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Data processing frameworks like Apache Spark and Flink provide built-in support for user-defined aggregation
functions (UDAFs), enabling the integration of domain-specific logic. However, for these frameworks to
support efficient UDAF execution, the function needs to satisfy a homomorphism property, which ensures that
partial results from independent computations can be merged correctly. Motivated by this problem, this paper
introduces a novel homomorphism calculus that can both verify and refute whether a UDAF is a dataframe
homomorphism. If so, our calculus also enables the construction of a corresponding merge operator which
can be used for incremental computation and parallel execution. We have implemented an algorithm based on
our proposed calculus and evaluate it on real-world UDAFs, demonstrating that our approach significantly
outperforms two leading synthesizers.
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User-defined aggregation functions (UDAFs) are custom functions that
allow users to perform complex aggregation operations. UDAFs play an
important role in data science applications because they enable the im-
plementation of domain-specific logic and complex calculations, such as
custom statistical measures or weighted averages. Due to their growing
importance, many frameworks such as Apache Spark [51] and Flink [15]
provide extensive support for UDAFs, allowing users to perform complex
aggregations over tabular data (henceforth referred to as dataframes).

However, to execute UDAFs efficiently through parallel or incremental
computation, the function needs to be a homomorphism. Intuitively, this
means that the UDAF P can be applied independently to two dataframes, D1 and D2, with the
results subsequently combined using a binary merge operator. Formally, as illustrated in Figure 1,
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Fig. 2. Overview of our approach

P is defined as a dataframe homomorphism if there exists a merge operator ⊕ satisfying:

P(D1 ⊞D2) = P(D1) ⊕ P(D2),

where ⊞ denotes dataframe concatenation. If P meets this criterion, ⊕ can be used to support both
parallelization and incremental computation.

While prior work [23–25] has studied list homomorphisms for enabling parallel computation,
existing techniques largely focus on computations over lists of scalars and use syntax-guided
inductive synthesis to construct a suitable merge operator. However, real-world UDAFs often
involve complex inputs as well as intermediate data structures, such as maps and nested collections,
that are not straightforward to handle using prior techniques.

Motivated by this shortcoming, this paper proposes a new homomorphism calculus that can be
used to verify whether or not a given function P is a dataframe homomorphism. If P is proven
to be a homomorphism, our calculus also synthesizes the merge operator ⊕, thereby providing a
constructive proof that can be leveraged by the query optimizer of the underlying data processing
framework. Notably, our approach to merge operator construction is largely based on deductive
reasoning and only resorts to search-based inductive synthesis for simple problems involving scalar
values rather than complex data types.

The central idea of our homomorphism calculus is that a dataframe aggregation qualifies as a
homomorphism if and only if its accumulator function—the component responsible for processing
individual rows—satisfies a specific commutativity condition. We formalize this condition using
right and left actions on a set, introducing a normalizer function that underpins our calculus.
Specifically, we demonstrate that a program is a homomorphism if and only if an appropriate
normalizer exists for the accumulator function. This insight transforms the problem of synthesizing
a merge operator for the entire aggregation into the simpler task of synthesizing a normalizer for
the accumulator.

While reducing the synthesis problem from merge operators to normalizers makes it more
manageable, constructing normalizers can still be difficult when the accumulator maintains complex
internal state. Our calculus addresses this complexity through type-directed decomposition. For
example, consider an aggregation operation with internal state of type List⟨𝜏⟩. A naïve approach
would require synthesizing a function that operates on two inputs of type List⟨𝜏⟩, which becomes
increasingly difficult as the complexity of the type parameter 𝜏 grows. To manage this complexity,
our calculus reduces the synthesis problem for lists of type List⟨𝜏⟩ to synthesis problems involving
the element type 𝜏 , continuing this decomposition until no further simplification is possible.

Another key aspect of our calculus is its ability to refute the homomorphism property. Since
attempting to construct a normalizer when none exists can be highly inefficient, refutation rules in
our calculus help prevent futile synthesis efforts. Figure 2 gives an overview of our verification
algorithm that is based on the proposed homomorphism calculus. Our method first attempts to
refute the existence of a merge operator, and, if refutation fails, it decomposes the synthesis problem
into simpler sub-problems. When further decomposition is not possible, it resorts to syntax-guided
inductive synthesis (SyGuS) for the leaf-level problems. Finally, it combines the solutions of these
sub-problems using deductive synthesis. Assuming the existence of an oracle for solving these
leaf-level SyGuS problems, the resulting procedure is both sound and complete.
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case class BidData(bidPrice: Float, item: Int)
case class BidAggBuffer(maxBid: Float, highBidCount: Int, itemBidCounts: Map[Int, Int])

object BidAggregator extends Aggregator[BidData, BidAggBuffer, BidAggBuffer] {
def zero: BidAggBuffer = BidAggBuffer(Float.MinValue, 0, Map.empty)

def reduce(buffer: BidAggBuffer, data: BidData): BidAggBuffer = {
val newMaxBid = math.max(buffer.maxBid, data.bidPrice)
val newHighBidCount = if (data.bidPrice > 1000) buffer.highBidCount + 1 else buffer.highBidCount

val itemBidCountMap = buffer.itemBidCountMap
val newItemBidCounts = itemBidCountMap + (item -> (itemBidCountMap.getOrElse(item, 0) + 1))

BidAggBuffer(newMaxBid, newHighBidCount, newItemBidCounts)
} }

val result = bidsDF.filter(year(col("AuctionDate")) === 2024)
.select("BidPrice", "Item").as[BidData]
.agg(new BidAggregator()($"BidPrice", $"Item").as("aggregated_result"))

Fig. 3. A Scala Spark program used to compute auction information illustrating our motivating example. Here,

BidAggregator is the UDAF, and the implementation of reduce is the corresponding accumulator function.

We have implemented the proposed algorithm in a tool called Ink and evaluated it on 50 real-world
UDAFs targeting Apache Spark and Flink. We compare our approach against two baselines, a state-
of-the-art SyGuS solver, CVC5, and a synthesizer, ParSynt, for divide-and-conquer parallelism. Our
experimental results show that Ink significantly outperforms these baselines in both synthesis and
refutation tasks. Additionally, ablation studies demonstrate the impact of the core ideas underlying
our approach.

To summarize, this paper makes the following key contributions:
• We present a homomorphism calculus for proving and refuting homomorphisms and constructing

a merge operator that enables parallel and incremental computation.
• We prove that a program is a homomorphism if and only if its accumulator function satisfies a

generalized commutativity condition. We formalize this concept via normalizers and show how
to simplify the problem using an alternative specification.
• We show how to effectively tackle accumulators with complex internal state through a novel

type-directed decomposition technique.
• We implement a verification and synthesis procedure based on the proposed homomorphism

calculus in a new tool called Ink and demonstrate its effectiveness on real-world UDAFs.

2 Overview
In this section, we outline our approach through an example illustrated in Figure 3. This example

features an Apache Spark program written in Scala that involves a custom user-defined aggregate
function (UDAF). This program is designed to process bid data in a dataframe that contains three
columns: BidPrice, AuctionYear, and Item. The result of the program is a tuple containing (1)
the highest bid in 2024, (2) the number of bids above 1000 dollars in the same year, and (3) bid
counts in 2024 for each item. Figure 4 displays a sample input-output pair for this program.

To understand what this program does, consider Spark’s aggregation mechanism, which involves
two core phases: initialization and update. During the initialization phase, an aggregation buffer is
set up with default starting values, such as zeros or empty collections. In the update phase, each
row in the dataframe is processed sequentially, with the buffer modified to accumulate results. In
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BidPrice : Float AuctionYear : Int Item : Int
330.94 2024 3
1192.08 2024 2
161.11 2019 9

... ... ...

©­« 1192.08
Highest bid

,

#bid price > 1000
9 , {2 ↦→ 5, 3 ↦→ 2, . . .}

# of bids per item

ª®¬
Fig. 4. Sample input (left) and output (right) of the Spark program.

def merge(buffer1: BidAggBuffer, buffer2: BidAggBuffer): BidAggBuffer = {
val mergedMaxBid = math.max(buffer1.maxBid, buffer2.maxBid)
val mergedHighBidCount = buffer1.highBidCount + buffer2.highBidCount

val map1 = buffer1.itemBidCounts
val map2 = buffer2.itemBidCounts
val mergedMap = map1 ++ map2.map { case (k, v) => k -> (v + map1.getOrElse(k, 0)) }

BidAggBuffer(mergedMaxBid, mergedHighBidCount, mergedMap)
}

Fig. 5. The merge function for the aggregation in Figure 3.

our running example, the buffer is initialized to zero in Figure 3, and the update logic is defined by
the reduce function, which (a) updates the maximum bid if the current row’s bid price is higher, (b)
increments the count of high bids if the bid exceeds 1000, and (c) updates the item bid map reflect
the number of bids per item.

To support distributed and incremental processing, Spark must be able to combine intermediate
results from different slices of the dataframe, but this can be done correctly only if the overall
program defines a homomorphism. Going back to our example, this computation is indeed a
homomorphism, so the user can take advantage of Spark’s distributed processing capabilities by
implementing a suitable merge function, such as the one shown in Figure 5. This merge function
combines two aggregation buffers, buffer1 and buffer2, into a single result by updating the
maximum bid price, aggregating the count of high bids over 1000, and merging per-item bid counts.
In the remainder of this section, we outline the key aspects of our approach that allow us to
synthesize the merge function from Figure 5.

Idea 1: An aggregation program defines a homomorphism if and only if its accumulator
function has a so-called normalizer. If so, the normalizer of the accumulator corresponds to
the desired merge function for the whole aggregation.

f

b1

h

b2
r

f
b1

h

b2 r

≜
Fig. 6. Commutativity condition.

The aggregation program in Figure 3 operates over the en-
tire dataframe, whereas the accumulator function, represented
by the reduce method, processes a single row at a time, mak-
ing it easier to analyze. Fortunately, we can determine whether
an aggregation defines a homomorphism by focusing solely on
the accumulator and checking whether it admits a normalizer.
Intuitively, a normalizer ℎ for a function 𝑓 must satisfy a condition we refer to as generalized
commutativity, depicted in Figure 6, which corresponds to the following algebraic law:

∀𝑏1, 𝑏2, 𝑟 . 𝑓 (ℎ(𝑏1, 𝑏2), 𝑟 ) = ℎ(𝑏1, 𝑓 (𝑏2, 𝑟 ))
Here, 𝑏1 and 𝑏2 represent partial aggregation results, and 𝑟 denotes a new row in the dataframe.
This law ensures that merging 𝑏1 and 𝑏2 and then applying reduce to the result is equivalent to
first reducing 𝑏2 with 𝑟 and then merging with 𝑏1. We call this property generalized commutativity
because it formalizes how two distinct functions—namely, the accumulator 𝑓 and the normalizer ℎ
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Table 1. Original aggregation expressions and their merge expressions.

Original expression Merge expression

𝑒1 = math.max(buffer.maxBid, data.bidPrice) ℎ1 = (s1, s2) => math.max(s1, s2)

𝑒2 = if (data.bidPrice > 1000) buffer.highBidCount + 1

else buffer.highBidCount
ℎ2 = (s1, s2) => s1 + s2

𝑒3 = itemBidCountMap.getOrElse(item, 0) + 1 ℎ3 = (v1, v2) => v1 + v2

𝑒4 = itemBidCountMap + (item -> 𝑒3)

ℎ4 = (m1, m2) => m1 ++ m2.map (

case (k, v) =>

k -> ℎ3(v, m1.getOrElse(k, 0)))

𝑓 = (buffer, data) => (𝑒1, 𝑒2, 𝑒4)
P = bidsDF

.filter(year(col("AuctionYear")) == 2024)

.select("BidPrice", "Item").as[BidData]

.aggregate(𝑓 , initializer)

((a1, a2, a3), (b1, b2, b3)) => (

ℎ1(a1, b1),
ℎ2(a2, b2),
ℎ4(a3, b3))

can commute. This differs from standard commutativity (which applies to a single binary operator)
and associativity (which involves regrouping operands).

Idea 2: We can greatly simplify the normalizer synthesis problem through decomposition.

Our formulation so far simplifies the original problem in that the specification does not involve the
entire dataframe. One obvious way to solve the resulting synthesis problem is to use syntax-guided
synthesis (SyGuS) [9] by providing a suitable DSL in which the merge function can be expressed.
However, it turns out that, for many real-world examples, directly synthesizing the merge function
is quite challenging using existing SyGuS solvers. For instance, the merge function shown in Fig-
ure 5 needs to correctly compute three different results maxBid, highBidCount, itemBidCounts,
where itemBidCounts is a mapping from integers to integers. Thus, the merge operator needs to
iterate through the key-value pairs in map2 and correctly update map1 by summing counts for each
key. This step involves both accessing and modifying an arbitrary number of entries, making it
significantly more complex than merging simple numeric values.

Our approach further simplifies the synthesis problem through type-directed decomposition. In
particular, rather than trying to synthesize the entire merge operator, we realize that each element
in the output tuple can be synthesized independently, as shown in Table 1. In particular, each
component of the original aggregation can be translated into a corresponding merge expression:
the maximum bid is handled by ℎ1, the high-bid count by ℎ2, and the item bid count map by ℎ4.
Furthermore, our approach further simplifies the normalizer synthesis problem for the item bid
count map by synthesizing a normalizer ℎ3 for each individual entry in the map. In practice, such
decomposition turns out to be crucial for handling real-world aggregations.

Idea 3: We can combine inductive and deductive synthesis to make the solution more effective.

As shown in Table 1, the synthesis problems for ℎ1, ℎ2, ℎ3 are quite simple and involve only scalar
operations. We refer to these as leaf-level synthesis problems and use standard synthesis techniques
based on SyGuS to solve them. However, our approach uses deductive reasoning to both decompose
the problem into independent subproblems and to combine their results. For instance, consider the
normalizer ℎ4 from Table 1, which uses ℎ3 as a subexpression. Here, ℎ3 is synthesized using SyGuS,
but, given a solution for ℎ3, our method can construct ℎ4 from ℎ3 using deductive synthesis, which
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Program P ::= 𝜆𝑥 : 𝜏 . aggregate(𝑓 ,I,Φ)
DataFrame Φ ::= 𝑥 | project(𝑓 ,Φ) | select(𝑓 ,Φ)
Function 𝑓 ::= 𝜆𝑥 : 𝜏 . 𝑓 | 𝜆𝑥 : 𝜏 . 𝐸 | 𝑔

Expression 𝐸 ::= 𝑐 | Δ(𝜏) | 𝑓 (𝐸, . . . , 𝐸) | ITE(𝐸, 𝐸, 𝐸) | fold(𝑓 , 𝐸,𝐶) | (𝐸, . . . , 𝐸) | 𝜎𝑖 (𝐸) | 𝐶
Collection Expr 𝐶 ::= 𝑀 | 𝐿 | 𝑆 | 𭟋𝜏 (𝐶) | map(𝑓 ,𝐶) | filter(𝑓 ,𝐶) | zip(𝐶,𝐶)

Map Expr 𝑀 ::= {} | update(𝑀, 𝐸, 𝐸) | 𝑀 ⊠𝑀

List Expr 𝐿 ::= [] | append(𝐿, 𝐸)
Set Expr 𝑆 ::= {} | union(𝑆, 𝑆) | insert(𝑆, 𝐸)

𝑐 ∈ Constants 𝑥 ∈ Variables 𝑔 ∈ Built-in Functions

Fig. 7. DSL syntax. The update function updates keys or adds new (key, value) pairs. 𝜎𝑖 returns the i’th tuple

element, and Δ(𝜏) gives a default expression of type 𝜏 (e.g., 0 for Int). The ⊠ operator performs an outer join

of two maps𝑀1 and𝑀2, producing𝑀 : Map⟨𝜏1, 𝜏2 × 𝜏2⟩, where (1)𝑀 (𝑘) = (𝑀1 (𝑘), 𝑀2 (𝑘)) if 𝑘 is in both, (2)

𝑀 (𝑘) = (null, 𝑀2 (𝑘)) if only in 𝑀2, and (3) 𝑀 (𝑘) = (𝑀1 (𝑘), null) if only in 𝑀1. 𭟋𝜏 (𝐶) converts 𝐶 to type 𝜏 :

e.g., lists are converted to maps by using their indices as keys, and sets are converted to maps using each

element as a key with a null value.

obviates the need for searching over a large space of programs and crucially avoids unnecessary
invocations of SyGuS for complex data structures such as maps.

Idea 4: We can refute the existence of merge operators without attempting synthesis.

While this example admits a suitable merge operator, some programs are not homomorphisms
and thus inherently lack a corresponding merge function. Instead of wasting resources trying to
synthesize a non-existent merge operator, our approach leverages proof rules in the calculus to
identify when a merge function cannot exist. Specifically, we establish criteria that detect that the
accumulator’s behavior is incompatible with the existence of a merge function, which allows us to
identify cases where the commutativity and identity conditions cannot be simultaneously satisfied.

3 Problem Statement
In this paper, we consider a family of programs that perform aggregation over dataframes through
user-defined functions. In the rest of this section, we first define dataframes, then introduce a
domain-specific language (DSL) used in our formalization, and finally state our problem definition.

Definition 3.1. (Dataframe) A dataframe D is a quadruple (C,T ,R,V) where C is a sequence
of column labels, T is a mapping from each 𝑐 𝑗 ∈ C to its corresponding type 𝜏 𝑗 , R = [𝑟1, . . . , 𝑟𝑛] is
a list of rows, andV : R × C → 𝜏 is a mapping from each entry (𝑟𝑖 , 𝑐 𝑗 ) to a value 𝑣 ∈ T (𝑐 𝑗 ). Given
a dataframe D, the type of the dataframe is DF⟨𝜏1, . . . , 𝜏𝑛⟩ where 𝜏𝑖 = T (𝑐𝑖 ).

Figure 7 shows the syntax of a DSL designed to express programs that perform aggregation
over dataframes. At a high level, this DSL supports SQL-like queries incorporating user-defined
functions (UDFs). As shown in Figure 7, the top-level program returns the result of an aggregation
applied to the result of a data transformation program Φ. A data transformation program transforms
the input dataframe to a new dataframe using standard relational operators such as select and
project1, but these operators can also involve user-defined functions. The top-level program

1Our implementation also supports groupBy; however, we omit it here to simplify presentation.
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𝜆𝑥.aggregate(𝑓 ,I,Φ) first computesΦ(𝑥) to obtain a dataframeD and then applies the accumulator
function 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 to D, using I as the initial value. Functions in this DSL are functional
programs that support the creation of complex data structures like maps, lists, sets (and nested
combinations thereof) via higher-order operations like map and fold. Such user-defined functions
are particularly useful in scenarios where data needs to be summarized into a structured form for
further downstream analysis or processing.

Example 3.2. Consider a program that takes as input a dataframe D : DF⟨Int × Int × Int⟩ and
performs a frequency count of the second column of the input dataframe and stores them in a map
of type Map⟨Int, Int⟩. We can implement this program via our DSL as

P = 𝜆𝑡 : DF⟨Int × Int × Int⟩. aggregate(𝑓 , {}, project(𝜎2, 𝑡)), where

𝑓 = 𝜆𝑠 : Map⟨Int, Int⟩. 𝜆𝑥 : Int. ITE(contains(𝑠, 𝑥), update(𝑠, 𝑥, get(𝑠, 𝑥) + 1), update(𝑠, 𝑥, 1)).
Here, contains(𝑠, 𝑥) and get(𝑠, 𝑥) are built-in primitives for querying whether key 𝑥 is in map 𝑠

and retrieving the value of key 𝑥 in map 𝑠 , respectively.

The problem that we address in this paper is to determine whether a program in this DSL
corresponds to a dataframe homomorphism. To precisely define our problem, we first introduce a
concatenation operation ⊞ on dataframes as follows:

Definition 3.3. (Dataframe concatenation) Let D1 = (C,T ,R1,V1),D2 = (C,T ,R2,V2) be
two dataframes. Then, D1 ⊞D2 is defined as (C,T ,R1 ∪ R2,V) where:

V(𝑟𝑖 , 𝑐 𝑗 ) = V1 (𝑟𝑖 , 𝑐 𝑗 ) if 𝑖 ≤ |𝑅1 |, elseV2 (𝑟𝑖−|𝑅1 | , 𝑐 𝑗 )

For the purposes of this paper, a dataframe aggregation is any program that belongs to the DSL
from Figure 7. Using this terminology, we define dataframe homomorphism as follows:

Definition 3.4 (Dataframe homomorphism). A program P is a homomorphism iff there exists
a function ⊕ : 𝜏 × 𝜏 → 𝜏 such that, for any dataframes D1,D2 on which ⊞ is defined, we have:

P(D1 ⊞D2) = P(D1) ⊕ P(D2) (1)

Intuitively, if an aggregation P is a homomorphism, we can partition a dataframeD into multiple
dataframes D1, . . . ,D𝑛 , apply the aggregator P to each D𝑖 and then merge the results using the ⊕
operator. In the rest of this paper, we refer to the binary operator ⊕ as the merge function for the
aggregator. Note that our definition does not require the merge function to be commutative. This
design choice is deliberate, as it allows our framework to support applications like incremental
computation, where partial results are naturally merged in a fixed, non-commutative order (e.g.,
merging an existing result with a result from new data).

We conclude this section by defining the homomorphism verification problem:

Definition 3.5 (Homomorphism verification problem). The homomorphism verification prob-
lem is to determine whether a program P is a dataframe homomorphism, and, if so, construct a
merge function ⊕ that satisfies Equation (1).

4 Homomorphism Calculus
This section presents a set of proof rules for reasoning about dataframe homomorphisms. Central
to this calculus is the concept of a normalizer, which serves as a bridge between the desired merge
operator and the accumulator function used inside the aggregation.
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4.1 Foundation of the Calculus: Normalizers
As mentioned in Section 1, synthesizing a merge operator for a dataframe aggregation P is challeng-
ing because it requires reasoning about the behavior of P on the entire dataframe, which contains
an unbounded number of rows. On the other hand, reasoning about the accumulator function 𝑓 is
generally easier because it operates over a single row of the dataframe. In this section, we introduce
the concept of normalizer in order to bridge this complexity gap. To formalize this concept, we first
introduce a generalized notion of commutativity between actions on a set:

Definition 4.1 (Actions). Let 𝑋,𝑌 be two sets. A right action 𝛼𝑟 of 𝑋 on a set 𝑌 is a function of
type 𝑌 × 𝑋 → 𝑌 , and a left action 𝛼𝑙 of 𝑋 on a set 𝑌 has signature 𝑋 × 𝑌 → 𝑌 .

￼1

y1 y2αr = ∘ x

y3 y4

α l
=z

⋄

αr = ∘ x

α l
=z

⋄

Fig. 8. Commutativity.

Intuitively, a right action of 𝑋 “hits” elements of set 𝑌 from the right
to produce another element of 𝑌 ; a left action does the same but from
the left. To relate this concept to our setting, consider an accumulator 𝑓
of type 𝜏𝑟 × 𝜏 → 𝜏𝑟 , where 𝜏 is the type of a single row of the dataframe
and 𝜏𝑟 is the type of the internal state of the accumulator. In our context,
we can view 𝑓 as a right action of 𝜏 on 𝜏𝑟 .

Definition 4.2 (Commutativity of actions). Let 𝛼𝑟 be a right action
of a set 𝑋 on a set 𝑌 , and let 𝛼𝑙 be a left action of a set 𝑍 on 𝑌 . Actions 𝛼𝑟 , 𝛼𝑙 commute iff:

∀𝑥 ∈ 𝑋,∀𝑦 ∈ 𝑌,∀𝑧 ∈ 𝑍 . 𝛼𝑙 (𝑧, 𝛼𝑟 (𝑦, 𝑥))) = 𝛼𝑟 (𝛼𝑙 (𝑧,𝑦), 𝑥)

In other words, a right and left action on a set 𝑌 commute with each other if the order in which
we apply them does not matter. This is illustrated schematically in Figure 8.

Example 4.3. Consider a function 𝑓 = 𝜆𝑠. 𝜆𝑥 . 𝑠 + len(𝑥) of type Int→ List⟨Int⟩ → Int, which is
a right-action of List⟨Int⟩ on Int. Also, let 𝑔 = 𝜆𝑥 . 𝜆𝑦. 𝜎1 (𝑥) + 𝑦 be a function of type (Int × Int) →
Int → Int, which is a left-action of (Int × Int) on Int. These two functions commute because
𝑔(𝑧, 𝑓 (𝑦, 𝑥)) = 𝜎1 (𝑧) + 𝑦 + len(𝑥) = 𝑓 (𝑔(𝑧,𝑦), 𝑥). On the other hand, let 𝑓 ′ = 𝜆𝑠. 𝜆𝑥 . 𝑠 · len(𝑥) be
another right action of List⟨Int⟩ on Int. In this case, 𝑔(𝑧, 𝑓 ′ (𝑦, 𝑥)) = 𝜎1 (𝑧) + (𝑦 · len(𝑥)) whereas
𝑓 ′ (𝑔(𝑧,𝑦), 𝑥) = (𝜎1 (𝑧) + 𝑦) · len(𝑥). Thus, 𝑓 ′ and 𝑔 do not commute.

Next, we define the concept of normalizer2 that plays a big role in our calculus:

Definition 4.4 (Normalizer). Let 𝛼 be a right (resp. left) action of a set 𝑋 on 𝑌 . A normalizer of 𝛼
is a left (resp. right) action 𝛽 of 𝒀 on 𝒀 such that 𝛼 and 𝛽 commute according to Definition 4.2.

Intuitively, a normalizer of an action 𝛼 on set 𝑆 is an action of 𝑆 on itself that commutes with 𝛼 .

Example 4.5. Consider the function 𝑓 = 𝜆𝑥 : Int. 𝜆𝑦 : List⟨Int⟩. 𝑥 + len(𝑦) which is a right action
of List⟨Int⟩ on Int. The function ℎ = 𝜆𝑥 : Int. 𝜆𝑦 : Int. 𝑥 + 𝑦 is a normalizer for 𝑓 .

In general, normalizers are neither guaranteed to exist nor must be unique.

Example 4.6. Consider the function 𝑓 (𝑦, 𝑧) = 0 if 𝑦 = 𝑧 else 𝑧 which is a right action of N on N.
Appendix A.1 provides a proof that a normalizer of 𝑓 does not exist.

Example 4.7. Consider the function 𝑓 : Int→ Int→ Int = 𝜆𝑠. 𝜆𝑥 . 𝑠 + 1 which is a right-action
of Int on Int. Consider functions ℎ1 : Int → Int → Int = 𝜆𝑠1. 𝜆𝑠2 . 𝑠2 and ℎ2 : Int → Int → Int =

𝜆𝑠1. 𝜆𝑠2. 𝑠2 + 𝑐 where 𝑐 is an arbitrary integer. In this case, both ℎ1 and ℎ2 are normalizers for 𝑓 .

2Our use of the term normalizer differs from its use in group theory, although it bears resemblances in some respects.
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4.2 From Normalizers to DataFrame Homomorphisms
In this section, we relate normalizers to merge functions for dataframe homomorphisms. We start
by stating the following theorem that underlies the soundness of our calculus:

Theorem 4.8. Let P = 𝜆𝑥. aggregate(𝑓 ,I, 𝑥) be a program where 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 is a right action
of 𝜏 on 𝜏𝑟 , and let ℎ be a normalizer of 𝑓 satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 . Then, P is a homomorphism.

In other words, if we can find a normalizer of 𝑓 satisfying the condition ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 , we
can guarantee that P is a homomorphism. Intuitively, this theorem is very useful because checking
whether a function is a normalizer for 𝑓 is a simpler problem than checking whether a merge
operator satisfies Equation (1). This is the case because the latter problem requires reasoning about
the entire dataframe, whereas the former requires reasoning about just one row of the dataframe.

While the theorem helps prove that a program is a dataframe homomorphism, a natural question
is whether homomorphism verification can be fully reduced to finding a normalizer for the accu-
mulator. Recall from Example 4.6 that normalizers are not always guaranteed to exist, raising the
question of whether a program P can be a dataframe homomorphism without a normalizer for its
accumulator 𝑓 . We prove that this cannot occur if P is a surjective function from DF⟨𝜏⟩ to 𝜏𝑟 :

Theorem 4.9. Let P = 𝜆𝑥 . aggregate(𝑓 ,I, 𝑥) be a dataframe homomorphism where 𝑓 is a right
action of 𝜏 on 𝜏𝑟 . Then, if P is a surjective function fromDF⟨𝜏⟩ to set 𝜏𝑟 , a normalizer of 𝑓 is guaranteed
to exist.

According to this theorem, we can also disprove that P is a homomorphism by showing that
a normalizer for the accumulator 𝑓 does not exist as long as P is surjective (which is realistic for
most practical use cases). Furthermore, even in cases where P is not surjective, the completeness
result can be generalized by changing the scope of the quantifiers in the normalizer definition to
just values in the range of the aggregation function.

Finally, recall from Example 4.7, that normalizers may not be unique when they exist. This raises
the question of whether there can be multiple semantically different merge functions for a given
dataframe homomorphism. This would be problematic because it would mean that we can construct
multiple merge operators that lead to different results. Fortunately, the following theorem states
the uniqueness of normalizers under the side condition imposed by the initializer:

Theorem 4.10. Let P = 𝜆𝑥 . aggregate(𝑓 ,I, 𝑥) be a surjective dataframe homomorphism from
DF⟨𝜏⟩ to set 𝜏𝑟 where 𝑓 is a right action of 𝜏 on 𝜏𝑟 . There exists a unique normalizer ℎ of 𝑓 satisfying
∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 .

4.3 Calculus Overview
Before going into the proof rules of our calculus, we first provide a high-level overview of its
structure. Our calculus is comprised of three types of complementary proof rules:
(1) Homomorphism validation and refutation rules: These top-level rules are used to validate

or refute whether a given program is a dataframe homomorphism. If it is a homomorphism,
these rules also produce the corresponding merge operator to prove that it is a homomorphism.

(2) Normalizer validation and refutation rules: These rules are employed to either construct
a normalizer for the accumulator or prove that none can exist. The refutation rules provide
necessary conditions for the non-existence of a normalizer, while the validation rules attempt
to synthesize one using a combination of inductive and deductive synthesis techniques.

(3) Type-directed decomposition: Some of the synthesis rules for normalizer construction rely
on the expression being in a specific syntactic form. The goal of type-directed decomposition is
to facilitate deductive synthesis by rewriting expressions to match these syntactic forms.
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F [(𝑥1 ⊞ 𝑥2)/𝑥] ↩→ ℎ(F [𝑥1/𝑥], F [𝑥2/𝑥])
P = 𝜆𝑥 . F ↩→ 𝜆𝑟1 . 𝜆𝑟2 . ℎ(𝑟1, 𝑟2)

(Top)

𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 Norm (𝜏𝑟 , 𝑓 ,I) = ℎ Φ ↩→ Φ1 ⊞ Φ2
aggregate(𝑓 ,I,Φ) ↩→ ℎ (aggregate(𝑓 ,I,Φ1), aggregate(𝑓 ,I,Φ2))

(Agg)

𝛼 ∈ {project, select} Φ ↩→ Φ1 ⊞ Φ2
𝛼 (𝑓 ,Φ) ↩→ 𝛼 (𝑓 ,Φ1) ⊞ 𝛼 (𝑓 ,Φ2)

(Rel)
IsVar(𝑥)
𝑥 ↩→ 𝑥

(Var)

P(D1) = P(D′1) P(D2) = P(D′2) P(D1 ⊞D2) ≠ P(D′1 ⊞D
′
2)

P ↩→ ⊥ (Refutation)

Fig. 9. Rules for homomorphism validation and refutation.

4.4 Homomorphism Validation and Refutation Rules
Figure 9 describes our first set of proof rules. Before explaining in detail, we first provide intuition:

Observation #1: Let Φ be a data transformation expression with free variable 𝑥 . Then,
Φ[(𝑥1 ⊞ 𝑥2)/𝑥] can always be rewritten as Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥].

In our calculus, the rules labeled Top and Agg exploit this observation, and the rules labeled Rel,
⊞, and Var define how to transform Φ[(𝑥1 ⊞ 𝑥2)/𝑥]3 into Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥].

Observation #2: Let 𝐸 = aggregate(𝑓 ,I,Φ) and 𝑓 have type 𝜏𝑟 ×𝜏 → 𝜏𝑟 . Ifℎ is a normalizer of
𝑓 satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 , then, 𝐸 [(𝑥1 ⊞ 𝑥2)/𝑥] and ℎ(𝐸 [𝑥1/𝑥], 𝐸 [𝑥2/𝑥]) are equivalent.

This observation follows from the previous one and Theorem 4.8. Building on this, the Agg rule
rewrites the aggregation using the normalizer, while the Top rule transforms F [𝑥1 ⊞ 𝑥2/𝑥] into
ℎ(F [𝑥1/𝑥], F [𝑥2/𝑥]). Consequently, the merge operator for the function is defined as 𝜆𝑟1. 𝜆𝑟2. ℎ(𝑟1, 𝑟2).
Intuitively, the Top rule demonstrates how to propagate the normalizer ℎ of the UDAF 𝑓 throughout
the program, while some of the other rules, such as Rel, justify its soundness.

Observation #3: Any dataframe homomorphism P must satisfy the following axiom:
∀𝑥1, 𝑥2, 𝑦1, 𝑦2. P(𝑥1) = P(𝑥2) ∧ P(𝑦1) = P(𝑦2) → P(𝑥1 ⊞ 𝑦1) = P(𝑥2 ⊞ 𝑦2)

Intuitively, the above observation states that the semantics of P must be consistent with the
existence of a merge operator. To see why, recall the definition of homormorphism, which states
that P(D1) ⊕ P(D2) = P(D1 ⊞ D2). If we instantiate the function axioms for ⊕ in the above
definition, we obtain the formula from Observation #3. Hence, the negation of this observation
provides a way to refute that a program is a homomorphism, as formalized by the Refutation
rule in Figure 9. This rule states that, if we find two input pairs (D1,D′1) and (D2,D′2) where
P produces the same output for each (D𝑖 ,D′𝑖 ) but produces a different output on D1 ⊞ D2 vs.
D′1 ⊞D′2, then P cannot be a homomorphism.

Theorem 4.11. A program P is a homomorphism if and only if P ↩→ ℎ for some binary function ℎ
according to the rules in Figure 9. Furthermore, ℎ is the merge operator for homomorphism P.

3We use the standard notation 𝐸 [𝑣/𝑥 ] to denote the substitution of every free occurrence of variable 𝑥 in expression 𝐸

with 𝑣.
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𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 Φ1 ≡ ∀(𝑟 : 𝜏𝑟 ) . ℎ(𝑟,I) = 𝑟

Φ2 ≡ ∀(𝑎, 𝑏 : 𝜏𝑟 ),∀(𝑥 : 𝜏). ℎ(𝑎, 𝑓 (𝑏, 𝑥)) = 𝑓 (ℎ(𝑎, 𝑏), 𝑥)
(𝑓 ,I) ∼ Solve(Φ1 ∧ Φ2)

(Norm-Synth)

f : (𝜏1, . . . , 𝜏𝑘 ) × 𝜏 → (𝜏1, . . . , 𝜏𝑘 )
f (𝑠, 𝑥) ≜ (f1 (𝜎1 (𝑠), 𝑥), . . . , fn (𝜎𝑛 (𝑠), 𝑥)) where (fi, 𝜎𝑖 (I)) ∼ hi
(f,I) ∼ 𝜆(𝑠1, 𝑠2) . (h1 (𝜎1 (𝑠1), 𝜎1 (𝑠2)), . . . , hn (𝜎𝑛 (𝑠1), 𝜎𝑛 (𝑠2)))

(Norm-Tuple)

f (𝑠, 𝑥) ≜ map(𝜆𝑣. f ′ (𝑣, 𝑥), filter(𝑝, 𝑠)) (f ′,Δ(𝜏)) ∼ h
(f,Δ(𝜏𝑐 ⟨𝜏⟩)) ∼ 𝜆(𝑠1, 𝑠2) . 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({ (𝑘, h(𝑣1, 𝑣2)) | (𝑘, 𝑣1, 𝑣2) ∈ 𭟋Map (𝑠1) ⊠ 𭟋Map (𝑠2) })

(Norm-Coll)

∃𝑥, 𝑠 . 𝑓 (I, 𝑥) = I ∧ 𝑓 (𝑠, 𝑥) ≠ 𝑠

(𝑓 ,I) ∼ ⊥ (Norm-Refute-1)

∃𝑠 .∃𝑥, 𝑥 ′ . 𝑓 (I, 𝑥) = 𝑓 (I, 𝑥 ′) ∧ 𝑓 (𝑠, 𝑥) ≠ 𝑓 (𝑠, 𝑥 ′)
(𝑓 ,I) ∼ ⊥ (Norm-Refute-2)

Fig. 10. Rules for normalizer validation and refutation. In the Norm-Coll rule, 𝐹
Map
(𝑠) converts an arbitrary

collection into a map, and ⊠ corresponds to the outer join operator for maps from our DSL.

4.5 Normalizer Construction and Refutation
Figure 10 describes our proof rules for constructing a normalizer for the accumulator function
or proving that none exists. Recall from Theorems 4.8 and 4.9 that a program is a dataframe
homomorphism if and only if there exists a function ℎ such that (1) ℎ and 𝑓 commute (Definition 4.2)
and (2)∀𝑠 . ℎ(𝑠,I) = 𝑠 . An obvious strategy for constructing such a functionℎ is to use syntax-guided
synthesis [9] by encoding the specification as a logical formula. However, because syntax-guided
synthesis often requires searching over a large space of programs, this approach does not work
well in practice, particularly when the accumulator involves complex data structrues instead of
scalar values. The following observation underpins the design of our normalizer proof rules:

Observation #4: Given an accumulator with complex internal state, we can often decompose
the normalizer synthesis problem to several simpler synthesis problems that only involve
scalars. Furthermore, we can avoid performing search for unrealizable synthesis problems by
leveraging necessary conditions for the existence of a normalizer.

Figure 10 shows the normalizer proof rules in our calculus where (𝑓 ,I) ∼ ℎ indicates that ℎ is
the desired normalizer for accumulator 𝑓 with initializer I. These rules can be grouped into three
categories: The Norm-Synth rule serves as the base case and relies on an external SyGuS solver.
The next two rules, labeled Norm-Product and Norm-Collection, decompose the normalizer
synthesis problem for complex data types into simpler problems involving less complex data types.
Finally, the last two rules prove the non-existence of a normalizer.
The Norm-Synth rule. This rule leverages an external SyGuS solver (via the Solve procedure) to
synthesize a normalizer. The generated SyGuS specification consists of two parts, with Φ1 encoding
the initializer side condition and Φ2 specifying the commutativity condition (Definition 4.2).4 In this
rule, we assume that the output of Solve yields an implementation that satisfies the specification
Φ1 ∧ Φ2. In general, while SyGuS solvers are quite effective at solving synthesis problems that

4If a specific framework additionally requires the merge operator to be commutative, we additionally provide the
constraint ∀𝑎,𝑏.ℎ (𝑎,𝑏 ) = ℎ (𝑏, 𝑎) as part of the synthesis query. However, as stated in Section 3, our methodology also
allows non-commutative merge operators for generality.
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involve scalars, they empirically struggle with complex data structures. The next two rules aim to
decompose such complex problem instances into a series of simpler, scalar-valued instances.
The Norm-Product rule. Since many real-world accumulators operate over tuples, the Norm-
Product rule decomposes a function f whose return type is a tuple into multiple sub-problems,
each of which returns a single element of the tuple. To do so, this rule first finds an expression
of the form (f1 (𝜎1 (𝑎), 𝑏), . . . , fn (𝜎𝑛 (𝑎), 𝑏)) that is semantically equivalent to f . Then, instead of
finding a single normalizer h for f , this rule recursively synthesizes a separate normalizer hi for
each fi and composes them via the tuple constructor.
The Norm-Coll rule. The next rule, labeled Norm-Coll, applies to functions whose output is a
collection of type 𝜏𝑐 ⟨𝜏⟩ and simplifies the problem of constructing a normalizer with return type
𝜏𝑐 ⟨𝜏⟩ to a simpler one with return type 𝜏 . To do so, given a function f , it first finds a semantically
equivalent expression of the form map(𝜆𝑣 . f ′ (𝑣, 𝑥), filter(𝑝, 𝑠)). Intuitively, if f can be expressed
in this form, we can reduce the problem of finding a normalizer for f to the problem of finding a
normalizer for f ′: Since f ′ applies a transformation to each element in the collection, the merge
function only needs to figure out how to combine each element pair-wise and then build the
collection back up. Thus, the Norm-Coll rule first finds a normalizer h for f ′ and then constructs
the desired merge function by applying h to each element pair-wise and combining the results.
Note that this rule uses the outer join operation ⊠ on maps from our DSL (see Figure 7) and uses
the 𭟋 operation (also from the DSL) to perform type conversion between different collection types.

Example 4.12. Consider the following function 𝑓 : 𝜏𝑟 → Int→ 𝜏𝑟 where 𝜏𝑟 is a (Int, Map) pair:
𝑓 = 𝜆𝑠. 𝜆𝑥 . (𝜎1 (𝑠) + 𝑥,map(𝜆(𝑘, 𝑣). ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣), 𝜎2 (𝑠))) .

The program 𝜆𝑥. aggregate(𝑓 , (0, {}), 𝑥) takes as input a dataframe with one column of type integer
and produces a tuple consisting of (1) the cumulative sum of all elements and (2) a frequency count
of unique elements. First, using the Norm-Product rule, we decompose the normalizer synthesis
problem for 𝑓 into two independent subproblems defined by the following functions:

f1 = 𝜆𝑠1. 𝜆𝑥 . 𝑠1 + 𝑥 f2 = 𝜆𝑠2. 𝜆𝑥 . map(𝜆(𝑘, 𝑣). ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣), 𝑠2)
For f1, we use the Norm-Synth rule to construct the normalizer h1 = 𝜆𝑠1. 𝜆𝑠2. 𝑠1 + 𝑠2. For f2, we
further simplify it using the Norm-Coll rule. In particular, we first realize that f2 can be written as:

𝜆𝑠2 . 𝜆𝑥 . map(𝜆(𝑘, 𝑣). ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣), filter(⊤, 𝑠2)).
Thus, according to Norm-Coll, we need to synthesize a normalizer for f3 = 𝜆𝑣. 𝜆𝑥 . ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣)
where the initializer is Δ(Int) = 0. Next, we again use the Norm-Synth rule to construct the nor-
malizer h3 = 𝜆𝑣1. 𝜆𝑣2. 𝑣1 + 𝑣2. This gives the normalizer for 𝑓2 as follows:

h2 = 𝜆𝑠1. 𝜆𝑠2 . map(𝜆(𝑘, 𝑣1, 𝑣2). (𝑘, 𝑣1 + 𝑣2), 𝑠1 ⊠ 𝑠2).
Finally, we obtain the merge function ⊕ for the program as

𝜆𝑠1. 𝜆𝑠2. (𝜎1 (𝑠1) + 𝜎1 (𝑠2),map(𝜆(𝑘, 𝑣1, 𝑣2). (𝑘, 𝑣1 + 𝑣2), 𝜎2 (𝑠1) ⊠ 𝜎2 (𝑠2))) .

Refutation rules. As discussed earlier, some accumulators may not have a corresponding normal-
izer. In such cases, we would like to prove unrealizability instead of searching for a solution that is
guaranteed not to exist. To address this issue, our calculus contains two rules for disproving the
existence of a normalizer. These rules are based on the following theorem:

Theorem 4.13. Given a function 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 and initializer I of type 𝜏𝑟 , the following are
necessary conditions for the existence of a suitable normalizer for 𝑓 :
(1) ∀𝑠 : 𝜏𝑟 .∀𝑥 : 𝜏 . (𝑓 (I, 𝑥) = I =⇒ 𝑓 (𝑠, 𝑥) = 𝑠).
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Table 2. Syntax of decomposed expressions.

Form Description

Λ = 𝜆𝑥 . 𝐸 ◦𝑑 | 𝜆𝑥 . Λ ◦𝑑 Function
Ω𝑇 = LΩ1, . . . ,Ω𝑛M Tuple
Ω𝐶 = IterJΩ, 𝜙, 𝑑K | Iter𝑥∈𝑋 JΩ, 𝜙K Collection
Ω = 𝐸 | Λ | Ω𝑇 | Ω𝐶 Expression

(2) ∀𝑠 : 𝜏𝑟 .∀𝑥, 𝑥 ′ : 𝜏 . (𝑓 (I, 𝑥) = 𝑓 (I, 𝑥 ′) =⇒ 𝑓 (𝑠, 𝑥) = 𝑓 (𝑠, 𝑥 ′)).

Example 4.14. Consider 𝑓 = 𝜆𝑠.𝜆𝑥 .ITE(𝑠 = I,I, append(1, 𝑠)) of type List⟨Int⟩×Int→ Intwhere
I is the empty list. The existence a normalizer can be refuted by rule Norm-Refute-1 because
𝑓 (I, 𝑥) = I for all 𝑥 , but 𝑓 (𝑠, 𝑥) ≠ 𝑠 for any 𝑠 . Similarly, we can refute the existence of a normalizer
for 𝑓 = 𝜆𝑠.𝜆𝑥 .ITE(𝑠 = I, [1], append(𝑥, 𝑠)), using the Norm-Refute-2 rule: 𝑓 (I, 3) = 𝑓 (I, 0) = I,
but for 𝑠 = [1, 2], we have 𝑓 ( [1, 2], 3) = [1, 2, 3] ≠ 𝑓 ( [1, 2], 0) = [1, 2, 0].

We conclude this section with the following theorem that states the soundness and completeness
of the normalizer synthesis rules:

Theorem 4.15. If (𝑓 ,I) ∼ ℎ, then ℎ is a normalizer of 𝑓 satisfying ∀𝑠 . ℎ(𝑠,I) = 𝑠 iff ℎ ≠ ⊥.

According to this theorem, our proof rules are sound, meaning that the resulting function ℎ

is guaranteed to be a normalizer of 𝑓 satisfying the initial condition. Furthermore, if the proof
rules refute the existence of a normalizer (meaning that they produce ⊥), then a normalizer of 𝑓
satisfying the initial condition does not exist.

4.6 Expression Decomposition
Recall that some of the rules in Figure 10 require rewriting function 𝑓 into a specific syntactic form.
The last set of proof rules in our calculus describes how to do so based on the following observation:

Observation #5: Given a function 𝑓 with parameter 𝑥 of type 𝜏 , we can often convert 𝑓 to a
semantically equivalent function 𝑓 ′ whose argument has a simpler type 𝜏 ′.

To gain intuition about why this is the case, consider a function 𝑓 : (𝜏1 × . . . × 𝜏𝑛) → 𝜏 that
takes as input a tuple but only touches one element of the tuple. In this case, we can obtain a
semantically equivalent function 𝑓 ′ of type 𝜏𝑖 → 𝜏 . Our calculus makes use of this observation
through decomposed expressions, whose syntax is provided in Table 2. As shown here, there are
four types of decomposed expressions: (1) standard expressions 𝐸 that cannot be further decom-
posed, (2) decomposed functions Λ, (3) decomposed tuples Ω𝑇 , and (4) decomposed collections Ω𝐶 .
Importantly, a decomposed function is of the form 𝜆𝑥 . 𝐸 ◦𝑑 where the auxiliary function 𝑑 is used
for “destructing” the input into something simpler. Intuitively, if our calculus rewrites a lambda
abstraction 𝜆𝑥 : 𝜏 . 𝐸 into 𝜆𝑥 ′ : 𝜏 . 𝐸′ ◦ 𝑑 , this means:

(𝜆𝑥 : 𝜏 . 𝐸) (𝐸0) ≡ (𝜆𝑥 ′ : 𝜏 ′ . 𝐸′) (𝑑 (𝐸0))
Crucially, because the input type 𝜏 ′ of the decomposed abstraction is simpler than than of the
original type 𝜏 , our calculus allows gradually simplifying functions that take complex inputs into
functions that take simpler inputs (e.g., an integer instead of a list of integers).

Next, we give a high level overview of the expression decomposition rules in Figure 12. These
rules describe how to convert an expression 𝐸 into a decomposed expression Ω, which can then be
converted back into standard expressions in our DSL using the rules shown in Figure 11.
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𝜆𝑥. 𝐸 ◦𝑑 ↬ 𝜆𝑥. 𝐸 [𝑑 (𝑥 )/𝑥 ] (Abs-Base) Λ ↬ 𝐸

𝜆𝑥. Λ ◦𝑑 ↬ 𝜆𝑥. 𝐸 [𝑑 (𝑥 )/𝑥 ] (Abs-Ind)

𝐸 ↬ 𝐸
(Expr)

Ω1 ↬ 𝐸1 . . . Ω𝑛 ↬ 𝐸𝑛 𝑥 ≡ ⋃
𝑖 BoundVars(𝐸𝑖 )

LΩ1, . . . ,Ω𝑛M ↬ 𝜆𝑥. (𝐸1 (𝑥 ), . . . , 𝐸𝑛 (𝑥 ) )
(Tuple)

Ω ↬ 𝐸 𝑥 ≡ BoundVars(Ω)
Iter𝑦∈𝑌 JΩ, 𝜙K ↬ 𝜆𝑥. map(𝐸 (𝑥 ), flt(𝜆𝑦. 𝜙,𝑌 ) ) (C1)

Ω ↬ 𝐸 𝑥 ≡ BoundVars(Ω) \ {𝑦}
IterJΩ, 𝜙,𝑑K ↬ 𝜆𝑌 . 𝜆𝑥. map(𝐸 (𝑦, 𝑥 ), flt(𝜙,𝑑 (𝑌 ) ) ) (C2)

Fig. 11. Semantics of decomposed expressions. flt stands for filter.

𝑒 = (𝑒1, . . . , 𝑒𝑛 ) 𝑒1 ⇝ Ω1 . . . 𝑒𝑛 ⇝ Ω𝑛

(𝑒 : 𝜏𝑝 ) ⇝ LΩ1, . . . ,Ω𝑛M
(Tuple)

IsIdentifier(𝑋 ) freshVar(𝑥 : 𝜏 )
(𝑋 : 𝜏𝑐 ⟨𝜏 ⟩) ⇝ Iter𝑥 ∈𝑋 J𝑥,⊤K

(Collection)

(𝑒 : 𝜏𝑏 ) ⇝ 𝑒
(BaseType)

𝑓 ∈ BuiltIn
𝑓 ⇝ 𝑓

(Lam-Base)
𝑒 ⇝ Ω (𝑥 : 𝜏, Id,Ω) ↠ Ω′

𝜆 (𝑥 : 𝜏 ) . 𝑒 ⇝ Ω′
(Lam-Ind)

𝑒 ⇝ Iter𝑥 ∈𝑋 JΩ, 𝜙K Ω ↬ 𝑒𝑣 𝑓 (𝑒𝑣 ) ⇝ Ω′

map(𝑓 , 𝑒 ) ⇝ Iter𝑥 ∈𝑋 JΩ′, 𝜙K
(Map)

𝑒 ⇝ Iter𝑥 ∈𝑋 JΩ, 𝜙K Ω ↬ 𝑒𝑣

filter(𝑝, 𝑒 ) ⇝ Iter𝑥 ∈𝑋 JΩ, 𝜙 ∧ 𝑝 (𝑒𝑣 )K
(Filter)

Fig. 12. UDAF decomposition rules (shown for a core subset of the expressions).

Observation #6: After converting decomposed expressions into standard expressions using
the rules shown in Figure 11, the resulting expressions match the syntactic forms required by
the Norm-Product and Norm-Coll rules used for normalizer synthesis.

Based on this observation, our method first converts a given expression to its equivalent decom-
posed form (using the rules in Figures 12 and 13) and then obtains a standard expression of the
required syntactic form through the conversion rules in Figure 11.
Semantics of decomposed expressions. Figure 11 defines the semantics of decomposed expressions
by showing how they can be converted to standard expressions using judgments of the form Ω ↬ 𝐸

where Ω is a decomposed expression and 𝐸 is a standard expression. As motivated earlier, the Abs
rules convert a decomposed abstraction 𝜆𝑥. 𝐸 ◦ 𝑑 into a standard expression as 𝜆𝑥. 𝐸 [𝑑 (𝑥)/𝑥]. The
Tuple rule recursively converts the nested decomposed expressions Ω𝑖 to standard expressions 𝐸𝑖
and constructs a new tuple (or a lambda abstraction that returns a tuple, depending on whether 𝐸𝑖 ’s
are abstractions or not). Finally, the collection rules C1 and C2 translate decomposed collections
to standard expressions that involve map and filter. The only difference between the C1 and C2
rules is whether 𝑌 is a free or bound variable in the resulting expression.
Decomposition rules. Next, we turn our attention to Figure 12 for converting standard expressions
to decomposed expressions. These rules use judgments of the form 𝐸 ⇝ Ω, indicating that Ω is
the decomposed version of 𝐸. At a high level, all of these rules recursively decompose any nested
expressions in the premises and build back up a new decomposed expression. Since the BaseType
and Tuple rules are self-explanatory, we only explain the remaining rules. The rules labeled
Collection, Map, Filter generate decomposed collections of the form Iter𝑥∈𝑋 JΩ, 𝜙K. Such a
decomposed collection expression represents iterating over all elements 𝑥 ∈ 𝑋 that satisfy predicate
𝜙 such that each element 𝑥 is transformed using decomposed expression Ω. The Collection rule
applies to variables 𝑋 of type collection, which are represented using the decomposed expression
Iter𝑥∈𝑋 J𝑥,⊤K. The Filter rule first recursively decomposes the nested expression 𝑒 as Iter𝑥∈𝑋 JΩ, 𝜙K
and then conjoins the filter predicate 𝑝 (𝑒𝑣) with 𝜙 to obtain the new expression. The Map rule
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(𝑥 : 𝜏,𝑑, 𝐸 ) ↠ 𝜆 (𝑥 : 𝜏 ) . 𝐸 ◦𝑑 (Expr) (𝑥 : 𝜏,𝑑,Λ) ↠ 𝜆 (𝑥 : 𝜏 ) . Λ ◦𝑑 (Function)

(𝑥 : 𝜏𝑏 , 𝑑,Ω1 ) ↠ Ω′1 . . . (𝑥 : 𝜏𝑏 , 𝑑,Ω𝑛 ) ↠ Ω′𝑛
(𝑥 : 𝜏𝑏 , 𝑑, LΩ1, . . . ,Ω𝑛M) ↠ LΩ′1, . . . ,Ω

′
𝑛M

(Tuple-Base)

Ω̄𝑖 = Ω𝑖 [𝑣𝑖/𝜎𝑖 (𝑥 ) ] freshVar(𝑣𝑖 ) 𝑥 ∉ fv(Ω̄𝑖 )
(𝑣1 : 𝜏1, 𝜎1 ◦𝑑, Ω̄1 ) ↠ Ω′1 . . . (𝑣𝑛 : 𝜏𝑛, 𝜎𝑛 ◦𝑑, Ω̄𝑛 ) ↠ Ω′𝑛
(𝑥 : (𝜏1, . . . , 𝜏𝑛 ) ), 𝑑, LΩ1, . . . ,Ω𝑛M) ↠ LΩ′1, . . . ,Ω

′
𝑛M

(Tuple-Inductive)

(𝑥 : 𝜏𝑏 , 𝑑,Ω) ↠ Ω′

(𝑥 : 𝜏𝑏 , 𝑑, IterJΩ, 𝜙,𝑑0K) ↠ IterJΩ′, 𝜙,𝑑0K
(C-Base)

(𝑥 : 𝜏, Id,Ω) ↠ Ω′

(𝑋 : 𝜏𝑐 ⟨𝜏 ⟩, 𝑑, Iter𝑥 ∈𝑋 JΩ, 𝜙K) ↠ IterJΩ′, 𝜆𝑥 . 𝜙,𝑑K
(C-Ind)

Fig. 13. Function simplification rules (shown for a core subset of the expressions).

is similar, but it also applies 𝑓 to decomposed expression Ω to obtain a new Ω′. We illustrate the
collection decomposition rules through the following example:

Example 4.16. Consider the expression map(double, filter(𝜆𝑥 . 𝑥 > 0,map(inc, 𝑋 ))) where inc,
double are built-in functions. To decompose this expression, we first rewrite 𝑋 as Iter𝑥∈𝑋 J𝑥,⊤K.
Applying the Map rule, we then obtain Iter𝑥∈𝑋 Jinc(𝑥),⊤K. Then, applying the Filter rule, we obtain
Iter𝑥∈𝑋 Jinc(𝑥), inc(𝑥) > 0K. A final application of Map yields Iter𝑥∈𝑋 Jdouble(inc(𝑥)), inc(𝑥) > 0K.

Next, we consider the rules for lambda abstractions. The Lam-Base rule handles built-in functions
and is straightforward. The Lam-Ind rule converts the body 𝑒 into a decomposed expression Ω,
then derives a new decomposed abstraction Ω′ using the rules in Figure 13.

The function simplification rules in Figure 13 use Observation #5 to adjust the input types of
lambda abstractions within Ω, employing judgments of the form (𝑥 : 𝜏, 𝑑,Ω) ↠ Ω′. Here, the
triple (𝑥 : 𝜏, 𝑑,Ω) represents a decomposed abstraction that takes an argument 𝑥 : 𝜏 and computes
Ω[𝑑 (𝑥)/𝑥]. The resulting expression Ω′ is semantically equivalent but applies Observation #5 to
identify simplification opportunities. For example, the Tuple-Inductive rule in Figure 13 modifies
the input types of nested expressions when only a specific component of the input is used.

Example 4.17. Consider again the function from Example 4.12:
𝑓 = 𝜆𝑠. 𝜆𝑥 . (𝜎1 (𝑠) + 𝑥,map(𝜆(𝑘, 𝑣). ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣), 𝜎2 (𝑠))) .

First, we can use the Lam-Ind rule to decompose the abstraction body. In this case, since the UDAF
body is a tuple, we use the Tuple rule, which creates a decomposed tuple with two sub-expressions,
𝜎1 (𝑠) + 𝑥 (from the BaseType rule) and Iter(𝑘,𝑣) ∈𝜎2 (𝑠 )JITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣),⊤K (from the Collection
and Map rule). Once the body is decomposed, the Lam-Ind rule processes the inner abstraction
with parameter 𝑥 by using the function simplification rules (Figure 13), which results in:

L𝜆𝑥 . 𝜎1 (𝑠) + 𝑥, Iter(𝑘,𝑣) ∈𝜎2 (𝑠 )J𝜆𝑥 . ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣),⊤KM

Next, the Lam-Ind rule processes the top-level abstraction with parameter 𝑠 , which can be further
decomposed via Tuple-Inductive: This rule replaces tuple accesses 𝜎𝑖 with fresh variable 𝑣𝑖 and
recursively invokes the function simplification rules, yielding:

(𝑣1 : Int, 𝜎1, 𝜆𝑥 . 𝑣1 + 𝑥) and (𝑣2 : List⟨Int⟩, 𝜎2, Iter(𝑘,𝑣) ∈𝑣2J𝜆𝑥. ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣),⊤K).
The first function is immediately simplified to 𝜆𝑣1 . (𝜆𝑥 . 𝑣1 + 𝑥) ◦𝜎1 by the Function rule. For the
second function, since 𝑣2 is a collection type, we use the C-Ind rule that replaces the free variable
in the original decomposed collection with 𝑣2, which yields

IterJ𝜆𝑣. 𝜆𝑥 . ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣),⊤, 𝜎2K.
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Algorithm 1 Homomorphism verification algorithm
1: procedure IsHomomorphism(P = 𝜆𝑥 . aggregate(𝑓 ,I, 𝑥))

Input: A dataframe aggregation P
Output: Merge operator or ⊥ (if P is not homomorphic)

2: if ApplyHomRefute(P) then return ⊥
3: if ApplyNormRefute(𝑓 ,I) then return ⊥
4: if ¬CanApplyDecomp(𝑓 ) then
5: return ApplyNormSynth(𝑓 ,Φ) ⊲ Attempt normalizer synthesis
6: (Ω, 𝑆) ← (ApplyDecomp(𝑓 ), ∅) ⊲ Decompose 𝑓

7: 𝐸 ← ApplyExprConvert(Ω) ⊲ Convert to canonical form
8: refuted← false

9: for all (𝑓𝑖 ,I𝑖 ) ∈ MatchNormInductive(𝐸) do
10: ℎ𝑖 ← ApplyNormRefute(𝑓𝑖 ,I𝑖 ) ? ⊥ : ApplyNormSynth(𝑓𝑖 ,I𝑖 )
11: if ℎ𝑖 = ⊥ then refuted← true; break
12: 𝑆 ← 𝑆 ∪ {𝑓𝑖 → ℎ𝑖 }
13: if ¬refuted then return ApplyNormSynth(𝑓 ,Φ)
14: return ApplyNormInductive(𝑆, 𝐸)

Putting these decomposed expressions together, we have the complete decomposed expression for
𝑓 , where every sub-function operates on a simpler type than the original function does:

L𝜆𝑣1 . (𝜆𝑥 . 𝑣1 + 𝑥) ◦𝜎1, IterJ𝜆𝑣 . 𝜆𝑥 . ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣),⊤, 𝜎2KM.

Finally, by using the conversion rules from Figure 11, we obtain the following simplified function:
𝑓 = 𝜆(𝑠 : (Int,Map⟨Int, Int⟩)) . 𝜆(𝑥 : Int). (f1 (𝜎1 (𝑠), 𝑥), f2 (𝜎2 (𝑠), 𝑥)), where:

f1 = 𝜆(𝑣1 : Int). 𝜆(𝑥 : Int). 𝑣1 + 𝑥 f3 = 𝜆(𝑣 : Int). 𝜆(𝑥 : Int). ITE(𝑘 = 𝑥, 𝑣 + 1, 𝑣)
f2 = 𝜆(𝑣2 : Map⟨Int, Int⟩). 𝜆(𝑥 : Int). map(𝜆(𝑘, 𝑣). f3 (𝑣, 𝑥), filter(⊤, 𝑣2))

Note that the functions f1, f3 correspond to the functions for which we need to synthesize normal-
izers. Hence, by using our decomposition rules, we have reduced the problem of synthesizing a
normalizer for the complex type (Int,Map⟨Int, Int⟩) to the problem of synthesizing two normalizers
for the much simpler type Int (i.e., internal state of the functions f1, f3).

Theorem 4.18. If 𝐸 ⇝ Ω and Ω ↬ 𝐸′, then 𝐸 and 𝐸′ are semantically equivalent.

4.7 Putting it all Together: End-to-End Algorithm
We conclude this section by formulating a verification algorithm, summarized in Algorithm 1, based
on our calculus. This procedure takes as input an aggregation program P = 𝜆𝑥. aggregate(𝑓 ,I, 𝑥)
and either returns ⊥ or a valid merge operator proving that P is a homomorphism. Starting at
line 2, the algorithm first tries to apply the homomorphism refutation rules in Figure 9 to refute
the given problem instance. If refutation fails, it proceeds to synthesize a normalizer. To this end,
it first tries to decompose 𝑓 using the rules from Section 4.6. If 𝑓 cannot be decomposed, line 5
attempts to prove the existence of a normalizer for 𝑓 using the Norm-Synth rule, which invokes a
SyGuS solver. On the other hand, if 𝑓 is decomposable, we use the technique from Section 4.6 to
first obtain a decomposed expression Ω, which is then converted back to a standard expression 𝐸

(using the rules from Figure 11) such that 𝐸 is in a syntactically canonical form. Hence, when we
pattern match against 𝐸 in the Norm-Coll and Norm-Tuple rules of Figure 10, we can identify

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 294. Publication date: October 2025.



Homomorphism Calculus for User-Defined Aggregations 294:17

all the sub-functions 𝐹 for which we need to synthesize normalizers. This set 𝐹 is computed via
the call to procedure MatchNormInductive at line 9 of the algorithm. Then, the loop in lines
9-12 computes a normalizer for each 𝑓𝑖 ∈ 𝐹 and adds the pair (𝑓𝑖 , ℎ𝑖 ) to a set 𝑆 . If normalizer
computation fails for any 𝑓𝑖 , the procedure falls back on the ApplyNormSynth rule. Otherwise,
the call to ApplyNormInductive at line 14 computes a normalizer for the whole function by using
the Norm-Coll and Norm-Tuple rules.

An important point about this algorithm is that it does not return ⊥ if the call to ApplyNormRe-
fute returns true at line 10. This is due to the fact that the Norm-Coll and Norm-Tuple rules can
be used to prove the existence of a normalizer but not for refuting it. In other words, there can be
cases where the accumulator function is decomposable, but its corresponding normalizer is not.
The following example illustrates such a case:

Example 4.19. Consider the function 𝑓 : 𝜆𝑠 : Bool × Int. 𝜆𝑥 : Int. (true, 𝑥) with initializer I =

(false, 0). Using the Norm-Product rule, we decompose the normalizer synthesis problem for 𝑓
into two independent subproblems defined by the following functions:

f1 = 𝜆𝑠1. 𝜆𝑥 . true f2 = 𝜆𝑠2. 𝜆𝑥 . 𝑥 .

Note that f2 does not have a normalizer, as can be confirmed using Norm-Refute-1. However, the
original function 𝑓 does have a normalizer, namely h = 𝜆𝑠1. 𝜆𝑠2. ITE(𝜎1 (𝑠2), 𝑠2, 𝑠1).

Theorem 4.20. Let ℎ be the return value of IsHomomorphism(P) where P is a surjective function
from DF⟨𝜏⟩ to set 𝜏𝑟 . Given a sound and complete oracle Solve for syntax-guided synthesis, and
assuming the entire DSL in Figure 7 is provided to the SyGuS solver, we have ℎ ≠ ⊥ if and only if P is
a dataframe homomorphism. Furthermore, if ℎ ≠ ⊥, then ℎ corresponds to the binary operator that
proves that P is a homomorphism.

5 Implementation
We have implemented our proposed technique in a tool called Ink (written in Rust) which uses the
CVC5 [10] synthesizer to solve leaf-level synthesis problems. Ink takes as input a UDAF and outputs
its corresponding merge function (if one exists). The input and output of Ink is implemented in the
language from Figure 7, but Ink also accepts source programs written in Scala, which Ink converts
to its own language using a custom transpiler.
SyGuS encoding for UDAFs. While our method tries to decompose the synthesis problem as much
as possible, there may still be leaf-level synthesis problems that involve unbounded data structures,
which is a challenge for the SyGuS encoding. Our implementation deals with this challenge by
modeling lists as sequences in CVC5 and adding list transformation functions like map and filter to
the SyGuS grammar. Our implementation similarly models maps as sets of key-value pairs, using the
theory of sets supported in CVC5. To ensure determinism and avoid dependence on solver-specific
heuristics, we sort the non-terminals in the generated SyGuS grammar alphabetically. A summary
of the SyGuS grammar for leaf-level synthesis is provided in Appendix B.
Implementation of refutation rules. The refutation rules in our calculus disprove the existence
of a merge operator by finding inputs that satisfy a certain property. In our implementation, we use
property-based testing (specifically, the Rust implementation of QuickCheck) to perform refutation.
To this end, we provide the logical negation of our refutation rules as properties to be checked
during testing. While we also experimented with a refutation procedure based on SMT, we found
that this approach can be quite slow due to the presence of unbounded data structures. Thus, our
implementation uses testing by default.
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Table 3. AST Statistics.

Metric UDAF Merge

Avg AST 30.6 21.3
Median AST 27.5 22.0
Max AST 120.0 106.0

Table 4. Other metrics.

Metric

Tuples 72.0%
Collections 42.0%
Conditionals 50.0%

Incompleteness of decomposition. Due to the incompleteness of decomposition (see Example 4.19),
Algorithm 1 falls back on syntax-guided synthesis if the decomposed functions are not homomorphic.
However, in practice, we found that most functions in the decomposition are homomorphic even
when not all of them are. Furthermore, we found that the solution for these sub-problems are still
useful for solving the overall problem. Our implementation leverages this insight by incorporating
solutions to these sub-problems as terminals in the grammar of the SyGuS encoding.
Generalization of Norm-Tuple. Recall that the Norm-Tuple rule in Figure 10 tries to decom-
pose a function 𝑓 as a sequence of functions 𝑓1, . . . , 𝑓𝑛 , each of which operates over a single
element of the tuple. Our implementation generalizes this rule and allows each 𝑓𝑖 to operate over
a subset of the elements in the tuple. For instance, using this generalization, a function such as
𝜆(𝑎, 𝑏, 𝑐). 𝜆𝑥 . (𝑎 + 1, ITE(𝑐, 𝑏 + 𝑥, 𝑏), true) can be decomposed into the following two functions:

𝑓1 = 𝜆𝑎. 𝜆𝑥 . 𝑎 + 1 𝑓2 = 𝜆(𝑏, 𝑐). 𝜆𝑥 . (ITE(𝑐, 𝑏 + 𝑥, 𝑏), true)

Transpiler from Scala. While Ink can take Scala source code as input, it first transpiles Scala
code to its own intermediate representation (see Figure 7). The Scala-to-Ink transpiler follows a
syntax-directed translation process that systematically rewrites UDAFs into Ink’s IR. It first maps
accumulator state representations by converting Scala primitive types into Ink primitive types,
while standard collections like List, Map, and Set are translated to Ink’s collection primitives. Since
most Scala UDAFs already exhibit a functional structure, transpilation lends itself to straightforward
syntax-directed translation for most Scala UDAFs implemented in frameworks like Spark and Flink.
However, for UDAFs using third-party libraries or custom types, the user needs to provide mappings
from these to Ink’s built-in collection types. The transpiler from Scala to the Ink IR is implemented
in Python.

6 Evaluation
We now describe our experiments that are designed to answer the following research questions:
RQ1. How does Ink compare against relevant baselines for merge operator synthesis?
RQ2. How does Ink compare with other tools for refuting homomorphisms?
RQ3. How important are the core ideas (deduction, decomposition) for merge function synthesis?
RQ4. How important are the refutation rules?

Sources of benchmarks. To answer these questions, we sampled a set of approximately 100
benchmarks from real-world GitHub repositories, focusing on implementations of UDAFs for
Apache Spark and Flink. These benchmarks represent a mix of UDAFs that span a diverse set of
domains such as telemetry, finance, geospatial and raster analytics, and machine learning. To ensure
that our evaluation focuses on non-trivial UDAFs, we perform further filtering of the collected
UDAFs by retaining only those functions that satisfy the following two criteria: First, the UDAF
must contain at least 10 LOC, and, second, it should involve control flow or a non-trivial type
(namely, collection or tuple with at least three elements). After filtering easy benchmarks that do not
meet this criteria, we obtain a total of 50 benchmarks, of which 45 are dataframe homomorphisms.
Table 3 provides statistics about the size of these UDAFs and their corresponding merge operator
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Fig. 14. Comparison between Ink and baselines for

merge operator synthesis.
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Fig. 15. Comparison between Ink and its ablations

for merge operator synthesis.

case class InputData(key: String, value: Int)
case class BufferData(key: String, sum: Int, count: Int)

object AvgTemperatureAggregator extends Aggregator[InputData, BufferData, ...] {
override def zero: BufferData = BufferData("", 0, 0)

override def reduce(buffer: BufferData, input: InputData): BufferData = {
BufferData(input.key, buffer.sum + input.value, buffer.count + 1)

} }

Fig. 16. A Scala Spark UDAF with incorrect user-provided merge (see Figure 17)

in terms of average, median, and maximum AST size. Additionally, Table 4 reports the percentage
of UDAFs that contain tuples, collections, and conditionals.
Baselines. To evaluate the effectiveness of our approach, we compare our method against two
baselines. The first baseline is CVC5, a state-of-the-art SyGuS solver that provides support for data
structures like tuples and sets. Our other baseline is a state-of-the-art synthesizer called Parsynt [25]
for divide-and-conquer algorithms—notably, Parsynt also aims to synthesize merge operators
that can be used for parallelization. Additionally, we tried to compare Ink against AutoLifter,
which is another synthesizer for divide-and-conquer parallelism. However, the implementation of
AutoLifter assumes that the UDAF output is a scalar value. Since this assumption does not hold
for our benchmarks, we were unable to perform an empirical evaluation against AutoLifter.
Experimental setup. All experiments are conducted on a machine with an AMD Ryzen 9 7950X3D
CPU and 64 GB of memory, running NixOS 24.11. We use a 10 minute time limit for each benchmark.

6.1 Evaluation of Merge Operator Synthesis
To answer our first research question, we run Ink and both baselines on the 45 homomorphic
UDAFs and evaluate their ability to synthesize merge operators. The results of this evaluation are
shown in Figure 14 where the 𝑥-axis shows cumulative running time and the 𝑦-axis represents
the percentage of benchmarks solved. Ink is able to successfully synthesize a merge operator for
all but 2 benchmarks, resulting in a success rate of 95.6%. In contrast, Parsynt and CVC5 are
able to synthesize merge operator for 42.2% and 28.9% of the benchmarks respectively. All of the
benchmarks solved by Parsynt and CVC5 are also solved by Ink. Additionally, we note that the
synthesis time for Ink is 6.2 seconds per benchmarks on average. Among benchmarks that can be
solved by both Ink and Parsynt (resp. CVC5), Ink is 2.2× (resp. 28.3×) faster on average.
Qualitative Analysis for Ink.Of the 43 benchmarks Ink solves, we found that 36 of the synthesized
programs are semantically equivalent to the developer-provided merge operator. In all cases where
Ink’s results are semantically equivalent to the user-provided one, the synthesized merge function
also has the same time and space complexity. However, there are also cases where the synthesized
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def merge(b1, b2): BufferData = {
BufferData(

b2.key,
b1.sum + b2.sum,
b1.count + b2.count) }

Fig. 17. User-provided incorrect merge.

def merge(b1, b2): BufferData = {
BufferData(

if (b2.count > 0) b2.key else b1.key,
b1.sum + b2.sum,
b1.count + b2.count) }

Fig. 18. Ink-synthesized solution.

merge function differs from its human-written counterpart, revealing potential bugs. For instance,
Figure 16 shows a UDAF along with its corresponding human-written merge function in Figure 17.
Although this merge function appears reasonable, it produces incorrect results when merging an
accumulated state with the initial state—that is, the default accumulator produced by the UDAF’s
initializer. As illustrated in Figure 19, the merge function incorrectly overwrites the key field with
the default value, even though the initial state should have no effect. This behavior violates the
homomorphism property and can lead to incorrect or non-deterministic results during distributed
execution, as the final output may depend on how data is partitioned and merged. In contrast, Ink
synthesizes the correct merge operator shown in Figure 18, which preserves the intended semantics
of the UDAF.

Inputs and Intermediate Outputs

D = [("key", 5)]

P(D) = ("key", 5, 1)

P([]) = ("", 0, 0)

Mismatched Merge Result

P(D ++ []) = ("key", 5, 1)

merge(P(D),P([])) = ("", 5, 1)

Fig. 19. Illustration of incorrect merge.

Failure analysis for baselines. We manually in-
spected the failure cases for both baselines. For
CVC5, we observe an inverse correlation between
the size of the required merge operator and CVC5’s
ability to find it. In fact, the 13 benchmarks that
CVC5 can solve are the smallest benchmarks of the
45 in terms of AST size. On the other hand, Parsynt
is able to solve more of the benchmarks that involve
tuples compared to CVC5 but it struggles with bench-
marks where the accumulator state is a collection.
Interestingly, there are only four benchmarks that
both CVC5 and Parsynt can solve, indicating that these tools have different failure modes.
Failure analysis for Ink. As mentioned earlier, there are two benchmarks that Ink fails to solve;
both are due to time-outs when solving a leaf-level synthesis problem. One of them requires synthe-
sizing a non-linear expression as part of the merge operator. Since SMT solvers typically struggle
with non-linear operations, failure on this benchmark is not very surprising. The second failure
is more surprising—in fact, if we change the order of non-terminals in our SyGuS grammar, then
CVC5 is able to solve the same leaf-level synthesis problem.

Result for RQ1: Among the 45 homomorphic UDAFs, Ink can successfully synthesize
merge operators for 43 of them (95.6%), taking 6.2 seconds per benchmark on average.
In comparison, the two baselines (CVC5 and Parsynt) synthesize merge operators for
28.9-42.2% of the same benchmarks.

6.2 Evaluation on Non-Homomorphic UDAFs
Of the 50 benchmarks used in our evaluation, 5 are non-homomorphic. Notably, although the
source files for these benchmarks define merge operators, these operators are either buggy or
depend on undocumented assumptions—such as the absence of certain values in the dataframe.
Ink successfully refutes the existence of a valid merge operator for all five non-homomorphic
benchmarks, with a median refutation time of 0.6 seconds and an average of 1.4 seconds. Figure 20
shows a UDAF that Ink proves to be non-homomorphic. For this UDAF (abbreviated as CSA below),
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case class ClickEventAggregate(
userId: Int = 0, eventCount: Int = 0,
eventCountWithOrderCheckout: Int = 0, departmentsVisited: Set[String] = Set())

case class ClickEvent(userid: Int, productType: String, eventType: String)

object ClickstreamAggregator extends Aggregator[ClickEvent, ClickEventAggregate, ...] {
override def zero: ClickEventAggregate = ClickEventAggregate()
override def reduce(accumulator: ClickEventAggregate, value: ClickEvent): ClickEventAggregate = {
if (value.productType.nonEmpty && value.productType != "N/A") {

accumulator.eventCount += 1
val departmentsVisited = accumulator.departmentsVisited
departmentsVisited.add(value.productType)
accumulator.departmentsVisited = departmentsVisited

}
if (accumulator.userId == 0) { accumulator.userId = value.userid }
if (value.eventType == "order_checkout") {

accumulator.eventCountWithOrderCheckout = accumulator.eventCount
}

accumulator } }

Fig. 20. A non-homomorphic Scala Spark UDAF.

override def merge(acc1: ClickEventAggregate, acc2: ClickEventAggregate): ClickEventAggregate = {
acc1.copy(

eventCount = acc1.eventCount + acc2.eventCount,
eventCountWithOrderCheckout = acc1.eventCountWithOrderCheckout + acc2.eventCountWithOrderCheckout,
departmentsVisited = acc1.departmentsVisited ++ acc2.departmentsVisited) }

Fig. 21. The user-provided merge function to ClickstreamAggregator from Figure 20

Inputs and Intermediate Outputs

D1 = [(5, "product", "add_cart")]

D2 = [(0, "N/A", "order_checkout")]

P(D1) = (5, 1, 0, {"product"})

P(D2) = (0, 0, 0, {})

Illustration of incorrect merge

P(D1 ++ D2) = (5, 1, 1, {"product"})

merge(P(D1),P(D2)) = (5, 1, 0, {"product"})

Fig. 22. Illustration of why the merge function from Figure 21 is incorrect

there is in fact no merge function that can satisfy the required correctness property:

∀D1,D2. CSA(D1 ++ D2) = merge(CSA(D1), CSA(D2))

However, the user nevertheless provides the merge function shown in Figure 21, which is incorrect
as illutsrated through the inputs shown in Figure 22. Such an incorrect merge function would lead
to inconsistent results across different partitioning of the input.

Among the two baselines, CVC5 also includes refutation capabilities and, in principle, it can
return Infeasible for problems it proves unrealizable. CVC5 refutes 2 out of 5 non-homomorphic
UDAFs with an average refutation time of 8.2 seconds. By contrast, Parsynt attempts to construct a
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homomorphic lifting of the input function if it is non-homomorphic. A homomorphic lifting aims to
transform a non-homomorphic function into an equivalent form that satisfies the homomorphism
property. For the 5 non-homomorphic functions in our benchmark set, Parsynt either times out or
produces a merge operator with an empty body.

Result for RQ2: Ink is able to refute the existence of a merge operator for all five
non-homomorphic UDAFs, whereas the baselines refute at most 2.

6.3 Ablation Study for Merge Operator Synthesis
To address our third research question, we consider several ablations of Ink. The first one is
NoReduce, which does not reduce the merge operator synthesis problem to that of finding a
normalizer for the accumulator function. In other words, this ablation uses Equation (1) as the
specification instead of Theorem 4.8 and is therefore expected to have behavior similar to the CVC5
baseline. The second ablation is NoDeduce, which does not use the deductive synthesis rules for
normalizer synthesis. In other words, this ablation invokes CVC5 with the normalizer specification;
however it does not utilize the Norm-Coll and Norm-Tuple rules for deductive synthesis. The
third ablation is NoDecomp, which does not perform the type-directed decomposition method
described in Section 4.6. Hence, this ablation can only leverage the Norm-Tuple and Norm-Coll
rules if the original expression has the required syntactic form.

The results of this ablation study are presented in Figure 15, where the 𝑥-axis shows cumulative
running time and 𝑦-axis represents the number of benchmarks solved. As expected, NoReduce has
the same performance as CVC5. NoDeduce performs slightly better than NoReduce, but it can
still only synthesize 33.3% of the benchmarks. Finally, NoDecomp is the best-performing ablation
but solves 34.9% fewer benchmarks compared to Ink and takes longer to do so.

Result for RQ3: Without deductive synthesis and decomposition, the synthesis capability
of Ink degrades considerably, solving 34.9-69.8% fewer benchmarks.

6.4 Ablation Study for Refutation
Finally, we perform an ablation study to evaluate the usefulness of our refutation rules. For this
experiment, we consider the five non-homomorphic UDAFs and compare Ink against NoRefute,
which is a version of Ink that does not utilize the refutation rules in our calculus. This ablation is
able to refute 2 of the 5 non-homomorphic UDAFs but takes 1.5× as long on average to do so.

Result for RQ4: The ablation of Ink that does not leverage the refutation rules fails to
refute 3 of the 5 non-homomorphic benchmarks and takes 1.5× as long.

7 Limitations
In this section, we discuss some of the main limitations of the proposed approach. First, our problem
statement is defined in terms of a functional IR, which means that the UDAF needs to be expressible
in this IR. However, our DSL is designed to capture the essential structure of UDAFs as they
are implemented in distributed data-processing frameworks like Apache Spark and Flink, and,
empirically, we found that all benchmarks sampled from GitHub can be expressed in our DSL.
Second, our problem statement assumes that an input UDAF processes a dataframe in a single pass
without random access. This assumption aligns with the UDAF frameworks of both traditional
databases, such as PostgreSQL [56], MySQL [1], SQL Server [2], and Oracle [3], and big data systems,
such as Spark and Flink.
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8 Related Work

Homomorphisms. List homomorphisms have long been a core strategy for transforming sequen-
tial operations into parallelizable ones, especially in functional programming [12, 18, 19]. Hu et
al. [31, 32] introduced systematic techniques for deriving list homomorphisms from recursive func-
tions using methods like tupling and fusion, and they also demonstrated how almost homomorphic
functions can be converted into fully homomorphic ones to support efficient parallel execution.
Gibbons’ third list-homomorphism theorem [27] established that a function qualifies as a list homo-
morphism if it can be expressed as both a foldr and a foldl, while Mu and Morihata [45] extended
this theorem to tree structures. Building on this foundation, our work explores homomorphisms
in the context of UDAFs, but adopts a more local perspective. Whereas prior characterizations,
such as Gibbons’ theorem, analyze global properties of the entire function, our calculus shows that
an aggregation is a homomorphism if and only if its row-level accumulator admits a normalizer
satisfying a generalized commutativity condition. This formulation reduces the synthesis of a global
merge operator to the more tractable task of identifying a suitable normalizer for the accumulator.
In doing so, it generalizes classical associativity: while associativity emerges as a special case when
the accumulator operates uniformly over identical types, our framework allows accumulator state
and input-row types to differ, making it applicable to a broader range of real-world aggregations.
Another related work is that of Cutler et al. [20], which develops a type stream processing calculus
that ensures homomorphism by construction. In contrast, our work verifies and synthesizes merge
operators for arbitrary UDAFs written in general-purpose languages, where homomorphism is
neither assumed nor guaranteed.
Synthesis for parallelization & incremental computation. Program synthesis aims to automat-
ically generate programs that satisfy a given specification, such as input-output examples [26, 28],
logical constraints [44], or reference implementations [40, 49, 57]. In our case, the merge operator
synthesis problem involves both a logical specification (dataframe homomorphism) and a reference
implementation (UDAF). While synthesis approaches are generally classified as inductive [9, 54] or
deductive [43], our approach combines both, using SyGuS solvers for local synthesis and deductive
synthesis to consolidate sub-solutions. Several related works, including Synduce [22], ParSynt [23],
and AutoLifter [38], focus on synthesis for parallel computation. Synduce primarily focuses
on recursive procedures, and, like our method, it has the ability to refute the existence of a solu-
tion. ParSynt and AutoLifter target divide-and-conquer parallelism through synthesis of join
operators. The focus of ParSynt is to introduce auxiliary accumulators to lift non-parallelizable
loops into parallelizable ones. Similar to our approach, AutoLifter also employs a form of decom-
position, but their focus is on decomposing the specification. Neither AutoLifter not ParSynt
has a mechanism for proving unrealizability, and none of these techniques deal with challenges
that arise in the context of synthesizing merge operators for UDAFs. Other works, like Superfu-
sion (SuFu) [37] and MapReduce synthesis [53], also emphasize optimizing computations. SuFu
eliminates intermediate data structures in functional programs, and MapReduce synthesis [53]
uses higher-order sketches to generate mappers and reducers from input-output examples. Finally,
frameworks like Bellmania [35] and Opera [59] combine inductive and deductive synthesis to
achieve incremental computation. Bellmania targets dynamic programming algorithms through
recursive call generation, while Opera transforms batch programs into streaming versions by
synthesizing auxiliary states. In contrast, our approach focuses on the correct synthesis of merge
operators for homomorphic dataframe aggregations.
Optimizing user-defined functions. There is a large body of work on optimizing user-defined
functions (UDFs). Some methods translate UDFs into SQL operators to leverage traditional relatonal
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databases and their query optimizers [17, 21, 30, 50, 52, 62, 63]. In the context of big data systems,
prior work has used static analysis to optimize UDFs, enabling predicate pushdown [36], efficient
data communication [64], and computation sharing across UDFs [55]. There is also prior work
on optimizing Python-based data science programs by employing predefined rewrite rules [11]
and SQL-like representations [39]. A recent paper uses program synthesis and verification in this
context to support predicate pushdown in data science programs [60]. However, these methods
do not address the automatic synthesis of merge functions for homomorphic UDAFs, which is
necessary for incremental and parallel execution.
Parallel and incremental execution for data analytics. Parallel and incremental execution has
long been critical in data analytics frameworks [8, 13, 29, 33, 34, 41, 42, 46–48, 61]; however, existing
work primarily focuses on optimizing relational operators such as joins and built-in aggregates (e.g.,
max, average). There is one prior work that proposes a DSL, inspired by digital signal processing,
for incremental execution; however, its applicability remains limited to this DSL [14]. To the best of
our knowledge, no prior technique applies to UDAFs that involve complex logic or data structures.
Dataframe model. The dataframe model originated in the S Language [16] and gained popularity
through R [5], later becoming central to Pandas [4], a widely used Python library for data analysis.
It is now integral to systems like Apache Spark [7] and Snowflake [6]. Unlike the relational model,
dataframes have ordered rows and support complex column types, such as lists or arrays. Since
user-defined aggregation functions (UDAFs) in many systems process rows sequentially and handle
complex types, our homomorphism calculus adopts dataframes as its underlying model.

9 Conclusion
We presented a calculus for reasoning about the homomorphism property of user-defined aggre-
gation functions. The key idea of our calculus is to re-formulate the homomorphism property in
terms of a generalized commutativity condition between the merge operator and the accumulator
function of the aggregation. Based on this formulation, our proposed method decomposes the
original problem into independent sub-problems in a type-directed fashion and uses deductive
synthesis to combine the results. Our experimental evaluation on 50 real-world UDAFs shows
that our proposed algorithm can solve 96% of these benchmarks, substantially outperforming
state-of-the-art synthesizers as well as its own ablations.

10 Data-Availability Statement
Our artifact, including the benchmark suite and a copy of Ink’s output, can be found on Zenodo [58].
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A Proofs
A.1 Proof of Non-Existence of Normalizer for Example 4.6
Consider the following function 𝑓 : N × N→ N which is a right action of N on N:

𝑓 (𝑦, 𝑧) =
{

0 if 𝑦 = 𝑧

𝑧 otherwise

We prove that a normalizer of 𝑓 cannot exist. For contradiction, suppose a normalizer ℎ of 𝑓 existed.
Then, it would need to satisfy the following axiom for all 𝑥,𝑦, 𝑧:

ℎ(𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (ℎ(𝑥,𝑦), 𝑧)

Since this equality needs to hold for all 𝑥,𝑦, 𝑧, consider the scenario where 𝑦 ≠ 𝑧. Then, we get
ℎ(𝑥, 𝑧) = 𝑓 (ℎ(𝑥,𝑦), 𝑧). Using the definition of 𝑓 , we obtain:

ℎ(𝑥, 𝑧) =
{

0 if ℎ(𝑥,𝑦) = 𝑧

𝑧 if ℎ(𝑥,𝑦) ≠ 𝑧

However, this violates the definition of a function. To see why, let 𝑥 = 𝑎,𝑦 = 𝑏, ℎ(𝑎, 𝑏) = 𝑐 . We get:

ℎ(𝑎, 𝑧) =
{

0 if 𝑐 = 𝑧

𝑧 if 𝑐 ≠ 𝑧

Clearly, this implies ℎ(𝑎, 𝑐) = 0. We consider two cases:
• 𝑐 = 0. Now, consider the term ℎ(𝑎, ℎ(𝑎, 𝑑)) for any 𝑑 ≠ 0. From the second part of the

definition, we get ℎ(𝑎, 𝑑) = 𝑑 (since 𝑐 = 0 and 𝑑 ≠ 0); hence, ℎ(𝑎, ℎ(𝑎, 𝑑)) = ℎ(𝑎, 𝑑) = 𝑑

(since 𝑑 ≠ 0, 𝑐 = 0). But now since ℎ(𝑎, 𝑑) = 𝑑 , the first part of the definition applies to
ℎ(𝑎, ℎ(𝑎, 𝑑)), so we get ℎ(𝑎, ℎ(𝑎, 𝑑)) = 0. Since we derived both ℎ(𝑎, ℎ(𝑎, 𝑑)) ≠ 0 (since 𝑑 ≠ 0)
and ℎ(𝑎, ℎ(𝑎, 𝑑)) = 0, we get a contradiction.
• 𝑐 ≠ 0. From earlier, we have ℎ(𝑎, 𝑐) = 0; thus, 𝑐 ≠ ℎ(𝑎, 𝑐). Consider the term ℎ(𝑎, ℎ(𝑎, 𝑐)).

Since ℎ(𝑎, 𝑐) = 0, from the second part of the definition, we get ℎ(𝑎, 𝑐) = 𝑐 , so ℎ(𝑎, ℎ(𝑎, 𝑐)) =
ℎ(𝑎, 𝑐) = 0. But since ℎ(𝑎, 𝑐) = 0, ℎ(𝑎, 𝑐) = 𝑐 , and yet 𝑐 ≠ 0, this contradicts our assumption
that ℎ is a function.

A.2 Proof of Theorem 4.8
Theorem A.1. Let P = 𝜆𝑥 . aggregate(𝑓 ,I, 𝑥) be a program where 𝑓 : 𝜏𝑟 ×𝜏 → 𝜏𝑟 is a right action

of 𝜏 on 𝜏𝑟 , and let ℎ be a normalizer of 𝑓 satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 . Then, P is a homomorphism.

Let P = 𝜆𝑥. aggregate(𝑓 ,I, 𝑥) be an arbitrary program where 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 . Suppose that ℎ is
a normalizer of of 𝑓 satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 . We show that P is a dataframe homomorphism
with merge operator ℎ.

Let 𝑋 and 𝑌 be arbitrary dataframes. We induct on the number of rows𝑚 of the dataframe 𝑌 .
Base Case:𝑚 = 0. By definition, we have

aggregate(𝑓 ,I, 𝑋 ⊞ 𝑌 ) = aggregate(𝑓 ,I, 𝑋 ⊞ [])
= aggregate(𝑓 ,I, 𝑋 )
= ℎ(aggregate(𝑓 ,I, 𝑋 ),I) [Since ℎ(𝑠,I) = 𝑠]
= ℎ(aggregate(𝑓 ,I, 𝑋 ), aggregate(𝑓 ,I, [])) [By definition of aggregate]

Inductive Step. Let R𝑌 = [𝑦1, ..., 𝑦𝑚] be the rows of 𝑌 . Assume that for 𝑋,𝑌 ,
aggregate(𝑓 ,I, 𝑋 ⊞ 𝑌 ) = ℎ(aggregate(𝑓 ,I, 𝑋 ), aggregate(𝑓 ,I, 𝑌 ))
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Consider 𝑌 ′ = 𝑌 ⊞ [𝑦𝑚+1] = [𝑦1, ..., 𝑦𝑚, 𝑦𝑚+1], where 𝑦𝑚+1 is an arbitrary row. Then

aggregate(𝑓 ,I, 𝑋 ⊞ 𝑌 ′) = aggregate(𝑓 ,I, 𝑋 ⊞ [𝑦1, ..., 𝑦𝑚, 𝑦𝑚+1])
= aggregate(𝑓 ,I, 𝑋 ⊞ 𝑌 ⊞ [𝑦𝑚+1]) [By definition of ⊞]
= 𝑓 (aggregate(𝑓 ,I, 𝑋 ⊞ 𝑌 ), 𝑦𝑚+1) [By definition of aggregate]
= 𝑓 (ℎ(aggregate(𝑓 ,I, 𝑋 ), aggregate(𝑓 ,I, 𝑌 )), 𝑦𝑚+1) [By IH]
= ℎ(aggregate(𝑓 ,I, 𝑋 ), 𝑓 (aggregate(𝑓 ,I, 𝑌 ), 𝑦𝑚+1)) [By commutativity]
= ℎ(aggregate(𝑓 ,I, 𝑋 ), aggregate(𝑓 ,I, 𝑌 ′)) [By definition of aggregate]

A.3 Proof of Theorem 4.9
Suppose that P = 𝜆𝑥.aggregate(𝑓 ,I, 𝑥) is a surjective dataframe homomorphism, and 𝑓 : 𝜏𝑟 ×𝜏 →
𝜏𝑟 is a user-defined function. Since P is a dataframe homomorphism, there exists a merge operator
⊕ by Definition 3.3. Let ℎ(𝑥,𝑦) = 𝑥 ⊕ 𝑦 be the desired normalizer.
ℎ is a normalizer of 𝑓 . Suppose 𝑎, 𝑏 ∈ 𝜏𝑟 and 𝑐 ∈ 𝜏 . Since P is a surjective, there exists dataframe
𝑋 (resp. 𝑌 ) such that P(𝑋 ) = 𝑎 (resp. P(𝑌 ) = 𝑏). Note that

𝑓 (ℎ(P(𝑋 ),P(𝑌 )), 𝑐) = 𝑓 (P(𝑋 ⊞ 𝑌 ), 𝑐) = P(𝑋 ⊞ 𝑌 ⊞ [𝑐])
ℎ(P(𝑋 ), 𝑓 (P(𝑌 ), 𝑐)) = ℎ(P(𝑋 ),P(𝑌 ⊞ [𝑐])) = P(𝑋 ⊞ 𝑌 ⊞ [𝑐]),

which implies ∀𝑎, 𝑏, 𝑐.𝑓 (ℎ(𝑎, 𝑏), 𝑐) = ℎ(𝑎, 𝑓 (𝑏, 𝑐)).

A.4 Proof of Theorem 4.10
Let P = 𝜆𝑥.aggregate(𝑓 ,I, 𝑥) be an arbitrary surjective dataframe homomorphism where 𝑓 :
𝜏𝑟 × 𝜏 → 𝜏𝑟 is a user-defined function.
Existence of normalizer ℎ of 𝑓 satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 . Since P is a dataframe homo-
morphism, there exists a merge operator ⊕ by Definition 3.3. Let ℎ(𝑥,𝑦) = 𝑥 ⊕ 𝑦 be the desired
normalizer.

Suppose 𝑠 ∈ 𝜏𝑟 . Since P is surjective, there exists 𝑋 such that P(𝑋 ) = 𝑠 . Then,

ℎ(𝑠,I) = ℎ(P(𝑋 ),P([])) = P(𝑋 ⊞ []) = P(𝑋 ) = 𝑠 .

ℎ satisfying∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 is unique. Assume by contradiction that there are two semantically
different normalizers of 𝑓 , ℎ1 and ℎ2, such that ∀𝑠 ∈ 𝜏𝑟 .ℎ1 (𝑠,I) = 𝑠 ∧ℎ2 (𝑠,I) = 𝑠 . Then, there exists
𝑎, 𝑏 ∈ 𝜏𝑟 such that ℎ1 (𝑎, 𝑏) ≠ ℎ2 (𝑎, 𝑏). Note that there exists dataframe 𝑋 and 𝑌 such that 𝑎 = P(𝑋 )
and 𝑏 = P(𝑌 ) because of the surjectivity condition 𝜏𝑟 = range(P).

By Theorem 4.8, P is a data frame homomorphism and both ℎ1 and ℎ2 are valid merge operator
of P. However, we have

ℎ1 (𝑎, 𝑏) = ℎ1 (P(𝑋 ),P(𝑌 )) = P(𝑋 ⊞ 𝑌 ) = ℎ2 (P(𝑋 ),P(𝑌 )) = ℎ2 (𝑎, 𝑏),

which is a contradiction.

A.5 Proof of Theorem 4.11
Lemma A.2. Let Φ be a data transformation expression with free variable 𝑥 . Then, Φ[(𝑥1 ⊞𝑥2)/𝑥] =

Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥] if and only if Φ[(𝑥1 ⊞ 𝑥2)/𝑥] ↩→ Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥]

Proof. We first prove the forward direction of the lemma above by structural induction over
the syntax of Φ. Assume that Φ[(𝑥1 ⊞ 𝑥2)/𝑥] = Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥].
Base case: Φ = 𝑥 . Trivially, applying rules Var and ⊞ gives Φ[(𝑥1 ⊞ 𝑥2)/𝑥] ↩→ Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥].
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Inductive step: Φ = 𝛼 (𝑓 ,Φ′). Given our induction hypothesis that Φ′ [(𝑥1 ⊞ 𝑥2)/𝑥] ↩→ Φ′ [𝑥1/𝑥] ⊞
Φ′ [𝑥2/𝑥], applying Rel yields

𝛼 (𝑓 ,Φ′ [(𝑥1 ⊞ 𝑥2)/𝑥]) ↩→ 𝛼 (𝑓 ,Φ′ [𝑥1/𝑥]) ⊞ 𝛼 (𝑓 ,Φ′ [𝑥2/𝑥]).
Then, we prove the backward direction by proving a stronger variant: we argue that Φ[(𝑥1 ⊞

𝑥2)/𝑥] = Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥] holds without assumption. We give a proof by structural induction
over the syntax of Φ.
Base case: Φ = 𝑥 . Then Φ[(𝑥1 ⊞ 𝑥2)/𝑥] = 𝑥1 ⊞ 𝑥2 = Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥].
Inductive step: Φ = 𝛼 (𝑓 ,Φ′). By IH and the definition of project and select,
Φ[(𝑥1 ⊞ 𝑥2)/𝑥] = 𝛼 (𝑓 ,Φ′ [(𝑥1 ⊞ 𝑥2)/𝑥]) = 𝛼 (𝑓 ,Φ′ [𝑥1/𝑥]) ⊞ 𝛼 (𝑓 ,Φ′ [𝑥2/𝑥]) = Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥] .

□

We now give the proof of Theorem 4.11.
Forward direction. Assume P = 𝜆𝑥. aggregate(𝑓 ,I,Φ) ↩→ ℎ is a dataframe homomorphism
producing a value of type 𝜏𝑟 with merge operator ℎ. By Theorem 4.9, ℎ is a normalizer, i.e.,
Norm(𝜏𝑟 , 𝑓 ,I) = ℎ. By Lemma A.2, Φ[(𝑥1 ⊞ 𝑥2)/𝑥] ↩→ Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥]. Finally, we apply
the Agg and Top rule to obtain P ↩→ ℎ.
Backward direction. Assume P = 𝜆𝑥. aggregate(𝑓 ,I,Φ) ↩→ ℎ for some function ℎ. Let 𝑥1 and 𝑥2
be arbitrary dataframes. By Lemma A.2, Φ[(𝑥1 ⊞ 𝑥2)/𝑥] = Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥]. Hence,

P(𝑥1 ⊞ 𝑥2) = aggregate(𝑓 ,I,Φ[(𝑥1 ⊞ 𝑥2)/𝑥])
= aggregate(𝑓 ,I,Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥]).

Also, note that ℎ is the merge operator of the program P′ = 𝜆𝑥. aggregate(𝑓 ,I, 𝑥) by Theorem 4.8,
and we can derive:

P(𝑥1 ⊞ 𝑥2) = aggregate(𝑓 ,I,Φ[(𝑥1 ⊞ 𝑥2)/𝑥])
= aggregate(𝑓 ,I,Φ[𝑥1/𝑥] ⊞ Φ[𝑥2/𝑥])
= ℎ(aggregate(𝑓 ,I,Φ[𝑥1/𝑥]), aggregate(𝑓 ,I,Φ[𝑥2/𝑥]))
= ℎ(P(𝑥1),P(𝑥2)) .

Thus, P is a dataframe homomorphism with merge operator ℎ.

A.6 Proof of Theorem 4.13

Proof of property (1). Assume there is a UDAF 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 and initializer I with a suitable
normalizer ℎ, i.e., satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 , that violates property (1). Let (𝑠, 𝑥) such that
𝑓 (I, 𝑥) = I and 𝑓 (𝑠, 𝑥) ≠ 𝑠 . We have

𝑓 (𝑠, 𝑥) = 𝑓 (ℎ(𝑠,I), 𝑥) = ℎ(𝑠, 𝑓 (I, 𝑥)) = ℎ(𝑠,I) = 𝑠,

which is a contradiction.
Proof of property (2). Assume there is a UDAF 𝑓 : 𝜏𝑟 × 𝜏 → 𝜏𝑟 and initializer I with a suitable
normalizer ℎ, i.e., satisfying ∀𝑠 ∈ 𝜏𝑟 .ℎ(𝑠,I) = 𝑠 , that violates property (2). Let (𝑠, 𝑥) such that
𝑓 (I, 𝑥) = 𝑓 (I, 𝑥 ′) but 𝑓 (𝑠, 𝑥) ≠ 𝑓 (𝑠, 𝑥 ′). We have

𝑓 (𝑠, 𝑥) = 𝑓 (ℎ(𝑠,I), 𝑥) = ℎ(𝑠, 𝑓 (I, 𝑥))
= ℎ(𝑠, 𝑓 (I, 𝑥 ′)) = 𝑓 (ℎ(𝑠,I), 𝑥 ′)
= 𝑓 (𝑠, 𝑥 ′),
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which is a contradiction.

A.7 Proof of Theorem 4.15
A.7.1 Forward direction: Completeness. Let 𝑓 : 𝜏𝑟 → 𝜏 → 𝜏𝑟 be an arbitrary UDAF. We show that
if ℎ is a normalizer of 𝑓 , then we have (𝑓 ,I) ∼ ℎ. Since ℎ is a normalizer, it satisfies Φ1 and Φ2 used
in the Norm-Synth rule. Thus, we resort to the completeness of SyGuS solver used in Solve.

A.7.2 Backward direction: Soundness. We give a proof by structural induction on the rules in
Figure 10. Let 𝑓 : 𝜏𝑟 → 𝜏 → 𝜏𝑟 be an arbitrary UDAF. We show that if (𝑓 ,I) ∼ ℎ, then ℎ is a
normalizer of 𝑓 satisfying ∀𝑠 . ℎ(𝑠,I) = 𝑠 .
Base case: Norm-Synth. Since Φ1 ∧ Φ2 precisely encodes the commutativity constraint of normal-
izers and ∀𝑠 . ℎ(𝑠,I) = 𝑠 , the condition mentioned in the theorem, we resort to the soundness of
SyGuS solver used in Solve.
Inductive step: Norm-Tuple. Assume that for every 𝑖 , we have (𝑓𝑖 , 𝜎𝑖 (I)) ∼ ℎ𝑖 and ℎ𝑖 is a
normalizer of 𝑓𝑖 satisfying ∀𝑠 . ℎ𝑖 (𝑠, 𝜎𝑖 (I)) = 𝑠 . Let 𝑠, 𝑎, 𝑏 ∈ 𝜏𝑟 and 𝑥 ∈ 𝜏 . Then, we have

ℎ(𝑠,I) = (ℎ1 (𝜎1 (𝑠), 𝜎1 (I)), . . . , ℎ𝑛 (𝜎𝑛 (𝑠), 𝜎𝑛 (I)))
= (𝜎1 (𝑠), . . . , 𝜎𝑛 (𝑠)) = 𝑠,

and

ℎ(𝑎, 𝑓 (𝑏, 𝑥)) = ℎ(𝑎, (𝑓1 (𝜎1 (𝑏), 𝑥), . . . , 𝑓𝑛 (𝜎𝑛 (𝑏), 𝑥)))
= (ℎ1 (𝜎1 (𝑎), 𝑓1 (𝜎1 (𝑏), 𝑥)), . . . , ℎ𝑛 (𝜎𝑛 (𝑎), 𝑓𝑛 (𝜎𝑛 (𝑏), 𝑥)))
= (𝑓1 (ℎ1 (𝜎1 (𝑎), 𝜎1 (𝑏)), 𝑥), . . . , 𝑓𝑛 (ℎ𝑛 (𝜎𝑛 (𝑎), 𝜎𝑛 (𝑏)), 𝑥))
= 𝑓 ((ℎ1 (𝜎1 (𝑎), 𝜎1 (𝑏)), . . . , ℎ𝑛 (𝜎𝑛 (𝑎), 𝜎𝑛 (𝑏))), 𝑥)
= 𝑓 (ℎ(𝑎, 𝑏), 𝑥).

Inductive step: Norm-Coll. Assume that (𝑓 ′,Δ(𝜏)) ∼ ℎ and ℎ is a normalizer of 𝑓 ′ satisfying
∀𝑠 . ℎ𝑖 (𝑠,Δ(𝜏)) = 𝑠 . Let 𝑠, 𝑎, 𝑏 ∈ 𝜏𝑐 ⟨𝜏⟩ and 𝑥 ∈ 𝜏 . Let I = Δ(𝜏𝑐 ⟨𝜏⟩). Then, we have

ℎ(𝑠,I) = 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, ℎ(𝑣, 𝑣𝑖 )) | 𝑘, 𝑣, 𝑣𝑖 ∈ 𭟋Map (𝑠) ⊠ 𭟋Map (I)})
= 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, ℎ(𝑣,Δ(𝜏))) | 𝑘, 𝑣, 𝑣𝑖 ∈ 𭟋Map (𝑠) ⊠ 𭟋Map (I)})
= 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, 𝑣) | 𭟋Map (𝑠) ⊠ 𭟋Map (I)}) = 𝑠,

and

ℎ(𝑎, 𝑓 (𝑏, 𝑥)) = 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, ℎ(𝑣1, 𝑣2)) | 𝑘, 𝑣1, 𝑣2 ∈ 𭟋Map (𝑎) ⊠ 𭟋Map (𝑓 (𝑏, 𝑥))})
= 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, ℎ(𝑣1, 𝑓

′ (𝑣𝑏, 𝑥))) | 𝑝 (𝑣𝑏), 𝑘, 𝑣1, 𝑣𝑏 ∈ 𭟋Map (𝑎) ⊠ 𭟋Map (𝑏)})
= 𭟋𝜏𝑐 ⟨𝜏 ⟩ ({(𝑘, 𝑓 ′ (ℎ(𝑣1, 𝑣𝑏), 𝑥)) | 𝑝 (𝑣𝑏), 𝑘, 𝑣1, 𝑣𝑏 ∈ 𭟋Map (𝑎) ⊠ 𭟋Map (𝑏)})
= 𝑓 (ℎ(𝑎, 𝑏), 𝑥).

A.8 Proof of Theorem 4.18
Lemma A.3. Suppose (𝑥 : 𝜏, 𝑑,Ω) ↠ Ω′. If Ω ↬ 𝐸 and Ω′ ↬ 𝐸′, then 𝐸′ and 𝜆𝑥 . 𝐸 [𝑑 (𝑥)/𝑥] is

semantically equivalent.

Proof. We proceed the proof by structural induction on the rules in Figure 13.
Base case: Expr. Suppose (𝑥 : 𝜏, 𝑑,Ω) ↠ 𝜆(𝑥 : 𝜏). 𝐸 ◦𝑑 . We apply the Abs-Base rule to get
𝜆(𝑥 : 𝜏). 𝐸 ◦𝑑 ↬ 𝜆𝑥. 𝐸 [𝑑 (𝑥)/𝑥].
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Inductive step: Function. Suppose (𝑥 : 𝜏, 𝑑,Λ) ↠ 𝜆(𝑥 : 𝜏). Λ ◦𝑑 . We apply the Abs-Ind rule, and
by IH, we have 𝜆(𝑥 : 𝜏). Λ ◦𝑑 ↬ 𝜆𝑥 . 𝐸 [𝑑 (𝑥)/𝑥], where Λ ↬ 𝐸.
Inductive step: Tuple-Base. Suppose (𝑥 : 𝜏𝑏, 𝑑, LΩ1, . . . ,Ω𝑛M) ↠ LΩ′1, . . . ,Ω

′
𝑛M. Assume that for

every 𝑖 , Ω𝑖 ↬ 𝐸𝑖 and Ω′𝑖 ↬ 𝐸′𝑖 = 𝜆𝑥 . 𝐸𝑖 [𝑑 (𝑥)/𝑥]. We apply the Tuple rule, and by IH, we have
LΩ′1, . . . ,Ω

′
𝑛M ↬ 𝜆𝑥. (𝐸1 [𝑑 (𝑥)/𝑥], . . . , 𝐸𝑛 [𝑑 (𝑥)/𝑥])

= 𝜆𝑥. (𝐸1, . . . , 𝐸𝑛) [𝑑 (𝑥)/𝑥]
= 𝜆𝑥. 𝐸 [𝑑 (𝑥)/𝑥] .

Inductive step: Tuple-Inductive. Suppose (𝑥 : (𝜏1, . . . , 𝜏𝑛)), 𝑑, LΩ1, . . . ,Ω𝑛M) ↠ LΩ′1, . . . ,Ω
′
𝑛M.

Assume that for every 𝑖 , Ω𝑖 ↬ 𝐸𝑖 , Ω̄𝑖 ↬ 𝐸𝑖 , and Ω′𝑖 ↬ 𝐸′𝑖 = 𝜆𝑥 . 𝐸𝑖 [𝜎𝑖 (𝑑 (𝑥))/𝑥]. We apply the
Tuple rule, and by IH, we have

LΩ′1, . . . ,Ω
′
𝑛M ↬ 𝜆𝑥. (𝐸1 [𝜎1 (𝑑 (𝑥))/𝑥], . . . , 𝐸𝑛 [𝜎𝑛 (𝑑 (𝑥))/𝑥])

= 𝜆𝑥. (𝐸1 [𝑑 (𝑥)/𝑥], . . . , 𝐸𝑛 [𝑑 (𝑥)/𝑥])
= 𝜆𝑥. (𝐸1, . . . , 𝐸𝑛) [𝑑 (𝑥)/𝑥]
= 𝜆𝑥. 𝐸 [𝑑 (𝑥)/𝑥] .

Inductive step: C-Base. Suppose (𝑥 : 𝜏𝑏, 𝑑, IterJΩ, 𝜙, 𝑑0K) ↠ IterJΩ′, 𝜙, 𝑑0K. Assume that Ω ↬ 𝐸

and Ω′ ↬ 𝐸′ = 𝜆𝑥. 𝐸 [𝑑 (𝑥)/𝑥]. Let 𝐸 be such that IterJΩ, 𝜙, 𝑑0K ↬ 𝐸. We apply the C2 rule, and by
IH, we have

IterJΩ′, 𝜙, 𝑑0K ↬ 𝜆𝑥 . 𝜆𝑌 . 𝜆𝑥 . map(𝐸′ (𝑦, 𝑥), filter(𝜙,𝑑 (𝑌 )))
= 𝜆𝑥 . 𝜆𝑌 . 𝜆𝑥 . map(𝐸 [𝑑 (𝑥)/𝑥] (𝑦, 𝑥), filter(𝜙,𝑑 (𝑌 )))
= 𝜆𝑥 . 𝜆𝑌 . 𝜆𝑥 . map(𝐸 (𝑦, 𝑥), filter(𝜙,𝑑 (𝑌 ))) [𝑑 (𝑥)/𝑥]
= 𝜆𝑥 . 𝐸 [𝑑 (𝑥)/𝑥] .

Inductive step: C-Ind. Suppose (𝑋 : 𝜏𝑐 ⟨𝜏⟩, 𝑑, Iter𝑥∈𝑋 JΩ, 𝜙K) ↠ IterJΩ′, 𝜆𝑥 . 𝜙, 𝑑K. Assume that
Ω ↬ 𝐸 and Ω′ ↬ 𝐸′ = 𝜆𝑥 . 𝐸 [𝑑 (𝑥)/𝑥].

Let 𝐸 be such that Iter𝑥∈𝑋 JΩ, 𝜙K ↬ 𝐸. Note that
𝐸 = 𝜆𝑥 . map(𝐸 (𝑥), filter(𝜆𝑥 . 𝜙, 𝑋 )).

We apply the C2 rule, and by IH, we have
IterJΩ′, 𝜆𝑥 . 𝜙, 𝑑K ↬ 𝜆𝑌 . 𝜆𝑥 . map(𝐸′ (𝑦, 𝑥), filter(𝜆𝑥 . 𝜙, 𝑑 (𝑌 )))

= 𝜆𝑌 . 𝜆𝑥 . map(𝐸 [𝑑 (𝑥)/𝑥] (𝑥), filter(𝜆𝑥. 𝜙, 𝑑 (𝑌 )))
= 𝜆𝑌 . 𝜆𝑥 . map(𝐸 (𝑥), filter(𝜆𝑥. 𝜙, 𝑋 )) [𝑑 (𝑌 )/𝑋 ]
= 𝜆𝑌 . 𝐸 [𝑑 (𝑌 )/𝑋 ] .

□

We now prove Theorem 4.18 using structural induction on the rules in Figure 12. Let 𝐸 be an
arbitrary expression.
Base case: BaseType. Assume 𝐸 : 𝜏𝑏 . We have 𝐸 ⇝ 𝐸, and applying Expr gives 𝐸 ↬ 𝐸. It is
straightforward that 𝐸 = 𝐸.
Base case: Lam-Base. Assume 𝐸 is a built-in function 𝑓 . Similarly, we have 𝑓 ⇝ 𝑓 , and we apply
Expr to get 𝑓 ↬ 𝑓 .
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Inductive step: Tuple. Suppose 𝐸 : 𝜏𝑝 = (𝐸1, . . . , 𝐸𝑛) ⇝ LΩ1, . . . ,Ω𝑛M. Assume that for every 𝑖 ,
we have 𝐸𝑖 ⇝ Ω𝑖 and Ω𝑖 ↬ 𝐸′𝑖 where 𝐸𝑖 and 𝐸′𝑖 are semantically equivalent. We apply the Tuple
rule and get LΩ1, . . . ,Ω𝑛M ↬ (𝐸1, . . . , 𝐸𝑛) = 𝐸.
Inductive step: Collection.Assume 𝐸 = 𝑋 , a collection-typed identifier. Then 𝐸 ⇝ Iter𝑥∈𝑋 J𝑥,⊤K.
Applying C1 yields Iter𝑥∈𝑋 J𝑥,⊤K ↬ map(Id, filter(⊤, 𝑋 )) = 𝑋 .

Inductive step: Lam-Ind. Suppose 𝐸 = 𝜆𝑥 : 𝜏 . 𝑒 ⇝ Ω′ and the premise in Lam-Ind holds. Assume
that IH holds, namely Ω ↬ 𝑒′ where 𝑒 and 𝑒′ are semantically equivalent. By Lemma A.3, Ω′ ↬ 𝐸′

is semantically equivalent to 𝜆𝑥. 𝑒′ [Id(𝑥)/𝑥] = 𝜆𝑥. 𝑒′ = 𝜆𝑥. 𝑒 .
Inductive step: Map. Suppose 𝐸 = map(𝑓 , 𝑒) ⇝ Iter𝑥∈𝑋 JΩ′, 𝜙K and the premise in Map holds. By
IH, we apply C1 and get

Iter𝑥∈𝑋 JΩ′, 𝜙K ↬ map(𝜆𝑥 . 𝑓 (𝑒𝑣), filter(𝜆𝑥 . 𝜙, 𝑋 ))
= map(𝑓 ,map(𝜆𝑥 . 𝑒𝑣, filter(𝜆𝑥. 𝜙, 𝑋 )))
= map(𝑓 , 𝐸).

Inductive step: Filter. Suppose 𝐸 = map(𝑓 , 𝑒) ⇝ Iter𝑥∈𝑋 JΩ, 𝜙 ∧ 𝑝 (𝑒𝑣)K and the premise in Filter
holds. By IH, we apply C1 and get

Iter𝑥∈𝑋 JΩ, 𝜙 ∧ 𝑝 (𝑒𝑣)K ↬ map(𝜆𝑥. 𝑒𝑣, filter(𝜆𝑥 . 𝜙 ∧ 𝑝 (𝑒𝑣), 𝑋 ))
= filter(𝑝,map(𝜆𝑥 . 𝑒𝑣, filter(𝜆𝑥 . 𝜙, 𝑋 )))
= filter(𝑝, 𝑒).

A.9 Proof of Theorem 4.20
Let ℎ be the return value of IsHomomorphism(P) where P is a surjective function from DF⟨𝜏⟩ to
set 𝜏𝑟 . First, we show that if ℎ = ⊥, then P is not a dataframe homomorphism. Lines 2 and 3 are the
only places where IsHomomorphism returns ⊥. We discuss both cases below.

(1) Line 2 returns ⊥: by Theorem 4.11, P is not a homomorphism.
(2) Line 3 returns ⊥: by Theorem 4.13, P is not a homomorphism.
Next, we show that if ℎ ≠ ⊥, then P is a dataframe homomorphism with merge operator ℎ.

Similarly, Lines 5, 13 and 14 are the places where IsHomomorphism returns ℎ ≠ ⊥. We discuss
these cases below.

(1) Lines 5 and 13 return ℎ: by Theorem 4.15, ℎ is the merge operator of P and P is a dataframe
homomorphism.

(2) Line 14 returns ℎ: by Theorem 4.18, the decomposed expression Ω on line 6 is semantically
equivalent to 𝑓 . Then, by Theorem 4.15, ℎ is the merge operator of P and P is a dataframe
homomorphism.

B SyGuS Encoding for Leaf-Level Synthesis
This section provides a detailed description of our approach to encoding the leaf-level synthesis
problems for the SyGuS solver, CVC5. These problems are generated by theNorm-Synth rule in
Figure 10.

B.1 The Synthesis Task
For each leaf-level synthesis problem, the goal is to synthesize a normalizer function, ℎ, that takes
two accumulator states as input and returns a new, merged state. The specification for ℎ is derived
directly from the theoretical requirements of a normalizer, encoded as two primary constraints
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for the solver: Φ1, the initializer side condition, and Φ2, the commutativity condition specified in
Definition 4.2.

B.2 Grammar for Primitive Types
The foundation of the SyGuS grammar consists of productions for primitive types like integers,
booleans, and strings.
Terminals. The grammar’s terminals include the input variables for the normalizer function
(representing the two accumulator states), common constants such as 0, 1, true, false, and any
other constants extracted from the UDAF’s body. To aid in reasoning about aggregations involving
min or max, we also include symbolic constants that represent boundary values, such as the minimum
and maximum possible values for a given numeric type.
Operations. The grammar includes standard unary and binary operations for primitive types.

(1) For integers, this includes arithmetic operators (+, -, *, /) and comparisons (<, >, ==).
(2) For booleans, it includes logical operators (and, or, not).
(3) For strings, the grammar incorporates primitive operators from CVC5’s theory of strings,

such as str.++ (concatenation) and str.len.

The grammar is also supplied with the ITE operator to allow for the synthesis of conditional
expressions.

B.3 Grammar for Collection Types
A key aspect of our encoding is the handling of complex data structures. Our strategy was deter-
mined empirically: we found that mapping our DSL’s collections to the native types in CVC5’s
extended theories consistently outperformed alternative encodings, such as using a general theory
of Abstract Data Types.
Lists, Sets, and Tuples. Following our empirical findings, we encode lists as CVC5 sequences, and
sets and tuples using their corresponding native solver types. This approach allows us to leverage
CVC5’s powerful, built-in theories for these structures. The grammar is populated with the solver’s
native operations, such as seq.concat and seq.len for lists, set.union and set.insert for sets,
and tuple.select for tuples.
Maps. In contrast, map primitives are not natively supported by the solver. To handle them, we
model maps as a set of key-value pairs (e.g., (Set (Tuple Key Value))). We then provide a
custom library of primitive map operations, implemented as recursive functions in the SyGuS
format. This library includes essential functions like map.access, map.update, map.contains_key,
and map.map_values. This approach allows us to reason about maps while staying within the
well-supported theory of sets.
Combined Operations. The grammar also supports more complex, compositional patterns. For
example, it provides the ability to zip two lists into a list of pairs, which can then be transformed
using a map operation, a common pattern in UDAF merge logic.

B.4 Grammar Ordering and Solver Heuristics
The sensitivity to the order of non-terminals arises because of incomplete heuristics used by the
underlying SyGuS solver (CVC5). Different orderings of grammar non-terminals can affect the
solver’s internal search paths, even though they don’t alter the problem’s semantics or solution
space.
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In our implementation, we chose a simple alphabetical ordering for grammar non-terminals
rather than tuning it for specific benchmarks. Our primary goal was to emphasize a principled
decomposition strategy, making leaf-level synthesis tasks simpler and more robust, rather than
relying on solver-specific heuristics. Optimizing grammar ordering on a per-benchmark basis would
have introduced undesirable complexity and potentially reduced the generality of our solution.
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