
Program Synthesis for the Modern Programmer

Jacob Van Geffen

May 1, 2018

Abstract

Program synthesis research has exploded over the past few years due to the
increasing importance of safety and correctness in real-world systems. Synthe-
sis allows programmers to generate code from specifications, such as input-
output examples, natural language, or higher level code. There are two main
selling points for synthesis. First, in many cases, synthesizing code can take
less time than writing the same code. Second, generated code is correct-by-
construction with respect to the specification, so there is no need for additional
verification or tests. In this paper, I’ll present two novel synthesis techniques
that generate programs in two different domains. The first of these techniques
targets data scientists, taking simple input-output examples and generating ta-
ble transformations in R. The second technique targets concurrency program-
mers, automatically placing signal calls for concurrent monitor code. Though
their target domains differ greatly, both of these techniques show the power of
program synthesis to benefit many programmers.

1 Introduction

Programmers face difficulties when writing safe and correct programs in a variety
of domains. One solution to these difficulties is program synthesis. Synthesis tools
aim to generate code from some higher level specification. These specifications are
usually much easier for programmers to supply than the actual code. For example,
the user might give one or more input-output examples of what their desired program
should do. Given this specification, the synthesis tool will generate a program that
is correct by construction, meaning that the synthesis tool only considers candidate
programs that are correct with respect to the specification. This allows programmers
to worry only about the correctness of their higher level specification rather than the
correctness of a more complex piece of code. Of course, synthesis isn’t the solution

1

to every problem. For some domains, providing a high level specification may be just
as difficult as writing the actual code. For others, a synthesis tool may take hours or
days to generate a correct program. As a result, prior to the time of these works, there
have been only a few domains where synthesis has made real improvements. Tools like
Lambda Learner for Haskell programs and Flash Fill for spreadsheet transformations
have demonstrated the power of synthesis for their respective domains, but there are
many more domains left unexplored.

With these insights in mind, we present two contributions in this report. The
first of these contributions is a new synthesis technique for synthesizing data cleaning
programs in R from input-output examples. Unlike standard synthesis techniques,
our technique assumes little about the domain structure. We avoid making these as-
sumptions by allowing our tool to take as input a domain for synthesized programs.
Thus, our technique can be easily adapted to many other domains. The second con-
tribution is a synthesis technique that generates signal calls for monitor code. Here,
the specification is a partially completed program. Although this specification is rela-
tively complex, it allows our synthesis tool to take advantage of complex information
from the programmer while still simplifying the task of monitor programming. To-
gether, these two contributions demonstrate that synthesis techniques can benefit
programmers in a wide variety of domains.

Our first contribution aims to improve the productivity with which R program-
mers organize their data. While writing data cleaning and data wrangling programs
can take hours [7], synthesizing them takes only a few seconds with our technique. In
order to efficiently synthesize these programs, we combine enumerative search with
deduction, shrinking the search space of partial programs. Our technique also takes
advantage of partial evaluation when searching for program completions, reducing
the size of the overall search space. We implemented these ideas in a tool called
Morpheus and evaluated our Morpheus over 80 benchmarks from popular Stack
Overflow questions. Of these 80 benchmarks, Morpheus is able to synthesize code
for 78, taking an average of 3.59 seconds for each benchmark. This evaluation shows
that Morpheus can greatly improve the productivity of R programmers. Section 3
describes these contributions.

Our second contribution aims to help concurrent programmers write safe and
correct code. Due to the correct-by-construction property of synthesized code, syn-
thesized signal placements are guaranteed to be safe and bug-free. In a domain where
bugs like deadlocks and race conditions can crash entire systems [12, 20], these guar-
antees are extremely valuable. The key idea that allows our technique to place signals
correctly is to construct verification conditions corresponding to each possible signal
placement. By proving these verification conditions, our technique can deduce where

2

to correctly place signals. In order to demonstrate the effectiveness of these ideas, we
implemented this novel technique in a tool called Expresso and evaluated Expresso
over a variety of real-world benchmarks. We found that Expresso can correctly place
signals for all of these benchmarks, and that the performance of code synthesized
by Expresso closely matches that of hand-written code. These results demonstrate
that Expresso can help programmers write a large class of monitor programs without
sacrificing efficiency. Section 4 describes these contributions.

2 Background

2.1 Hoare Logic

The core of any program verification or synthesis technique is automated logical
reasoning. Whether generating code or proving the safety of some program, any
formal methods tool will need to prove several intermediate properties. For exam-
ple, in order to prove the overall safety of a system, a verification tool may need to
show that each function in the system executes without leaking information. These
properties often take the following form: given some block of code S and some
precondtion P , Q holds after S terminates (assuming S terminates). This type of
property is so common that it has the shorthand {P}S{Q}, called a Hoare Triple
[16]. While Hoare triples give us an easy way to describe properties of programs, we
still need some way to actually prove these properties. To do so, we need to trans-
late these triples into provable logical statements called verification conditions. For
a triple {P}S{Q}, this can be done by computing the weakest possible precondition
P such that {P}S{Q} holds, written P = wp(Q,S). If P implies wp(Q,S) (i.e. if
P is stronger than wp(Q,S)), then {P}S{Q} must also hold. Although computing
wp(Q,S) in practice is quite difficult, modern tools can usually make good approx-
imations [4]. Thus, proving {P}S{Q} boils down to proving that P implies some
approximation of wp(Q,S). Fortunately, this is exactly the type of problem handled
by SMT solvers [8].

The Satisfiability problem for first order logic is an extension of the NP-Hard
Satisfiability (SAT) problem. The SAT problem poses the following question: given
a formula expressed in propositional logic, is there any variable assignment under
which the formula evaluates to true? The SAT problem for first order logic, or
Satisfiability Modulo Theories (SMT), also asks for the satisfiability of a formula.
Unlike formulas in propositional logic however, formulas in first order logic may
include quantifiers, predicates, variables with non-boolean values, and first-order
functions. These additional functions and variable domains are called “theories.”

3

For example, the theory of linear arithmetic allows formulas with the constants 0
and 1, predicate ≤, and functions + and − like the following:

∀x.∀y.(x ≤ 1) ∧ (y ≤ x− 1)→ (y ≤ 0)

In general, the SAT problem for first order logic is undecidable, but many theories are
decidable and most have decidable fragments. This means that for many domains,
SMT solvers are quite reliable.

2.2 Relational Algebra

Relational algebra is an algebra that describes operations over tables in a relational
database [6]. While the core of relational algebra is relatively small, there are many
extensions that add more complex operations to the algebra. We first describe these
core operations before discussing common extensions, including those used by R
libraries.

The core operations of relational algebra are select, project, rename, and natural
join. The select statement takes a single table and some first order predicate as input,
removing any rows that do not obey the given predicate. Likewise, the project
statement takes a table and a list of columns, removing columns not on the list.
The rename operator takes a table, an old column name, and a new column name
as input. The operator then renames the old column in the input table to the new
column name. Finally, the natural join statement takes two input tables and outputs
a single table with one row for each matched column value in the two tables. In R, the
select operator is denoted by filter, the project operator by select, the rename
operator by rename, and the natural join operator by inner join.

While these core operations describe many common table transformations, some
extensions of relational algebra are necessary for data wrangling tasks, or tasks that
involve transforming and preparing data for analysis. Here, we describe a few popular
extensions in R: arrange, gather, and spread. The libraries tidyr and dplyr

contain many more data wrangling operations [24, 14], but these three are most
important for understanding the work presented in Section 3.

The arrange command rearranges rows in a table based on the values in one
or more columns. This extension allows programmers to reason about the order or
rows in a table, which cannot be done with standard relational algebra. The gather
command moves information from column names into table cells, creating a table
with fewer columns but more rows. Although gather can be expressed in relational
algebra, it requires a large number of commands. Since the gather transformation
is fairly common, R libraries include it as a single command. The spread command

4

can be thought of as an inverse of gather, converting table cell value information
into column names. As a result, spread creates a table with fewer rows and more
columns. Like gather, spread can be expressed in relational algebra, but is included
in R libraries to simplify data wrangling programs.

2.3 Concurrency and Monitors

Concurrent programs often need to manage shared resources between threads. Im-
proper access between these shared resources may cause many types of erroneous
behavior in concurrent systems, including race conditions and deadlocks. Con-
structs like monitors and semaphores allow systems to safely manage these resources
[17, 15, 22].

Monitors are composed of a single lock, several condition variables, and several
methods. These monitor methods are used by the overall system in order to gain
or release access to various shared resources. Each of these methods is guarded
by the monitor lock, ensuring that access to these resources is atomic. Condition
variables, as the name implies, track the conditions under which resources become
available. To do so, each condition variable may perform three functions: wait,
signal, and broadcast, all of which are performed only within monitor methods.
The wait command blocks the current thread until the waiting condition variable is
signaled. This allows threads to wait for some condition to hold before continuing.
Correspondingly, the signal command wakes a single waiting thread, usually called
once some waiting condition is satisfied. The broadcast command wakes all waiting
threads.

There are several implementations of these monitor semantics, the most popular
of which is the Mesa monitor [15]. Under this implementation, each condition variable
maintains a queue of waiting threads. On a wait call, the current thread releases the
monitor lock and moves into the waiting queue. When woken up by either a signal

or broadcast call, the previously waiting thread must contend with other threads
for the monitor lock. As a result, the waiting thread may not execute directly
after the signaling thread. In many cases, some thread may execute in between
these two threads and alter the value of the waiting condition. If this happens,
the condition may not hold when the waiting thread executes, even if the condition
held when signal was called. Considering this pathological case, correct monitor
implementations must call wait in a while loop, iteratively checking the waiting
condition after each wait call. The waiting thread only exits this loop if it has both
been signaled and the condition holds once the thread begins executing.

5

3 Automating Data Wrangling Tasks

In this section, we explore a new domain for program synthesis: data wrangling. Data
analysis has become increasingly important in a variety of fields. Unfortunately, raw
tabular data is rarely formatted properly for data analysis. As a result, data scientists
spend over 80% of their time organizing their data [7]. While languages like R offer
a variety of libraries to perform data wrangling tasks, writing programs with these
libraries can take hours even for expert R programmers. To address these problems
and improve the productivity of data scientists, we introduce a new technique for
automating data wrangling tasks using program synthesis.

Due to the difficult nature of writing data wrangling programs, the question-
answer site Stack Overflow contains many questions about writing R programs for
specific data preparation tasks. Interestingly, when programmers pose these ques-
tions on Stack Overflow, they almost always include one or more small input-output
examples with their problem description [2, 3, 1]. This implies that while creating
a correct data wrangling program may be difficult, specifying an example is quite
easy. In addition, although these tasks are complex, they can often be decomposed
into some number of key library calls.

Motivated by this reasoning, we created a synthesis algorithm that generates
data wrangling programs in R from input-output examples. Our synthesis algorithm
is component-based, meaning that our algorithm constructs programs by combining
some number of specified program components [19, 13, 10]. The key idea that allows
us to synthesize these programs is our novel combination of enumerative search and
deductive reasoning. To synthesize some data wrangling program, we search over
the space of partially completed programs, pruning invalid branches of our search
tree with SMT deduction. Since each partial program represents many concrete
programs, our deduction-based pruning technique greatly reduces the size of the
overall search space.

To demonstrate the effectiveness of our technique, we implemented our ideas in
a tool called Morpheus and evaluated Morpheus over many data transformation and
consolidation tasks from Stack Overflow. In our evaluation, we show that Morpheus
can efficiently synthesize a wide range of real-world data wrangling programs (78
out of 80 programs synthesized, with an average runtime of 3.59 seconds). We also
demonstrate the generality of our technique by modifying Morpheus to synthesizing
SQL and comparing it to a similar synthesis tool, SQLSynthesizer [25]. Over the
SQLSynthesizer benchmarks, Morpheus outperforms SQLSynthesizer in both num-
ber of programs synthesized and in median runtime. These results demonstrate that
our technique can efficiently synthesize a wide variety of data wrangling programs.

6

3.1 Overview of Technique

We now discuss the problem that our technique addresses and some of the challenges
in solving this problem. The goal of this work is to create a synthesis tool that takes
as input

1. a set of sample input tables
−→
Tin

2. a single sample output table Tout

3. a list of components Θ and their specifications

and outputs a program P that satisfies these inputs. Each of the terms used in this
definition is formally defined below.

Definition 1. (Table) A table T is a tuple (r, c, τ, ς) where:

• r, c denote number of rows and columns respectively

• τ : {l1 : τi, . . . , ln : τn} denotes the type of T. In particular, each li is the name
of a column in T and τi denotes the type of the value stored in T. We assume
that each τi is either num or string.

• ς is a mapping from each cell (i, j) ∈ ([0, r)× [0, c)) to a value v stored in that
cell

Definition 2. (Component) A component X is a triple (f, τ, φ) where f is a string
denoting X ’s name, τ is the type signature,and φ is a first-order formula that specifies
X ’s input-output behavior.

Definition 3. (Component Specification) A component specification φ for X is
a first-order formula over variables t1in, . . . , t

n
in, tout, where tiin denotes some input for

X and tout denotes the output of X . Moreover, φ must soundly describe X , but not
necessarily precisely.

Definition 4. (Program) A program P is a tree whose interior nodes are compo-
nents and whose leaf nodes are concrete inputs. These concrete inputs may either be
constants or input tables T iin. The ith child of each interior node represents the ith

input of the corresponding component.

Note that a program P satisfies the program specification (
−→
Tin, Tout,Θ) if P out-

puts Tout over input
−→
Tin and only uses components in Θ. As convention, we’ll used

7

the notation T iin and Tout to denote input and output tables from the user given
example, and use tiin and tout to denote the inputs and output of single components.

In order to generate such programs, there are several challenges that our program
synthesis technique needs to overcome. First, even when generating small programs
and considering a small number of components, the search space of program sketches
quickly becomes large. Here, a program sketch refers to a program whose inputs are
left unspecified. With 20 components, the number of sequential 5-command program
sketches reaches the millions. Second, many of these library calls require auxiliary
inputs that users might not provide. One example of this is the filter statement,
which removes all rows from a table that do not satisfy some given predicate. When
the space of input predicates is considered, the possibility of brute force search over
the program space quickly becomes intractable. Third, new functions may be added
to the libraries in the future. If our synthesis technique relies heavily on the semantics
of old library calls, it will not be compatible with new ones.

To handle the first main problem, our technique uses SMT-based deduction to
prune the search space of program sketches. By converting a program sketch into a
checkable first order formula, our technique can determine whether some candidate
sketch is a feasible solution without considering any auxiliary inputs. Since any pro-
gram sketch represents a large number of concrete programs, this technique greatly
reduces the size of the overall search space.

For the second problem, our technique applies partial evaluation in conjunction
with SMT-based deduction to quickly search for correct auxiliary inputs. To complete
a sketch with multiple auxiliary inputs, a näıve approach would need to check every
combination of inputs. Partial evaluation circumvents this by partially evaluating
the program sketch after a single auxiliary input has been specified. SMT-based
deduction can then be reapplied, pruning the resulting sketch if the sketch is not a
feasible solution. Combined, these two techniques greatly reduce the overall search
space of programs.

Finally, to allow for generality and to overcome the third challenge, our technique
takes as input a list of components and their specifications. Doing so means that our
technique does not depend on any specific components. These specifications describe
the semantics of the program components in first order logic, allowing for SMT-
based deduction over program sketches. In order to reason about programs correctly,
these specifications must be sound. However, completeness of these specifications is
not required. More precise specifications will strengthen the power of SMT-based
deduction and thus speed up our search, but totally precise specifications are often
too complicated to create. In this work, we provide specifications for a number of
library calls in R. Though, as we demonstrate later in this section, our technique can

8

easily be extended to other domains like SQL.
Together, these three techniques are key in creating an expressive and efficient

synthesis tool.

3.2 Motivating Example

In this section, we present an example transformation that our technique aims to
synthesize. This comes from a real world question found on Stack Overflow [1].

For this transformation, the user has specified two input tables:

frame X1 X2 X3

1 0 0 0

2 10 15 0

3 15 10 0

frame X1 X2 X3

1 0 0 0

2 14.53 12.57 0

3 13.90 14.65 0

And one output table:

frame pos carid speed

2 X1 10 14.53

3 X2 10 14.65

2 X2 15 12.57

3 X1 15 13.90

These tables all describe data from a vehicle simulator, where strings (e.g. X1,
X2, and X3) represent the position of a vehicle, integers (e.g. 10 and 15) represent
vehicle identifiers, and real numbers (e.g. 14.53) represent vehicle speed. The first
input table contains information about both the vehicle position and the vehicle
identifier. The second contains information about vehicle position and speed. As
specified by the output table, the user would like to create a transformation that
consolidates position, identifier, and speed information into a single table, removing
any 0 entries.

In this example and in the rest of our R benchmarks, we assume that the list of
components comes from the popular tidyr and dplyr R libraries. These libraries
contain functions for data tidying and data manipulation, respectively.

With these assumptions and inputs, we would like to synthesize the following
program

df1=gather(table1,pos,carid,X1,X2,X3)
df2=gather(table2,pos,speed,X1,X2,X3)
df3=inner join(df1,df2)

9

df4=filter(df3,carid != 0)
df5=arrange(df4,carid,frame)

Here, the gather command converts column name information into table value
information. New column names must be specified during this command, as do the
column names that should be converted to values. These inputs are not specified by
the user in this example. After executing, the first gather command generates the
following table, stored in df1

frame pos carid

1 X1 0

2 X1 10

3 X1 15

1 X2 0

2 X2 10

3 X2 15

1 X3 0

2 X3 0

3 X3 0

Next, inner join takes two tables and combines them, using the columns com-
mon between both tables to organize information. As a result, this single table is
stored in df3

frame pos carid speed

1 X1 0 0.00

2 X1 10 14.53

3 X1 15 12.57

1 X2 0 0.00

2 X2 10 13.90

3 X2 15 14.65

1 X3 0 0.00

2 X3 0 0.00

3 X3 0 0.00

The filter command then removes all rows that do not satisfy some predicate.
Here, the predicate carid 6= 0 specifies that any rows whose carid is 0 should
be removed. Notice that the predicate was not specified by the user. After the
command, this table is stored in df4

10

frame pos carid speed

2 X1 10 14.53

3 X1 15 12.57

2 X2 10 13.90

3 X2 15 14.65

Finally, the arrange command sorts rows based on the values of specified columns.
Again, notice that the auxiliary inputs carid and frame were not specified by the
user. The result is the desired output table, displayed earlier in this section.

As this example demonstrates, reasoning about transformations can be quite
difficult. Although only five library calls are used, choosing which functions to use
and where to place them is overly burdensome for many R programmers. Even
expert programmers may spend hours creating similar transformations [7]. Thus, by
synthesizing these transformations in a matter of seconds, my technique can greatly
improve the productivity of data scientists using R.

3.3 Synthesis Algorithm

Here, we describe our algorithm for generating data-wrangling programs. As dis-
cussed previously, a program can be viewed as a tree whose interior nodes are some
component and whose leaves are inputs. Thus, our algorithm can be viewed as a
search algorithm over trees of this form. In this search, there are three distinct tasks
that our algorithm performs.

First, our algorithm searches for a program tree whose leaf nodes (i.e. inputs)
are left as holes, which we denote as a program sketch. Our technique creates these
sketches in an iterative process called sketch generation.

Next, after generating a sketch, our algorithm checks the whether or not the
sketch may be part of a correct program with respect to the given example tables. As
discussed earlier, this is done via SMT-based deduction. If the deduction procedure

Sketch
Generation

SMT-based
Deduction

Sketch
Completion

Program

3
3

7

sketch

candidate
sketch

7

Figure 1: Illustration of the top-level synthesis algorithm

11

Algorithm 1 Synthesis Algorithm

1: procedure Synthesize(T ,Λ)
2: input: Input-output example T and components Λ
3: output: Synthesized program or ⊥ if failure

4: W := {?0:tbl} . Init worklist
5: . SMT-based Deduction

6: while W 6= ∅ do
7: choose S ∈ W ;
8: W := W\{S}
9: if Deduce(S, T) = ⊥ then

10: goto sketchgen;

11: . Sketch Completion
12: for S ∈ Sketches(S, Tin) do
13: P := Fillsketch(S, T)
14: for p ∈ P do
15: if check(p, T) then return p

16: sketchgen: . Sketch Generation

17: for X ∈ ΛT, (?i: tbl) ∈ Leaves(S) do
18: S ′ := S[?Xj (?j : ~τ)/?i]
19: W := W ∪ S ′

20: return ⊥

determines that no completion of the program sketch can satisfy the input-output
example, then our algorithm backtracks to the sketch generation stage and generates
a new program sketch. Otherwise, our algorithm performs its final phase: sketch
completion.

In this final phase, our algorithm searches for possible completions of the given
program sketch, using partial evaluation to speed up this search. These sketch com-
pletions are sketches whose holes have been filled in with given input tables and
auxiliary inputs. If no complete program that satisfies the example tables is found,
then our algorithm backtracks to the sketch generation phase. If some valid program
is found, then our algorithm finishes and outputs the resulting program.

This process will continue until either some correct program is output or the
sketch generation stage cannot generate any new sketches. Since the list of possible
sketches may be infinite, our algorithm is not guaranteed to terminate.

12

3.3.1 Sketch Generation

We now give an in-depth description of each phase of our algorithm, the first of which
is sketch generation. This phase finds some candidate program sketch by iteratively
refining holes in previous candidate program sketches. We refer to the unspecified
inputs of a sketch as hole and use the notation ?i : τ to denote a hole of type τ .

Using the reasoning of Occams razor, we would like to generate the simplest
program sketches first. If those fail, we then generate more complex sketches. To
do this, we maintain a queue of program sketches, beginning as a singleton queue
containing the sketch

?0 : table

When the SMT deduction phase tests a sketch, it removes this sketch from the
queue. If the sketch fails here, then sketch generation adds new sketches to the queue,
each generated by refining a single hypothesis in the sketch. Here, our algorithm
refines a sketch by replacing a single hole of the form ?i : table with some function
X = (f, table, φ), where χ is some component that outputs a single table. The
sketch may have multiple holes of type table, and there are multiple components
to choose for each hole, so sketch generation will add multiple new sketches to the
queue in a single iteration.

To illustrate this process, we look back at our motivating example. Clearly, the
identity transformation, with structure

?0 : table

will not satisfy the input-output example. As a result, our sketch generation
procedure will refine the single hole of type table, namely ?0. This process will add
every single-component sketch to our queue, including

arrange(?, aux)

which has the following tree structure. Here, aux represents the set of auxiliary
inputs for arrange.

arrange

?0 : table aux

This process of iteratively refining rejected sketches continues until our algorithm
finds a correct program. For our motivating example, the following sketches will all

13

Algorithm 2 SMT-based Deduction Algorithm

1: procedure Deduce(S, T)

2: input: Program Sketch S, input-output example T
3: output: ⊥ if cannot be unified with T ; > otherwise

4: Φ(S) :=

(∧
X i∈S

(φi)
)
∧
(∧

(X i,X j)∈S
(ti,jin = tkout)

)
5: Φ(T) := α(Tout) ∧

∧
T i
in∈

−→
Tin

(α(T iin))

6: ϕin :=
∧

?j∈S

∨
0≤i<|

−→
Tin|

(?j = T iin)

7: ϕout := ROOT (S) = Tout
8: ψ := Φ(S) ∧ Φ(T) ∧ ϕin ∧ ϕout
9: return sat(ψ)

be added to the queue during this process. The last of these sketches is the correct
sketch for our program.

arrange(?, aux)

arrange(filter(?, aux), aux)

arrange(filter(inner join(?, ?), aux), aux)

arrange(filter(inner join(gather(?, aux), ?), aux), aux)

arrange(filter(inner join(gather(?, aux), gather(?, aux)), aux), aux)

3.3.2 SMT-based Deduction

As we have illustrated, sketch generation adds many new sketches to the queue each
iteration. Without some way to prune these sketches, our search problem quickly
becomes intractable. This is why the next phase — SMT-based deduction — plays
a crucial role in our algorithm.

At a high level, SMT-based deduction combines information about the input-
output example and the program sketch to determine if any completion of that sketch
can satisfy the given example. In order to do so, our deduction procedure creates a
formula ψ that encodes this information and checks the satisfiability of ψ. If ψ is
satisfiable, then some completion of the given sketch may satisfy the input-output
example. Otherwise, no completion can possibly satisfy the example, allowing our
algorithm to prune the sketch.

14

To construct this formula ψ, our deduction procedure constructs four subformu-
las, Φ(S), Φ(T), ϕin, and ϕout. The first of these formulas, Φ(S), describes the
information of the given program sketch S. The second, Φ(T), describes both the
input and output tables from the example. Finally, ϕin and ϕout assert that each
input of S should be some table in Tin and that the output of S should be Tout,
respectively. The overall formula ψ is a conjunction of all of these four formulas.

Now we demonstrate how to create each of these subformulas of ψ. To construct
Φ(S), our deduction procedure combines the specifications of each component in S to
produce one overall specification for S. Recall that the specification for a component
X i is a first order logic formula over the variables t1in, . . . , t

n
in, tout. To distinguish the

variables of different component specifications, we add i to the superscript of each
variable, giving us a formula over ti,1in , . . . , t

i,n
in , t

i
out. Here ti,jin is an input and tiout is

the output of X i. We denote this new specification for X i as φi.
To act as a specification of S, Φ(S) is a conjunction of all of these individual

specifications φi. In addition, Φ(S) also needs some information about how the
components of S connect. To provide this, Φ(S) also contains statements of the
form ti,jin = tkout in this conjunction, specifying that the output of Xj should serve as
the input of X i. Thus, we can construct Φ(S) with the following conjunction(∧

X i∈S
(φi)

)
∧
(∧

(X i,X j)∈S
(ti,jin = tkout)

)
To illustrate this, we again look at our motivating example. Suppose our deduc-

tion procedure needs to check the sketch

S := arrange(filter(?, aux), aux)

The specifications for arrange and filter are

t0in.rows > tout.rows ∧ t0in.cols = tout.cols

And
t0in.rows = tout.rows ∧ t0in.cols = tout.cols

Respectively. As a result, Φ(S) would combine these to create the overall speci-
fication

t0,0in .rows = t0out.rows ∧ t0,0in .cols = t0out.cols

∧ t1,0in .rows > t1out.rows ∧ t1,0in .cols = t1out.cols

∧ t0,0in = t1out

15

Next, to construct Φ(T), our procedure needs to encode each input and output
table in first order logic. To do this, we define the operator α, which takes as input
a table T and outputs a corresponding SMT formula. The exact definition of α(T)
depends on the component specifications of our domain. If component specifications
only reasoned about the number of rows and columns in their input and output
tables, then α(T) would be a formula specifying the number of rows in T and the
number of columns in T . To demonstrate, we provide the formula α(Tout) below,
where Tout is the output table from our motivating example.

Tout.rows = 4 ∧ Tout.cols = 4

This definition of α assumes that components only reason about the number of
rows and columns in a table. In reality, α(T) contains information about the values
T as well. Using α, we can define Φ(T) as follows

α(Tout) ∧
∧

T i
in∈

−→
Tin

(α(T iin))

Finally, our procedure constructs ϕin and ϕout. Creating ϕout is fairly simple,
since S will only has one output variable. In this case, we say

ϕout := ROOT (S) = Tout

Where ROOT (S) is the output of the last component in S (i.e. the root in our tree
structure). Constructing ϕin is not as trivial. At a high level, ϕin should encode the
following phrase: For each unspecified input in S of type table, some concrete input
table T iin fills this spot. In first order logic, we can describe ϕin with the following
conjunction of disjunctions. ∧

?j∈S

∨
0≤i<|

−→
Tin|

(?j = T iin)

With a fully constructed formula ψ, our deduction procedure then checks the
satisfiability of ψ using Z3. If the formula is not satisfiable, then no completion of S
can satisfy the examples. If it is satisfiable, then our algorithm continues onto the
next stage: sketch completion.

3.3.3 Sketch Completion

Once a program sketch passes the SMT-based deduction phase, our algorithm begins
sketch completion by filling holes in the sketch. To fill a hole ?i : τ , our algorithm

16

enumerates all valid inputs of type τ . When τ = table, these valid inputs are the
set of example input tables T iin. For other types (i.e. int and string), we only
consider those whose constants can be found in some T iin or Tout. This restriction
greatly reduces the search space for these auxiliary inputs without losing expresitivity.

After a hole is filled in, our sketch completion procedure attempts to perform
partial evaluation over the resulting sketch. Partial evaluation is possible if all of
the inputs for some component have been specified. In this case, our algorithm
can simply compute the output of that component on the specified inputs. This
process generates a new program sketch, replacing the component and its inputs with
the generated output. The new program sketch is then checked by our deduction
procedure. If the sketch is rejected, our algorithm backtracks with two possibilities.
First, our algorithm will try backtracking to some previously filled hole (including the
one that was just filled). Here, the algorithm will try a new valid input, assuming one
exists. Otherwise, if all valid inputs have been exhausted for each hole, our algorithm
backtracks to the hypothesis refinement phase in order to generate a completely new
sketch.

3.4 Implementation and Evaluation

Finally, we describe the implementation of Morpheus and our evaluation.

Implementation details The techniques described in this paper have been im-
plemented in a tool called Morpheus, written in C++. In the implementation of our
SMT-based deduction, we used the Z3 SMT solver to check the satisfiability of our
generated constraints [8].

In addition to our basic algorithm, we used a few insights to improve the per-
formance of Morpheus. First, we order our candidate program queue based on an
n-gram model heuristic (using the 2-gram model in SRILM) [23]. This model assigns
a score to each candidate program based on the components used in the hypothesis,
ignoring control flow. To generate the model, we trained over 15,000 code snippets
founds in Stack Overflow answers, all of which involved the use of the tidyr or
dplyr libraries. This allows Morpheus to search through fewer candidate programs.
Second, we parallelize our computations, running several threads that check candi-
date programs of different lengths. This means that in order to generate a large
program, Morpheus avoids the time overhead of checking smaller programs.

17

Category Description #
No deduction Deduction

#Solved Time #Solved Time

C1
Reshaping dataframes from either
“long” to “wide” or “wide” to
“long”

4 2 198.14 4 6.70

C2
Arithmetic computations that
produce values not present in the
input tables

7 6 5.32 7 0.59

C3
Combination of reshaping and
string manipulation of cell con-
tents

34 28 51.01 34 1.63

C4
Reshaping and arithmetic compu-
tations

14 9 162.02 12 15.35

C5

Combination of arithmetic com-
putations and consolidation of in-
formation from multiple tables
into a single table

11 7 8.72 11 3.17

C6
Arithmetic computations and
string manipulation tasks

2 1 280.61 2 3.03

C7
Reshaping and consolidation
tasks

1 0 7 1 130.92

C8
Combination of reshaping, arith-
metic computations and string
manipulation

6 1 7 6 38.42

C9
Combination of reshaping, arith-
metic computations and consoli-
dation

1 0 7 1 97.3

Total 80
54

95.53
78

3.59
(67.5%) (97.5%)

Figure 2: Summary of experimental results. All times are median in seconds and 7

indicates a timeout (> 5 minutes).

18

0 20 40 60 80

0

1,000

2,000

3,000

4,000

Benchmarks

T
im

e
(c

en
ti

se
co

n
d
s) No deduction

No partial eval
Both

Figure 3: Cumulative running time of Expresso

SQLSynthesizer Morpheus
0

20
40
60
80

100

P
er

ce
n
ta

ge

Figure 4: Comparison with SQLSynthesizer

Evaluation Methodology With our evaluation, we aimed to answer three main
questions

1. Is Morpheus able to synthesize a wide variety of complex programs in a rea-
sonable amount of time?

2. Do SMT-based deduction and partial evaluation improve the Morpheus’s run-
time?

3. How does Morpheus compare to other similar synthesis tools?

To answer the first two questions, we collected 80 benchmarks from Stack Over-
flow questions. For each benchmark, we evaluated Morphues under three configura-
tions: one with no deduction or partial evaluation, one with deduction but without
partial evaluation, and one with both deduction and partial evaluation. The measure-
ments for these experiments are displayed in Figure 3, summarized over categories.
The overall results are also summarized in the graph below. As these figures demon-

19

strate, both deduction and partial evaluation play a key role in allowing Morpheus
to efficiently synthesize a large class of programs.

To answer the final question, we compared Morpheus to a similar tool called
SQLSynthesizer [25]. This tool also takes sample input and output tables in order to
synthesize a program, but targets SQL instead of R. In order to allow Morpheus to
synthesize SQL code, we created a list of 8 SQL commands for Morpheus to use as
components. Then, we evaluated Morpheus over the 28 benchmarks used to evaluate
SQLSynthesizer. Over these benchmarks, Morpheus outperforms SQLSynthesizer
by a significant margin. While SQLSynthesizer solves 71.4% of benchmarks with a
median runtime of 11 seconds, Morpheus solves 96.4% of these benchmarks with a
median runtime of 1 second.

4 Automatic Signal Placement for Monitors

In this section, we explore another new domain for program synthesis: concurrent
programs. Concurrent programs, with the need for explicit communication between
threads, are notoriously difficult to write without bugs [20]. Managing shared re-
sources between these threads is a common challenge in many systems. For this
reason, monitors help manage shared resources in a standard way [17, 15, 22]. They
allow threads to wait for resources to become available by using the wait command,
relying on other threads to signal waiting threads once these resources are available
by calling either signal (for waking a single thread) or broadcast (for waking all
associated threads). Unfortunately, signaling both correctly and efficiently requires
reasoning about all possible interleavings of thread executions. Furthermore, im-
proper signal placement can easily cause serious bugs in concurrent systems [12].
A lack of signals may result in some threads waiting indefinitely, while abundant
signaling may wake up threads spuriously, causing unnecessary context switches.
To address these problems, we introduces a new synthesis technique that generates
correct-by-construction signal placements for monitors.

Some runtime systems have also addressed these problems by automatically sig-
naling threads without requiring explicit signals from the programmer. These sys-
tems are said to implement implicit signal monitors. In implicit signal monitors,
there are no signal and broadcast constructs. Instead, threads use waituntil(P)
statements to wait until their associated predicate P evaluates to true. These implicit
signal monitors allow users to specify the semantic meaning of a monitor without
dealing with signal placement. As such, errors created by improper signal placement
are impossible with implicit signals.

20

Although these runtime systems remove the signaling burden from the program-
mer, they often add significant runtime overhead [5]. In order to determine when
to wake up each thread, these systems store predicates in complex data structures
and regularly check these predicates at runtime [18]. Expert hand written code often
takes advantage of the monitor’s structure to avoid unnecessary runtime checks, so
hand written explicit signal monitors are often much more efficient than their implicit
signal counterparts. Since efficiency plays a large role in real-world concurrent sys-
tems, implicit signal monitors have not been widely adopted. However, by reasoning
about predicates statically, we can implement implicit signal monitors without such
an unruly overhead.

The key idea in our technique is to generate some set of verification conditions
that, when proven, allow us to transform implicit signal monitors into efficient, se-
mantically equivalent explicit signal implementations. Namely, for each atomic seg-
ment in the monitor and each waituntil(P) statement, we generate a set of Hoare
triples whose validity allows us to determine

1. whether to signal threads waiting on P at all,

2. whether to signal conditionally or unconditionally, and

3. whether to signal or broadcast.

To augment the strength of our theorem prover, we introduce the concept of a monitor
invariant. Similar to a loop invariant, a monitor invariant is a logical formula I over
monitor variables that

1. holds at the construction of a monitor, and

2. holds after the execution of every atomic segment in the monitor.

We specify that I only contains monitor variables to ensure that only methods in the
monitor may change the truth value of I. Along with this definition, we also present
a novel algorithm for automatically inferring strong monitor invariants. Since real
world monitors may have complex waituntil predicates, monitor invariants are
essential for reasoning about these predicates.

In addition, this section also presents an implementation of these techniques,
called Expresso. We evaluate Expresso over a variety of benchmarks, comparing our
transformation to both a similar runtime technique and to hand written explicit sig-
nal code. On average, Expresso gets a significant (1.56x) speed-up over this runtime
system. In addition, Expresso closely matches the performance of hand-optimized
code in nearly all cases. These results demonstrate that Expresso can synthesize a
large class of programs without adding unruly runtime overhead.

21

1 class RWLock {
2 unsigned int readers = 0;
3 boolean writerIn = false;
4

5 atomic void enterReader() {
6 waituntil(!writerIn);
7 readers++;
8 }
9 atomic void exitReader() {

10 if(readers > 0) readers--;
11 }
12 atomic void enterWriter() {
13 waituntil(readers == 0 && !writerIn);
14 writerIn = true;
15 }
16 atomic void exitWriter() {
17 writerIn = false;
18 } }

Figure 5: Implicit-signal monitor for readers-writers lock.

4.1 Motivating Example

To illustrate our technique, lets consider the case of the Readers-Writers problem.
The access control for the Readers-Writers problem has been implemented with im-
plicit signaling in Figure 5 and corresponding explicit signaling in Figure 6. Notice
that in these implementations, any reading or writing thread must enter the monitor
to gain access to the resource. Only the monitor code is shown in these figures.
In this section, we will illustrate how our technique works for the Readers-Writers
problem, highlighting the most important aspects of our algorithm.

Before the analysis begins, Expresso generates a monitor invariant. In the case
of RWLock, Expresso generates the invariant readers ≥ 0. This holds because

1. readers begins at value 0, and

2. readers is only decremented when readers > 0.

Next, Expresso will determine what type of signaling needs to be done in each atomic
segment. In implicit signal code, a global monitor lock is acquired at the start of each
method and released at the end of each method. This lock is also released and re-
acquired at every waituntil statement. An atomic segment is the block of code that
sits in between a lock acquire and lock release. Since there are two waituntil(P)

22

statements with different predicates, Expresso will consider signaling at every atomic
segment for each of these two predicates.

EnterReader. Let’s discuss how Expresso will transform the single atomic seg-
ment within the enterReader method, which includes only the statement

readers + +

Normally, we would first consider signaling threads waiting on the predicate

!writeIn

However, since this atomic segment follows the waituntil statement with this pred-
icate, we won’t need to signal this predicate. Instead, we only need to consider signal-
ing threads waiting on P := readers == 0∧!writerIn. To determine whether or not
we need such a signal, let’s consider a thread tr that calls enterReader, and assume
some thread tw is blocked on P . If P never holds after tr executes enterReader,
then we never need to signal tr. This check can be written as a Hoare triple in the
following way:

{readers ≥ 0 ∧ ¬writerIn ∧ ¬Pw} readers++ {¬Pw}

Here, the precondition of this Hoare triple captures several important facts. First, it
includes the invariant we mentioned earlier, which is guaranteed to hold at the start
of the atomic segment. Second, it includes the predicate of the preceding waituntil

statement. This is because after executing waituntil(P), P is guaranteed to hold.
Lastly, it captures our assumption that some thread tw is blocked on Pw by including
¬Pw in the precondition. In this case, the triple is indeed valid, so no signal is
necessary here. Notice that the validity of the triple would not be provable without
the invariant.

ExitReader. First, to check whether we need to signal threads waiting on

Pr := !writeIn

Expresso checks the triple

{readers ≥ 0 ∧ ¬Pr} if(readers > 0) readers-- {¬Pr}

23

Since the code doesn’t alter writeIn in any way, this triple is trivially valid. Next,
Expresso will determine whether it needs to signal threads waiting on Pw. As in
enterReader, Expresso will check the following triple:

{readers ≥ 0 ∧ ¬Pw} if(readers > 0) readers-- {¬Pw}

In this case, the triple is not valid, which means some signaling is necessary. Expresso
will then determine whether to signal or broadcast. To understand how this is done,
let’s consider the atomic segment that follows the statement waituntil(Pw) and
thread tw that executes this segment. If Pw becomes false after tw’s execution, then
broadcast is not necessary, as no other thread waiting on Pw should be woken up.
We can make this check by evaluating the following triple:

{readers ≥ 0 ∧ Pw} writerIn = true {¬Pw}

Since this triple is valid, a broadcast is not necessary. Finally, Expresso will deter-
mine whether the signal should be conditional or unconditional. For this, Expresso
must again reason about the truth value of Pw at the end of exitReader. If Pw
always holds after exitReader executes, then Expresso should signal uncondition-
ally. Otherwise, Expresso needs to signal conditionally in order to avoid spurious
wake-ups. This reasoning is encoded in the following triple:

{readers ≥ 0 ∧ Pw} if(readers > 0) readers-- {Pw}

Since this triple is not valid, Expresso must signal conditionally here.

EnterWriter. Since enterWriter contains the waituntil statement for writers,
enterWriter will not need to signal any writers. Also, using similar reasoning as in
enterReader, Expresso can establish that enterWriter does not need to signal
any readers because the following Hoare triple is valid:

{readers ≥ 0 ∧ Pw ∧ writerIn} writerIn = true {writerIn}

ExitWriter. With similar reasoning as in exitReader, Expresso can determine
that exitWriter doesn’t need to signal any writers. Furthermore, Expresso also
determines that exitWriter needs to signal (but not broadcast) to readers, again
with similar reasoning as in exitReader. To determine whether this signal should
be conditional or unconditional, Expresso will check this triple:

{readers ≥ 0 ∧ writerIn} writerIn = false {¬writerIn}

In this case, this triple is valid, which means that exitWriter should signal uncon-
ditionally.

24

1 class RWLock {
2 unsigned int readers = 0;
3 boolean writerIn = false;
4 Lock l = new ReentrantLock();
5 Condition readers = l.newCondition(),
6 writers = l.newCondition();
7 void enterReader() {
8 l.lock();
9 while(writerIn) readers.await();

10 readers++;
11 l.unlock();
12 }
13 void exitReader() {
14 l.lock();
15 if (readers > 0) readers--;
16 if (readers == 0) writers.signal();
17 l.unlock();
18 }
19 void enterWriter() {
20 l.lock();
21 while(readers != 0 || writerIn) writers.await();
22 writerIn = true;
23 l.unlock();
24 }
25 void exitWriter() {
26 l.lock();
27 writerIn = false;
28 if (readers == 0) writers.signal();
29 readers.signalAll();
30 l.unlock();
31 } }

Figure 6: Explicit-signal monitor for readers-writers lock.

4.2 Signal Placement Algorithm

In this section, we describe our general algorithm for placing signals. This algorithm
can be broken up into two main steps. First, our system generates a strong monitor
invariant. Next, it uses this monitor invariant to prove several verification conditions,
determining where signals are needed, whether to signal or broadcast at these points,
and whether to do so conditionally or unconditionally. For simplicity, we will first
describe the second part of our algorithm, assuming that a monitor invariant has
already been generated. This part of our algorithm, called PlaceSignals, takes as

25

Algorithm 3 Signal Placement Algorithm

1: function PlaceSignals(M , I)

2: input: M , an implicit signal monitor
3: input: I , a monitor invariant
4: output: M ′, an explicit signal monitor

5: Σ← [w 7→ ∅ | w ∈ CCRs(M)]

6: for (w, p) ∈ CCRs(M)×Guards(M) do

7: if ` {I ∧Guard(w) ∧ ¬p} Body(w) {¬p} then
8: continue;

9: if ` {I ∧Guard(w) ∧ ¬p} Body(w){p} then
10: cond← X
11: else
12: cond← ?

13: if ∀(p, s′) ∈ CCRs(M). ` {I ∧ p} s′{¬p} then
14: bcast← false
15: else
16: bcast← true

17: Σ(w)← Σ(w) ∪ {(p, cond, bcast)}
18: return Instrument(M,Σ)

input an implicit signal monitor M , a monitor invariant I , and outputs an equivalent
explicit signal monitor. In addition, we will also assume that waituntil statements
don’t contain any thread local variables for our general algorithm.

Our algorithm works by creating a mapping from atomic segments, or Condition
Critical Regions (CCRs), to signals. This mapping represents what signals should be
performed after execuing each CCR but before exiting the monitor. We represent a
signal by the triple (p, cond, bcast), where p represents the predicate to signal, cond
represents whether the signal should be conditional, and bcast represents whether
the signal should be a broadcast statement.

The first step in PlaceSignals is to create an empty mapping over all CCRs in
the monitor M (line 5). Then, our algorithm iterates over each pair (w, p) of CCRs
and waituntil predicates in M . Each iteration determines if a signal for p at w is
necessary, and if so, also determines cond and bcast.

The first check in the loop decides whether a signal to p at w is necessary at all.

26

This is done by checking the triple

{I ∧Guard(w) ∧ ¬p} Body(w) {¬p}

Here, our algorithm asks the following question: “Assuming the monitor invariant I,
the guard of the CCR Guard(w), and ¬p hold before the execution of Body(w), after
it’s execution, is ¬p guaranteed to hold?” When some thread is blocked on p, these
assumptions are guaranteed to hold before executing Body(w). Thus, if this triple is
provable, then there should be no signal for p at w. In this case, our algorithm can
continue onto the next iteration. Otherwise, it must perform two more checks.

Next, our algorithm checks whether the necessary signal should be conditional or
not. To do so, we check this triple at line 9

{I ∧Guard(w) ∧ ¬p} Body(w) {p}

By checking this, our algorithm asks the question: “Assuming the monitor invariant
I, the guard of the CCR Guard(w), and ¬p hold before the execution of Body(w),
after it’s execution, is p guaranteed to hold?” Again, when a thread is blocked on
p, these assumptions are guaranteed to hold before execution Body(w). If this triple
is provable, then p will always hold after executing Body(w) when some thread is
blocked on p. Thus, we can signal unconditionally in this case. If not, then the
predicate isn’t guaranteed to hold after executing Body(w), so we must signal con-
ditionally.

Finally, our PlaceSignals procedure determines whether the signal should be a
broadcast or not. Our algorithm does so by checking triples of the following form,
where w′ is some CCR such that Guard(w′) = p

{I ∧ p} Body(w′) {¬p}

Unlike the last two checks, this check requires reasoning about the CCR executed
by the blocked thread. That’s because in order to determine whether a broadcast
is necessary, the algorithm must reason about the truth value of the predicate p
after the blocked thread executes. If the predicate remains true, then a broadcast is
necessary, as other threads may be blocked on p as well. If not, then any remaining
threads blocked on p shouldn’t be woken up, so a broadcast isn’t necessary. Thus,
for this check, the algorithm asks the question: “For every CCR w′ whose guard is
p, assuming the monitor invariant I and predicate p hold before executing Body(w′),
after it’s execution, is ¬p guaranteed to hold?” As discussed, if any of these triples
are not provable, then a broadcast is necessary, since some thread blocked on p may

27

Algorithm 4 Monitor Invariant Inference
1: function InferMonitorInv(M , Θ)

2: input: M , an implicit signal monitor
3: input: Θ, set of Hoare triples of the form {P} s {Q}
4: output: I, a monitor invariant

5: Φ← ∅
6: for {P} s {Q} ∈ Θ do
7: Φ← Φ ∪ abduce(P,wp(s,Q))

8: do
9: numPreds← |Φ|

10: for ψ ∈ Φ do
11: if 0 {true} Ctr(M) {ψ} then
12: Φ← Φ \ {ψ}
13: continue;

14: I ←
∧

ψi∈Φ

ψi

15: if ∃w ∈ CCRs(M). 0 {I ∧Guard(w)} Body(w) {ψ} then
16: Φ← Φ \ {ψ}
17: while numPreds 6= |Φ|
18: return I

need to be woken up. Otherwise, if all triples are provable, then broadcast is not
necessary.

Once PlaceSignals finishes this loop, it has created a list of all signals that need
to be placed in the explicit implementation. Finally, it returns the original monitor
annotated with these signals.

Now we describe the first part of our algorithm: monitor invariant generation.
InferMonitorInv takes as input both an implicit signal monitor M and a set of Hoare
triples Θ, and outputs an invariant of the monitor, I. This procedure is property-
directed, meaning that it only generates invariants that are helpful to prove some
given Hoare triples. Specifically, InferMonitorInv takes as input Θ, the set of Hoare
triples that we described the procedure PlaceSignals, but with invariant I set to
true. At a high level, our algorithm first generates a set of candidate predicaes by
performing abductive inference over each Hoare triple in Θ. Then, InferMonitorInv
prunes this list using predicate abstraction, removing any candidates that aren’t
invariants in the monitor M . Finally, InferMonitorInv returns a conjunction of all
candidates that are invariants in M .

We now give a more detailed description of each of these high level steps. In

28

the first phase of this procedure, InferMonitorInv performs abductive inference over
each triple {P}s{Q} in Θ by making a call to the sub-procedure abduce [9]. Intu-
itively, abduce takes some Hoare triple {P}s{Q} that is not necessarily valid and
finds some hypothesis ψ such that the new triple {P ∧ ψ}s{Q} is valid. More for-
mally, this procedure operates over verification conditions that corresponds to these
Hoare triples. It takes as input the antecedent P and the consequent wp(s,Q), which
together represent the verification condition P ⇒ wp(s,Q). Here, wp(s,Q) repre-
sents the weakest precondition of s with respect to Q. Then the hypothesis ψ output
by abduce obeys the following constraints:

(1) P ∧ ψ |= wp(s,Q) (2) P ∧ ψ 6|= false

The first of these conditions states that by assuming ψ, the verification condition
P ⇒ wp(s,Q) should be provable. The second condition states that by assuming ψ
and the antecedent P , the statement false should not be provable. InferMonitorInv
saves the result of each of these abduce calls in a list Φ representing all candidate
predicates. It’s also important to note that the abduce procedure may return several
predicates ψ1, ψ2, ... that satisfy these conditions. In this case, all predicates are
added to Φ.

Next, InferMonitorInv finds the strongest conjunction of all candidate predicates
using predicate abstraction [11, 21]. It does so by computing a fix-point on the
conjunction of candidates, pruning all candidates from Φ that are not inductive in
monitor M . At each iteration in the fix-point computation, InferMonitorInv makes
the following checks to test whether or not candidate ψ inductively holds in M :

1. Does the candidate ψ hold initially in M ? (checked at line 11)

2. For each atomic segment in M , does ψ always hold after executing the atomic
segment? (checked at line 15)

If the answer to either of these questions is “no”, then InferMonitorInv removes ψ
from the list of candidates. Notice that a fix-point computation is necessary since
the conjunction I of all candidate predicates is used as an assumption in the second
check, at line 15. When this fix-point finishes (i.e. when no candidates are removed
from ψ in one iteration), InferMonitorInv returns this conjunction I.

29

4.3 Implementation and Evaluation

In this section, we describe the implementation of Expresso and our evaluation.

Implementation details Expresso operates over a Java-like language and out-
puts code in Java. We say our input language is ”Java-like” because we allow
waituntil(p) calls, but do not allow these calls to be placed within loops or if-
statements. We’ve described how Expresso determines which signals to place in the
output monitor, but Expresso also makes a few more transformations that are trivial
but necessary for a correct explicit monitor implementation. In addition to placing
signals, Expresso also adds locking mechanisms, condition variables, and converts the
implicit signal construct waituntil(p) into the corresponding construct for explicit
signal monitors.

To ensure that each method in the monitor executes atomically, Expresso creates
a single global lock for the monitor. Expresso adds a lock acquire statement at the
beginning of each method and a lock release statement at the end. Although this
transformation doesn’t allow for complex locking patterns, it enforces the standard
monitor paradigm (namely, that each monitor method should execute atomically).
Expresso also transforms waituntil(p);s statements into statements of the form

while(!p) {c.await();}; s

Here, c is a condition variable added via instrumentation to the original monitor.
Expresso adds one condition variable to the monitor for each unique waituntil

predicate. This means that different methods waiting on the same predicate will call
await using the same condition variable.

Evaluation Methodology In our evaluation, we aim to determine

1. if Expresso could successfully transform a large class of implicit signal monitors,

2. how Expresso compares to similar runtime based approaches, and

3. how Expresso compares to expert hand-written code.

Towards these goals, we gathered a large set of benchmarks from both GitHub and
previous works, then evaluated Expresso, AutoSynch, and hand-written code over
each of these benchmarks.

We compare these three monitor implementations using saturation tests [18].
These are tests that measure only the amount of time spent in the monitor, not
including execution time spent outside the monitor. This allows us to perform a

30

2 4 8 16 32 64 128
0

200

400

600

of threads

m
s/

o
p

BoundedBuffer

Expresso

AutoSynch

Explicit

3 6 9 18 33 66 129
0

5 · 10−2

0.1

0.15

of threads

m
s/

op

H2O Barrier

Expresso

AutoSynch

Explicit

2 4 8 16 32 64 128
0

1,000

2,000

3,000

of threads

m
s/

op

Sleeping Barber

Expresso

AutoSynch

Explicit

2 4 8 16 32 64 128
0

2,000

4,000

6,000

of threads

m
s/

op

Round Robin

Expresso

AutoSynch

Explicit

5/2 10/4 20/8 40/16 80/32
0

2,000

4,000

6,000

of threads

m
s/

op

Ticketed Readers-Writers

Expresso

AutoSynch

Explicit

4 8 16 32 64 128
0

100

200

300

of threads

m
s/

op

Parameterized Bounded Buffer

Expresso

AutoSynch

Explicit

4 8 16 32 64 128
0

1,000

2,000

3,000

4,000

of threads

m
s/

op

Dining Philosophers

Expresso

AutoSynch

Explicit

10/2 20/4 40/8 80/16 160/32
0

200

400

600

of threads

m
s/

op

Readers-Writers (motivating example)

Expresso

AutoSynch

Explicit

Figure 7: Performance over AutoSynch benchmarks and readers-writers example.

more direct comparison. For each benchmark, we perform a saturation test for each
monitor over a varying number of threads. By doing so, we can measure how the
performance of each monitor changes as the number of threads increases. To ensure
that our measurements are accurate, we run each test 25 times and take the average
as our measurement.

31

2 4 8 16 32 64 128
0

200

400

600

of threads

m
s/

o
p

ConcurrencyThrottle (Spring framework)

Expresso

AutoSynch

Explicit

3 6 9 18 33 66 129
0

200

400

600

of threads

m
s/

o
p

PendingPostQueue (EventBus)

Expresso

AutoSynch

Explicit

2 4 8 16 32 64 128
0

200

400

600

800

1,000

1,200

of threads

m
s/

op

AsyncDispatch (Gradle)

Expresso

AutoSynch

Explicit

2 4 8 16 32 64 128
0

100

200

300

400

of threads

m
s/

op

SimpleBlockingDeployment (Gradle)

Expresso

AutoSynch

Explicit

3 6 9 18 33 66 129
0

50

100

150

200

of threads

m
s/

op

SimpleDecoder (ExoPlayer)

Expresso

AutoSynch

Explicit

2 4 8 16 32 64 128
0

1,000

2,000

3,000

of threads

m
s/

op

AsyncOperationExecutor (greenDAO)

Expresso

AutoSynch

Explicit

Figure 8: Performance over monitor code in popular GitHub projects.

32

Benchmark Time (sec.)

BoundedBuffer 2.5
H2OBarrier 2.3
Sleeping Barber 1.6
Round Robin 1.2
Ticketed Readers-Writers 3.8
Param. Bounded Buffer 2.5
Dining Philosophers 5.4
Readers-Writers 1.5

ConcurrencyThrottle 1.0
PendingPostQueue 0.5
AsyncDispatch 28.3
SimpleBlockingDeployment 0.4
SimpleDecoder 10.7
AsyncOperationExecutor 2.1

Table 1: Compilation time for benchmarks.

Results Above is a graph for each benchmark, displaying the average time spent
in each monitor operation (in milliseconds) versus the number of threads. The first
set of graphs shows results over the AutoSynch benchmarks, while the second set
show results over monitors from popular GitHub projects.

In nearly all of these benchmarks, Expresso outperforms AutoSynch and closely
matches the performance of hand written code. On average over all benchmarks and
all numbers of threads, Expresso outperforms AutoSynch by 1.56x. Despite this,
there are a couple cases where hand written code noticeably outperforms Expresso.
The most significant difference can be seen in the Dining Philosophers benchmark.
Here, hand written code avoids spurious wakeups by taking advantage of the program
structure, only waking threads that can make progress. AutoSynch also outperforms
Expresso in some cases, specifically the Ticketed Readers Writers problem and the
Parameterized Bounded Buffer problem. For these benchmarks, AutoSynch is able
to take advantage of complex data structures to more efficiently check predicates.

Notice that over all GitHub benchmarks, Expresso closely matches hand written
code. Since these benchmarks were taken from widely used projects, we consider
these results to be a more accurate depiction of the practical capabilities of Expresso.
Over these benchmakrs, Expresso outperforms Autosynch by 1.62x on average.

In Table 1, we show the compilation time for each benchmark with Expresso. In
nearly all cases, compilation finishes within a few seconds. The noticeable outliers
are AsyncDispatch and SimpleDecoder, whose predicates rely on Java library calls
that Expresso must analyze. Overall though, there is little noticeable overhead.

33

5 Related Work

Several other works share similar goals or methodology to the contributions described
in this report. In this section, we describe several of these works.

5.1 Programming by Example

Our work is not the first to show a synthesis technique that takes input-output
examples as specification. Most closely related to our work, SQLSynthesizer and
Scythe take input-output examples and generate SQL queries. FlashExtract and
FlashRelate also synthesize table transformations from examples, aiming to automate
the process of extracting spreadsheet data. Each of these techniques takes advantage
of a specific domain in order to efficiently synthesize code for that domain. Morpheus
differs from these works by considering a list of components as input along with the
user-defined example. By doing so, the techniques we’ve described in our work are
not limited to only synthesizing data wrangling tasks in R.

Synthesis for domains outside of table transformations have also used program-
ming by example. λ2 uses programming by example to synthesize transformations
for data structures such as trees and lists. Like Morpheus, λ2 is a component-based
synthesis tool and uses deduction to prune parts of the search space. However, unlike
Morpheus, λ2 fixes the set of program components and can only perform deduction
for programs with these components. Our technique instead takes a specification for
each component as input, and thus is able to perform deduction for programs with
any components.

Since this work, there have been additional contributions to synthesis for data
wrangling. Neo is a synthesis tool for various domains, including data wrangling,
that builds upon Morpheus by adapting ideas from conflict-driven clause learning to
synthesis. By learning information from past mistakes, or “conflicts,” Neo is able to
prune a large amount of the program search space. This additional insight allows
Neo to outperform Morpheus over a suite of data wrangling benchmarks.

5.2 Implicit Signal Monitors

Various other works have introduced techniques for automatically signaling threads
in concurrent systems. Serializers are a programming language construct that, like
monitors, contain queues of threads waiting on a condition. Serializers automatically
perform signal operations at runtime, but require a significant runtime overhead
compared to explicit signal monitors. Unlike Serializers, Expresso generates signal
calls statically and avoids a large runtime overhead.

34

Several other runtime-based mechanism also implement implicit signal monitors,
but as we’ve previously discussed, the need to dynamically check predicates limits
the efficiency of these systems. AutoSynch is one such runtime-based technique, but
aims to avoid a large runtime overhead by storing local state information for each
waiting thread. When some shared monitor value is updated, AutoSynch uses this
local state information to determine which waituntil conditions might be affected,
restricting the number of necessary predicate checks. Expresso differs from these
runtime-based techniques by reasoning about waituntil conditions statically. By
doing so, Expresso generates explicit signal monitor code without significant runtime
or memory usage overhead.

6 Conclusion and Future Work

In this report, we’ve described two main contributions. First, we introduced a new
synthesis technique that synthesizes data wrangling programs in R from input-output
examples. This technique takes advantage of SMT-based deduction and partial eval-
uation in order to synthesize these programs efficiently. Our novel solution also
allows us to take in a list of components and specifications as input, making our
technique easily adaptable to new domains. Second, we presented a novel technique
for synthesizing signal calls in monitor code. With this new synthesis tool, pro-
grammers no longer need to reason about complex predicates in their monitor code.
Together, these two contributions demonstrate the power of synthesis techniques
across domains.

We have identified several directions in which researchers may build upon these
contributions. Although Morpheus and Expresso automate a large part of data wran-
gling and concurrent programming respectively, both fail to automate some parts of
these tasks. Morpheus requires some incomplete specification of components, and
more precise specifications lead to increased performance. Automatically generating
these specifications would further automate the process of synthesis for a variety of
domains. While Expresso automates signal placement for monitors, improper shared
variable updates or incorrect waituntil predicates may also cause concurrency bugs
like deadlocks. Statically checking for incorrect updates and predicates would help
further limit the introduction of bugs into concurrent systems. Finally, while these
works apply synthesis to two new domains, many other domains have yet to be ex-
plored. One area especially in need of exploration is synthesis for low-level systems.
A synthesis tool that automates part of operating systems programming, for exam-
ple, would both improve the productivity of systems programmers and reduce the
number of bugs introduced into real-world operating systems.

35

Acknowledgements

I would first like to thank Dr. Isil Dillig for her continuous support throughout my
undergraduate career. She was an important guide for all of the work presented in
this report, and without her, I would never have explored programming languages
research.

I would also like to thank Yu Feng, Dr. Ruben Martins, and Dr. Swarat Chaud-
huri for their contributions to Morpheus. Without their help, this work would not
have been possible. Additionally, I would like to thank Kostas Ferles and Dr. Yan-
nis Smaragdakis for their work on Expresso. Their guidance and contributions were
essential in creating this work.

References

[1] Motivating Example. http://stackoverflow.com/questions/
32875699/how-to-combine-two-data-frames-in-r-see-details.
Accessed 15-Nov-2016.

[2] Stack Overflow Question 1. http://stackoverflow.com/questions/
30399516/complex-data-reshaping-in-r. Accessed 15-Nov-2016.

[3] Stack Overflow Question 2. http://stackoverflow.com/questions/
33207263/finding-proportions-in-flights-dataset-in-r. Ac-
cessed 15-Nov-2016.

[4] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisti-
cated points-to analyses. In ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 243–262. ACM Press,
Oct. 2009.

[5] P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor classification. ACM Com-
puting Surveys (CSUR), 27(1):63–107, 1995.

[6] E. F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, pages 377–387, 1970.

[7] T. Dasu and T. Johnson. Exploratory data mining and data cleaning, volume
479. John Wiley & Sons, 2003.

36

http://stackoverflow.com/questions/32875699/how-to-combine-two-data-frames-in-r-see-details
http://stackoverflow.com/questions/32875699/how-to-combine-two-data-frames-in-r-see-details
http://stackoverflow.com/questions/30399516/complex-data-reshaping-in-r
http://stackoverflow.com/questions/30399516/complex-data-reshaping-in-r
http://stackoverflow.com/questions/33207263/finding-proportions-in-flights-dataset-in-r
http://stackoverflow.com/questions/33207263/finding-proportions-in-flights-dataset-in-r

[8] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. Tools and
Algorithms for Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[9] I. Dillig and T. Dillig. Explain: a tool for performing abductive inference.
In International Conference on Computer Aided Verification, pages 684–689.
Springer, 2013.

[10] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. Reps. Component-Based Syn-
thesis for Complex APIs. In Proc. Symposium on Principles of Programming
Languages. ACM, 2017.

[11] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for esc/-
java. In International Symposium of Formal Methods Europe, pages 500–517.
Springer, 2001.

[12] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu. What change history tells us
about thread synchronization. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 426–438. ACM, 2015.

[13] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Component based synthesis
applied to bitvector circuits. Technical Report MSR-TR-2010-12, February 2010.

[14] L. H. Hadley Wickham, Romain Francois and K. M˙Technical report.

[15] P. B. Hansen. Operating system principles. Prentice-Hall, Inc., 1973.

[16] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, pages 576–583, 1969.

[17] C. A. R. Hoare. Monitors: An operating system structuring concept. In The
origin of concurrent programming, pages 272–294. Springer, 1974.

[18] W.-L. Hung and V. K. Garg. Autosynch: An automatic-signal monitor based
on predicate tagging. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 253–262,
New York, NY, USA, 2013. ACM.

[19] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In Proc. International Conference on Software Engineering,
pages 215–224. IEEE, 2010.

37

[20] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Automated concurrency-bug
fixing. In OSDI, volume 12, pages 221–236, 2012.

[21] S. K. Lahiri and S. Qadeer. Complexity and algorithms for monomial and clausal
predicate abstraction. In CADE, pages 214–229. Springer, 2009.

[22] D. Lea. Concurrent Programming in Java. Second Edition: Design Principles
and Patterns. Addison-Wesley, 2nd edition, 1999.

[23] A. Stolcke. SRILM - an extensible language modeling toolkit. In Proc. In-
ternational Conference on Spoken Language Processing, pages 901–904. ISCA,
2002.

[24] H. Wickham and L. Henry. Easily tidy data with ’spread()’ and ’gather()’
functions. Technical report, RStudio, 2018.

[25] S. Zhang and Y. Sun. Automatically synthesizing sql queries from input-output
examples. In Proc. International Conference on Automated Software Engineer-
ing, pages 224–234. IEEE, 2013.

38

	Introduction
	Background
	Hoare Logic
	Relational Algebra
	Concurrency and Monitors

	Automating Data Wrangling Tasks
	Overview of Technique
	Motivating Example
	Synthesis Algorithm
	Sketch Generation
	SMT-based Deduction
	Sketch Completion

	Implementation and Evaluation

	Automatic Signal Placement for Monitors
	Motivating Example
	Signal Placement Algorithm
	Implementation and Evaluation

	Related Work
	Programming by Example
	Implicit Signal Monitors

	Conclusion and Future Work

