReverse does the opposite.

attribute called ' and the value of that attribute is � . Similarly, if ' is a nullary relation, we have
> |= ' iff > has an attribute called ' whose value is true.

Since the semantics of set operators are standard, we only explain the semantics of Filter and Find,
which are defined in terms of functional combinators like map and flatten. Recall that the Find
extractor is parameterized over a function 5 , such as GetRight and GetBelow, whose semantics

are given in Figure 7. In particular, JGetXK(>, Î) yields a list of all objects > ′ in Î satisfying the
spatial relationship - (> ′, >). As expected, the semantics of these functions are defined using the

bounding box Δ of each object in the image. For example, given an object > in Î, GetRight decides
which objects are to the right of > based on the leftmost pixels of the bounding box of each object.

As shown in Figure 6, the Find construct first evaluates its nested extractor � on the input image

Î to obtain a set of objects $ and applies the function 5i to each object > ∈ $ . The semantics of
5i (G) are given at the very bottom of Figure 6 and essentially yield the first object satisfying i in
the list given by 5 (G). Since 5 (G) may be the empty list or may not have any elements satisfying i ,
observe that 5i (G) can yield None, which is discarded when constructing the output of Find.

Finally, we explain the semantics of the Filter construct, which first evaluates its nested extractor

� on the input image Î to obtain a set of elements of $ . Then, for each object > ∈ $ , it obtains
elements nested inside of > (by inspecting the bounding box of each object in the image) and only
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1: procedure Synthesize(Ψ)

input: specification Ψ

output: a program % such that ∀(I, b) ∈ Ψ. % (I) = b [I]
2: % ← ∅
3: for all � ∈ Actions do
4: Î8= ←

⋃

(I,b) ∈Ψ Î

5: Î>DC ← {> | (I, b) ∈ Ψ ∧ > ∈ Domain(b) ∧� ∈ b [>]}

6: if Î>DC ≠ ∅ then
7: � ← SynthesizeExtractor(Î8=, Î>DC )
8: if � = ⊥ then

9: return ⊥
10: else

11: % ← % ∪ {� � �}

12: return %
Fig. 8. Top-level synthesis algorithm

retains those elements that satisfy i . The final output of Filter is obtained by flattening the resulting
set of sets into a single set.

4 PROBLEM STATEMENT

In this section, we define the synthesis problem that we address in the remainder of the paper. We
first start by introducing the concept of an image edit:

Definition 4.1. (Edit) Given an image I, an edit b on that image is a mapping from objects in Î
to a list of actions that have been applied to those objects.

Given an image I and edit b , we use the notation I[b] to denote the resulting image obtained
by applying b to I. The specification for our synthesis problem is defined in terms of edits:

Definition 4.2. (Spec) An image manipulation specification Ψ is a mapping from images to edits.

We now formally state our synthesis problem as follows:

Definition 4.3. (Image manipulation by demonstration (IMBD)) Given an image manipula-
tion specification Ψ, the goal of image manipulation by demonstration is to produce a program % in
the DSL from Figure 3 such that ∀(I, b) ∈ Ψ. % (I) = b [I].

5 SYNTHESIS ALGORITHM

In this section, we describe our synthesis algorithm for solving the IMBD problem defined in the
previous section. Our top-level learning procedure is shown in Figure 8 and works as follows. For

each possible action in the DSL, it constructs an input-output example (Î8=, Î>DC ) based on the

specificationΨ. If, for some action�, Î>DC is the empty set, this means that� is irrelevant to the target
task, so the algorithmmoves on to the next action. Otherwise, it invokes the SynthesizeExtractor

procedure on (Î8=, Î>DC ) to learn the corresponding extractor � for � and adds the guarded action
� � � to the synthesized program.

5.1 Preliminaries

As is evident from this discussion, the central part of our technique is the extractor learning
algorithm, which relies on a particular representation of partial programs:

Definition 5.1. (Partial program) A partial program % is a tree (+ , �, Σ,Π) with nodes + (in-
cluding a special root node E0) and directed edges �. The mapping Σ maps each node in+ to a label,
which is either a construct in our image manipulation DSL (e.g., All, Complement) or the special
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symbol □ representing a hole. Each node E ∈ + is also annotated with a goal q such that Π(E) = q .
We write % ⊢ E : (;, q) to denote that Σ(E) = ; and Π(E) = q . If none of the nodes in % is labeled
with a hole, we refer to % as a complete program.

Example 5.2. Figure 10 depicts the partial program Union(Is(Smiling), □) as a tree, where each
node is annotated with its corresponding label.

The goal annotation Π(E) for each node E in a partial program imposes constraints on the
semantics of the subtree rooted at E . In our context, a goal is defined as follows:

Definition 5.3. (Goal annotation) A goal annotation (or goal for short) of a node in the partial

program is a pair (Î−, Î+) where Î−, Î+ are symbolic images corresponding to over- and under-
approximations of the output.

Next, we define the consistency between a symbolic image and a goal as follows:

Definition 5.4. (Consistency with goal)We say that a symbolic image Î is consistent with a

goal q = (Î−, Î+), denoted Î ∼ q , iff Î− ⊆ Î ⊆ Î+.

We also extend this notion of consistency to partial programs:

Definition 5.5. (Consistency of partial program) A partial program % is consistent with a

symbolic image Î iff, for every complete subtree %E of % rooted at node E , we have J%EK(Î) ∼ Π(E).

Intuitively, the goals annotating a partial program are used for guiding extractor synthesis and
for ensuring that we never enumerate inconsistent partial programs.

Example 5.6. Consider again the partial program from Figure 10, which contains a complete
subprogram, namely Is(Smiling), rooted at node E1. Suppose that we have an input-output example

(Î8=, Î>DC ), where Î8= contains several face objects. Then JIs(Smiling)K(Î8=) will be a symbolic

image Î ′ containing just the faces that are smiling. Further, suppose our output symbolic image

Î>DC contains just the faces that are smiling or have their eyes open. The goal annotation of

Is(Smiling) will be Π(E1) = (∅, Î>DC ), as explained later in Section 5.3. Since ∅ ⊆ Î ′ ⊆ Î>DC ,

we have JIs(Smiling)K(Î8=) ∼ Π(E1). Therefore, this partial program is consistent. To illustrate
inconsistent partial programs, now consider Union(Is(Object(cat)), □) and the same input-output

example (Î8=, Î>DC ). Here, JIs(Object(cat))K(Î8=) will be a symbolic image Î ′ containing all cat

objects. The goal annotation of Is(Object(cat)) will again be Π(E1) = (∅, Î>DC ). Since Î
′ ⊈ Î>DC ,

JIs(Object(cat))K(Î8=) ≁ Π(E1). Therefore, this partial program is inconsistent.

Because our synthesis algorithm gradually replaces holes with concrete programs, we conclude
this section by defining an operation to update partial programs:

Definition 5.7. (Partial program update) Given a partial program % = (+ , �, Σ,Π), we use the
notation % [E0 ⊳ (;0, q0), . . . E= ⊳ (;=, q=)] to indicate the new partial program

% ′ = (+ ∪
=
⋃

8=0

{E8 }, � ∪
=
⋃

8=1

{(E0, E8 )}, Σ[E0 ↦→ ;0, . . . E= ↦→ ;=],Π[E0 ↦→ ;0, . . . E= ↦→ ;=])

In other words, the notation % [E0 ⊳ (;1, q1), . . . E= ⊳ (;=, q=)] corresponds to adding children
(E1, . . . , E=) of E0 (and their corresponding labels and goals) and updating the label and goal of E0.
Finally, we write CreateProg(E, ;, q) to denote the creation of a partial program with a single node
E with label ; and goal annotation q .
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1: procedure SynthesizeExtractor(Î8=, Î>DC )

input: Î8= is an input symbolic image and Î>DC is the output symbolic image

output: an extractor program % such that J%K(Î8=) ≡ Î>DC
2: W ← {CreateProg(E0,□, (Î>DC , Î>DC ))}
3: whileW ≠ ∅ do
4: % ←W .remove()
5: if isComplete(% ) then

6: if J%K(Î8=) ≡ Î>DC then return %

7: else

8: E ← SelectOpenNode(%);
9: for all % ′ ∈ Expand(%, E) do

10: % ′′ ←PartialEval(% ′, Î8=)
11: if % ′′ ≠ ⊥ ∧ ¬Reducible(% ′′) then
12: W ←W ∪ {% ′};

13: return ⊥
Fig. 9. Extractor synthesis algorithm.

5.2 Top-Level Extractor Learning Algorithm

We now present our top-level extractor learning algorithm, which is shown in Figure 9. Given an

input symbolic image Î8= and an output symbolic image Î>DC , this algorithm maintains a worklist
W of partial programs and iteratively adds to this list. At the beginning of the procedure,W
is initialized to a single program with one node E0 and no edges. Node E0 has label □ and goal

output q0 = (Î>DC , Î>DC ). The loop in lines 3-12 dequeues a program % from the worklist and
processes it. The worklist keeps programs in ascending order first by AST size, then by AST depth.
If % is complete and satisfies the correctness condition, the procedure terminates and returns % .
Otherwise, SynthesizeExtractor calls Expand on line 9 to generate a new set of partial programs
by expanding an open node E in % . As we describe in Section 5.3, the expansion procedure also
infers goals for each new hole in the partial program.

Fig. 10. An illustration of a partial program.

Next, for each expansion % ′ of % , the algorithm calls
PartialEval on line 10 to generate a partially evaluated
program % ′′. The partial evaluation procedure identifies
each complete subprogram %E of %

′, evaluates it on the

input image Îin to obtain an output image Î, and replaces

%E with the constant Î. As we discuss in more detail in
Section 5.4, PartialEval can return ⊥ if it finds any
inconsistent subprograms; in this case, % ′ is not added to
the worklist.
If partial evaluation does not return ⊥, the algorithm calls the Reducible procedure on line

11, which is used to check whether % ′′ can be simplified. Since SynthesizeExtractor explores
programs in increasing order of complexity, we know that % ′′ is redundant if Reducible returns ⊤.
Hence, the algorithm adds % ′′ to the worklist only if % ′′ cannot be further simplified.

5.3 Goal Inference

As mentioned earlier, a key component of our extractor learning approach is the inference of goals
for each node. This goal inference method is presented in Figure 11 as part of the Expand procedure.
Every time the algorithm expands a hole associated with node E , it picks an (n-ary) DSL operator f,
updates E ’s label to f, and adds = new children E1, . . . , E= of E . Each child node E8 of E is marked as
being “open" (i.e., labeled with a hole) and is annotated with its corresponding goal. Observe that
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% ⊢ E : (□, q) q 5 = TfW(q)

Expand(%, E) = {% [E ⊳ (f, q), E1 ⊳ (□, q 5 ), . . . , E= ⊳ (□, q 5 )] | f ∈ F , E fresh}

TUnionW(Î−, Î+) = (∅, Î+)

TIntersectW(Î−Î+) = (Î−, Î8=)

TComplementW(Î−, Î+) = (Î8= \ Î
+, Î8= \ Î

−)

TFilterContentsW(Î−, Î+) = (∅, Î8=)

TFindW(Î−, Î+) = (∅, Î8=)

Fig. 11. Inference rules for Expand. Î8= is the input symbolic image, and F represents DSL functions.

goal inference is performed using the function TfW, which takes as input a goal annotation q and
produces a new goal q 5 for the arguments of the function f.

Recall that a goal annotation is of the form (Î−, Î+) where Î− and Î+ are symbolic images
under- and over-approximating the image objects associated with the subprogram rooted at that

node. In more detail, if a node E has the goal annotation (Î−, Î+), the consistency requirement
from Definition 5.5 stipulates that, in order for % to be consistent with the input symbolic image

Î8= , the subprogram %E rooted at node E must produce a set of objects that is a superset of Î− when

executed on the input image Î8= . Similarly, it also requires that J%EK(Î8=) is a subset of Î
+. Hence,

given a goal q on the output of a DSL operator f, goal inference aims to propagate under- and
over-approximations to each of f’s arguments. Put simply, the goal annotations approximate the
output that a program must have in order for its parent program to also have a valid output, so
programs that do not match their goal annotation can be safely pruned from the search space. We
formalize this notion in the following theorem.1

Theorem 5.8. Let % be a partial program derived by SynthesizeExtractor whose root node

has goal annotation (Î>DC , Î>DC ). If % is not consistent with Î8= , then for any completion % ′ of % ,

J% ′K(Î8=) . Î>DC .

The proof of this theorem crucially relies on the correctness of the goal inference rules, which
we explain in more detail next.

Union. Consider the DSL expression � = Union(�1, . . . , �=), and suppose that the goal annotation

for this expression is (Î−, Î+). Since the over-approximation for the whole expression is Î+, the

operands of Union should not produce objects that are not in Î+. Hence, the over-approximation

for each operand is also Î+. In other words, if any operand outputs an object > that is not in Î+,
then � will output > as well, which is not valid. In contrast, the only safe under-approximation we
can infer for the operands is ∅, as there is no particular object > that each operand must output in

order for � to output all objects in Î−.

Intersect. Consider the expression � = Intersect(�1, . . . , �=), and suppose that the goal annotation

for this expression is (Î−, Î+). By the semantics of Intersect, for � to output each > ∈ Î−, each

operand �8 must also output > . Thus, the under-approximation for each �8 is also Î
−. In contrast,

we cannot deduce anything about elements that must not be in the output of any �8 ; thus, the

over-approximation for the operands is the entire input image Î8= .

Complement. Consider the expression � = Complement(� ′). If � must produce an object > (i.e.,

> ∈ Î−), then � ′ must not produce it. Hence, the over-approximation for � ′ is Î8=\Î
−. In contrast,

1Proofs are provided in the Appendix of the extended version of the paper [Barnaby et al. 2023b].
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Hole
Root(%) = E % ⊢ E : (□, q)

Î8= ⊢ % { %

Const
Root(%) = E % ⊢ E : (Î, q)

Î8= ⊢ % { %

Complete
IsComplete(%) J%K(Î8=) = Î Root(%) = E % ⊢ E : (;, q)

Î8= ⊢ % { (Î ∼ q) ? CreateProg(E, Î, q) : ⊥

Partial

¬IsComplete(%) Root(%) = E % ⊢ E : (;, q)

Children(%, E) = {E1, . . . , E=} Î8= ⊢ Subtree(%, E8 ) { %8

Î8= ⊢ % { (∀8 . %8 ≠ ⊥) ? % [%1/Subtree(%, E1), · · · , %=/Subtree(%, E=)] : ⊥

Fig. 12. Rules for PartialEvaluation. % [%8/Subtree(%, E8 )] represents replacing the subprogram of % rooted

at node E8 with the new subprogram %8 .

if � must not produce an object > (i.e., > ∉ Î+), then > must be produced by � ′. Hence, the under-

approximation is Î8=\Î
+.

Find, Filter. In the case of the Find and Filter constructs, we cannot propagate meaningful ap-

proximations to the nested extractors, resulting in the trivial goal annotation (∅, Î8=). To gain
intuition about why this is the case, consider the expression Find(� ′, i,GetLe�). For any object

> ∈ Î8= , it could be the case that there is no object located to the left of > in image I8= , meaning that

JGetLe�K(>, Î8=) will be empty. In other words, if > is output by � ′, it will have no impact on the

output of �. Hence, any object in Î8= could be output by � ′, which is why the over-approximation

is Î8= . For similar reasons, we also cannot infer any sound under-approximation other than ∅.

Example 5.9. Consider the image Î from Figure 2, and let Î>DC = {(Φ4,Δ4)} be the output
symbolic image containing only the license plate. Now consider the partial program:

Union(Complement(Is(Object(car))),□)

whose top-level goal is (Î>DC , Î>DC ). Since the subprogram Complement(Is(Object(car))) is an

operand of a Union, it has goal (∅, Î>DC ). Further, the subprogram Is(Object(car)) is the operand

of a Complement, so it has goal ({(Φ1,Δ1), (Φ2,Δ2), (Φ3,Δ3)}, Î).

5.4 Partial Evaluation

As stated earlier, our synthesis algorithm performs partial evaluation to amplify the power of
goal-directed reasoning as well as equivalence reduction. In particular, given a partial program % ,
the PartialEval procedure invoked in Figure 9 returns another partial program % ′ by evaluating
the complete subprograms of % on the input. Partial evaluation can also reveal that % is infeasible;
in this case, PartialEval returns ⊥ to indicate that % violates consistency (Definition 5.5).

We present our PartialEval procedure using the inference rules summarized in Figure 12. The
first rule, labeled Hole, states that open nodes cannot be evaluated, as they represent a completely
unconstrained program. The second rule, labeled Const, states that constants simply evaluate
to themselves. The third rule, labeled Complete, evaluates complete subprograms by executing

them on the input. If the resulting output Î is inconsistent with the goal annotation q , partial

evaluation yields ⊥; otherwise, it produces the constant Î. The final rule, labeled Partial, applies
to incomplete programs and recursively applies PartialEval to each subprogram rooted at the root
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Union(�,�) ⇝ � Intersect(�,�) ⇝ �

Union(�, Intersect(�, �)) ⇝ � Intersect(�,Union(�, �)) ⇝ �

Union(�, �) ⇝ � if � ⊆ �. Intersect(�, �) ⇝ � if � ⊆ �.

Complement(Complement(�)) ⇝ � Union(�,�) ⇝ Union(�, �)
Intersect(�,�) ⇝ Intersect(�, �)

Union(Complement(�),Complement(�)) ⇝ Complement(Intersect(�, �))
Intersect(Complement(�),Complement(�)) ⇝ Complement(Union(�, �))

Union(Intersect(�, �), Intersect(�,�)) ⇝ Intersect(�,Union(�,�))
Intersect(Union(�, �),Union(�,�)) ⇝ Union(�, Intersect(�,�))

Fig. 13. Rewrite rules.

node. If any of these subprograms are inconsistent, then the whole program is also inconsistent, and
the algorithm returns ⊥. Otherwise, it constructs a new partial program where each subprogram %8
of the root node is replaced with its partially evaluated version % ′8 .

Example 5.10. Consider the program Union(Complement(Is(Object(car))),□) from Example
5.9 and the desired output image containing just the license plate (i.e., {(Φ4,Δ4)}). This pro-
gram is incomplete, so the Partial rule will recursively apply PartialEval. The subprogram
Complement(Is(Object(car)) is complete, so the Complete rule will evaluate this subprogram on

the input symbolic image Î to obtain Î ′ = {(Φ1,Δ1), (Φ2,Δ2), (Φ4,Δ4)}. Recall also (from Example

5.9) that the goal of this subprogram is (∅, {(Φ4,Δ4)}). Since Î
′ ⊈ {(Φ4,Δ4)}, Î

′ is not consistent
with the goal, so partial evaluation will return⊥. Intuitively, this program should be pruned because,
no matter how we instantiate the hole, the top-level program will always produce objects (e.g., the
human face) that are not part of the desired output image.

5.5 Equivalence Reduction

We conclude this section by describing our equivalence reduction technique for identifying redun-
dant partial programs. In particular, recall that a partial program % ′ is redundant with respect to
another partial program % if, for every completion � ′ of % ′, there is a corresponding completion �
of % such that � and � ′ produce the same output on the input examples. In other words, because
such partial programs %, % ′ are observationally equivalent on the inputs of interest, it suffices to
merge them into one equivalence class. Thus, our technique can be viewed as extending the notion
of observational equivalence from complete to partial programs.

At a high level, there are two key components of our equivalence reduction technique: (1) partial
evaluation (already discussed in Section 5.4) and (2) term rewriting. Given a partially evaluated
program % , our synthesis algorithm checks whether it is possible to simplify % using a set of rewrite
rules that capture known equivalences between expressions in our DSL. Figure 13 shows the rewrite
rules for our DSL using the notation ; ⇝ A , meaning that a term that matches ; can be rewritten
into the form on the right. Observe that the free variables in ; and A are universally quantified,
so a term C is said to match the left-hand-side ; if there exists a substitution f such that C = ; [f].
Furthermore, the result of applying this rewrite rule to C is A [f].

With this notation in place, we now turn our attention to the Reducible procedure called by the
SynthesizeExtractor algorithm. Recall that Reducible returns a boolean (⊤ or ⊥) to indicate
whether a term can be simplified using a set Ω of domain-specific rewrite rules. This Reducible
procedure is defined using the two inference rules shown in Figure 14. According to the first rule
(Base), holes and constant values are not reducible. The second rule labeled Rec deals with terms
� ≡ f (�1, . . . , �=) by recursively invoking the Reducible procedure on each �8 . If any �8 is reducible,
it also returns reducible. Otherwise, it checks whether any rewrite rule l ∈ Ω matches �, meaning
that the left-hand side of l can be unified with �. If so, it returns true, and false otherwise.
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Base
Root(%) = E % ⊢ E : (;, q) ; ∈ {□, Î}

Ω ⊢ % ↩→ ⊥

Rec

Root(%) = E % ⊢ E : (f, q)
∈ Children(%, E) = {E1, . . . , E=} Ω ⊢ Subtree(%, E8 ) ↩→ 18

Ω ⊢ % ↩→ (∃8 . 18 = ⊤ ∨ ∃l ∈ Ω.Is(%,l)) ? ⊤ : ⊥

Fig. 14. Inference rules for Reducible. Ω represents all rewrite rules, some of which are shown in Figure 13.

Example 5.11. Consider a partial program of the form Union(%1, %2,□) where %1, %2 have been

partially evaluated as Î1 and Î2, respectively. Suppose that the symbolic image Î1 is the set of

objects {>1, >2, >3} and Î2 is {>2, >3}. Since Î2 ⊆ Î1, this program will match with the rewrite rule

Union(�1, . . . , �8 , . . . , �=) ⇝ Union(�1, . . . , �=) if ∃ 9 such that �8 ⊆ � 9 .

which corresponds to the domination rule for sets. Thus, this program simplifies to Union(%1,□),
meaning that the Reducible procedure will return ⊤ and this partial program will be pruned.

6 IMPLEMENTATION

We have implemented the proposed algorithm as a new tool called ImageEye written in Python. In
what follows, we describe key implementation details that are not covered in the technical sections.

Computer vision primitives. Recall that our DSL operates over symbolic images, which are
generated from the raw input image by applying existing computer vision primitives. In our
implementation, we use the Amazon Rekognition library for object classification, text detection,
and facial attribute classification. Compared with similar vision libraries, Rekognition offers more
capabilities that are well-suited for image manipulation tasks of interest to this work.

Graphical user interface. ImageEye also incorporates a graphical user interface that allows
users to demonstrate the desired image processing task. Our GUI is implemented in JavaScript and
supports both image manipulation as well as image search. To use the GUI, the user first uploads
their batch of images and then selects one or more images to annotate. For each image being
annotated, the GUI indicates regions of the image that are classified as an object with rectangular
bounding boxes. In the image editing mode, the user can select one of these objects and then apply
the desired action (e.g., crop, blur, or highlight). When using ImageEye in search mode, the user
can indicate the image as either being of interest or irrelevant. Once the user is done annotating a
representative set of images, they press a button to invoke the synthesizer. If synthesis is successful,
ImageEye applies the generated program to the entire image set and uploads the output to a new
directory, which contains all the relevant images with the desired edits applied to them.

7 EVALUATION

In this section, we describe the results of our experimental evaluation, which is designed to answer
the following research questions:

• RQ1. Can ImageEye automate interesting image manipulation and exploration tasks?
• RQ2. How many examples does ImageEye need to synthesize the intended program?
• RQ3. How does ImageEye’s synthesis algorithm compare against existing baselines?
• RQ4. How important are the pruning techniques used by the synthesizer?
• RQ5. How effective are the synthesized programs in producing the desired edit on the test set?

Benchmarks. To answer these questions, we collected a set of 50 benchmark tasks across three
domains, namely Wedding, Receipts, and Objects. Tasks in the Wedding domain involve identifying
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Table 1. Statistics about images and tasks for each domain. Program size is measured in terms of AST nodes.

Dataset # Images Avg. # Objects # Tasks Avg. Program Size

Wedding 121 10 16 9.4

Receipts 38 59 13 7.8

Objects 608 3 21 8.3

and manipulating specific faces. An example task in this domain is to “crop out wedding guests
who are not smiling.” Tasks in the Receipts domain involve identifying specific words or classes
of text, such as “highlight the prices to the right of the words ‘total’ and ‘subtotal.’” Tasks in the
Objects domain require manipulating specific classes of objects that are spatially related to other
objects, such as, "crop the faces of people playing the guitar". Many of these tasks are motivated by
real-world scenarios found on image editing forums, such as Reddit groups related to Photoshop
and GIMP. For each task, we manually wrote a ground truth program in our DSL that can be used
to check the correctness of the program returned by ImageEye.

Table 1 gives some statistics about each of the three domains used in our evaluation. As we can
see, each domain varies in terms of the number of images they contain and the average number of
objects in a given image. Observe that the Receipts domain contains the largest number of objects
per image because each word is identified as a unique text object. In contrast, images in the Objects
domain are much more sparse. For each domain, we have between 13 and 21 synthesis tasks, and
the average size (in terms of AST nodes) of the ground truth program is in the 8-10 range.

7.1 Experimental Setup

To answer our first research question, we attempted to use ImageEye to automate each of our
50 benchmark tasks using the following methodology: We first select an image from the task’s
domain and apply the desired edit. When choosing an image, we prefer those that contain as few
objects as possible, as this choice involves the least amount of work for the user. Then, we use
ImageEye to synthesize a program based on this single demonstration. If the generated program
produces the desired edit on all images in the data set, we consider the task to be successfully
automated. Otherwise, we select a single image where ImageEye does not produce the desired edit
and re-attempt synthesis with this additional example. We continue this process for up to 10 rounds
and up to 180 seconds per round. All of our experiments are conducted on a desktop machine with
2.3 GHz dual-core Intel core i5 CPU and 8 GB of physical memory.

7.2 Main Results

Table 2 presents the results of this experiment. The key takeaway is that ImageEye can successfully
automate 48 of the 50 tasks in our benchmark suite within the given resource limits. Table 2 also
shows average and median synthesis times for the last round of user interaction. As we can see
from this table, average synthesis time is around 15 seconds, with the median being much faster at
around 1 second. We also note that synthesis time varies significantly across the domains, with
the fastest being Objects and slowest being Receipts. This discrepancy makes sense considering
the average number of objects per domain. In particular, recall that the number of constants in the
DSL depends on the number of objects in the target domain, so synthesis generally takes longer
in domains like Receipts that contain a lot of objects. However, the Receipts domain generally
requires fewer rounds of user interaction, as object-dense images are richer in information. The
last column of Table 2 shows the average number of rounds of user interaction. As we can see, the
average number of demonstrations required across all three domains is just below 4.
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Table 2. Summary of results for ImageEye. We include 95% confidence intervals.

Dataset # solved Avg. Synth Time (s) Med. Synth Time (s) Avg. # Examples

Wedding 14/16 15.6 ± 13.4 5.5 5.4 ± 1.0

Receipts 13/13 25.4 ± 23.4 1.6 2.2 ± 0.65

Objects 21/21 3.2 ± 2.4 0.1 3.8 ± 0.5

Total 48/50 12.8 ± 8.0 1.2 3.8 ± 0.5

Failure analysis.We now examine the two tasks that ImageEye fails to successfully automate.
One of these tasks is from the Wedding domain and requires cropping the image to feature just the
bride and the people standing directly to her left and right. In this case, ImageEye fails to find the
correct program within the time limit of 180 seconds because the size of the ground truth program
is fairly large and there are a large number of detected objects. The second task that ImageEye
fails to automate is also in the Wedding domain and involves identifying images that contain the
bride’s face only when there are people standing directly to her left and right. For this benchmark,
ImageEye requires more than 10 rounds of user interaction to find the desired program. Since this
task requires extracting the bride’s face only in a specific circumstance, there are many simpler
programs that produce the same output on nearly all photos in the dataset.

Result for RQ1: ImageEye automates 48 out of 50 interesting imagemanipulation and exploration
tasks, with a median synthesis time of 1.1 seconds.

Result for RQ2: ImageEye requires an average of 4 images to synthesize the intended program.

7.3 Comparison with Other Synthesis Tools

To answer our third research question, we compare the synthesis engine of ImageEye with existing
synthesis tools. However, since existing tools do not support the image editing domain, we first
reduce our learning problem to PBE (as discussed in Sections 4 and 5.2). Furthermore, since prior
work does not consider DSLs that operate over images, we cast our synthesis problem as an instance
of syntax-guided synthesis (SyGuS) and instantiate the SyGuS framework with our domain-specific
language. Among the solvers that support the SyGuS format, we compare ImageEye’s synthesis
engine against the two most recent winners of the SyGuS competition. One of these solvers
[Barbosa et al. 2022] extends the CVC SMT solver [Barrett et al. 2011] to support syntax-guided
synthesis. The second one, EUSolver [Alur et al. 2017], is based on bottom-up enumerative search
with equivalence reduction and uses a divide-and-conquer approach to decompose the synthesis
task into smaller problems.

Among these solvers, we found the CVC solver to be ineffective at solving the synthesis problems
that arise in our setting. In particular, instantiating our DSL in the CVC framework requires using
the theory of sets (to represent symbolic images), but the resulting synthesis problems in this
background theory are not easily solvable using a purely theorem proving approach. In fact, we
found that this SMT-based approach is unable to solve even the simplest of our synthesis tasks
within the given time limit.

In contrast, we were able to successfully instantiate EUSolver to handle the synthesis tasks
from our image editing domain. The results of the comparison against EUSolver are presented in
Figure 15 as a bar graph. Here, the G-axis indicates the difficulty level of the synthesis tasks (as
measured by AST size); thus, bars in this plot correspond to synthesis tasks of increasing difficulty.
On the other hand, the ~-axis shows the number of tasks completed within the given time limit.
The solid blue bars correspond to the results for ImageEye, and the hatched orange bars correspond
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Fig. 15. Comparison of ImageEye and EUSolver. Fig. 16. Ablation study for ImageEye

to those of EUSolver. As we can see from this figure, EUSolver can solve 14 out of 16 of the easiest
tasks, but, as the difficulty level increases, there is a growing gap between ImageEye and EUSolver.
Overall, ImageEye can solve 14 more tasks than EUSolver out of the 50 tasks total.
To gain some intuition about these results, we briefly discuss why ImageEye outperforms EU-

Solver on our benchmarks. First, unlike EUSolver which is a generic solver, ImageEye performs
a form of abstract interpretation customized to images and our image editing DSL. This type of
reasoning allows ImageEye to prune many infeasible programs that need to be enumerated by EU-
Solver. Second, many of the techniques in EUSolver target branching, but our DSL allows branching
in a stylized manner (at the top level and as part of filtering constructs). Finally, EUSolver works by
combining sub-programs that work on a subset of examples, and this particular decomposition
strategy does not seem effective in the image domain. For these reasons, ImageEye is more effective
at solving the PBE problems that arise in the context of image extractor synthesis.

Result for RQ3: The baseline synthesis tool, EUSolver, can successfully solve 68% of the bench-
marks compared with 96% solved by ImageEye.

7.4 Ablation Study

To answer our final research question, we present the results of an ablation study in which we
disable some of the key components of our synthesis algorithm. In particular, we consider the
following three ablations of ImageEye:

• No Goal Inference: This ablation does not use the goal inference technique of Section 5.3.
However, it does perform equivalence reduction with partial evaluation and term rewriting.
• No Partial Evaluation: This version of ImageEye does not perform partial evaluation before
applying the term rewrite rules from Section 5.5. However, it does perform goal inference and
uses rewrite rules to prune the search space.
• No Equivalence Reduction: This ablation does not perform equivalence reduction using term
rewriting. In other words, it does not utilize the techniques described in Section 5.5.

The results of this ablation study are presented as a cactus plot in Figure 16. Here, the G-axis
shows cumulative synthesis time and the ~-axis shows the number of benchmarks solved within a
given time. As we can see from this figure, all of our proposed techniques have a significant impact
on synthesis time. Without goal inference, ImageEye times out on four additional tasks and takes
around 14 seconds longer on average to solve the tasks on which it does not time out. Without
partial evaluation, ImageEye times out on eight additional tasks and takes around 23 seconds longer
on average. Finally, without equivalence reduction, ImageEye times out on 16 additional tasks.
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Result for RQ4: The techniques discussed in Sections 5.3-5.5 are important for making synthesis
effective in the image editing domain.

7.5 Reliability of Underlying Neural Models

When reporting our main experimental results in Section 7.2, we manually inspect the synthesized
program and consider the synthesis result to be correct if it is semantically equivalent to the ground
truth program we wrote by hand. However, because the synthesized programs contain neural
networks for object recognition and classification, even a correct synthesized program may not
produce the expected output for all images in the test set. For instance, if the desired edit is to
blur all cats in an image, and the object classification model does not recognize a specific cat in an
image, then the program Is(Object(cat)) will not produce the desired output.
In this section, we additionally evaluate the accuracy of the synthesized programs in terms of

the percentage of images in the test set for which the desired output is produced. However, since
there are a very large number of images in some of the data sets, we randomly sample 20 images
from each of the three data sets2 and manually examine if the synthesized program produces the
intended output for each of these 20 images.

Overall, across the three domains, we find that the synthesized programs produce the intended
output on 87% of the sampled images. Many of the failure cases stem from the samemisclassification
occurring numerous times. For instance, for the wedding data set, the face recognition model fails
to identify that a specific wedding guest is smiling across many images.

Result for RQ5: The programs synthesized by ImageEye produce the desired edit for 87% of the
images in the test set.

8 LIMITATIONS

In this section, we discuss some of the main limitations of ImageEye. First, the effectiveness of
ImageEye is highly dependent on the underlying neural components. For example, if the target task
involves a class of objects that the model cannot reliably identify, ImageEye will not be effective in
producing the intended output image. However, we try to mitigate this problem through the choice
of the neural primitives included in the DSL and intentionally exclude object classifiers that do
not work reliably in practice. Additionally, we note that manually refining a small portion of the
images in the data set is preferable over editing all images manually.
A second limitation of ImageEye is due to its user interaction model. In particular, to decide

whether the synthesized program is correct, the user needs to inspect all images in the dataset, and,
even then, it may be hard to distinguish whether any problems in the output are due to the lack of
sufficient demonstrations or due to limitations of the neural primitives in the synthesized program.
Additionally, if the underlying neural primitives misclassify relevant objects in the training example,
then the user will not be able to perform their demonstration, as the ImageEye GUI only allows
editing objects recognized by the object recognition engine. This design choice is intentional in
that the interface forces the user to perform demonstration on “good" images. However, a potential
disadvantage is that the user may need to go through multiple images before they find one on
which the demonstration can be performed. One way to address both of these limitations could be
through active learning approaches that suggest images for the user to label.

Finally, ImageEye is limited by the expressivity of the DSL, which only provides built-in functions
like GetAbove and GetRight that can be evaluated easily by using bounding boxes. These functions
are not suitable for reasoning about three-dimensional spatial concepts like one object being

2To ensure relevance of the sampled images, we re-sample if the output of the synthesized program is empty on that image.
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behind another. This limitation could be addressed by extending the DSL with functions that are
implemented using additional neural primitives.

9 RELATED WORK

Imagemanipulation. Imagemanipulation is a long-standing problem in computer vision, graphics,
and computational photography. Recent efforts in this space have used deep neural networks to
generate realistic variants of a given image, applying them to tasks like inpainting [Nazeri et al.
2019; Xiong et al. 2019; Yu et al. 2019], extrapolation [Wang et al. 2019; Zhou et al. 2018], and
photo editing [Brock et al. 2017; Choi et al. 2018; Lample et al. 2017; Zhao et al. 2018]. As a
representative example of a work in this space, Fader [Lample et al. 2017] can generate variants of a
subject with different attributes like age or gender. In this work, we solve a different type of image
manipulation problem than most of these prior efforts: our focus is on identifying what operations
to apply to which parts of the image, rather than generating realistic variants of a given input image.
Furthermore, our approach is based on neurosymbolic program synthesis rather than generative
neural networks. However, these approaches can be incorporated into our overall approach by
treating them as pre-trained neural network primitives in our DSL.

Neurosymbolic programming for images. Recently, there has been growing interest in using
neurosymbolic DSLs that include both logical and neural components in the image domain [Ellis
et al. 2018; Huang et al. 2020; Johnson et al. 2017; Mao et al. 2019; Reed and de Freitas 2016; Tian et al.
2019; Young et al. 2019]. Similar to our work, these efforts typically combine symbolic operators
for higher-level reasoning with neural modules for perception. The closest work in this space is
that of Huang et al. [Huang et al. 2020], which generates programmatic referring expressions that
identify specific objects in terms of their attributes and relationships with respect to other objects
in the image. However, their work differs from ours in several respects: (1) They focus on locating
a single object whereas we focus on applying actions to a set of objects; (2) they synthesize logic
programs using a different synthesis algorithm based on deep Q-learning and hierarchical search;
and (3) their focus is on a synthetic dataset with geometric shapes whereas our focus is on more
realistic images with faces, text, and arbitrary objects.

Top-down enumerative search. Several recent synthesis techniques use a combination of top-
down enumerative search and lightweight deductive reasoning to significantly reduce the search
space [Albarghouthi et al. 2013; Feng et al. 2018; Feser et al. 2015; Lubin et al. 2020; Osera and
Zdancewic 2015; Polozov and Gulwani 2015; Wang et al. 2017]. Among these, our approach bears
similarities to enumerative synthesis approaches that propagate the goal to the missing subexpres-
sions. In particular,Myth [Osera and Zdancewic 2015], SMyth [Lubin et al. 2020] and _2 [Feser
et al. 2015] infer new input-output examples for the holes in a partial programs by utilizing type
information embedded in the language. While our method also performs goal-directed reasoning,
the underlying deductive reasoning techniques are different. Another synthesis framework that
uses example-based specifications is FlashMeta [Polozov and Gulwani 2015], which propagates
specifications from the DSL operators down into their arguments using so-called witness functions.
Unlike the synthesis algorithm we present here, FlashMeta uses version space algebras (VSA) to
represent the space of all programs that are consistent with the provided input-output examples.

Prior efforts on regular expression synthesis [Chen et al. 2020; Lee et al. 2016; Ye et al. 2021] also
utilize over- and under-approximations to eliminate infeasible programs. In particular, Regel [Chen
et al. 2020] and AlphaRegex [Lee et al. 2016] both derive over- and under-approximations of
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the set of strings that could be matched by a partial regex. In contrast, we use over- and under-
approximations in a different context and approximate the synthesis sub-goals as opposed to the
outputs of a given partial program.

Synthesis using term rewriting. There has been several efforts that use term rewriting [DER-
SHOWITZ and JOUANNAUD 1990] to speed up program synthesis [Dershowitz and Reddy 1993;
Reddy 1989; Smith and Albarghouthi 2019; Yaghmazadeh et al. 2018]. These techniques have found
applications in many domains, including CAD model construction [Nandi et al. 2020], robotic pro-
cess automation [Dong et al. 2022], compiler construction [Visser et al. 1998], and writing numerical
software [Boyle et al. 1997]. Similar to the work of Smith et al. [Smith and Albarghouthi 2019], we
also use an equational rewrite system to reduce the number of partial programs enumerated during
top-down synthesis; however, our technique combines this idea with partial evaluation [Jones et al.
1993] and goal-directed reasoning to make it more effective.

Synthesis using partial evaluation. There are a variety of domain-specific [Solar-Lezama 2008;
Torlak and Bodik 2013] and domain-agnostic [Feng et al. 2017; Holtz et al. 2021] synthesis tech-
niques that use partial evaluation [Jones et al. 1993] to obtain a more efficient synthesis procedure.
In particular, Morpheus [Feng et al. 2017] utilizes partial evaluation to infer a more precise specifi-
cation of the partial program, which helps to increase its SMT-based pruning power. Similar to
our approach, both Rosette [Torlak and Bodik 2013] and IDIPS [Holtz et al. 2021] evaluate the
concrete part of the partial program to obtain a simplified version. However, our work differs from
these prior techniques in that we use partial evaluation to make term rewriting more effective.

Programming by demonstration. Programming-by-demonstration techniques [Lau and Weld
1998] utilize user demonstrations to learn a new task. This paradigm has been successfully adopted
in a variety of scenarios, including web automation [Barman et al. 2016; Chasins and Bodik 2017;
Dong et al. 2022; Lin et al. 2009], robot learning [Argall et al. 2009; Billard et al. 2008; Dillmann and
Friedrich 1996], text editing [Lau et al. 2003], and SQL query synthesis [Zhou et al. 2022]. ImageEye
also allows users to demonstrate the desired task through a graphical user interface and leverages
the demonstration to decompose the synthesis task into a set of PBE problems, one for each action
in the demonstration.

10 CONCLUSION

We have presented a new synthesis-based approach for automating image editing and search
tasks. Given a few user demonstrations performed through a graphical user interface, our method
synthesizes a program that can be used to automate the desired image search or batch editing
task. At the heart of our approach lies a neuro-symbolic DSL that combines functional operators
with pre-trained neural modules for object detection and classification. We have implemented this
approach in a new tool called ImageEye and evaluated it on 50 image search and editing tasks
across three different domains involving human faces, text, and arbitrary objects. Our evaluation
shows that ImageEye can automate 96% of these tasks, with a median synthesis time of 1 second
and requiring on average four user demonstrations.
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