The CLOSER: Automating Resource Management in Java

The CLOSER: Automating Resource

Management in Java

Isil Dillig Thomas Dillig Eran Yahav Satish Chandra
Computer Science Department IBM T.J. Watson Research Center
Stanford University

ISMM 2008

The CLOSER: Automating Resource Management in Java

Motivation

m Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

The CLOSER: Automating Resource Management in Java

Motivation

m Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

m Unfortunately, memory is not the only resource.

The CLOSER: Automating Resource Management in Java

Motivation

m Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

m Unfortunately, memory is not the only resource.

m Operating system resources: Files, sockets, ...

The CLOSER: Automating Resource Management in Java

Motivation

Operating System Resources

public void transferData()

{

Socket s = new Socket();
s.connect(...);

s.close();

The CLOSER: Automating Resource Management in Java

Motivation

Operating System Resources

public void transferData()

{

Socket s = new Socket();
s.connect(...);

s.close();

The CLOSER: Automating Resource Management in Java

Motivation

m Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

m Unfortunately, memory is not the only resource.

m Operating system resources: Files, sockets, ...
m Window system resources: Fonts, colors, ...

The CLOSER: Automating Resource Management in Java

Motivation

Window System Resources

public void draw()

{

Font £ = new Font();

f.dispose();

The CLOSER: Automating Resource Management in Java

Motivation

Window System Resources

public void draw()

{

Font £ = new Font();

f.dispose();

The CLOSER: Automating Resource Management in Java

Motivation

m Automatic garbage collection in Java has relieved programmers
from the burden of manual memory management.

m Unfortunately, memory is not the only resource.

m Operating system resources: Files, sockets, ...

m Window system resources: Fonts, colors, ...

m Application specific resources: Listeners, model view control
pattern, ...

The CLOSER: Automating Resource Management in Java

Motivation

Application Specific Resources

public class SomeView {
private Somelistener 1;
private WorkbenchWindow w;

public void createPartControl(Composite parent) {
1 = new Listener(this);
w.addPerspectivelistener (1) ;

public void dispose(){
w.removePerspectiveListener (1) ;

The CLOSER: Automating Resource Management in Java

Motivation

Application Specific Resources

public class SomeView {
private Somelistener 1;
private WorkbenchWindow w;

public void createPartControl(Composite parent) {
1 = new Listener(this);
w.addPerspectiveListener (1) ;

public void dispose(){
w.removePerspectiveListener (1) ;

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource 7 is an instance of any type whose specification has the following
requirement:

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource 7 is an instance of any type whose specification has the following
requirement:

m If a method m is called with 7 as the receiver or parameter

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource 7 is an instance of any type whose specification has the following
requirement:

m If a method m is called with 7 as the receiver or parameter

m Then a matching method m’ must be called after the last use of r.

The CLOSER: Automating Resource Management in Java

Generalized Definition of Resource

Definition of a Resource

A resource 7 is an instance of any type whose specification has the following
requirement:

m If a method m is called with 7 as the receiver or parameter

m Then a matching method m’ must be called after the last use of r.

We call m the obligating method and m’ the fulfilling method.

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

P = o
| ‘€2 Bug List - Windows Internet Explorer = [m
(€] ~ @~ ugs. eclipse.org/bug Ist.caiPbug_fie_loc=b 5 | P
[8ug ust o - J - W - [rPagew Tools »

[Viewers] LabelProvider disposed twice
[Actions] StepIntoSelectionActionDelegate "leaks” editor .
Leak Tests failing in N20070106-0010

[Presentations] Image not disposed in Rectangle Animation.

[Presentations] Leakage: system memu not disposed for Tab..
[ViewMgmt] Saveable parts are leaked on perspective close.
[Viewers] Widget Disposed Exception when importing breakp.
[Contexts] ContextAuthority$1.widgetDisposed(..) does not.,
[Contributions] Leakage: PluginActionContributionltem not...
Progress view leaks X resources on Linux Ubunta

Memory Leak in ActionSetManager

ShowViewMenu leaks 4 images for each show
[Contributions] NPE in PopupMenuExtender.dispose

New Presentation leaks colors
328 bugs found v

&P Internet Hi00% -

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

m Finalization

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

m Finalization

m In current JVM implementations, program might run out of
non-memory resources before finalizers are called

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

m Finalization

m In current JVM implementations, program might run out of
non-memory resources before finalizers are called
m Asynchronous with respect to last use point

The CLOSER: Automating Resource Management in Java

Existing Approaches and Their Drawbacks

m Manual Resource Management

m Same drawbacks as manual memory management: leaks,
double disposes, ...

m Finalization

m In current JVM implementations, program might run out of
non-memory resources before finalizers are called

m Asynchronous with respect to last use point

m And therefore almost never used in practice

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

m Dispose resource after its last use (read or write).

The CLOSER: Automating Resource Management in Java

Is This Really "ldeal Resource Management”?

Observer @

Observed

The CLOSER: Automating Resource Management in Java

Is This Really "ldeal Resource Management”?

Observed

The CLOSER: Automating Resource Management in Java

Is This Really "ldeal Resource Management”?

listener.notify()

Observed

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

m Dispose resource after its last relevant use.

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

m Dispose resource after its last relevant use.

m Unfortunately, determining last use is impossible to do
dynamically and difficult to approximate statically, especially in
the case of open programs.

The CLOSER: Automating Resource Management in Java

What is Ideal Resource Management?

m Dispose resource after its last relevant use.

m Unfortunately, determining last use is impossible to do
dynamically and difficult to approximate statically, especially in
the case of open programs.

m Solution: Just as last use is approximated by traditional notion of
reachability, we approximate last relevant use by interest
reachability.

The CLOSER: Automating Resource Management in Java

Interest Reachability

m Differentiate between interest and non-interest links.

The CLOSER: Automating Resource Management in Java

Interest Reachability

m Differentiate between interest and non-interest links.

m If A references B through a non-interest link, then the relevant
behavior of A does not depend on the existence of B.

The CLOSER: Automating Resource Management in Java

Interest Reachability

m Differentiate between interest and non-interest links.

m If A references B through a non-interest link, then the relevant
behavior of A does not depend on the existence of B.

m Non-interest links must be annotated by the programmer since
"relevant” behavior defines application semantics.

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

m Advantages:

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

m Advantages:

m Resource drag is much shorter compared to asynchronous
approaches.

The CLOSER: Automating Resource Management in Java

Our Goal

We guarantee that a resource is disposed as soon as it becomes
unreachable through interest links.

m Advantages:
m Resource drag is much shorter compared to asynchronous
approaches.

m Works even if disposing the resource has visible side effect
(e.g, disposal removes button from a window).

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observer

Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

o.removelListener(l)

-

Observed

The CLOSER: Automating Resource Management in Java

Interest Reachability

Observed

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

Recall:

We want to guarantee that a resource is disposed as soon as it
becomes unreachable through interest links.

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

m Whenever possible, statically identify the first program point where
resource becomes unreachable through interest links

The CLOSER: Automating Resource Management in Java

How to Achieve this Goal

To achieve this goal:

m Whenever possible, statically identify the first program point where
resource becomes unreachable through interest links

m When this is not possible, identify the correct dispose point using a
variation of reference counting.

The CLOSER: Automating Resource Management in Java

Problem: Resource Sharing

A Font object is shared between two Window objects and should be
disposed when last window is closed by the user:

window1l window?2

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {
private Listener 1;
@0bligation(obligates = ‘‘removePerspectiveListener’’,

resource=1)
public void addPerspectivelListener(Listener |);

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {
private Listener 1;
@0bligation(obligates = ¢ ‘removePerspectivelListener’’,

resource=1)
public void addPerspectivelListener(Listener |);

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {
private Listener 1;
@0bligation(obligates = ¢ ‘removePerspectivelListener’’,

resource=1)
public void addPerspectivelListener(Listener |);

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources
m the set of non-interest-links

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

class WorkbenchWindow {

ONonInterest
private Listener 1;

@0bligation(obligates = °‘removePerspectivelistener’’,
resource=1)
public void addPerspectivelListener(Listener 1);

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources
m the set of non-interest-links

m CLOSER infers:

m the set of higher-level resources

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources
m the set of non-interest-links

m CLOSER infers:

m the set of higher-level resources
m and later automatically synthesizes dispose methods.

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources
m the set of non-interest-links

m CLOSER infers:

m the set of higher-level resources
m and later automatically synthesizes dispose methods.

m CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

The CLOSER: Automating Resource Management in Java

Overview of Our Approach

m The user annotates:

m the set of primitive resources
m the set of non-interest-links

m CLOSER infers:

m the set of higher-level resources
m and later automatically synthesizes dispose methods.

CLOSER statically analyzes resource lifetimes to identify how and
where each resource should be disposed.

m CLOSER automatically inserts any appropriate resource dispose calls
into source code.

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple (V, E, oy, o) where:

m V is a finite set of abstract memory locations

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple (V, E, oy, o) where:
m V is a finite set of abstract memory locations

m F is a set of directed edges between these locations

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple (V, E, oy, o) where:
m V is a finite set of abstract memory locations
m F is a set of directed edges between these locations

® oy is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

The CLOSER: Automating Resource Management in Java

Resource Interest Graph

To effectively reason about resource lifetimes, CLOSER utilizes a novel
flow-sensitive points-to graph, called the resource interest graph (RIG).

Resource Interest Graph

An RIG for a method m at a given point is a tuple (V, E, oy, o) where:
m V is a finite set of abstract memory locations
m F is a set of directed edges between these locations

® oy is a mapping from abstract memory locations to a value in
3-valued logic, identifying whether that location may, must, or
must-not be a resource

m op is a mapping from edges to a boolean value identifying whether
that edge is an interest or non-interest edge

The CLOSER: Automating Resource Management in Java

Example RIG

public class BufferPrinter {

public BufferPrinter(Buffer buf) {
this.buf = buf;
this.listener =
new BufferListener(this);
buf.addListener(listener);
this.socket = new Socket();
socket.connect();

The CLOSER: Automating Resource Management in Java

Example RIG

oe(e) =1 this

£
ublic class BufferPrinter
e { @20 A o =
public BufferPrinter(Buffer buf) {
this.buf = buf; socke uf
this.listener = :
new BufferListener(this); }istener

buf.addListener(listener);

this.socket = new Socket(); B C D

socket.connect();

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:

m there exists a field [y of some instance of 7

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:
m there exists a field [y of some instance of 7

m such that oy (i) J 1

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:
m there exists a field [y of some instance of 7
m such that oy (i) J 1

mog(ly X f — 1) = true

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:
m there exists a field [y of some instance of 7
m such that oy (i) J 1

mog(ly X f — 1) = true

If 7 is inferred to be a higher-level resource,

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:
m there exists a field [y of some instance of 7
m such that oy (i) J 1

mog(ly X f — 1) = true

If 7 is inferred to be a higher-level resource,

m 7’s constructor becomes an obligating method

The CLOSER: Automating Resource Management in Java

Higher-Level Resource

Higher-Level Resource

A class 7 is a higher-level resource if:
m there exists a field [y of some instance of 7
m such that oy (i) J 1

mog(ly X f — 1) = true

If 7 is inferred to be a higher-level resource,
m 7’s constructor becomes an obligating method

m and the dispose method synthesized by CLOSER becomes the
corresponding fulfilling method.

The CLOSER: Automating Resource Management in Java

Higher-Level Resource Example

oe(0) =1 ¢this
Ge(el S0 A |on) =1
socke uf
listener
\J
o,(B) =1 . 7

6(C)=1""""a(D)=0

The CLOSER: Automating Resource Management in Java

Higher-Level Resource Example

oe(0) =1 ¢this
Ge(el S0 A |on) =1
socke uf
listener
\J
o.(B) =1 = -

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:

m Strong static dispose

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:
m Strong static dispose

m Dispose resource directly by calling fulfilling method
m No checks necessary

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:
m Strong static dispose

m Dispose resource directly by calling fulfilling method
m No checks necessary

m Weak (conditional) static dispose

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:
m Strong static dispose

m Dispose resource directly by calling fulfilling method
m No checks necessary

m Weak (conditional) static dispose

m Checks whether the resource’s obligating method was called
before disposing it.

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:
m Strong static dispose

m Dispose resource directly by calling fulfilling method
m No checks necessary

m Weak (conditional) static dispose

m Checks whether the resource’s obligating method was called
before disposing it.

m Dynamic dispose

The CLOSER: Automating Resource Management in Java

Resource Disposal Strategies

CLOSER disposes of a resource in one of three ways:
m Strong static dispose

m Dispose resource directly by calling fulfilling method
m No checks necessary

m Weak (conditional) static dispose
m Checks whether the resource’s obligating method was called

before disposing it.

m Dynamic dispose

e

m Requires keeping a run-time “interest-count”
m Needed whenever CLOSER infers that resource may be shared.

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

m CLOSER infers a solicitor by:

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

m CLOSER infers a solicitor by:

m First computing a set of solicitor candidates from the
resource interest graph for each point in the program

The CLOSER: Automating Resource Management in Java

Solicitors

m CLOSER proves a resource is unshared if it can identify a unique
solicitor for it.

m If o is a solicitor for resource 7, it has the unique responsibility to
dispose .

m CLOSER infers a solicitor by:
m First computing a set of solicitor candidates from the

resource interest graph for each point in the program

m Then by doing data flow analysis to ensure that the inferred
solicitor candidates “agree” at every program point.

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

m CLOSER first computes a set of paths
P={l,fio...0f,,May/Must) that reach r

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

m CLOSER first computes a set of paths
P={l,fio...0f,,May/Must) that reach r

m It then applies a set of unification rules to determine the existence
of a canonical path [.f7...f, that may safely be used to dispose r

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

m CLOSER first computes a set of paths
P={l,fio...0f,,May/Must) that reach r

m It then applies a set of unification rules to determine the existence
of a canonical path [.f7...f, that may safely be used to dispose r

m If such a unique path exists, then [.f;...f, is designated as a
solicitor candidate for r

The CLOSER: Automating Resource Management in Java

Inference of Solicitors

To compute a solicitor candidate for resource r:

m CLOSER first computes a set of paths
P={l,fio...0f,,May/Must) that reach r

m It then applies a set of unification rules to determine the existence
of a canonical path [.f7...f, that may safely be used to dispose r

m If such a unique path exists, then [.f;...f, is designated as a
solicitor candidate for r

m If the inferred solicior candidates for r are consistent, then r is
disposed through the cascading series of dispose calls initiated by
l.dispose(), invoked after the last use point of {

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar
buttol button
image image

pic

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar
> Inferred solicitor for R:
buttol button toolBar.button
image image

pic

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

> Inferred solicitor for R:

Q/

buttol button toolBar.button

> Image disposed via call chain:

image image

pic

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

> Inferred solicitor for R:

Q/

buttol button toolBar.button
> Image disposed via call chain:
toolBar.dispose()
image image

pic

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

> Inferred solicitor for R:

Q/

butto button toolBar.button
> Image disposed via call chain:
toolBar.dispose ()
1
. / button.dispose()
image Image

pic

The CLOSER: Automating Resource Management in Java

Solicitor Example

toolBar

> Inferred solicitor for R:

Q/

butto button toolBar.button
> Image disposed via call chain:
Q toolBar.dispose ()
!
) / button.dispose()
image Image l

pic image.dispose ()

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:
m Builds on IBM WALA framework for analysis of Java byte code

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:

m Builds on IBM WALA framework for analysis of Java byte code
m Source code transformation utilizes Eclipse JDT toolkit

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:

m Builds on IBM WALA framework for analysis of Java byte code
m Source code transformation utilizes Eclipse JDT toolkit

m Dynamic Instrumentation:

m Does not rely on modifying the JVM

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:

m Builds on IBM WALA framework for analysis of Java byte code
m Source code transformation utilizes Eclipse JDT toolkit

m Dynamic Instrumentation:

m Does not rely on modifying the JVM
m A Manager class keeps dynamic interest counts

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:

m Builds on IBM WALA framework for analysis of Java byte code
m Source code transformation utilizes Eclipse JDT toolkit

m Dynamic Instrumentation:

m Does not rely on modifying the JVM
m A Manager class keeps dynamic interest counts
m The modified source code calls static methods of the Manager

The CLOSER: Automating Resource Management in Java

Implementation

m Static Analysis:

m Builds on IBM WALA framework for analysis of Java byte code
m Source code transformation utilizes Eclipse JDT toolkit

m Dynamic Instrumentation:

m Does not rely on modifying the JVM
m A Manager class keeps dynamic interest counts
m The modified source code calls static methods of the Manager

m CLOSER appears transparent to the programmer

m The programmer can inspect and understand the code
instrumented by CLOSER

The CLOSER: Automating Resource Management in Java

Case Study

m We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

The CLOSER: Automating Resource Management in Java

Case Study

m We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

m ~ 7500 lines of code

The CLOSER: Automating Resource Management in Java

Case Study

m We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

m ~ 7500 lines of code

m Uses 67 different resources

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

m ~ 7500 lines of code

m Uses 67 different resources

Reasonably complex resource management logic

The CLOSER: Automating Resource Management in Java

Case Study

We applied CLOSER to automate resource management of an SWT
Showcase Graphics Application

m ~ 7500 lines of code

m Uses 67 different resources

Reasonably complex resource management logic

Manually removed all resource management code

The CLOSER: Automating Resource Management in Java

Case Study, Continued

to Application Size Ratio

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code 4.09% 4.9%

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code o o

to Application Size Ratio 4.2% 4.9%

m User annotates only 5 resources.

m CLOSER infers all the remaining 62 resources.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

to Application Size Ratio

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code 4.09% 4.9%

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code o o

to Application Size Ratio 4.2% 4.9%

m Missing dispose call in the original code was a resource leak.

m Programmer forgot to dispose a Transpose (resource in SWT).

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code o o

to Application Size Ratio 4.2% 4.9%

m More weak dispose calls because CLOSER is path-insensitive.

m Inserts redundant null-checks even though one already exists.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

private void paint() {
if(image == null) {
if(imagel=null){
image.dispose();
}

image = new Image(...);
}
}

The CLOSER: Automating Resource Management in Java

Case Study, Continued

to Application Size Ratio

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code 316 356
Resource Mgmt Code 4.0% 4.9%

m No shared resources in the application.

m CLOSER successfully identified all resources as unshared.

The CLOSER: Automating Resource Management in Java

Case Study, Continued

Original | Instrumented

Resources 67 67

Strong Static Dispose 116 117

Weak Static Dispose 14 63

Dynamic Dispose 0 0

Number of Resource Bugs 1 0

Lines of Resource

Mgmt Code Sl e
Resource Mgmt Code & o

to Application Size Ratio 4.2% 4.9%

m CLOSER doesn't cause code bloat or substantial runtime overhead.

m And it is correct by construction.

The CLOSER: Automating Resource Management in Java

Related Work

@ DELINE, R., AND FAHNDRICH, M.
Enforcing high-level protocols in low-level software.
In PLDI '01: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation (New York, NY, USA, 2001), ACM Press,
pp. 59-69.

@ GUYER, S., McKINLEY, K., AND FRAMPTON, D.
Free-Me: a static analysis for automatic individual object reclamation.
Proceedings of the 2006 ACM SIGPLAN conference on Programming language design
and implementation (2006), 364-375.

@ HEINE, D. L., AND LamMm, M. S.
A practical flow-sensitive and context-sensitive ¢ and c++ memory leak detector.
In PLDI '03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (New York, NY, USA, 2003), ACM, pp. 168-181.

@ BLANCHET, B.
Escape analysis for object oriented languages. application to Javat™.
In OOPSLA (Denver, 1998).

@ Boenwm, H.
Destructors, finalizers, and synchronization.
ACM SIGPLAN Notices 38, 1 (2003), 262-272.

