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Abstract

Data structure refactoring is a common task for many programmers today, but
it requires signi�cant amounts of error-prone manual e�ort to change all of the
code that relies on it. In this paper, I present two techniques for automating data
structure refactoring using program synthesis techniques. Program synthesis al-
lows programmers to automatically synthesize programs according to a speci�ca-
tion, and the synthesized program is guaranteed to conform to the speci�cation,
leaving no room for human error. The �rst technique, Migrator, completely au-
tomates the task of rewriting SQL queries after a schema migration, given only
the source and destination schemas. The second technique, Solidare, automates
the task of rewriting a Solidity program given a set of data structure transfor-
mations. Both of these techniques allow a programmer to transform an entire
program with minimal e�ort and guaranteed-correct results.
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1 Introduction

How data is laid out is a critical part of all software. For a variety of reasons, includ-
ing performance, maintainability, and feature addition, a program’s data layout can
undergo many changes throughout its lifetime; this is true for many types of appli-
cations, including databases and smart contracts. However, even a small change in a
program’s data structure can require changing large swaths of code that touches it,
often in non-trivial ways. Furthermore, it is very easy to make a mistake during this
refactoring, which can lead to unexpected and sometimes subtle bugs. Nonetheless,
this error-prone task must be done whenever a programmer wants or needs to change
a program’s data layout.

The task of data structure migration is challenging for various reasons. First, since
a piece of data can be accessed in several places throughout the code, a programmer
must locate and manually �x all of them. For large codebases, this factor alone can
cause a potential refactoring to be completely infeasible by hand. Next, it can be very
di�cult and time-consuming to replace code after a refactoring task, and it is not
always possible to verify the correctness of a �x looking only at its local context. Also,
when performing refactoring for performance reasons, a programmer typically must
do so multiple times to �nd the most performant data layout. Since a single refactoring
is already a slow task, this type of refactoring can be extremely time-consuming.

One solution that can signi�cantly alleviate the burden on programmers for per-
forming this task is program synthesis. Program synthesis tools take a given high-
level speci�cation and automatically generate a program that is correct according
to the speci�cation. Program synthesis has already been applied to a wide variety
of domains, including general synthesis of functional programs[3], data-wrangling
tasks[2], and text processing in spreadsheets[5].

For data structure refactoring tasks, this means that along with the original pro-
gram, programmers only need to provide a speci�cation of how the data is to be re-
arranged, and the tool can automatically synthesize the resulting program. In this
paper, I present two techniques in which program synthesis is used to automate data
structure refactoring tasks: Migrator and Solidare.

2 Background: Partial WeightedMaxSAT

In both tools, we reduce certain enumeration problems to partial weighted MaxSAT.
To solve these MaxSAT instances, we use the Sat4J[6] library.

Partial weighted MaxSAT is a generalization of the boolean satis�ability problem
(SAT), in which in addition to traditional “hard” constraints, there are also soft con-

traints (ψ,w) which are not required to be satis�ed but are associated with a weightw.
The goal of the problem is to maximize the sum of the weights of the soft constraints
while ensuring the hard constraints are still satis�ed. More formally, a MaxSAT prob-
lem is a set of hard constraints H and soft constraints S where the goal is to �nd an
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interpretation I such that:

I |=
∧
φ∈H

φ, and

∑
(ψ,w)∈S
I|=ψ

w is maximized.

Most SAT solvers, including Sat4J, only accept formulas in conjunctive normal
form, or CNF. We can use arbitrary formulas by �rst translating them into CNF; this
can be done in linear time using a procedure known as Tseitin’s transformation, in
which auxiliary variables are introduced to represent the results of sub-expressions.
This can be expressed as the following:

v variable
v ;Ts (v,>)

(Tseitin-Var)
φ;Ts (v, ψ) v′ fresh

φ̄;Ts (v′, (v ∨ v′) ∧ (v̄ ∨ v̄′) ∧ ψ)
(Tseitin-Neg)

φ1 ;Ts (v1, ψ1) φ2 ;Ts (v2, ψ2) v′ fresh
φ1 ∧ φ2 ;Ts (v′, (v̄1 ∨ v̄2 ∨ v′) ∧ (v1 ∨ v̄′) ∧ (v2 ∨ v̄′) ∧ ψ1 ∧ ψ2)

(Tseitin-And)

φ1 ;Ts (v1, ψ1) φ2 ;Ts (v2, ψ2) v′ fresh
φ1 ∨ φ2 ;Ts (v′, (v1 ∨ v2 ∨ v̄′) ∧ (v̄1 ∨ v′) ∧ (v̄2 ∨ v′) ∧ ψ1 ∧ ψ2)

(Tseitin-Or)

Then if φ;Ts (v, φ′), Tseitin’s transformation Ts(φ) = v ∧ φ′.
A key property of this transformation is that the original variables are preserved

and the satisfying assignments of φ and Ts(φ) are in one-to-one correspondence,
which means that enumerating the solutions of one gives the same solutions as the
other.
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Figure 1: Migrator methodology

3 Database Schema Migration with Migrator

Many applications today rely on a relational database to store their data. For example,
most contemporary web applications use SQL databases to store site and user data and
generate webpages dynamically. As a result, databases play a critical role in many
web applications, and it is important that these applications are able to interface with
databases to retrieve the correct data and prevent data loss and corruption.

Databases often undergo schema refactoring, in which the schema, or structure, of
the database is changed. This can be for various reasons, such as improving perfor-
mance, implementing new features, or simplifying how the data is laid out. However,
changing the database schema requires that all code that interfaces with the database
be rewritten to conform to the new schema. Especially for structural refactorings that
change data layout across tables, this is a non-trivial task, which makes it a prime can-
didate for using program synthesis.

In order to solve this problem, we have created a synthesis tool called Migra-
tor[12] which automatically performs a database migration given the source pro-
gram and source and destination schemas1. Our synthesis methodology is illustrated
in Figure 1. Notice that instead of synthesizing the output program directly, we break
down this task into three simpler subtasks.

First, we generate a value correspondence Φ between the source and destination
schemas. The value correspondence is a list of mappings between source and desti-
nation columns[8]. There are two main reasons why we generate a value correspon-
dence as an intermediate step instead of encoding it in the sketch. First, the value
correspondence is relatively easy to guess based on column names and types. Second,
for a given value correspondence, the search space of possible programs is dramati-
cally decreased, and the generated sketch is guaranteed to be consistent about how
columns are mapped.

After this, we generate a program sketch Ω that encodes all possible candidate
programs using the value correspondence Φ. A program sketch is a program where
some values are unknown (known as holes) and must be �lled in to form a concrete
program. This process is done by applying a series of rules to the original program
based on Φ.

Finally, we “solve” the sketch by �lling in the holes, or instantiating it, in such a
way that the resulting program P ′ is equivalent to the original program P . Sketch
solving is done via enumerative search with some optimizations, particularly the use

1Source code available at https://github.com/utopia-group/migrator
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of minimum failing inputs, to guide the search process and prune unproductive in-
stantiations. One advantage of this approach over traditional approaches such as
counterexample-guided inductive synthesis (CEGIS) that use SMT solvers to reason
about program semantics is that encoding the semantics of relational algebra into
quanti�er-free �rst-order theories supported by SMT solvers is di�cult, both to en-
code and solve.

We have evaluated our tool on a dataset of 20 database programs collected from
textbooks and popular open-source repositories; Migrator is able to solve all 20
benchmarks with an average synthesis time of 69.4 seconds per benchmark. We also
show that in particular, Migrator is signi�cantly (over 5x in all benchmarks) faster
than Sketch[10], a tool which uses the CEGIS approach.

3.1 Background

Most databases today are relational databases, in which queries are expressed using
relational algebra. Relational databases store data in the form of tables, or relations,
which are made up of columns, or attributes, which specify the structure of the data
in the table. The data in a table is made up of rows, or tuples of data. Furthermore, for
each table there is at most one column which is designated as the primary key (PK).
The primary key is required to be unique for each row, and a row is how data in other
tables is linked to a speci�c row.

Data in a relational database is retrieved using queries, which are speci�ed using
relational algebra. Relational algebra uses the basic set operations from set theory
(such as union, di�erence, and Cartesian product) along with a few core operations:
projection, selection, rename, and joins.

Projection, denoted Πa1,...,an(R), whereR represents the relation to be projected
and a1, . . . , an a set of attribute names, represents the result when the tuples of R
are restricted to {a1, . . . , an}. Selection, denoted σφ(R), where φ is a proposition
formula on the attributes of R, represents the set of tuples of R where φ is true.
Rename, denoted ρa/b(R), renames the attribute b to a in all tuples of R.

Although there are many types of joins in relational algebra, the most common
type of join is an equijoin, here denotedRa./bS, where a is an attribute ofR and b an
attribute of S. We furthermore restrict our attention to the common case of equijoins
on foreign keys, which are columns that are speci�ed to correspond to the primary
key of another table and are considered part of the database schema. The semantics
of an equijoin R a./b S is equivalent to σa=b(R × S), that is, the set of all pairs of
tuples fromR and S such that a and b have the same value. In the case of equijoins on
foreign keys, this is equivalent to appending the data from the unique row speci�ed
by the foreign key. For convenience, when there is only one foreign key applicable b
corresponding to primary key a, we use the shorthand R ./ S for R a./b S. We also
use the term join chain to refer to the relation formed by a chain of joins as well as
the database tables involved.

To represent insertions into a table, we use the notation ins(T, {a1 : v1, . . . , an :
vn}). For column updates, we use the notation upd(T, φ, a, v), which sets the attribute
a to the value v for all rows where φ is true. Finally, the notation del([T ], T, φ) deletes
from T all rows where φ is true.
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In order to simplify presentation, in this paper, we allow updates on virtual tables

in the form of join chains across multiple tables. The semantics of these virtual up-
dates is straightforward: an insertion simply inserts into all participating tables, an
update updates the singular table corresponding to the attribute to be updated, and
a deletion deletes from the set of tables speci�ed by the �rst parameter: for example,
del([T1, T2], T1 ./ T2 ./ T3, φ) deletes only from tables T1 and T2, even though the
join chain T1 ./ T2 ./ T3 and predicate φ may be speci�ed over all three tables. As
a caveat, when new primary and foreign keys are introduced to the schema, unique
values are generated for those columns when not speci�ed.

Most database programs, instead of using relational algebra directly, use a lan-
guage called SQL to represent queries and updates. SQL queries take a �xed form:
�rst, the columns to be projected, or the symbol ∗, representing all columns, is given
following the keyword SELECT, followed by the tables involved, using the FROM
keyword and the JOIN . . . ON keywords, and �nally a predicate is given using the
WHERE keyword. The SQL query

SELECT a1, . . . , an FROM T1

JOIN T2 ON a2 = b2

. . .

JOIN Tm ON am = bm WHERE φ

is semantically equivalent to the relational algebra expression

Πa1,...,an(σφ(T1 a2./b2 T2 · · · am./bm Tm)).

Insertions, updates, and deletes are similar:

INSERT INTO T VALUES (v1, . . . , vn)

UPDATE T JOIN2 . . . SET a1 = v1, . . . , an = vn WHERE φ
DELETE T1, . . . , Tn FROM T JOIN2 . . . WHERE φ

correspond to, respectively:

ins(T, {a1 : v1, . . . , an : vn}), where ai is the ith column of T
upd(T ./ . . . , φ, a1, v1); . . . ; upd(T, φ, an, vn), performed simultaneously

del([T1, . . . , Tn], T ./ . . . , φ).

3.2 Overview

In this section, we give an overview of our synthesis technique using a simple moti-
vating example. Consider the database program given in Figure 2. Since it is expensive
to fetch a potentially large binary image every time information about an instructor
or TA is requested, the programmer wishes to consolidate instructor and TA pictures
into one table, Picture. The destination schema is also given in Figure 4.

2JOINs inside UPDATE/DELETE statements is not part of standard SQL, but it is supported in many
SQL implementations. As it is can be converted automatically to a subquery with the same semantics, we
use this feature for brevity in this paper. Similarly, multiple DELETE is nonstandard but used so that there
is a one-to-one correspondence with del(. . .) notation.
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Schema:

Class(ClassId, InstId, TaId)
Instructor(InstId, IName, IPic)
TA(TaId, TName, TPic)

update addInstructor(int id, string name, binary pic)
INSERT INTO Instructor VALUES (id, name, pic)

update deleteInstructor(int id)
DELETE FROM Instructor WHERE InstId = id

query getInstructorInfo(int id)
SELECT IName, IPic FROM Instructor WHERE InstId = id

update addTA(int id, string name, binary pic)
INSERT INTO TA VALUES (id, name, pic)

update deleteTA(int id)
DELETE FROM TA WHERE TaId = id

query getTAInfo(int id)
SELECT IName, IPic FROM TA WHERE TaId = id

Figure 2: Example database program

3.2.1 Value correspondence generation

The �rst thing Migrator does is lazily enumerate possible value correspondences.
As mentioned in the introduction, a value correspondence describes how columns
in the source schema are mapped to the destination schema. More formally, a value
correspondence3 Φ between source schema S and destination schema S′ is a mapping
from each attribute in S to a set of attributes in S′. If for some tables T ∈ S, T ′ ∈ S′
and attributes a ∈ T, a′ ∈ S′, we have T ′.a′ ∈ Φ(T.a), this means that T ′.a′ holds
the same data as T.a. If Φ(T.a) = ∅, this means that the column was deleted in
the new schema, and if |Φ(T.a)| > 1, this means that the column was duplicated.
Lazy enumeration is done using a MaxSAT encoding, using heuristics to prefer more
“natural” correspondences.

For the example program, the �rst value correspondence enumerated (which hap-
pens to be the correct one) contains mappings between identical columns and two
additional mappings:

Instructor.IPic 7→ Picture.Pic
TA.IPic 7→ Picture.Pic

3We use a slightly simpli�ed version of the notion of value correspondences as presented in [8]. For
example, their notion of value correspondence also allows for columns to be mapped to the value of a
function applied to other columns. Our approach can be extended to allow this but at the cost of expanding
the search space.
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update addInstructor(int id, string name, binary pic)
INSERT INTO ??1{Picture ./ Instructor, Picture ./ TA ./ Instructor,

Picture ./ TA ./ Class ./ Instructor} VALUES (id, name, pic)
update deleteInstructor(int id)

DELETE ??2{[Picture], . . . , [Picture, Instructor,TA,Class]} FROM ??3{
Picture ./ Instructor, Picture ./ TA ./ Instructor,
Picture ./ TA ./ Class ./ Instructor}WHERE InstId = id

query getInstructorInfo(int id)
SELECT IName, Pic FROM ??4{Picture ./ Instructor,

Picture ./ TA ./ Instructor,
Picture ./ TA ./ Class ./ Instructor}WHERE InstId = id

update addTA(int id, string name, binary pic)
INSERT INTO ??5{Picture ./ TA, Picture ./ Instructor ./ TA,

Picture ./ Instructor ./ Class ./ TA} VALUES (id, name, pic)
update deleteTA(int id)

DELETE ??6{[Picture], . . . , [Picture, Instructor,TA,Class]} FROM ??7{
Picture ./ TA, Picture ./ Instructor ./ TA,
Picture ./ Instructor ./ Class ./ TA}WHERE InstId = id

query getTAInfo(int id)
SELECT IName, Pic FROM ??8{Picture ./ TA, Picture ./ Instructor ./ TA,

Picture ./ Instructor ./ Class ./ TA}WHERE InstId = id

Figure 3: Program sketch for Figure 2 and �rst value correspondence

3.2.2 Sketch generation

Given a value correspondence Φ, the next step is to generate a program sketch Ω that
encodes the set of candidate programs that are consistent with Φ. This is done by a
series of rules based on the source program statements and the value correspondence.

The generated sketch is shown in Figure 3. This sketch, although the source pro-
gram is very simple, already has a very large number of possible completions: 164,025
exactly.

3.2.3 Sketch completion

Finally, we complete the sketch Ω by instantiating its holes. As mentioned in the
introduction, solving this sketch using traditional techniques based on SMT is di�cult
due to the complex semantics of SQL. We deal with this by reverting to enumerative
search but using clever pruning techniques such as minimum failing inputs to reduce
the search space.

We perform enumerative search by using a SAT encoding. We begin by only en-
coding that each hole has one completion: for example, for hole ??1, we generate the
following constraint4:

Ψ1 = ⊕(b11, b
2
1, b

3
1)

4The SAT solver we use, Sat4J[6], supports exactly-one constraints natively.
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where bji represents a boolean variable encoding that hole ??i has been assigned the
jth completion and ⊕ is the n-ary xor (i.e. exactly one input is true). The �nal con-
straint is then

Ψ = Ψ1 ∧ · · · ∧Ψ8.

Migrator then passes this constraint to the SAT solver, which returns a model. Sup-
pose the model returned is as follows:

M = b31 ∧ b22 ∧ b33 ∧ b34 ∧ b15 ∧ b46 ∧ b37 ∧ b38.

Unfortunately, this model does not correspond to a program which is equivalent to
the original program. As a result, we must block this assignment by appending a
blocking clause to the constraint Ψ. A blocking clause φ for an assignment M must
ensure that the same assignment is never generated again: in particular, it must hold
that φ =⇒ ¬M . A naive way to do this would be to simply append the clause ¬M ,
but this approach would require 164,025 iterations in order to fully explore the search
space.

To generate smarter blocking clauses, we instead compute a minimum failing in-

put, which is a shortest sequence of function calls such that result of the sequence in
P is di�erent from that of P ′. For example, the following sequence ω is a minimum
failing input for the assignment M :

ω = addTA(1, “Aditya Tewari”, 89504E470D0A1A01. . . ); getTAInfo(1)

The output of the original program is the single row (“Aditya Tewari”, 89504E47. . . ),
while the output of the new program is empty.

Let H be the set of holes (here {??5, ??8}) involved in the functions called by
ω. Then observe that changing any combination of holes not in H while keeping the
holes in H the same would not change the result of ω at all. Therefore, we know that
we must change at least one hole in H in order to change the output of ω and thus be
possibly valid. From this insight, we obtain the stronger blocking clause ¬(b15 ∧ b38),
which eliminates 18,255 possible instantiations.

Finally, after a few more iterations,Migrator obtains the following correct model:

M∗ = b11 ∧ b22 ∧ b13 ∧ b14 ∧ b15 ∧ b46 ∧ b17 ∧ b18,

which corresponds to the program P ′ in Figure 4. After running a �nal veri�cation
step, Migrator returns the program P ′ as the synthesis result.

3.3 De�nition of Equivalence for Database Programs

The notion of equivalence used here is the same as prior work focused on verifying
equivalence of database programs[11].

For a database programP over schema S with update functions {U1, . . . , Un} and
query functions {Q1, . . . , Qm}, an invocation sequence for P has the form

ω = (f1, σ1); . . . ; (fk−1, σk−1); (fk, σk)
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Schema:

Class(ClassId, InstId, TaId)
Instructor(InstId, IName, PicId)
TA(TaId, TName, PicId)
Pic(PicId, Pic)

update addInstructor(int id, string name, binary pic)
INSERT INTO Instructor VALUES (id, name, u1)
INSERT INTO Picture VALUES (u1, pic)

update deleteInstructor(int id)
DELETE InstructorFROM Picture JOIN Instructor

ON Picture.PicId = Instructor.PicId WHERE InstId = id
query getInstructorInfo(int id)

SELECT IName, Pic FROM Instructor JOIN Picture
ON Instructor.PicId = Picture.PicId WHERE InstId = id

update addTA(int id, string name, binary pic)
INSERT INTO TA VALUES (id, name, u1)
INSERT INTO Picture VALUES (u1, pic)

update deleteTA(int id)
DELETE TA FROM Picture JOIN TA

ON Picture.PicId = TA.PicId WHERE TaId = id
query getTAInfo(int id)

SELECT IName, Pic FROM TA JOIN Picture
ON TA.PicId = Picture.PicId WHERE TaId = id

Figure 4: Refactored version of Figure 2
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Algorithm 1 Synthesizing database programs
1: procedure Synthesize(P, S, S′)

Input: source program P over source schema S, target schema S′
Output: target program P ′ or ⊥, indicating failure

2: loop

3: Φ← NextValueCorr(S, S′)
4: if Φ = ⊥ then return ⊥
5: Ω← GenSketch(Φ, P )
6: P ′ ← CompleteSketch(Φ, P )
7: if P 6= ⊥ then return P ′

where f1 through fk−1 are update functions and fk is a query function, and σi con-
tains the arguments for function fi. Note that each invocation sequence has only one
update and it is at the end; this is because updates after the last query do not have any
e�ect on the output, and any invocation sequence with multiple queries can be split
up to form multiple invocation sequences with the same e�ect, and so when consid-
ering equivalence we need only worry about a single query at the end. We use the
notation JP Kω to denote the result of executing the sequence ω in program P starting
with an empty database.

For two database programs P, P ′ with the same function signatures, we say that
P is equivalent to P ′, denoted P ' P ′, if for all invocation sequences ω, we have
JP Kω = JP ′Kω .

3.4 Synthesis Algorithm

The overall synthesis algorithm is given in Algorithm 1. In this section, I will describe
the components of the synthesis algorithm in more detail.

3.4.1 Lazy enumeration of value correspondences

In order to guarantee completeness of our synthesis algorithm, we enumerate all pos-
sible value correspondences between the source and destination schemas. As doing
so eagerly is not practical, we lazily enumerate the possible value correspondences
using MaxSAT, as mentioned in the introduction.

Variables. For all attributes a1, . . . , an in the source schema and a′1, . . . , a′m in the
destination schema, we introduce a boolean variable xji , representing that in the value
correspondence Φ, attribute ai is mapped to attribute aj in the destination schema.
That is,

xji ⇐⇒ aj ∈ Φ(ai).

Hard constraints. There are two types of hard constraints, which rule out value
correspondences which are guaranteed to not correspond to any valid programs:

12



Type compatibility: If two attributes ai and aj ’ have di�erent types, they cannot
possibly be mapped to each other. This is encoded using the following constraint:∧

i,j

type(ai) 6= type(a′j)→ ¬x
j
i .

Existence of queried attributes: For every attribute ai that is queried in the source
program, Φ(ai) must be nonempty, i.e. it must be mapped to some a′j in the destina-
tion schema as otherwise there would be no way to store or retrieve the data in that
attribute. This implies the following constraint:∧

i

queried(ai)→
∨
j

xji .

Soft constraints. In addition to the hard constraints, we also use two types of soft
constraints to capture heuristics about what value correspondences are more likely to
be correct. First, since attributes are more likely to be renamed to something which is
similar to the original name, we would like to prioritize value correspondences where
similarly-named attributes are mapped to each other. To do this, using the following
de�nition of similarity, where lev is the Levenshtein edit distance and simmax is a
constant equal to 100:

sim(T.a, T ′.a′) := simmax − lev(a, a′)− 1

2
lev(T, T ′),

we introduce the following soft constraints:∧
i,j

(xji , sim(ai, a
′
j)).

Additionally, since one-to-one mappings are more common than one-to-many map-
pings, we introduce the following constraints, where wdup is a constant equal to 100:∧

i

∧
1≤j≤m

∧
j<k≤m

(xji → ¬x
k
i , wdup).

3.4.2 Sketch generation

Given a value correspondence Φ as enumerated in the previous section, we now gen-
erate a program sketch encoding all possible programs that may be equivalent to the
source program P under Φ.

Sketch language. In addition to the standard constructs as described in the back-
ground section, a program sketch may contain two nondeterministic constructs that
must be �lled in to obtain a concrete program. First, a program sketch can contain
holes, denoted ??{e1, . . . , en}, where the set {e1, . . . , en} is referred to as the domain

of that hole. A hole can be completed by substituting it with a member of its domain.

13



A ⊆ Attrs(J) ∀a ∈ A. ∃a′ ∈ Φ(a). a′ ∈ Attrs(J ′)

Φ `A J ∼ J ′
(Attrs)

A = Attrs(J) Φ `A J ∼ J ′

Φ ` J ∼ J ′
(JoinChain)

Figure 5: Inference rules for join correspondences

Additionally, a program sketch can contain the choice construct5 s1 ‖ s2, which is
shorthand for the conditional statement

if ??{>,⊥} then s1 else s2.

Join correspondence. In order to reason about how join chains are mapped be-
tween the source and destination schemas, we generate a set of join correspondences

between join chains in the source program and possible join chains in the destination
schema. The inference rules for possible join correspondences is listed in Figure 5.
Speci�cally, in order for a join correspondence (J, J ′) to be valid given a set of at-
tributes A, denoted Φ `A J ∼ J ′, J ′, Φ must map every attribute in A to some
attribute in J ′. Similarly, the notation Φ ` J ∼ J ′ means that Φ maps every attribute
in J to some attribute in J ′. Furthermore, observe that join correspondences are not
unique: if Φ ` J ∼ J ′1 and Φ ` J ∼ J ′2, this means that join chain J could be mapped
to either J ′1 or J ′2 in the target program.

Sketch generation. The rules for sketch generation are summarized in Figure 6.
Most of these rules are straightforward: the base cases Attr and Join simply rewrite
join chains and attributes using the given value correspondence, and the Filter, Proj,
Update, and Insert rules rewrite the nested attributes, predicates, and queries recur-
sively. The Delete rule requires a bit more explanation: to delete a row in a join chain,
it is su�cient to delete the corresponding rows from any non-empty subset of the
tables involved. Therefore, the domain for the set of tables to delete from is equal
to the powerset of the tables in the join minus the empty set. However, notice that
these rules are not deterministic, as there are multiple possible join chains in the join
correspondence induced by Φ.

Sketch composition. To resolve this ambiguity, we compose all possible sketches
to obtain a more general sketch. We use the notation Φ ` S � Ω to denote this kind
of judgment. We begin with a single sketch, using the following rule:

Φ ` S ; Ω
Φ ` S � Ω

(Lift)

5In the original paper, we use the notation s1 ?© s2 instead.
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Φ ` J ∼ J ′
Φ ` J ; J ′

(Join)
Φ(a) = {a′1, . . . , a′n}

Φ ` a; ??{a′1, . . . , a′n}
(Attr)

a1, . . . , an = Attrs(φ) ∀i. Φ ` ai ; hi

Φ ` φ; φ[h1/a1, . . . , hn/an]
(Pred)

Φ ` Q; Ω Φ ` φ; φ′

Φ ` σφ(Q) ; σφ′(Ω)
(Filter)

Φ ` Q(J) ; Ω(J ′) ∀i. Φ ` ai ; hi
A = {a1, . . . , an} ∪Attrs(Q) Φ `A J ∼ J ′

Φ ` Πa1,...,an(Q(J)) ; Πh1,...,hm(Ω(J ′))
(Proj)

A = Attrs(L) ∪Attrs(φ) Φ ` φ; φ′

Φ `A J ∼ J ′ 2Tables(J′) − ∅ = {L1, . . . , Ln}
Φ ` del(L, J, φ) ; del(??{L1, . . . , Ln}, J ′, φ

(Delete)

Φ ` φ; φ′ Φ ` a; h
A = Attrs(φ) ∪Attrs({a}) Φ `A J ∼ J ′

Φ ` upd(J, φ, a, v) ; upd(J ′, φ′, h, v)
(Update)

Φ ` J ∼ J ′ ∀i. Φ ` ai ; hi
Φ ` ins(J, {ai : vi, . . . }) ; ins(J ′, {hj : vj , . . . })

(Insert)

Figure 6: Inference rules for sketch generation
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Next, we combine queries by using the choice operator:

Φ ` Q� Ω Φ ` Q; Ω′

Ω = Ω1 ‖ . . . ‖ Ωn ∀i. Ω′ 6= Ωi

Φ ` Q� Ω ‖ Ω′
(Query)

For updates (ins, upd, del), we must account for the possibility that for any two up-
dates Ω′1,Ω

′
2, either one or both of the updates may happen. Thus we use the following

rule:
Φ ` U � Ω Φ ` U ; Ω′

Ω = Ω1 ‖ . . . ‖ Ωn ∀i. Ω′ 6= Ωi

Φ ` U � Ω ‖ Ω′ ‖ Ω · Ω′
(Update)

where the notation U1 · U2 is de�ned as follows:

U1 · U2 = U1;U2

(U1;U2) · U3 = U1;U2;U3

(U1 ‖ U2) · U3 = (U1 · U3) ‖ (U2 · U3)

Then the �nal sketch is obtained by obtaining the rules in this section to a �xed point.

Enumeration of join correspondences. During sketch generation, we must enu-
merate all possible join correspondences in order to produce the most general sketch.
We do this algorithmically by analogy to the Steiner tree problem on a graph where
the vertices are tables and the edges represent possible joins.

In more detail, for source and destination schemas S, S′, consider the graph G =
(V,E), where V = Tables(S′) and E = {(T, T ′) | T and T ′ can be joined}, where
two tables can be joined if one contains a foreign key corresponding to the other
table’s primary key, as described in the background section. Then a join chain can be
viewed as a connected subgraph of G, where the edges represent joins. In particular,
ignoring cyclic joins and self-joins6, we need only concern ourselves with the case
of join chains whose graph representation is a tree. In order for the resulting join
correspondence for a subgraph C = (V ′, E′) to be valid, we must also require that
for every attribute ai in the attribute set A, there exists some attribute a′i ∈ Φ(ai) in
a vertex T such that T ∈ V ′.

In our implementation, we do this by generating all possible spanning trees and
then pruning leaves until no more leaves can be removed without invalidating the
join correspondence.

3.5 Sketch Completion

After generating a sketch Ω, we now perform enumerative search over the set of
programs encoded by Ω. The basic algorithm for sketch completion is outlined in
Algorithm 2.

6They do not appear in the benchmarks, so we did not include this in our implementation, but they can
be handled by duplicating the graph and adding edges according to the cyclic structure of the join chain in
the source program.

16



Algorithm 2 Sketch completion
1: procedure CompleteSketch(Ω, P )

Input: sketch Ω, source program P
Output: target program P ′ or ⊥, indicating failure

2: Ψ← Encode(Ω)
3: while SAT(Ψ) do
4: M ← GetModel(Ψ)
5: P ′ ← Instantiate(Ω,M)
6: if Verify(P, P ′) then
7: return P ′

8: ω ← MinCex(P, P ′)
9: Ψ← Ψ ∧ Block(M,ω)

10: return ⊥

Initial SAT encoding. The �rst step in sketch completion is generating a boolean
formula Ψ that encodes all possible instantiations of the sketch Ω. This is done by
introducing a constraint for each hole that it must be �lled by exactly one element of
its domain:

Ψ =
∧

??i∈Holes(Ω)

⊕(b1i , . . . , b
ni
i ),

where bji is a boolean variable representing that the ith hole has been �lled with the
jth element of its domain.

Veri�cation and generating minimum failing inputs. Since invoking Medi-
ator[11] to perform veri�cation is very expensive, we instead perform exhaustive
testing up to a bound on the number of statements. Additionally, this gives us the
ability to retrieve minimal counterexamples (precise de�nition given in the next sec-
tion) for each failed veri�cation result7. In detail, to generate all invocation sequences
with n statements, for statements 1 to n − 1, we generate all possible updates with
parameters given by a seed set of constants C , and for statement n we generate all
possible queries using the same set of parameters. Then for each invocation sequence
ω we check if the result given by programs P and P ′ are the same. If they are dif-
ferent, we return ω as the minimum failing input. Otherwise, we pass the programs
onto Mediator to decide equivalence.

Blocking clause generation. As discussed in the overview, we aim to block as
many possible invocations as possible given a minimum failing input. A minimum
failing input for programs P and P ′ is de�ned as an invocation sequence ω such that

JP Kω 6= JP ′Kω , and
@ω′. |ω′| < |ω| ∧ JP Kω′ 6= JP ′Kω′ .

7Note that if exhaustive testing fails to �nd a counterexample but Mediator decides that the programs
are not equivalent, we do not obtain a minimum failing input. However, this does not seem to occur in
practice.
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Observe that ifH is the set of holes in functions that appear in ω (andHc is the set of
holes that are not in H), any program that instantiates the same values to the holes
in H , regardless of the assignments to Hc, is guaranteed to produce the same result
for ω. Furthermore, since ω is a minimum failing input, the size of Hc is maximized,
so we are able to block more assignments than other failing inputs.

To encode this as a blocking clause, we add the following constraint, where ki is
the index of the assignment to hole i:

φ = ¬
( ∧
??i∈H

bkii
)

3.6 Soundness and Completeness

As shown in the appendix included in [13], which is the extended version of [12],
Migrator is both sound, which means that generated programs are guaranteed to
be equivalent to the original program, and relatively complete, which means that if
there exists some program P ′ ' P which is structurally isomorphic to the original
program P , Migrator is guaranteed to �nd that program, with some soundness and
completeness assumptions on the veri�er (note that Mediator, the veri�er we use,
is both sound and relatively complete[11]). Structural isomorphism, which is also
de�ned in the appendix, roughly means that two programs share the same general
structure and are related to each other according to a value correspondence.

3.7 Evaluation

We have evaluated Migrator on a dataset of 20 programs taken from textbooks, on-
line tutorials, and real-world web applications available on GitHub, taken from prior
work[11]. The results are summarized in Table 1. See [12] for a detailed description
of the experimental setup and explanation of the results table as well as descriptions
of the refactoring operation for each benchmark.

We can see from the results that Migrator is able to synthesize all 20 benchmarks
in an average of 69.4 seconds per benchmark, or 1.2 seconds per function. This indi-
cates that our tool can be very useful in automatically performing schema refactoring,
especially given that it requires no additional user input.

Comparison with Sketch. Table 2 compares our tool with Sketch[10], which
uses the SMT-driven CEGIS approach to generate candidate programs. As shown in
the table, Sketch is unable to synthesize all real-world benchmarks and two textbook
benchmarks as well as being signi�cantly slower (5.3x to 10455.0x) than Migrator.
This demonstrates that our proposed approach is able to scale better than the standard
CEGIS approach for this domain.
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Table 1: Main experimental results.
Benchmark Funcs

Source Target

VCs Iters

Synth Total

Tbl Att Tbl Att Time(s) Time(s)

t
e
x
t
b
o
o
k

b
e
n
c
h

Oracle-1 4 2 8 1 6 1 1 0.3 2.7
Oracle-2 19 3 17 7 25 1 5 0.5 11.3
Ambler-1 10 1 6 2 7 1 2 0.3 2.9
Ambler-2 10 2 7 1 6 1 1 0.3 0.6
Ambler-3 7 2 5 2 5 2 5 0.4 30.6
Ambler-4 5 1 2 1 2 1 1 0.3 0.5
Ambler-5 8 2 5 3 6 5 7 0.3 3.1
Ambler-6 10 2 9 2 8 1 1 0.3 0.7
Ambler-7 8 2 7 2 8 1 1 0.3 0.6
Ambler-8 14 3 10 3 13 1 7 0.5 3.1

r
e
a
l
-
w
o
r
l
d

b
e
n
c
h

cdx 138 16 125 17 131 1 7 11.9 38.9
coachup 45 4 51 5 55 1 10 1.8 6.7
2030Club 125 15 155 16 159 1 2 5.2 24.8
rails-ecomm 65 8 69 9 75 1 6 2.5 10.3
royk 151 19 152 19 155 1 17 46.1 60.1
MathHotSpot 54 7 38 8 42 6 11 1.2 5.8
gallery 58 7 52 8 57 1 11 2.5 9.4
DeeJBase 70 10 92 11 97 1 8 3.5 9.3
visible-closet 263 26 248 27 252 1 108 1304.7 1370.8
probable-engine 85 12 83 11 78 1 9 4.6 17.5
Average 57.5 7.2 57.1 7.8 59.4 1.5 11.0 69.4 80.5
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Table 2: Comparison with Sketch.
Benchmark

Sketch

Synth Time(s) Speedup

t
e
x
t
b
o
o
k

b
e
n
c
h

Oracle-1 88.2 294.0x
Oracle-2 >86400.0 >172800.0x
Ambler-1 3136.5 10455.0x
Ambler-2 71.5 238.3x
Ambler-3 74.7 186.8.5x
Ambler-4 1.6 5.3x
Ambler-5 494.4 1648.0x
Ambler-6 226.2 754.0x
Ambler-7 814.8 2716.0x
Ambler-8 >86400.0 >172800.0x

r
e
a
l
-
w
o
r
l
d

b
e
n
c
h

cdx >86400.0 >7260.5x
coachup >86400.0 >48000.0x
2030Club >86400.0 >16615.4x
rails-ecomm >86400.0 >34560.0x
royk >86400.0 >1874.2x
MathHotSpot >86400.0 >72000.0x
gallery >86400.0 >34560.0x
DeeJBase >86400.0 >24685.7x
visible-closet >86400.0 >66.2x
probable-engine >86400.0 >18782.6x
Average >52085.4 >750.5x
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4 Smart Contract Optimization with Solidare

The Ethereum blockchain has seen rapid growth, with currently over $367 billion
worth of Ethereum in the blockchain[9]. One feature of Ethereum is that it lets users
create smart contracts, which are programs that run on the blockchain and can per-
form trades automatically. Since smart contracts require the user to pay money (gas)
in order to deploy, it is critical that they are optimized in terms of gas e�ciency.

Although prior work (e.g. [1]) has focused on optimization techniques for reduc-
ing gas usage of smart contracts, they do not consider optimizations that change the
underlying data layout of programs, which could lead to substantial gas savings. For
example, consider the example contract and its refactored version as shown in Fig-
ure 7. Here the refactored version uses a di�erent layout of structures to store the
same data, which leads to gas savings of approximately 30%. However, determining
exactly what data structure leads to the most gas-e�cient contract is very di�cult
without extensive knowledge of the Solidity compiler and EVM, as these kinds of
changes can produce counter-intuitive results.

Therefore, our tool Solidare[4] allows the user to specify the desired refactoring
using a simple DSL that acts on the data types of the program. The tool then au-
tomatically transforms the program’s data structures and variables according to the
speci�cation and synthesizes an equivalent program automatically. As a result, pro-
grammers can easily experiment with di�erent transformations and compare their
gas usage.

The architecture of Solidare is similar to that of Migrator, but without the value
correspondence generation step, as this is already known based on the provided trans-
formation description. First, we generate a contract sketch that encodes all possible
well-typed contract implementations that are consistent with the given transforma-
tion. As in Migrator, this is done by applying a series of rules to the program.

Next, we solve the sketch by using an optimal program synthesis technique that
�nds a completion to the sketch that is both equivalent to the original program and
minimal in terms of gas usage (with respect to a proxy gas model). The sketch com-
pletion procedure is similar to Migrator as well, using minimal failing subcontracts

to prune the search space.
We have evaluated our tool on a dataset of 20 real-world smart contracts found

in Etherscan; Solidare is able to reduce their gas usage up to 48.6% with an average
synthesis time of 31.4 seconds per benchmark. We also show that in Solidare with
the optimal synthesis technique improves upon a baseline using enumerative search
by about 31% in the number of contracts solved.

4.1 Background

For the purposes of this paper, a smart contract is a program that runs on the Ether-
eum[14] blockchain. Most smart contracts are written in Solidity, which contains fea-
tures that speci�cally target the Ethereum Virtual Machine (EVM). Smart contracts
are executed by miners who receive a fee for performing computations, so someone
who wants to deploy a smart contract on the blockchain must pay a fee (measured in
gas) that represents the computational cost of the program. As a result, smart contract
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1 contract CreditDAO { 1 contract CreditDAOT {

2 struct Election { 2 struct Election {

3 address maxVotes; 3 address maxVotes;

4 uint nextCandidateIndex; 4 uint nextCandidateIndex;

5 mapping(address => bool) candidates; 5 mapping(address => Candidate) candidates;

6 mapping(address => bool) userHasVoted; -
7 mapping(uint => uint) canVotes; 6 mapping(uint => uint) canVotes;

- 7 }

- 8 struct Count {

8 uint maxVotes; 9 uint maxVotes;

9 uint idProcessed; 10 uint idProcessed;

10 } 11 }

- 12 struct Candidate {

- 13 bool candidates;

- 14 bool voted;

- 15 }

11 ... 16 ...

12 uint public nextIdx; 17 uint public nextIdx;

13 mapping(uint => Election) public elections; 18 mapping(uint => Election) public elections;

- 19 mapping(uint => Count) public counts;

14 20
15 function submitForElection() { 21 function submitForElection() {

16 elections[nextIdx-1].nextCandidateIndex++; 22 elections[nextIdx-1].nextCandidateIndex++;

17 elections[nextIdx-1].candidates[msg.sender] = true; 23 elections[nextIdx-1].candidates[msg.sender].candidates = true;

18 } 24 }

19 function vote() { 25 function vote() {

20 elections[nextIdx-1].canVotes[candidateId] += 1; 26 elections[nextIdx-1].canVotes[candidateId] += 1;

21 elections[nextIdx-1].userHasVoted[msg.sender] = true; 27 elections[nextIdx-1].candidates[msg.sender].voted = true;

22 } 28 }

23 function finishElections(uint _iterations) { 29 function finishElections(uint _iterations) {

24 uint currentVotes; 30 uint currentVotes;

25 uint nextId = elections[nextIdx-1].idProcessed; 31 uint nextId = counts[nextIdx-1].idProcessed;

26 for (uint cnt = 0; cnt < _iterations; cnt++) { 32 for (uint cnt = 0; cnt < _iterations; cnt++) {

27 currentVotes = elections[nextIdx-1].canVotes[nextId]; 33 currentVotes = elections[nextIdx-1].canVotes[nextId];

28 if (currentVotes > elections[nextIdx-1].maxVotes) { 34 if (currentVotes > counts[nextIdx-1].maxVotes) {

29 elections[nextIdx-1].maxVotes = currentVotes; 35 counts[nextIdx-1].maxVotes = currentVotes;

30 } 36 }

31 } 37 }

32 } 38 }

33 } 39 }

Figure 7: Motivating example program
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programmers invest signi�cant e�ort into optimizing their programs for minimal gas
usage. From looking at the gas usage of several programs, the most signi�cant fac-
tor that contributes to gas usage in most programs is accessing blockchain variables,
which are much more expensive to access than local variables. As a result, in our
tool Solidare we focus on transforming a program’s data structures in order to mini-
mize accesses to blockchain variables as well as minimizing the number of statements
executed in general.

In this paper, we represent a program P as a tuple (Σ,Γ, V,F) where

• Σ is a structure environment, mapping the names of structures in the program
to their de�nition, which is a tuple of types (τ1, . . . , τn).

• Γ is a type environment, mapping variables (both �elds and local variables) to
their types. The notation Γ ` e : τ means that under the typing environment
Γ, expression e has type τ .

• V ⊆ dom(Γ) is the set of blockchain variables.
• F is a set of functions that can be invoked by Ethereum users. Function bodies

consist of statements, including assignments, loads, stores, conditionals, and
loops.

4.1.1 Types

There are three basic kinds of types in Solidity, namely primitive types (such as uint
and address), structures, and mappings.

Structures. A structure S is a named tuple (τ1, . . . , τn), where τi denotes the type
of the ith �eld in S. As in Solidity, We use the notation S(e1, . . . , en) to construct
a new value of type S where the value of the ith �eld is ei. Structures can either be
stored as a value using the memory keyword or as a reference. In this paper, we will
assume all structures are stored by reference as value structures can be treated as a
special case.

Mappings and arrays. The type mapping(W ⇒ τ) represents a key-value store
where the key has type W , which must be a primitive type, and the value has type
τ . Mappings are always stored as a reference. Note that arrays are a special case of
mappings where the key type is uint.

4.1.2 Type expressions

In this paper, we use the notation ξ to denote a type expression with a single hole. We
use the notation ξ(τ) to represent �lling in that hole with the type τ . For example, if
ξ is mapping(uint⇒ ?), then ξ(address) is mapping(uint⇒ address).

In particular, when used in inference rules, the notation ξ(τ) means that the rule
applies to any type that contains τ as a subterm.

We also use the notation ξ(τ1, . . . , τn) to mean (ξ(τ1), . . . , ξ(τn)).
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4.2 Overview

4.2.1 Motivation and usage scenario

Suppose a smart contract developer wants to optimize the smart contract shown on
the left in Figure 7. As mentioned in the introduction, the refactoring shown signif-
icantly reduces gas usage for this contract. This refactoring can be expressed in our
DSL using two transformations: �rst, some �elds in the Election structure are moved
to a new structure, Count. Next, a new structure called Candidate is introduced and
encapsulates the two boolean �elds in the Election structure. In our DSL, this is writ-
ten as follows:

Election, Count = Split(Election, 5);

Candidate = Wrap(bool, bool);

This reduces gas usage for the following reasons:

1. Since the �elds maxVotes and idProcessed are not accessed as frequently as the
other �elds, placing them in a separate structure helps avoid unnecessary reads
from the blockchain.

2. By introducing a new Candidate structure with two booleans, we can merge
the two mappings used in the Election structure into a single mapping. This
transformation ends up reducing the number of read and write operations on
the blockchain.

It is important to note that both of these transformations are necessary to reduce the
contract’s gas usage, as either of the two do not yield any signi�cant gas savings
in isolation. In practice, we found that the impact of a given transformation is very
di�cult and counterintuitive to predict beforehand. Therefore, with Solidare we aim
to provide programmers with tools to quickly try out di�erent transformations and
observe their impact on gas usage.

4.2.2 Transformation of type declarations

Given a source program P = (Σ,Γ, V,F) (refer to the background section for an
explanation on what these symbols mean) and a transformation T, the �rst thing
Solidare does is generate new data types based no T. In our example, it generates
three structures: Election, Count, and Candidate, as shown in lines 2–15 on the right
side of Figure 7. Observe also that the �elds candidates and userHasVoted have been
merged into a single �eld candidates.

4.2.3 Transformation of variable declarations

Next, Solidare modi�es and introduces variable declarations as necessary. For our
example, it does not change any existing declarations but adds the following new
variable (renamed for clarity):

mapping(uint⇒ Counts) counts;
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function submitForElection() {
elections[nextIdx− 1].nextCandidateIndex++;
if (??1{true, false})
??2{elections[nextIdx− 1].candidates[msg.sender].candidate, . . .} = true;

}
function vote(uint candidateId) {

elections[nextIdx− 1].candidateVotes[candidateId] += 1;

if (??3{true, false})
??4{elections[nextIdx− 1].candidates[msg.sender].voted, . . .} = true;

}
function �nishElections(uint _iterations) {

uint currentVotes; uint nextId;

if (??5{true, false})
nextId = ??6{true, false};

for (uint cnt = 0; cnt < _iterations; cnt++) {
if (??7{true, false})

currentVotes = ??8{counts[nextIdx− 1].idProcessed, . . .};
if (currentVotes > ??9{counts[nextIdx− 1], . . . }.numOfMaxVotes)
if (??10{true, false})
??11{counts[nextIdx− 1].maxVotes, . . . } = currentVotes;

}
}

Figure 8: Contract sketch for Figure 7

4.2.4 Sketch generation

After this, Solidare generates a program sketch (as in Migrator). First, for each
expression in the program that refers to a type a�ected by a transformation, that
expression is replaced with a hole whose domain is all expressions with the correct
type. Furthermore, for each assignment, if the assignment is a�ected by the trans-
formation, it is made optional by introducing a boolean guard hole around it (the
intuition is that some statements may become redundant as a result of the type refac-
toring, so they may be optimized out during sketch completion.) The sketch for the
functions in our example is shown in Figure 8. As an example, observe the third line
in submitForElection, which is an assignment to type bool. Since the second trans-
formation has wrapped two such �elds into the struct Candidate, a hole is introduced
with domain including elections[nextIdx−1].candidates[msg.sender].candidates and
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elections[nextIdx− 1].candidates[msg.sender].voted.
Finally, Solidare searches for a completion of the sketch generated that is equiv-

alent to the original program, as in Migrator. A key di�erence is that Solidare uses
an optimal synthesis technique to generate a program that minimizes expected gas
usage. It does this by framing sketch completion as a MaxSAT instance, using soft
clauses to encode a proxy of gas usage based on how holes are �lled in.

The search space for this domain is much larger than SQL programs for most in-
stances. For our example, the search space has 4096 di�erent completions. To solve
this problem, we use a similar minimal failing subcontract-based approach along with
domain knowledge to prune the search space. Using these techniques, our implemen-
tation solves this problem after only three iterations and one second of runtime.

4.3 DSL Description

In this section, I will describe the domain-speci�c language used to describe type
refactoring transformations and its semantics in terms of how a program’s structure
and type environments are a�ected by the DSL.

4.3.1 Type aliases

In our implementation, we have implemented a preprocessing step that interprets type
aliases, which allow the user to specify an alternate name for a type, as a language
extension to Solidity. For example, the program fragment

typedef myUint→ uint;

myUint x;

is expanded to the following before being passed to the Solidity compiler:

/* typedef myUint→ uint; */

/* myUint → */ uint x;

In addition, information about which �elds have been modi�ed is emitted for use by
Solidare.

Type aliases are particularly useful here because they can be used to specify cer-
tain �elds to be excluded from a transformation. For example, in the following pro-
gram:

struct Person {
uint age;

bool isTA;

. . . }
struct Class {

uint numStudents;
bool hasTA; }
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if we wish to perform the transformation TAProps ← Wrap(uint, bool), we can use
the type alias feature to exclude the �elds of Class and perform the transformation
TAProps←Wrap(ageType, isTAType) instead:

typedef ageType→ uint;

typedef isTAType→ bool;

struct Person {
ageType age;

isTAType isTA;

. . . }
struct Class {

uint numStudents;
bool hasTA; }

In addition, since our DSL requires the �elds involved in a Wrap to have distinct
types, type aliases can be used to accomplish this when necessary.

4.3.2 Syntax

Our DSL contains �ve types of transformations:

Wrap and Unwrap. The statement S ← Wrap(τ1, . . . , τn) creates a new struc-
ture S containing �elds with types τ1, . . . , τn. Unwrap(S) is the inverse of Wrap,
removing structure S, replacing variables with the �elds contained.

Reorder. Reorder(S, i, j) swaps the ith and jth �elds of S.

Split and Merge. The statement S1, S2 ← Split(S, i) splits the structure S into
two structures S1, S2, with S1 containing the �rst i �elds and S2 the rest. Conversely,
S ← Merge(S1, S2) merges the �elds in S1 and S2 into a new structure S.

Both Split and Merge are just syntactic sugar for a combination of Wrap and
Unwrap, but they are included for convenience. In particular, if S has �elds of type
τ1, . . . , τn, the statement (S1, S2) = Split(S, i) is equivalent to

Unwrap(S);S1 ←Wrap(τ1, . . . , τi);S2 ←Wrap(τi+1, . . . , τn).

Similarly, if S1 has �elds τ1, . . . , τn and S2 has �elds τ ′1, . . . , τ ′m, then the statement
S ← Merge(S1, S2) is equivalent to

Unwrap(S1);Unwrap(S2);S ←Wrap(τ1, . . . , τn, τ
′
1, . . . , τ

′
m).

4.4 DSL Semantics

In this section, we describe the semantics of our DSL on the structure de�nitions Σ
and variable types Γ. We introduce the following notation:
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¬HasFieldSeq(F , ξ(W))

S ←Wrap(W) ` F ↪→ F
(Wrap1-Fld)

¬HasField(F , ξ(S))

Unwrap(S) ` F ↪→ F
(Unwrap1-Fld)

HasFieldSeq(F , ξ(W))

S ←Wrap(W) ` F ↪→ Replace(F , ξ(W), ξ(S)
(Wrap2-Fld)

HasField(F , ξ(S)) F ′ = Fields(S)

Unwrap(S) ` F ↪→ Replace(F , ξ(S), ξ(F ′))
(Unwrap2-Fld)

Σ = {S1 7→ F1, . . . , S1 7→ Fn}
∀i. S ←Wrap(W) ` Fi ↪→ F ′i

S ←Wrap(W) ` Σ ↪→ {S 7→W, S1 7→ F1, . . . , Sn 7→ Fn}
(Wrap-S)

Σ = {S1 7→ F1, . . . , S1 7→ Fn}
∀i ∈ [1, n]− {k}. S ← Unwrap(Sk) ` Fi ↪→ F ′i
Unwrap(Sk) ` Σ ↪→ {Si 7→ F ′i | i ∈ [i, n]− {k}}

(Unwrap-S)

F = Σ(S) F ′ = Swap(F , i, j)

Reorder(S, i, j) ` Σ ↪→ Σ[S 7→ F ′]
(Reorder-S)

T1 ` Σ ↪→ Σ′ T2 ` Σ′ ↪→ Σ′′

T1;T2 ` Σ ↪→ Σ′′
(Seq-S)

Figure 9: Inference rules for structure environments

• The symbol F represents a �eld sequence, which is a sequence of types con-
tained in a structure environment. The symbolW is an alternate representation
for a �eld sequence as speci�ed in a Wrap command.

• HasField(F , τ) is true if �eld sequence F contains a �eld of type τ .
• HasFieldSeq(F ,F ′) is true if �eld sequence F contains F ′ as a consecutive

subsequence.
• Fields(S) returns the �eld sequence consisting of all �elds of structure S.
• Replace(F ,F1,F2) returns a �eld sequence by replacing every consecutive oc-

currence of F1 with F2 in F .

4.4.1 Semantics over structure de�nitions

The semantics of our DSL on structure de�nitions are summarized in Figure 9. We
use judgments of the form T ` Σ ↪→ Σ′ to mean that the DSL program T transforms
the structure environment Σ to the new structure environment Σ′.

Semantics ofWrap. For S ←Wrap(F ), we �rst introduce a new struct S (Wrap-
S); then we substitute all occurrences of those type expressions involving those �elds
with S (Wrap2-Fld). Structures that do not contain F are unchanged. Recall that the
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notation ξ(F ) refers to any sequence of types such that they consist of the sequence
F substituted into some type expression ξ.

Example 1. Consider the following structure de�nition:

typedef intX→ uint; typedef intY→ uint;

struct Items {
mapping(uint⇒ address) owner;
mapping(uint⇒ intX) x;

mapping(uint⇒ intY) y; }

This is mapped by the transformation Point←Wrap(intX, intY) as follows:

struct Point {intX x; intX y; }
struct Items {
mapping(uint⇒ address) owner;
mapping(uint⇒ Point) p; }

First, Wrap-S introduces a new structure Point; then, the two mappings in Items are
merged into a single �eld, according to rule Wrap2-Fld. This is because Items contains
two consecutive �elds of type ξ(intX) and ξ(intY), where ξ = mapping(uint ⇒ ?),
so it is replaced with ξ(Point).

Semantics of Unwrap. For Unwrap(S), we �rst remove the structure S from the
structure environment (Unwrap-S). Next, as with Wrap, we substitute occurrences of
S with the corresponding �elds (Unwrap2-Fld).

Example 2. Now consider the following structure de�nition:

struct Point {intX x; intY y; }
struct Square {Point start; uint len; }

The transformationUnwrap(Point) generates the following new structure de�nition:

struct Square {intX x; intY y; }

Reorder and composition. The semantics of Reorder(S, i, j) are simple; the cor-
responding �elds in S are swapped, with no other e�ects.

Finally, the rule Seq-S tells us how to compose two DSL statements, which is done
in the expected way.

4.4.2 Semantics over variable types

The semantics of our DSL on variable types are summarized in Figure 10. We use
judgments of the form T ` Γ ↪→ Γ′ to mean that the DSL program T transforms the
typing environment Γ to the new typing environment Γ′.
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Γ′ = Γ[v 7→ ξ(S) | Γ(v) = ξ(τ1, . . . , τn)]

S ←Wrap(τ1, . . . , τn) ` Γ ↪→ Γ′
(Wrap-T)

Fields(S) = (τ1, . . . , τn) Γ′ = Γ[v → ⊥ | Γ(v) = ξ(S)]
Γ′′ = Γ′[vi 7→ ξ(τi) | Γ(v) = ξ(S), i ∈ [1, n], vi fresh]

Unwrap(S) ` Γ ↪→ Γ′′
(Unwrap-T)

Reorder(S, i, j) ` Γ ↪→ Γ
(Reorder-T) T1 ` Γ ↪→ Γ′ T2 ` Γ′ ↪→ Γ′′

T1;T2 ` Γ ↪→ Γ′′
(Seq-T)

Figure 10: Inference rules for type environments

Semantics of Wrap The semantics of a Wrap statement are described in rule
Wrap-T. For the statement S ← Wrap(τ1, . . . , τn), all variables whose type is in-
cluded as some ξ(τi) has its type changed to ξ(S).

Example 3. Consider the refactoring program Point ← Wrap(intX, intY) and the
following type environment Γ:

Γ(xs) = mapping(uint⇒ intX) Γ(ys) = mapping(uint⇒ intY)

After applying this transformation, we obtain the following new type environment
Γ′:

Γ′(xs) = mapping(uint⇒ Point) Γ′(ys) = mapping(uint⇒ Point)

Observe that in this example, one of the variables (xs or ys) is likely to be redun-
dant as we only need one of the two. If this is the case, our synthesis algorithm, since
it is guaranteed to �nd the optimal solution, will choose to reduce the number of used
variables by eliminating one if possible.

We choose to de�ne our DSL semantics in this way because (a) we do not know
whether one is actually redundant, and (b) it is unclear what to do when there are
multiple variables of the same type that have been wrapped into a structure. There-
fore, the semantics keep things simple, while the optimal synthesis algorithm ensures
that the transformed program does not contain redundant variables.

Semantics ofUnwrap Similarly, for a statement of the formUnwrap(S), we apply
rule Unwrap-T. First we remove all variables of type ξ(S) for some ξ. Then, if S has
�elds of type τ1, . . . , τn, for each removed variable we introduce n new fresh variables
v1, . . . , vn of type ξ(τ1), . . . , ξ(τn). The new variables are blockchain variables if and
only if the original variables are blockchain variables.

Example 4. Consider the refactoring program Unwrap(Point) and the following
type environment Γ:

Γ(p) = Point Γ(m) = mapping(uint⇒ Point)
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where Point has de�nition

struct Point {intX x; intY y; }.

After applying this transformation, we obtain the following new type environment
Γ′:

Γ′(p1) = intX Γ′(m1) = mapping(uint⇒ intX)

Γ′(p2) = intY Γ′(m2) = mapping(uint⇒ intY)

4.5 Optimal Synthesis of Smart Contracts

In the previous section, I described the semantics of our DSL in terms of how it af-
fects the structure and type environments of a program. In this section, we use a
program synthesis approach to automatically generate a new program with the refac-
tored structure and type environments that is equivalent to the original program. The
notion of equivalence we use is the same as in Solis[7], which is similar to that of Mi-
grator, and is denoted P ' P ′.

Problem statement. Our goal is to synthesize an equivalent program that mini-
mizes gas usage, but it is di�cult to estimate gas usage statically. To solve this prob-
lem, we de�ne a proxy gas metric Ψ which takes into account the number of state-
ments and the number of used blockchain variables. In particular, for two programs
P1, P2, we de�ne

Ψ(P1) < Ψ(P2) i� |V1| < |V2| ∨ (|V1| = |V2| ∧ Stmts(P1) < Stmts(P2)),

where V1, V2 are the sets of blockchain variables of P1, P2, respectively (note that
unused variables will be eliminated during synthesis). In practice, it was found that
this proxy metric is e�ective at comparing the quality of di�erent solutions. With this
in mind, the optimal synthesis problem can be stated as follows:

Optimal synthesis problem. Let P = (Σ,Γ, V,F) be a smart contract and T a
type refactoring program. Let Σ′,Γ′ such that T ` Σ,Γ ↪→ Σ′,Γ′. Our synthesis
problem is to �nd a new contract P ′ = (Σ′,Γ′, V ′,F′) such that P ' P ′ and Ψ(P )
is minimized.

4.5.1 Sketch generation

First, after transforming the structure and type environments for a program, the next
thing Solidare does is generate a program sketch according to a set of rules. To give
a high-level overview, the basic idea is to identify all expressions that are no longer
valid, or “stale”. Then, we replace each expression with a hole whose domain consists
of expressions that do type check according to the context of that expression.

More formally, for a program P and transformation T, if Γ,Γ′ are type environ-
ments such that Γ is the type environment of P and T ` Γ ↪→ Γ′, an expression e is
stale with respect to T, written Stale(e), if for some type τ

Γ ` e : τ and Γ′ 0 e : τ.
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τ ∈W
S ←Wrap(W) ` τ . τ

(Wrap-T1)
τ ∈W ξ(τ) 6= τ

S ←Wrap(W) ` ξ(τ) . ξ(S)
(Wrap-T2)

τ ∈ Fields(S)

Unwrap(S) ` ξ(τ) . ξ(τ)
(Unwrap-T1)

Fields(S) = F

Unwrap(S) ` ξ(S) . ξ(F )
(Unwrap-T2)

LValue(e) Stale(e) Γ ` e : τ
T ` τ . τ ′ δ = {e′ | Γ′ ` e′ : τ ′}

T,Γ,Γ′ ` e; ??[δ]
(Stale1)

LValue(e) Stale(e) Γ ` e : τ
T ` τ . (τ ′1, . . . , τ

′
n)

∀i. δi = {e′ | Γ ` e′ : τ ′i}
T,Γ,Γ′ ` e; (??[δ1], . . . , ??[δ2])

(Stale2)
LValue(e) ¬Stale(e)

T,Γ,Γ′ ` e; e
(NonStale)

∀i. T,Γ,Γ′ ` ei ; e′i
◦ is an operator, function call, structure constructor

T,Γ,Γ′ ` ◦(e1, . . . , en) ; ◦(e′1, . . . , e′n)
(Comp)

δ′ = {e′ | T,Γ,Γ′ ` e; e′, e ∈ AllDoms(δ)}
T,Γ,Γ′ ` ??[δ] ; ??[δ′]

(Hole)

Figure 11: Inference rules for expressions. LValue(e) is true if e is a variable, �eld
access e′.f , or index operation e′[a], where e′ is an arbitrary expression and f, a are
an arbitrary �eld and expression.

For example, in Example 3, the expression xs[0] is a stale expression because Γ `
xs[0] : intX (i.e. it has type intX), but Γ′ 0 xs[0] : intX because in the new type
environment xs[0] has type Square. Furthermore, in Example 4, the expression p is
stale because the variable no longer exists in Γ′.

Sketch generation for expressions. After identifying stale expressions, we must
replace them with new expressions that type-check.

Before we can describe how sketch generation works for expressions, we �rst need
to de�ne how the type of an expression in the original program maps to a new type
in the transformed program. We do this with a type correspondence relation, written
τ . τ ′, described in the �rst four rules of Figure 11. It is important to note that even
if an expression e has type τ such that τ . τ ′, the expression may (and if it is stale,
will not) still type-check under Γ′ and must be replaced with a new expression. Next
I will describe in detail how this correspondence is de�ned for Wrap and Unwrap
(recall that Reorder will never cause an expression to be stale.)

Type correspondence forWrap. There are two cases that can occur for stale expres-
sions as a result of S ←Wrap(τ1, . . . , τn). This concerns expressions whose type τi
is contained in the �eld sequence of Wrap. For variables of type τi (rule Wrap-T1),
the type remains the same, as the underlying types τi are still valid. However, for
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nested types, the situation is di�erent. This is because blockchain variables of type τi
have been wrapped inside the structure S. Therefore, when an expression has type
ξ(τi) 6= τi (rule Wrap-T2), the corresponding type in the refactored program is ξ(S).

Type correspondence for Unwrap. Like in Wrap, the types of expressions with
type τi ∈ Fields(S) after Unwrap(S) remain the same (rule Unwrap-T1). Unlike
Wrap, this holds even if τi is inside a nested type ξ(τi). However, as shown in rule
Unwrap-T2, variables of type ξ(S) must be unwrapped into n di�erent variables of
type ξ(τ1), . . . , ξ(τn), where (τ1, . . . , τn) = Fields(S).

As mentioned at the beginning of this section, the key idea behind sketch genera-
tion is to replace each stale expression with a hole whose domain includes well-typed
expressions. To formalize this notion, we introduce the following de�nition:

Valid replacement. Let T be a type refactoring for program P = (Σ,Γ, V,F) and
Σ′,Γ′ such that T ` Σ,Γ ↪→ Σ′,Γ′. Then an expression e′ is a valid replacement for
an expression e ∈ P if and only if for some τ ′,

(1) T ` τ . τ ′ and (2) Γ′ ` e′ : τ ′.

Rules for sketch generation. Using this notion of valid replacements, I will now
describe the sketch generation procedure for expressions. This is shown in the last 5
rules of Figure 11, where T,Γ,Γ′ ` e ; e′ means that e should be rewritten to e′
(similar to Migrator.)

As previously mentioned, we replace stale expressions with a hole whose domain
includes all valid replacements (Stale1). Rule Stale2 generalizes this to the case when
a variable should be replaced with several new variables, as with Unwrap. Non-
stale expressions are left alone (NonStale), which is useful when combined with the
next rule: complex expressions, such as those with arithmetic operators and function
calls, are rewritten recursively (Comp). Finally, when rewriting holes (as is done with
multi-statement refactorings), we recursively generate holes for each expression in
the domain and then combine their domains.

Sketch generation for statements. The rules for sketch generation for statements
are summarized in Figure 12. The basic idea is to replace each assignment statement s
that contains a stale expression with a new statement if (??{true, false}) s′, where
s′ is obtained by replacing the stale expressions in s according to the previous section.
The reason why we introduce guards is that some statements can become redundant
after refactoring; in order for the resulting program to be optimal, we must eliminate
them during sketch completion.

The �rst three rules describe how a sketch is generated for assignments l := e.
If neither l nor e is stale, the assignment is unchanged (Assign1). Otherwise, the
assignment is stale, and we replace the stale sides according to the previous section. If
the resulting types are still not tuples, we generate a conditional assignment (Assign2);
otherwise, we lift the assignment to generate multiple (optional) assignments for each
element (Assign3).

The remaining rules (Seq, Cond, Loop) describe how to compose statements by
proceeding recursively.
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¬HasStaleExpr(l)
¬HasStaleExpr(e)

T,Γ,Γ′ ` l := e; l := e
(Assign1)

HasStaleExpr(l ∨ e)
T,Γ,Γ′ ` l ; l′, e; e′

T,Γ,Γ′ ` l := e; l′ J e′
(Assign2)

HasStaleExpr(l) T,Γ,Γ′ ` l ; (l′1, . . . , l
′
n)

HasStaleExpr(e) T,Γ,Γ′ ` e; (e′1, . . . , e
′
n)

T,Γ,Γ′ ` l := e; l′1 J e
′
1; . . . ; l′n J e

′
n

(Assign3)

T,Γ,Γ′ ` s1 ; s′1, s2 ; s′2
T,Γ,Γ′ ` s1; s2 ; s′1; s′2

(Seq)

T,Γ,Γ′ ` e; e′, s1 ; s′1, s2 ; s′2
T,Γ,Γ′ ` if (e) s1 else s2 ; if (e′) s′1 else s′2

(Cond)

T,Γ,Γ′ ` e; e′, s1 ; s′1
T,Γ,Γ′ ` while (e) s1 ; while (e′) s′1

(Loop)

Figure 12: Inference rules for statements. The notation l J e is shorthand for the
optional assignment if (??{true, false}) l := e.

Example 5. Consider the refactoring from Example 4 and the statement m[0] :=
Point(x, y) with Γ(x) = intX,Γ(y) = intY. We generate the following sketch:

if (??1{true, false}) ??2{m1[0], . . .} := ??3{x, . . .}
if (??4{true, false}) ??5{m2[0], . . .} := ??6{y, . . .}

Multi-statement refactorings. We apply the rules in the previous sections repeat-
edly, as described using the following inference rules:

T ` Γ ↪→ Γ′ T,Γ,Γ′ ` s; s′

T,Γ,Γ′ ` s;∗ s′
(Base)

T1,Γ,Γ
′ ` s;∗ s′ T2,Γ

′,Γ′′ ` s′ ;∗ s′′

T1;T2,Γ,Γ
′′ ` s;∗ s′′

(Ind)

The idea is to �rst generate a sketch for the �rst atomic transformation (Wrap, Un-
wrap, etc.); then, apply the next atomic transformation to the resulting sketch, and
so on.

4.5.2 Sketch completion

The basic sketch completion approach of Solidare is essentially the same as Migra-
tor, but with a few modi�cations to make it more suitable for this new domain. Like
in Migrator, we reduce the problem of �lling in each hole with an element of its
domain to SAT.
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Hard constraints. First, like in Migrator, we must ensure that each hole is �lled
in with exactly one candidate. This is encoded using the following hard constraints:∧

??i∈Hole(Ω)

⊕(b1i , . . . , b
ni
i ).

Additionally, since programs contain many instances of the same expression, we can
exploit this symmetry by requiring that those holes are instantiated in the same way:∧

e

∨
e′

∧
??i|e;∗??i

b
Index(e′,??i)
i ,

where Index(e′, ??i) is the index of expression e′ in hole i. Writing this with quanti-
�ers makes it a bit easier to understand (where Holes(e) = {??i | e;∗ ??i}):

∀e ∈ P. ∃e′. ∀??i ∈ Holes(e). ??i 7→ e′.

Example 6. Consider the transformation from Example 3 and the statements

z := xs[0]; (Γ(z) = intX)

xs[1] := xs[1] + z;

According to our sketch generation rules (using f1 to represent the freshly generated
�eld), the corresponding sketch is (where δ1 = {z.f1, xs[0].f1}, δ2 = {z.f1, xs[0].f1,
xs[1].f1}):

if (??1{true, false}) ??2[δ1] := ??3[δ1]

if (??4{true, false}) ??5[δ2] := ??6[δ2] + ??7[δ2]

Here, ??5 and ??6 both correspond to the source expression xs[1]. Therefore, we add
the following constraint (we could also do so for source expression z):

(b15 ∧ b16) ∨ (b25 ∧ b26) ∨ (b35 ∧ b36).

In other words, both of these holes must be instantiated with either z.f1, xs[0].f1, or
xs[1].f1.

Soft constraints. However, we also have the additional constraint that our proxy
gas metric Ψ is minimized. Therefore, we use soft constraints to guide the search
towards instantiations with less gas usage.

Minimizing blockchain variables. First, I will consider how to minimize the num-
ber of used blockchain variables. Let Guards(??i) denote the set of all guard holes
surrounding hole i. For each blockchain variable v, if all guard holes for hole i are
assigned to true (which always has index 1), we prefer solutions that do not assign ??i
to an expression that contains v. This is encoded using the following soft constraint,
where n is the number of statements in the sketch:∧

v∈V

( ∧
??i∈Holes(Ω)

( ∧
??j∈Guards(??i)

bik →
( ∧
ej∈Dom(??i)

(v ∈ ej)→ ¬bji
))
, n

)
.
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Example 7. Consider the sketch in Example 6 and assume z is a blockchain vari-
able. In the sketch, z occurs in holes ??2 and ??3 (both guarded by ??1) as well as
??5, ??6, ??7 (guarded by ??4). This translates to the following soft constraint:(

b11 → (¬b12 ∧ ¬b13)
)
∧
(
b14 → (¬b15 ∧ ¬b16 ∧ ¬b17)

)
.

This says that (recall that z.f1 is the �rst element in the domain for the holes in which
z occurs): if the guards are enabled (b11 and b14), they should not be instantiated with
z.f1.

Blocking clause generation. Similar to Migrator, we want to generate a smart
blocking clause the prevents a large number of incorrect completions. First, we intro-
duce the notion of a minimal failing subcontract:

Minimal failing subcontract. Let the notationP ↓ F denote the same contract asP
but only containing functions in the set F. Given a source contract P = (Σ,Γ, V,F)
and candidate refactored contract P ′ = (Σ′,Γ′, V ′,F′), a minimal failing subcontract

is P ∗ = (Σ′,Γ′, V ′,F∗) such that

(1) F∗ ⊆ F′, (2) P ↓ F∗ 6' P ∗, (3) ∀F̂ ⊂ F∗. P ↓ F̂ ' P ′ ↓ F̂.

In other words, given an incorrect program P ′, a minimal failing subcontract P ∗ is
one that (1) contains a subset of the functions in P ′, (2) the behavior of P ∗ is not
equivalent to the original contract, and (3) P ∗ is minimal in the sense that removing
any other function de�nition causes the resulting contract to be equivalent to the
original contract with respect to the functions de�ned.

Example 8. Consider the following smart contract P that stores a point with coor-
dinates:

contract SimplePoint {
uint public x = 0; uint public y = 0;

function set(uint _x, uint _y) public {x = _x; y = _y; }
function getX() public returns (uint) {return x; }
function getY() public returns (uint) {return y; } }

and another smart contract P ∗ as follows:

contract SimplePoint {
uint public x = 0; uint public y = 0;

function set(uint _x, uint _y) public {x = _x; y = _y; }
function getX() public returns (uint) {return y; } }

Here, P ∗ is a minimal failing subcontract of P : (1) P ∗ contains a subset of the func-
tions in P : set and getX; (2) the behavior of P ∗ is di�erent from P because executing
set(1, 2); getX() returns 1 onP but 2 onP ∗; (3)P ∗ is minimal because removing either
function set or getX results in a subcontract that is equivalent to the corresponding
part of P . As in Migrator, any refactoring that agrees with P ∗ on the holes used in
P ∗ cannot be correct, so we can block only those holes used in P ∗.
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Example 9. Let us continue with Example 8. Now consider a sketch S that is gener-
ated from the original program P (where δ1 = {_x, _y}, δ2 = {x, y}):

contract SimplePoint {
uint public x = 0; uint public y = 0;

function set(uint _x, uint _y) public {x = ??1[δ1]; y = ??2[δ1]; }
function getX() public returns (uint) {return ??3[δ2]; }
function getY() public returns (uint) {return ??4[δ2]; } }

Since getY is not a part of the minimal failing subcontract from Example 8, the as-
signment to ??4 is irrelevant, so we can prune all sketch completions where ??1 7→
_x, ??2 7→ _y, ??3 7→ _y.

Generating blocking clauses from minimal failing subcontracts. To encode this as a
blocking clause, given a minimal failing subcontract P ∗ = Ω∗[M∗] with sketch and
model (Ω∗,M∗) of candidate refactored contract P ′ = Ω′[M ′], whereM∗(??i) is the
index of the assignment to hole i and M∗ ` ??i 7→ e means that M∗ maps hole i to
expression e, we add the following constraint, where ki is the index of the assignment
to hole i:

φ = ¬
( ∧

??i∈Holes(Ω∗)

(∀??k ∈ Guards(??i). M
∗ ` ??k 7→ >)→ b

M∗(??i)
i

)
.

In particular, if we say that a hole ??i is enabled by model M∗ if M∗ assigns all
of ??i’s guards to true, any model M ′′ that agrees with M ′ on the assignments to
enabled holes is also guaranteed to yield an incorrect completion. Therefore, when
generating a blocking clause we can safely disregard all assignments to variables that
are either not in the domain of M ′ or disabled by M ′.

4.6 Implementation

In this section, I will discuss some optimizations we employed in our implementation
over the basic synthesis algorithm as presented.

4.7 Sketch Generation

Deterministic split rules. Instead of implementing Split as a sequence ofUnwrap
and Wrap statements, due to the speci�c structure of Split, we were able to imple-
ment it as a fully deterministic transformation. In particular, if a structure S is split
into two structures S1, S2, then for each variable x of type ξ(S) we introduce two
variables of type ξ(S1), ξ(S2). Then, for every �eld access of the form e.f where
e is an expression that contains x, we translate this to e′.f where e′ is e[xi/x] for
xi ∈ {x1, x2}, depending on whether the �eld f belongs to S1 or S2. The full sketch
generation rules will be available in the Appendix[4].
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Domain generation. As described, the sketch generation procedure speci�es that
the domain of holes contains all expressions of the replacement type. However, this
set is very large and possibly in�nite. Therefore, we restrict the domain of each hole
to expressions that can be formed using subterms of the source expression along with
newly-generated �elds and variables. We also discard expressions whose index struc-
ture is not compatible with the source expression; for example, if the source expres-
sion is x, it is never necessary or pro�table to generate ys[z] as a replacement.

4.8 Sketch Completion

In addition to the basic MaxSAT encoding, we also include two additional constraints
we found to be useful in practice. First, we disallow completions where the left-hand
side and right-hand side of an assignment are syntactically identical (and are su�-
ciently “simple”). Second, we restrict completions such that if a variable is read, it
must be written to at some point in the program (recall that the order in which func-
tions are executed is not known).

4.9 Equivalence Checking

We use the Solis[7] equivalence checking engine for Solidity, but as in Migrator, we
�rst perform bounded testing to quickly refute most incorrect completions and only
invoke the more sophisticated checker when testing does not �nd a counterexample.

4.10 Generating Minimal Failing Subcontracts

Recall that we use minimal failing subcontracts to prune large parts of the search
space using a single counterexample. One obvious way to do so is to successively
remove functions and check that it is a minimal failing subcontract. However, this
approach is potentially very slow as it involves many calls to the veri�er. In the case
of a minimum failing input (as inMigrator) returned by exhausting testing, we know
that the resulting subcontract is guaranteed to be minimal. However, for counterex-
amples not found through testing, the subcontract is not guaranteed to be minimal;
nonetheless, we found the the number of functions is still rather small and we found
that removing only the functions not used in the counterexample is still very e�ective
in practice.

4.11 Soundness and Completeness

As shown in the appendix[4], Solidare is both sound, which means that generated
programs are guaranteed to be equivalent to the original program as well as mini-
mizing the proxy gas metric Ψ, and complete, which means that if there exists some
program P ′ ' P , Solidare is guaranteed to �nd that program.

4.12 Evaluation

We have evaluated Solidare on a dataset of 20 smart contracts taken from Etherscan
and a total of 39 manually-written transformations designed to reduce gas usage. See
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ID Contract LOC Fns T

Sketch Completion Max Avg

Time (s) Time (s) Di� Di�

1 Announcement 112 7 2 0.2 0.2 23 17.5

2 Auction 964 70 1 3.7 7.7 34 34.0

3 BdpImageStorage 258 27 2 0.1 0.4 32 32.0

4 BinaryOption 916 20 1 0.4 1.4 31 31.0

5 Congress 163 9 3 1.2 1.6 66 34.7

6 CreditDAO 111 14 2 0.4 0.4 54 50.0

7 CryptoTask 255 17 3 0.3 0.3 12 8.3

8 DAOG2X 319 19 3 0.7 1.9 24 23.0

9 EMPresale 306 30 3 0.7 551.1 57 38.0

10 EthLottery 132 6 2 0.3 0.2 22 21.5

11 EtherRacing 250 20 2 1.2 6.2 32 32.0

12 FTICrowdsale 553 17 1 0.1 0.3 9 9.0

13 JanKenPon 510 40 1 17.0 2.7 47 47.0

14 Kingdom 189 13 3 0.6 3.5 64 44.7

15 Oryza 152 7 2 1.0 1.4 21 20.0

16 PollManager 473 12 2 3.0 3.1 17 17.0

17 Slaughter3D 287 26 1 0.7 2.2 22 22.0

18 SplitStealContract 465 28 2 5.0 3.9 24 23.5

19 TwoXJackpot 222 15 1 0.4 1.3 14 14.0

20 moduleToken 392 21 2 0.6 0.8 18 18.0

Table 3: Statistics about benchmarks and Solidare’s running time.
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39



1 2 3 4 6 7 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

1.2

8.4

48.6

9.2

31.1 32

26.2

7.5

23.6

7.8
12

0.8

26.8

0.7

35.6

2.1

22.7

2.5

Benchmark ID

Ga
sR

ed
uc

tio
n

(%
)

Figure 14: Gas reduction in benchmarks.

the original paper[4] for details on how these benchmarks were selected and experi-
mental setup.

The results are summarized in Table 3. We can see that Solidare is able to syn-
thesize semantically equivalent programs for all 39 transformations, and its average
running time is 31.4 seconds. Note that due to the presence of an outlier (EMPresale),
this average is higher than the median, which is 2.5 seconds. In the case of EMPresale,
this is because the generated sketch is very large (search space of ≈ 8.8× 1012) and
requires 7756 sketch completions before �nding the correct one. See [4] for a more
detailed outlier analysis.

Furthermore, as can be seen in Figure 13, many transformations require changing
a signi�cant portion of the source contract, up to 49% in one case. This indicates that
Solidare is a useful tool for automatically performing data structure refactoring with
minimal e�ort.

Gas reduction. Since the main motivation of this technique is to reduce gas us-
age of smart contracts, we have measured gas usage for both the original and refac-
tored contracts according to a representative workload based on statistics on how
frequently each function is invoked. The results are shown in Figure 14.

E�ectiveness of optimal synthesis and minimal failing subcontracts. In or-
der to evaluate the e�ectiveness of our proposed approach, we have compared Soli-
dare against three variants that do not use some techniques:

• Solidare-NoMFS is a variant that does not utilize minimal failing subcontracts
to generate blocking clauses.

• Solidare-NoSoft is a variant that does not use soft clauses to ensure opti-
mality. Instead, it uses enumerative checking (but still using minimal failing
subcontracts) to �nd the best solution.

40



0 5 10 15 20 25 30 35 40

10−1

100

101

102

103

# Solved Transformations

Sy
nt

he
sis

Ti
m

e
(s)

Solidare
Solidare-NoMFS
Solidare-NoSoft
Solidare-Baseline

Figure 15: Comparing Solidare against baselines. y-axis is on log-scale.

• Solidare-Baseline is a variant that does not use soft clauses to ensure opti-
mality nor minimal failing subcontracts.

As can be seen in Figure 15, our proposed sketch completion algorithm signi�cantly
outperforms the three baselines, which fail to solve 13% (NoSoft), 28% (NoMFS), and
31% (Baseline) of the benchmarks.
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5 Conclusion

In this paper, I have presented two tools for automating data structure refactoring.
First, Migrator allows programmers to automatically refactor database programs

based on a destination schema. In particular, it does not require any other speci�cation
or input from the programmer and is completely automated. In addition, it is both
sound and relatively complete, so the programmer has a guarantee that the resulting
program has the same semantics as the original program.

Second, Solidare allows programmers to perform data structure refactoring on
smart contracts using a simple domain-speci�c language. Although we require this
extra speci�cation from the programmer, we decided that the �exibility a�orded al-
lows the programmer to experiment with di�erent transformations to �nd one that
achieves optimal gas e�ciency. Like Migrator, it is both sound and complete.

Future work. Although both of these tools are already very useful in their current
form, there is still potential work to be done in order to make them even more useful.

For Migrator, in addition to extending the notion of value correspondence to al-
low for more expressive transformations, it would be useful if it could automatically
generate a procedure that migrates an existing database to the new schema. Further-
more, in addition to allowing the programmer to specify the target schema, a potential
improvement would be if Migrator could automatically generate a program which
is optimal with regard to some criterion that encodes real-world performance.

For Solidare, one straightforward improvement would be to re�ne the proxy gas
model to more accurately predict real-world gas usage. Another useful improvement
would be to allow the programmer to specify only the target data structure as in Mi-
grator. Finally, like Migrator, it would be useful if Solidare could automatically
generate transformations to optimize gas usage without a speci�cation from the pro-
grammer.
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