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Formal methods techniques for improving software correctness and re-

liability fall into two categories, namely, program analysis and program syn-

thesis. Program analysis techniques automatically find defects (or prove the

absence thereof) in existing software. In a dual way, program synthesis tech-

niques generate correct-by-construction code from high-level specifications. In

this thesis, we propose an array of formal method techniques that further im-

prove the state-of-the-art of program analysis techniques, while also applying

program synthesis techniques in previously unexplored domains.

Broadly speaking, the long history of program analysis can be sum-

marized as the battle between precision and scalability. As a first step in

this thesis, we propose a technique called program trimming that helps arbi-

trary safety-checking tools to achieve a better balance between precision and

scalability. In a nutshell, program trimming semantically simplifies the pro-

gram by eliminating provably correct execution paths. Because the number
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of execution paths is a typical scalability bottleneck for some techniques (e.g.,

symbolic execution) and a source of imprecision for others (e.g., abstract in-

terpretation), program trimming can be used to improve both precision and

scalability of program analysis tools. We have implemented our technique in a

tool called Trimmer and showed that Trimmer significantly improves the be-

havior of two different program analyzers over a set of challenging verification

benchmarks.

Program synthesis, on the other hand, has only recently started to

appear in more practical aspects of software development. Formal method

techniques in this area aim to ease programming for several domains while

targeting a broad range of programmers, from novices to experts. In this the-

sis, we propose a novel program synthesis technique, implemented in a tool

called Expresso, that aids experts in writing correct and efficient concurrent

programs. Specifically, Expresso allows programmers to implement concur-

rent programs using the implicit signaling paradigm, where the programmer

specifies the condition under which a thread should block but she does not

need to worry about explicitly signaling other threads when this condition be-

comes true. Given such an implicit signaling program, Expresso generates an

efficient and correct-by-construction program that does not contain deadlocks

caused by improper signaling. Our evaluation shows that Expresso is able to

synthesize efficient implementations of real-world monitors with performance

comparable to the one written by programming experts.

Finally, we observe that certain monitors require their clients to use
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their API in a manner that conforms to a context-free specification. Stati-

cally verifying that a client conforms to a context-free API protocol cannot be

handled by any prior technique. To rectify this and ensure that client appli-

cations properly use such protocols, we propose CFPChecker, a tool that

verifies the correct usage of context-free API protocols. Given a program, P ,

and an API protocol expressed as a parameterized context-free grammar, GS,

CFPChecker either proves that P conforms to GS or provides a genuine

program trace that demonstrates an API misuse. We have evaluated our pro-

posed technique on a wide variety of popular context-free API protocols and

several clients drawn from popular open-source applications. Our experiments

show that CFPChecker is effective in both verifying the correct usage and

finding counterexamples of context-free API protocols.
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Chapter 1

Introduction

With software becoming a necessity in our daily lives, ensuring its cor-

rectness has become of paramount importance. Application development has

evolved to an extremely complex process that requires developers to build

on top of existing complicated layers of software libraries and frameworks,

and thus, perpetually increasing the number of these already complex soft-

ware components. Therefore, ensuring application correctness is a daunting

endeavor that requires proving the overall composition of the application’s

sub-components is correct. In this thesis, we propose a suite of formal method

techniques that aim to help developers in proving the correctness of their code

or writing correct-by-construction code in the first place. Specifically, the

techniques proposed in this thesis achieve the following:

1. Increase the precision and scalability of existing state-of-the-art program

analysis techniques.

2. Introduce novel program synthesis techniques in the context of concur-

rent programming.

3. Extend the class of properties that safety-checking tools are able to han-

dle.

1



In what follows, we provide a high-level overview of the techniques developed

for each of the above directions.

Scalable & Precise Program Analysis. As a first step, we describe

a new program simplification technique called program trimming that aims to

improve the scalability and precision of safety checking tools. Given a program

P , program trimming generates a new program P ′ such that P and P ′ are

equi-safe (i.e., P ′ has a bug if and only if P has a bug), but P ′ has fewer

execution paths than P . Since many program analyzers are sensitive to the

number of execution paths, program trimming has the potential to improve

the effectiveness of safety checking tools.

In addition to introducing the concept of program trimming, we also

present a lightweight static analysis that can be used as a pre-processing step

to remove program paths while retaining equi-safety. We have implemented

the proposed technique in a tool called Trimmer and evaluate it in the con-

text of two program analysis techniques, namely abstract interpretation and

dynamic symbolic execution. Our experiments show that program trimming

significantly improves the effectiveness of both techniques.

Program Synthesis for Concurrent Programming. Explicit sig-

naling between threads is a perennial cause of bugs in concurrent programs.

While there are several run-time techniques to automatically notify threads

upon the availability of some shared resource, such techniques are not widely-

adopted due to their run-time overhead. This thesis proposes a new solution

based on static analysis for automatically generating a performant explicit-
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signal program from its corresponding implicit-signal implementation. The

key idea is to generate verification conditions that allow us to minimize the

number of required signals and unnecessary context switches, while guarantee-

ing semantic equivalence between the source and target programs. We have

implemented our method in a tool called Expresso and evaluate it on chal-

lenging benchmarks from prior work and open-source software. Expresso-

generated code significantly outperforms past automatic signaling mechanisms

(avg. 1.56x speedup) and closely matches the performance of hand-optimized

explicit-signal code.

Verifying Context-Free API Protocols. There exists extensive

prior work that automatically verify the correct usage of API protocols. All

prior work focuses on API protocols that can only be expressed as a regular

language. However, several real-world libraries (e.g., reentrant locks, GUI

frameworks, serialization libraries) require their clients to use the provided

API in a manner that conforms to a context-free specification. Motivated by

this observation, this thesis describes a new technique for verifying the correct

usage of context-free API protocols. The key idea underlying our technique is

to over-approximate the program’s feasible API call sequences using a context-

free grammar (CFG) and then check language inclusion between this grammar

and the specification. However, since this inclusion check may fail due to

imprecision in the program’s CFG abstraction, we propose a novel refinement

technique to progressively improve the CFG. In particular, our method obtains

counterexamples from CFG inclusion queries and uses them to introduce new
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non-terminals and productions to the grammar while still over-approximating

the program’s relevant behavior.

We have implemented the proposed algorithm in a tool called CF-

PChecker and evaluate it on 10 popular Java applications that use at least

one API with a context-free specification. Our evaluation shows that CF-

PChecker is able to verify correct usage of the API in clients that use it

correctly and produces counterexamples for those that do not. We also com-

pare our method against three relevant baselines and demonstrate that CF-

PChecker enables verification of safety properties that are beyond the reach

of existing tools.

The rest of the thesis is described as follows. Chapter 2 presents pro-

gram trimming. Chapter 3 describes our synthesis technique for automatic

signal-placement. Chapter 4 describes our technique for verifying correct us-

age of context-free API protocols. Chapter 6 list some potential future direc-

tions. Last, Chapter 5 presents related work to the techniques proposed in

this thesis.
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Chapter 2

Failure-Directed Program Trimming

Due to its potential to dramatically simplify programs with respect to

a certain criterion (e.g., the value of a program variable at a given location),

program slicing [210] has been the focus of decades of research in the program

analysis community [204]. In addition to being useful for program understand-

ing, slicing also has the potential to improve the scalability of bug-finding and

verification tools by removing irrelevant code snippets with respect to some

property of interest. Yet, despite this potential, relatively few bug-finding and

verification tools use slicing as a pre-processing step.

In this thesis, we argue that existing notions of a “program slice” do

not adequately capture the kinds of program simplification that are beneficial

to safety checking tools. Instead, we propose a new semantic program sim-

plification technique called program trimming, which removes program paths

that are irrelevant to the safety property of interest. Given a program P ,

program trimming generates a simplified program P ′ such that P ′ violates a

safety property if and only if the original program P does (i.e., P and P ′ are

equi-safe). However, P ′ has the advantage of containing fewer execution paths

than P . Since the scalability and precision of many program analyzers de-
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pend on the number of program paths, program trimming can have a positive

impact on many kinds of program analyses, particularly those that are not

property directed.

To illustrate the difference between the standard notion of program

slicing and our proposed notion of program trimming, consider the following

very simple program, where ? indicates a non-deterministic value (e.g., user

input):

1 x := ?; y := ?;
2 if (y > 0) { while (x < 10) { x := x + y; } }

3 else { x := x - 1; }

4 assert x > 0;

Suppose that our goal is to prove the assertion; so, we are interested in

the value of x at line 4. Now, every single statement in this program is relevant

to determining the value of x; hence, there is nothing that can be removed using

program slicing. However, observe that the then branch of the if statement is

actually irrelevant to the assertion. Since this part of the program can never

result in a program state where the value of x is less than 10, lines 2 and 3 can

be simplified without affecting whether or not the assertion can fail. Hence,

for the purposes of safety checking, the above program is equivalent to the

following much simpler trimmed program P ′:

1 x := ?; y := ?;
2 assume y <= 0;

3 x := x - 1;

4 assert x > 0;

Observe that P ′ contains far fewer paths compared to the original
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program P . In fact, while P contains infinitely many execution paths, the

trimmed program P ′ contains only two, one through the successful and one

through the failing branch of the assertion. Consequently, program analyzers

that eagerly explore all program paths, such as bounded model checkers [30, 64]

and symbolic execution engines [154], can greatly benefit from program trim-

ming in terms of scalability. Furthermore, since many static analyzers (e.g.,

abstract interpreters [67]) typically lose precision at join points of the control

flow graph, program trimming can improve their precision by removing paths

that are irrelevant to a safety property.

Motivated by these observations, this thesis introduces the notion of

failure-directed program trimming and presents a lightweight algorithm to re-

move execution paths in a way that guarantees equi-safety. The key idea

underlying our approach is to statically infer safety conditions, which are suf-

ficient conditions for correctness and can be computed in a lightweight way.

Our technique then negates these safety conditions to obtain trimming condi-

tions, which are necessary conditions for the program to fail. The trimming

conditions are used to instrument the program with assumptions such that

program paths that violate an assumption are pruned.

Program trimming is meant as a lightweight but effective pre-processing

step for program analyzers that check safety. We have implemented our pro-

posed trimming algorithm in a tool called Trimmer and used it to pre-process

hundreds of programs, most of which are taken from the software verification

competition (SV-COMP) [27]. We have also evaluated the impact of trim-
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ming in the context of two widely-used program analysis techniques, namely

abstract interpretation [67] and dynamic symbolic execution [43, 106]. Our ex-

periments with Crab [102, 103] (an abstract interpreter) show that program

trimming can considerably improve the precision of static analyzers. Further-

more, our experiments with Klee [42] (a dynamic symbolic execution tool)

show that program trimming allows the dynamic symbolic execution engine

to find more bugs and verify more programs within a given resource limit.

To summarize, we make the following key contributions:

• We introduce the notion of program trimming as a new kind of program

simplification technique.

• We propose an effective and lightweight inference engine for computing

safety conditions.

• We describe a modular technique for instrumenting the program with trim-

ming conditions.

• We demonstrate empirically that program trimming has a significant pos-

itive impact on the effectiveness of program analyzers. For instance, the

cheapest configuration of Crab (an abstract interpreter) with trimming

proves 21% more programs safe than the most expensive configuration of

Crab without trimming in less than 70% of the time. In the context of

a dynamic symbolic execution engine (Klee), trimming increases both the

number of uncovered bugs by up to 30% and the number of verified programs

by up to 18% while reducing the running time by up to 30%.
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2.1 Guided Tour

The running example, shown in Figure 2.1, is written in C extended

with assume and assert statements. Note that the example is intentionally

quite artificial to illustrate the main ideas behind our technique. Procedure

main assigns a non-deterministic integer value to variable m and computes

its factorial using the recursive fact procedure. The (light and dark) gray

boxes are discussed below and should be ignored for now. We examine two

variations of this example: one for dynamic symbolic execution (DSE) engines

and another for abstract interpreters (AI).

Motivation #1: scalability. First, let us ignore the assertion on

line 7 and only consider the one on line 15. Clearly, this assertion cannot

fail unless m is equal to 123. Observe that procedure main contains infinitely

many execution paths because the number of recursive calls to fact depends

on the value of m, which is unconstrained. Consequently, a dynamic symbolic

execution engine, like Klee, would have to explore (a number of) these paths

until it finds the bug or exceeds its resource limit. However, there is only one

buggy execution path in this program, meaning that the dynamic symbolic

execution engine is wasting its resources exploring paths that cannot possibly

fail.

Our approach. Now, let us see how program trimming can help

a symbolic execution tool in the context of this example. As mentioned in

Section 2, our program trimming technique first computes safety conditions,

which are sufficient conditions for the rest of the program to be correct. In

9



1 int fact(int n) {

2 assume 0 <= n;

3 assume n != 0; // AI

4 int r = 1;

5 if (n != 0)

6 r = n * fact(n - 1);

7 assert n != 0 r == 1; // AI

8 return r;

9 }

10

11 void main() {

12 int m = ?
13 assume m == 123; // DSE

14 int f = fact(m);

15 assert m != 123 f == 0; // DSE

16 }
Figure 2.1: Running example illustrating program trimming.

this sense, standard weakest preconditions [79] are instances of safety condi-

tions. However, automatically computing safety conditions precisely, for in-

stance via weakest precondition calculi [79, 163], abstract interpretation [67],

or predicate abstraction [16, 109], can become very expensive (especially in the

presence of loops or recursion), making such an approach unsuitable as a pre-

processing step for program analyzers that already check safety. Instead, we

use lightweight techniques to infer safety conditions that describe a subset of

the safe executions in the program. That is, the safety conditions inferred by

our approach can be stronger than necessary, but they are still useful for ruling

out many program paths that “obviously” cannot violate a safety property.

In contrast to a safety condition, a trimming condition at a given pro-

gram point reflects a necessary condition for the rest of the program execution

to fail. Since a necessary condition for a property ¬Q can be obtained using
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the negation of a sufficient condition for Q, we can compute a valid trimming

condition for a program point π as the negation of the safety condition at

π. Thus, our approach trims the program by instrumenting it with assump-

tions of the form assume φ, where φ is the negation of the safety condition

for that program point. Since condition φ is, by construction, necessary for

the program to fail, the trimmed program preserves the safety of the original

program. Moreover, since execution terminates as soon as we encounter an

assumption violation, instrumenting the program with trimming conditions

prunes program paths in a semantic way.

Program trimming on this example. Revisiting our running ex-

ample from Figure 2.1, the safety condition right after line 14 is m != 123 ||

f == 0. Since procedure fact called at line 14 neither contains any assertions

nor modifies the value of m, a valid safety condition right before line 14 is m !=

123. Indeed, in executions that reach line 14 and satisfy this safety condition,

the assertion does not fail. We can now obtain a sound trimming condition

by negating the safety condition. This allows us to instrument the program

with the assume statement shown in the dark gray box of line 13. Any execu-

tion that does not satisfy this condition is correct and is effectively removed

by the assume statement in a way that preserves safety. As a result, a dy-

namic symbolic execution tool running on the instrumented program will only

explore the single execution path containing the bug and will not waste any

resources on provably correct paths. Observe that a bounded model checker

would similarly benefit from this kind of instrumentation.
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Motivation #2: precision. To see how our approach might improve

the precision of program analysis, let us ignore the assertion on line 15 and only

consider the one on line 7. Since n = 0 implies r = 1 on line 7, this assertion

can clearly never fail. However, an abstract interpreter, like Crab, using

intervals [67] cannot prove this assertion due to the inherent imprecision of the

underlying abstract domain. In particular, the abstract interpreter knows that

n is non-negative at the point of the assertion but has no information about r

(i.e., its abstract state is >). Hence, it does not have sufficient information to

discharge the assertion at line 7.

Suppose, however, that our technique can infer the safety condition n

= 0 on line 3. Using this condition, we can now instrument this line with

the trimming condition n != 0, which corresponds to the assumption in the

light gray box. If we run the same abstract interpreter on the instrumented

program, it now knows that n is strictly greater than 0 and can therefore prove

the assertion even though it is using the same interval abstract domain. Hence,

as this example illustrates, program trimming can also be useful for improving

the precision of static analyzers in verification tasks.

2.2 Program Trimming

In this section, we formally present the key insight behind failure-

directed program trimming using a simple imperative language in the style

of IMP [212], augmented with assert and assume statements. This lays the

foundation for understanding the safety condition inference, which is described
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in the next section and is defined for a more expressive language. Here, we

present the semantics of the IMP language using big-step operational seman-

tics, specifically using judgments of the form 〈σ, s〉 ⇓ϕ σ′ where:

• s is a program statement,

• σ, σ′ are valuations mapping program variables to values,

• ϕ ∈ { ,♦,X} indicates whether an assertion violation occurred ( ), an

assumption was violated (♦), or neither assertion nor assumption violations

were encountered (denoted X).

We assume that the program terminates as soon as an assertion or assump-

tion violation is encountered. We also ignore non-determinism to simplify the

presentation.

Definition 1. (Failing execution) We say that an execution of s under σ

is failing iff 〈s, σ〉 ⇓ σ′, and successful otherwise.

In other words, a failing execution exhibits an assertion violation. Ex-

ecutions with assumption violations also terminate immediately but are not

considered failing.

Definition 2. (Equi-safety) We say that two programs s, s′ are equi-safe iff,

for all valuations σ, we have:

〈s, σ〉 ⇓ σ′ ⇐⇒ 〈s′, σ〉 ⇓ σ′

13



In other words, two programs are equi-safe if they exhibit the same set

of failing executions starting from the same state σ. Thus, program s′ has a

bug if and only if s has a bug.

As mentioned in Section 2, the goal of program trimming is to obtain a

program s′ that (a) is equi-safe to s and (b) can terminate early in successful

executions of s:

Definition 3. (Trimmed program) A program s′ is a trimmed version of

s iff s, s′ are equi-safe and

(1) 〈s, σ〉 ⇓X σ′ =⇒ 〈s′, σ〉 ⇓X σ′ ∨ 〈s′, σ〉 ⇓♦ σ′′
(2) 〈s, σ〉 ⇓♦ σ′ =⇒ 〈s′, σ〉 ⇓♦ σ′′

Here, the first condition says that the trimmed program s′ either ex-

hibits the same successful execution as the original program or terminates

early with an assumption violation. The second condition says that, if the

original program terminates with an assumption violation, then the trimmed

program also violates an assumption but can terminate in a different state σ′′.

In the latter case, we allow the trimmed program to end in a different state σ′′

than the original program because the assumption violation could occur ear-

lier in the trimmed program. Intuitively, from a program analysis perspective,

we can think of trimming as a program simplification technique that prunes

execution paths that are guaranteed not to result in an assertion violation.

Observe that program trimming preserves all terminating executions

of program s. In other words, if s terminates under valuation σ, then the
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trimmed version s′ is also guaranteed to terminate. However, program trim-

ming does not give any guarantees about non-terminating executions. Hence,

even though this technique is suitable as a pre-processing technique for safety

checking, it does not necessarily need to preserve liveness properties. For ex-

ample, non-terminating executions of s can become terminating in s′.

The definition of program trimming presented above does not impose

any syntactic restrictions on the trimmed program. For instance, it allows

program trimming to add and remove arbitrary statements as long as the re-

sulting program satisfies the properties of Definition 3. However, in practice,

it is desirable to make some syntactic restrictions on how trimming can be per-

formed. In this thesis, we perform program trimming by adding assumptions

to the original program rather than removing statements. Even though this

transformation does not “simplify” the program from a program understand-

ing point of view, it is very useful to subsequent program analyzers because

the introduction of assume statements prunes program paths in a semantic

way.

2.3 Static Analysis for Trimming

As mentioned in Section 2, our trimming algorithm consists of two

phases, where we infer safety conditions using a lightweight static analysis in

the first phase and instrument the program with trimming conditions in the

next phase. In this section, we describe the safety condition inference.
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2.3.1 Programming Language

In order to precisely describe our trimming algorithm, we first intro-

duce a small, but realistic, call-by-value imperative language with pointers and

procedure calls. As shown in Figure 2.2, a program in this language consists

of one or more procedure definitions. Statements include sequencing, assign-

ments, heap reads and writes, memory allocation, procedure calls, assertions,

assumptions, and conditionals. Since loops can be expressed as tail-recursive

procedures, we do not introduce an additional loop construct. Also, observe

that we only allow conditionals with non-deterministic predicates, denoted ?.

However, a conditional of the form if (p) {s1} else {s2} can be expressed as

follows in this language:

if (?) {assume p; s1} else {assume ¬p; s2}

Since the language is quite standard, we do not present its operational

semantics in detail. However, as explained in Section 2.2, we assume that the

execution of a program terminates as soon as we encounter an assertion or

assumption violation (i.e., the predicate evaluates to false). As in Section 2.2,

we use the term failing execution to indicate a program run with an assertion

violation.

2.3.2 Safety Condition Inference

Recall from Section 2, that a safety condition at a given program point

π is a sufficient condition for any execution starting at π to be error free. More
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Program P ::= prc

Procedure prc ::= proc prc(vin) : vout {s}

Statement s ::= s1; s2 | v := e | v1 := ∗v2 | ∗v := e
| v := malloc(e) | v := call prc(v̄)
| assert p | assume p
| if (?) {s1} else {s2}

Expression e ::= v | c | e1 ⊕ e2 (⊕ ∈ {+,−,×})

Predicate p ::= e1 � e2 (� ∈ {<,>,=})
| p1 ∧ p2 | p1 ∨ p2 | ¬p

Figure 2.2: Programming language used for formalization. The notation s
denotes a sequence s1, . . . , sn.

precisely, a safety condition for a (terminating) statement s is a formula ϕ such

that ϕ ⇒ wp(s, true), where wp(s, φ) denotes the weakest precondition of s

with respect to postcondition φ [79]. While the most precise safety condition

is wp(s, true), our analysis intentionally infers stronger safety conditions so

that trimming can be used as a pre-processing technique for safety checkers.

Our safety condition inference engine is formalized using the rules

shown in Figure 2.3. Our formalization makes use of an “oracle” Λ for re-

solving queries about pointer aliasing and procedure side effects. For instance,

this oracle can be implemented using a scalable pointer analysis, such as the

Data Structure Analysis (DSA) method of Lattner et al. [161]. In the rest of

this section, we assume that the oracle for resolving aliasing queries is flow-

insensitive.

Figure 2.3 includes two types of inference rules, one for statements
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and one for procedures. Both forms of judgments utilize a summary environ-

ment Υ that maps each procedure prc to its corresponding safety condition

(or “summary”). Since our language contains recursive procedures, we would,

in general, need to perform a fixed-point computation to obtain sound and

precise summaries. However, because our analysis initializes summaries con-

servatively, the analysis can terminate at any point to produce sound results.

With the exception of rule (10), all rules in Figure 2.3 derive judg-

ments of the form Λ,Υ,Φ ` s : Φ′. The meaning of this judgment is that,

using environments Λ and Υ, it is provable that {Φ′}s{Φ} is a valid Hoare

triple (i.e., Φ′ ⇒ wp(s,Φ) if s terminates). Similarly to the computation of

standard weakest preconditions [79], our analysis propagates safety conditions

backward but sacrifices precision to improve scalability. Next, we only focus

on those rules where our inference engine differs from standard precondition

computation.

Heap reads and writes. An innovation underlying our safety con-

dition inference is the handling of the heap. Given a store operation ∗v := e,

this statement can modify the value of all expressions ∗x, where x is an alias

of v. Hence, a sound way to model the heap is to rewrite ∗v := e as

∗v := e; if (v = v1) ∗ v1 := e; . . . ; if (v = vk) ∗ vk := e;

where v1, . . . , vk are potential aliases of v. Effectively, this strategy accounts

for the “side effects” of statement ∗v := e to other heap locations by explicitly

introducing additional statements. These statements are of the form if (v =
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(1)

Λ,Υ,Φ ` s2 : Φ2

Λ,Υ,Φ2 ` s1 : Φ1

Λ,Υ,Φ ` s1; s2 : Φ1

(2)
Φ′ ≡ Φ[e/v]

Λ,Υ,Φ ` v := e : Φ′

(3)
Φ′ ≡ Φ[drf (v2)/v1]

Λ,Υ,Φ ` v1 := ∗v2 : Φ′

(4)
Φ′ ≡ store(drf (v), e,Λ,Φ)

Λ,Υ,Φ ` ∗v := e : Φ′

(5)
Φ′ ≡ ∀v.Φ

Λ,Υ,Φ ` v := malloc(e) : Φ′

(6)

α ≡ modLocs(prc,Λ)
Φs ≡ ∀v. havoc(α,Λ,Φ)

Φ′ ≡ Φs ∧ summary(prc,Υ, vact)

Λ,Υ,Φ ` v := call prc(vact) : Φ′

(7)
Φ′ ≡ p ∧ Φ

Λ,Υ,Φ ` assert p : Φ′

(8)
Φ′ ≡ p⇒ Φ

Λ,Υ,Φ ` assume p : Φ′

(9)

Λ,Υ,Φ ` s1 : Φ1

Λ,Υ,Φ ` s2 : Φ2

Φ′ ≡ Φ1 ∧ Φ2

Λ,Υ,Φ ` if (?) {s1} else {s2} : Φ′

(10)

Λ,Υ, true ` s : Φ
Υ′ ≡ Υ[prc 7→ Φ]

Λ,Υ ` proc prc(vin) : vout {s} : Υ′

Figure 2.3: Inference rules for computing safety conditions.
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vi) ∗vi := e, i.e., if v and vi are indeed aliases, then change the value of

expression ∗vi to e.

While the strategy outlined above is sound, it unfortunately conflicts

with our goal of computing safety conditions using lightweight analysis. In

particular, since we use a coarse, but scalable alias analysis, most pointers

have a large number of possible aliases in practice. Hence, introducing a

linear number of conditionals causes a huge blow-up in the size of the safety

conditions computed by our technique. To prevent this blow-up, our inference

engine computes a safety precondition that is stronger than necessary by using

the following conservative store operation.

Definition 4. (Memory location) We represent memory locations using

terms that belong to the following grammar:

Memory location α := v | drf (α)

Here, v represents any program variable, and drf is an uninterpreted function

representing the dereference of a memory location.

To define our conservative store operation, we make use of a function

aliases(v,Λ) that uses oracle Λ to retrieve all memory locations α that may

alias v.

Definition 5. (Store operation) Let derefs(Φ) denote all α′ for which a
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sub-term drf (α′) occurs in formula Φ. Then,

store(drf (α), e,Λ,Φ) := Φ[e/drf (α)] ∧
∧

αi∈A\{α}

αi 6= α

where A ≡ aliases(α,Λ) ∩ derefs(Φ)

In other words, we compute the precondition for statement ∗v := e as

though the store operation was a regular assignment, but we also “assert” that

v is distinct from every memory location αi that can potentially alias v. To see

why this is correct, observe that Φ[e/drf (v)] gives the weakest precondition

of ∗v := e when v does not have any aliases. If v does have aliases that are

relevant to the safety condition, then the conjunct
∧
αi∈A\{v} αi 6= v evaluates

to false, meaning that we can never guarantee the safety of the program. Thus,

store(drf (v), e,Λ,Φ) logically implies wp(∗v := e,Φ).

Example 1. Consider the following code snippet:

if (?) {assume x = y; a := 3; }
else {assume x 6= y; ∗y := 3; }
∗x := a; t := ∗y;
assert t = 3;

Right before the heap write ∗x := a, our analysis infers the safety condition

drf (y) = 3 ∧ x 6= y. Before the heap write ∗y := 3, the safety condition is

x 6= y, which causes the condition before the assumption assume x 6= y to be

true. This means that executions through the else branch are verified and may

be trimmed because x and y are not aliases for these executions.

Interprocedural analysis. We now turn our attention to the han-

dling of procedure calls. As mentioned earlier, we perform interprocedural
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analysis in a modular way, computing summaries for each procedure. Specifi-

cally, a summary Υ(f) for procedure f is a sufficient condition for any execu-

tion of f to be error free.

With this intuition in mind, let us consider rule (6) for analyzing pro-

cedure calls of the form v := call prc(ē). Suppose that ᾱ is the set of

memory locations modified by the callee prc but expressed in terms of the

memory locations in the caller. Then, similarly to other modular interpro-

cedural analyses [22, 23], we conservatively model the effect of the statement

v := call prc(vact) as follows:

assert summary(prc);
havoc v; havoc ᾱ;

Here, havoc α denotes a statement that assigns an unknown value to memory

location α. Hence, our treatment of procedure calls asserts that the safety

condition for prc holds before the call and that the values of all memory

locations modified in prc are “destroyed”.

While our general approach is similar to prior techniques on modular

analysis [22, 23], there are some subtleties in our context to which we would

like to draw the reader’s attention. First, since our procedure summaries (i.e.,

safety conditions) are not provided by the user, but instead inferred by our

algorithm (see rule (10)), we must be conservative about how summaries are

“initialized”. In particular, because our analysis aims to be lightweight, we

do not want to perform an expensive fixed-point computation in the presence

of recursive procedures. Therefore, we use the following summary function to
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yield a conservative summary for each procedure.

Definition 6. (Procedure summary) Let hasAsrts(f) be a predicate that

yields true iff procedure f or any of its (transitive) callees contain an assertion.

Then,

summary(f ,Υ, v̄) =


Υ(f)[v̄/vin ] if f ∈ dom(Υ)
false if hasAsrts(f)
true otherwise

In other words, if procedure f is in the domain of Υ (meaning that

it has previously been analyzed), we use the safety condition given by Υ(f),

substituting formals by the actuals. However, if f has not yet been analyzed,

we then use the conservative summary false if f or any of its callees have

assertions, and true otherwise. Observe that, if f is not part of a strongly

connected component (SCC) in the call graph, we can always obtain the precise

summary for f by analyzing the program bottom-up. However, if f is part

of an SCC, we can still soundly analyze the caller by using the conservative

summaries given by summary(f ,Υ, v̄).

The other subtlety about our interprocedural analysis is the particular

way in which havocking is performed. Since the callee may modify heap loca-

tions accessible in the caller, we define a havoc operation that uses the store

function from earlier to conservatively deal with memory locations.
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Definition 7. (Havoc operation)

havoc(drf (α),Λ,Φ) := ∀vnew . store(drf (α), vnew ,Λ,Φ)

where vnew /∈ freeVars(Φ)

havoc(α,Λ,Φ) := havoc(tail(α),Λ, havoc(head(α),Λ,Φ))

Observe that the above definition differs from the standard way this

operation is typically defined [22]. In particular, given a scalar variable v, the

assignment v := ?, and its postcondition φ, the standard way to compute a

conservative precondition for the assignment is ∀v.φ (i.e., φ must hold for any

value of v). Note that an alternative way of computing the precondition is

∀x.φ[x/v], where x is not a free variable in φ. In the context of scalars, these

two definitions are essentially identical, but the latter view allows us to nat-

urally extend our definition to heap locations by using the previously defined

store function. Specifically, given a heap location drf (α) modified by the callee,

we model the effect of this modification as ∀vnew . store(drf (α), vnew ,Λ,Φ).

Theorem 1. Suppose that Λ,Υ,Φ ` s : Φ′, and assume that Λ provides

sound information about aliasing and procedure side effects. Then, under the

condition that s terminates and that the summaries provided by Υ are sound,

we have Φ′ ⇒ wp(s,Φ).1

1Proofs or proof sketches for all theorems can be found in the appendix.
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2.4 Program Instrumentation

In the previous section, we discussed how to infer safety conditions

for each program point. Recall that program trimming annotates the code

with trimming conditions, which are necessary conditions for failure. Here,

we describe how we instrument the program with suitable assumptions that

preserve safety of the original program.

Intraprocedural instrumentation. First, let us ignore procedure

calls and consider instrumenting a single procedure in isolation. Specifically,

consider a procedure with body s1; . . . ; sn and let:

Λ,Υ, true ` si; . . . ; sn : Φ

We instrument the program with the statement assume ¬Φ right before state-

ment si if si complies with the instrumentation strategy specified by the user

(see Section 2.5). Note that we do not instrument at every single instruction

because subsequent safety checkers must also analyze the assumptions, which

adds overhead to their analysis.

Theorem 2. Suppose that our technique adds a statement assume Φ before

si; . . . ; sn. Then, Φ is a necessary condition for si; . . . ; sn to have an assertion

violation.

Interprocedural instrumentation. One of the key challenges in

performing program instrumentation is how to handle procedure calls. In par-

ticular, we cannot simply annotate a procedure f using the safety conditions
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computed for f . The following example illustrates why such a strategy would

be unsound.

Example 2. Consider procedures foo, bar, and baz:

proc foo(x) {∗x := 2; }
proc bar(a) {x := malloc(a); foo(x); assert a < 100; }
proc baz(b) {x := malloc(b); foo(x); assert b > 10; }

Here, the safety condition for procedure foo is just true since foo does not

contain assertions or have callees with assertions. However, observe that we

cannot simply instrument foo with assume false because there are assertions

after the call to foo in bar and baz. One possible solution to this challenge is

to only instrument the main method, which would be very ineffective. Another

possible strategy might be to propagate safety conditions top-down from callers

to callees in a separate pass. However, this latter strategy also has some draw-

backs. For instance, in this example, variables a and b are not in scope in

foo; hence, there is no meaningful instrumentation we could add to foo short

of assume true, which is the same as having no instrumentation at all.

We solve this challenge by performing a program transformation in-

spired by previous work [115, 157]. The key idea underlying this transforma-

tion is to create, for each procedure prc, a new procedure prc ′ that can never

fail. In particular, we create prc′ by (a) changing all assertions assert φ in prc

to assume φ, and (b) replacing all calls to f (including recursive ones) with f ′.

Now, given a call site of prc, v := call prc(ē), we replace it with the following
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conditional:

if (?) {v := call prc′(ē); }
else {v := call prc(ē); assume false; }

This transformation is semantics preserving since it is merely a case

analysis: Either prc succeeds, in which case it is safe to replace the call to prc

with prc ′, or it fails, in which case we can call original prc but add assume

false afterward since prc has failed. The following example illustrates this

transformation.

Example 3. Consider the following procedures:

proc foo(x, y) {assert x > 0; bar(y); }
proc bar(z) {assert z > 0; }
proc main(x, y) {foo(x, y); }

Our transformation yields the following new program:

proc foo’(x, y) {assume x > 0; bar’(y); }
proc foo(x, y) {

assert x > 0;
if (?) {bar’(y); }
else {bar(y); assume false; }

}
proc bar’(z) {assume z > 0; }
proc bar(z) {assert z > 0; }
proc main(x, y) {

if (?) {foo’(x, y); }
else {foo(x, y); assume false; }

}

The main advantage of this transformation is that it allows us to per-

form program instrumentation in a modular and conceptually simple way. In

particular, we do not need to instrument the “safe” version prc′ of a procedure
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prc since prc ′ never fails. On the other hand, it is safe to instrument prc with

the negation of the local safety conditions since every call site of prc is followed

by the statement assume false (i.e., execution terminates immediately after the

call).

Example 4. Consider the following procedures foo and bar:

proc foo(x) {assert x > 10; }
proc bar(a, x) {foo(x); assert a < 100; }

Our instrumentation yields the following new program:

proc foo’(x) {assume x > 10; }
proc foo(x) {assume x ≤ 10; assert x > 10; }
proc bar(a, x) {

assume a ≥ 100 ∨ x ≤ 10;
if (?) {foo’(x); }
else {foo(x); assume false; }
assert a < 100;

}

Discussion. The reader may notice that our program transformation

introduces additional branches that did not exist in the original program. Since

the goal of program trimming is to reduce the number of execution paths

while retaining equi-safety, this transformation may seem counter-intuitive.

However, because one of the branches is always followed by assume false, our

transformation does not lead to a blow-up in the number of paths and allows

us to perform the instrumentation modularly.
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2.5 Implementation

We have implemented our program trimming algorithm as a tool called

Trimmer, meant as a lightweight pre-processor for program analyzers that

check safety. Our implementation is based on the LLVM infrastructure [160]

and performs instrumentation at the LLVM bit-code level. Hence, Trimmer

can be conveniently integrated into any safety checking tool that is built on

top of the LLVM infrastructure and is capable of analyzing assume statements.

Recall from Section 2.3 that Trimmer’s safety inference engine re-

quires alias and side effect information to soundly analyze heap stores and

procedure calls. For this purpose, Trimmer leverages LLVM’s DSA pointer

analysis [161], a highly-scalable, summary-based, flow-insensitive analysis.

Since Trimmer can be useful to a variety of program analysis tools

(including both static and dynamic analyzers), Trimmer can be customized

in different ways depending on the assumptions made by subsequent safety

checkers. In what follows, we describe the different configurations that Trim-

mer provides.

Reasoning about integer arithmetic. Trimmer provides the option

of treating integral-type expressions either as mathematical (unbounded) or

fixed-width integers. Since some safety checkers ignore integer over- and under-

flows but others do not, Trimmer supports both encodings.2 Analyzers treat-

2For the fixed-width integer encoding, Trimmer strengthens safety conditions by requir-
ing that there are no integer over- or under-flows. Specifically, Trimmer utilizes arithmetic
operations in the LLVM instruction set that return both the result of the operation and a
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ing values as mathematical integers can therefore use the configuration of

Trimmer that also makes this same unsound assumption.

Eliminating quantifiers. Recall from Section 2.3 that the safety condi-

tions generated by our inference engine contain universal quantifiers. Hence,

when negating the safety conditions, the resulting trimming conditions contain

existentially-quantified variables. Trimmer provides two alternatives for elim-

inating quantifiers. First, Trimmer can remove quantifiers using Z3’s quanti-

fier elimination (QE) capabilities [74] after simplifying and pre-processing the

formula. Second, Trimmer also allows replacing quantified variables by calls

to non-deterministic functions. Since quantified variables at the formula level

correspond to program variables with unknown values, this strategy has the

same effect as quantifier elimination.

Bounding the instrumentation. After Trimmer instruments the pro-

gram with trimming conditions, subsequent safety checkers need to analyze

the assumptions. Hence, the number of additional assume statements as well

as the size of the predicates can affect the running time of program analyzers.

For this reason, Trimmer allows users to customize where to add assumptions

in the code. For example, sensible strategies include adding instrumentation

right before loops and procedure calls, or before every conditional.

In a similar vein, Trimmer also provides different options for bound-

ing the size of the formulas used in assume statements. For example, the user

flag indicating whether an over-flow occurred. Note that Trimmer does not use bit-vectors
for encoding fixed-width integers.
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can bound the number of conjuncts in the formula to be at most k, where k

is a value chosen by the user. This strategy is sound because Trimmer guar-

antees that the “simplified” formulas are weaker than the original trimming

conditions.

2.6 Experiments

To evaluate the effectiveness of program trimming, we have used Trim-

mer to pre-process hundreds of programs by instrumenting them with assume

statements. Since these assumptions are not useful on their own, we evalu-

ate the effect of program trimming in the context of two different LLVM-based

program analyzers for safety checking. In particular, we use Crab, an abstract

interpreter that supports several abstract domains, and Klee, a widely-used

dynamic symbolic execution engine.

We ran our experiments on 439 programs3, most of which (92%) are

taken from the software verification competition (SV-COMP) benchmarks,

which have clearly defined outcomes and are handled by numerous tools. Since

the errors in many of the buggy programs in this benchmark set are very

shallow4, we also augment these benchmarks with additional buggy programs,

either taken from other sources or obtained by injecting deeper bugs into

safe SV-COMP benchmarks. The benchmarks taken from SV-COMP span

3Available at: https://mariachris.github.io/FSE2017/benchmarks.zip
4For example, in the existing SV-COMP benchmarks, Klee can find the bug with a very

low resource limit for 85% of the buggy programs.
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a broad range of categories, including ControlFlow, Loops, Recursive,

and ArrayReach, but exclude categories that are not handled by Klee or

Crab, e.g., BitVectorsReach, Concurrency.

In what follows, we describe the effects of program trimming on the

results of Crab and Klee. We ran all of our experiments on an Intel Xeon

CPU E5-2640 v3 @ 2.60GHz machine with 132 GB of memory running the

Ubuntu 14.04.1 operating system. We used the latest available version of

Crab and the latest version of Klee that was compatible with LLVM 3.6,

which Crab requires.

2.6.1 Impact of Program Trimming on Crab

To demonstrate that program trimming increases precision across a

range of abstract domains, we compare the performance of Crab (with and

without trimming) on three different domains with varying levels of precision:

• Int denotes the (non-relational) interval domain [67], which infers invariants

of the form c1 ≤ x ≤ c2;

• Zones is the (relational) zones abstract domain [180], which infers difference

constraints of the form x− y ≤ c;

• RTZ is Crab’s most precise (native) abstract domain and corresponds to

the reduced product of disjunctive intervals (i.e., disjunctions of constraints

of the form c1 ≤ x ≤ c2) [95] and the zones abstract domains.
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Table 2.1: Overview of trimming configurations (incl. total number of added
assume statements and time for pre-processing all benchmarks in the two right-
most columns).

Configuration MC QE L/P C A Time (s)
TrimL+B 4 143 5.31
TrimB 4 1638 4.97
TrimND+B 4 2801 7.34
TrimL ∞ 156 6.05
Trim ∞ 1735 5.74
TrimND ∞ 2852 8.62

As mentioned in Section 2.5, Trimmer can be customized using a va-

riety of different configurations. To understand the precision vs. performance

trade-off, we evaluate Crab using the configurations of Trimmer shown in

Table 2.1. Here, the column labeled MC indicates the maximum number of

conjuncts used in an assume statement. The third column labeled QE indi-

cates whether we use quantifier elimination or whether we model quantified

variables using calls to non-deterministic functions (recall Section 2.5). Finally,

the columns labeled L/P and C denote the instrumentation strategy. In con-

figurations where there is a checkmark under L/P, we add assume statements

right before loops (L) and before procedure (P) calls. In configurations where

there is a checkmark under C, we also add instrumentation before every con-

ditional. The two right-most columns show the total number of added assume

statements (not trivially true) and the pre-processing time for all benchmarks.

Since average trimming time is 11–20 milliseconds per benchmark, we see that

program trimming is indeed very lightweight.
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The results of our evaluation are summarized in Table 2.2. As we

can see from this table, all configurations of program trimming improve the

precision of Crab, and these improvements range from 23% to 54%. For

instance, for the interval domain, the most precise configuration of Trimmer

allows the verification of 68 benchmarks instead of only 49 when using Crab

without trimming.

Another observation based on Table 2.2 is the precision vs. performance

trade-offs between different configurations of Trimmer. Versions of Crab

that use Trimmer with QE seem to be faster and more precise than those

configurations of Trimmer without QE. In particular, the version of Trim-

mer with QE performs better because there are fewer variables for the abstract

domain to track. We also conjecture that Trimmer using QE is more precise

because the abstract domain can introduce imprecision when reasoning about

logical connectives. For instance, consider the formula ∃x.(x = 1 ∧ x 6= 1),

which is logically equivalent to false, so Trimmer with QE would instrument

the code with assume false. However, if we do not use QE, we would instrument

the code as follows:

x := nondet(); assume x = 1 ∧ x 6= 1;

When reasoning about the assume statement, an abstract interpreter using the

interval domain takes the meet of the intervals [1, 1] and >, which yields [1, 1].

Hence, using Trimmer without QE, Crab cannot prove that the subsequent

code is unreachable.
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Table 2.2: Increased precision of an abstract interpreter due to trimming.
Since Crab treats integers as unbounded, our instrumentation also makes
this assumption.

Configuration Safe Time (s)
Int 49 (+0%) 129 (+0%)
TrimL+B + Int 63 (+29%) 149 (+16%)
TrimB + Int 65 (+33%) 173 (+34%)
TrimND+B + Int 61 (+24%) 198 (+53%)
TrimL + Int 64 (+31%) 151 (+17%)
Trim + Int 68 (+39%) 191 (+48%)
TrimND + Int 62 (+27%) 227 (+76%)
Zones 52 (+0%) 130 (+0%)
TrimL+B + Zones 66 (+27%) 148 (+14%)
TrimB + Zones 68 (+31%) 195 (+50%)
TrimND+B + Zones 64 (+23%) 222 (+71%)
TrimL + Zones 67 (+29%) 150 (+15%)
Trim + Zones 73 (+40%) 281 (+116%)
TrimND + Zones 66 (+27%) 320 (+146%)
RTZ 52 (+0%) 215 (+0%)
TrimL+B + RTZ 67 (+29%) 231 (+7%)
TrimB + RTZ 76 (+46%) 535 (+149%)
TrimND+B + RTZ 66 (+27%) 582 (+171%)
TrimL + RTZ 68 (+31%) 237 (+10%)
Trim + RTZ 80 (+54%) 1620 (+653%)
TrimND + RTZ 67 (+29%) 3330 (+1449%)

Summary. Table 2.2 shows that trimming significantly improves the

precision of an abstract interpreter with reasonable overhead. Our cheapest

trimming configuration (TrimL+B + Int) proves 21% more programs safe

than the most expensive configuration of Crab without trimming (RTZ) in

less than 70% of the time.
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Table 2.3: Summary of comparison with Klee. Since Klee treats integers in
a sound way, we also use the variant of Trimmer that reasons about integer
over- and under-flows.

Configuration Safe Unsafe Paths Timeout Max-Forks Time (s)
KleeBFS 126 (+0%) 118 (+0%) 9231 (+0%) 73 (+0%) 73 (+0%) 21679
TrimL+B + KleeBFS 146 (+16%) 145 (+23%) 5978 (-35%) 52 (-40%) 46 (-51%) 15558
TrimL + KleeBFS 146 (+16%) 153 (+30%) 5678 (-38%) 50 (-32%) 40 (-45%) 15264
KleeDFS 126 (+0%) 99 (+0%) 10024 (+0%) 91 (+0%) 75 (+0%) 26185
TrimL+B + KleeDFS 146 (+16%) 124 (+25%) 6939 (-31%) 72 (-21%) 48 (-36%) 20797
TrimL + KleeDFS 146 (+16%) 129 (+30%) 6695 (-33%) 72 (-21%) 43 (-43%) 21164
KleeR 126 (+0%) 121 (+0%) 9227 (+0%) 71 (+0%) 72 (+0%) 21077
TrimL+B + KleeR 149 (+18%) 146 (+21%) 5967 (-35%) 49 (-31%) 44 (-39%) 14844
TrimL + KleeR 149 (+18%) 152 (+26%) 5699 (-38%) 48 (-32%) 40 (-44%) 14850

2.6.2 Impact of Program Trimming on Klee

In our second experiment, we evaluate the impact of program trim-

ming on Klee, a state-of-the-art dynamic symbolic execution tool. We use

a subset5 of the variants of Trimmer (see Table 2.1) and evaluate trimming

on Klee with three search strategies: breadth-first search (BFS), depth-first

search (DFS), and random search (R).

Since programs usually have infinitely many execution paths, it is nec-

essary to enforce some resource bounds when running Klee. In particular,

we run Klee with a timeout of 300 seconds and a limit of 64 on the number

of forks (i.e., symbolic branches).

The results of our evaluation are presented in Table 2.3. Here, the col-

umn labeled Safe shows the number of programs for which Klee explores all

execution paths without reporting any errors or warnings.6 Hence, these pro-

5In particular, since Klee’s analysis is already path-sensitive we do not consider variants
that instrument before conditionals here.

6By warning, we mean any internal Klee warning that designates an incompleteness in
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grams can be considered verified. The second column, labeled Unsafe, shows

the number of programs reported as buggy by each variant of Klee. In this

context, a bug corresponds to an explicit assertion violation in the program.

Next, the third column, labeled Paths, shows the number of program paths

that Klee explored for each variant. Note that fewer paths is better—this

means that Klee needs to explore fewer executions before it finds the bug or

proves the absence of an assertion violation. The next two columns measure

the number of programs for which each Klee variant reaches a resource limit.

In particular, the column labeled Timeout shows the number of programs for

which Klee fails to terminate within the 5-minute time limit. Similarly, the

column Max-Forks indicates the number of programs for which each Klee

variant reaches the limit that we impose on the number of forks. Finally, the

last column, labeled Time, shows the total running time of each Klee variant

on all benchmarks.

As shown in Table 2.3, program trimming increases the number of pro-

grams that can be proved safe by 16–18%. Furthermore, program trimming

allows Klee to find up to 30% more bugs within the given resource limit. In

addition, Klee with program trimming needs to explore significantly fewer

paths (up to 38%) and reaches the resource bound on significantly fewer pro-

grams. Finally, observe that the overall running time of Klee decreases by

up to 30%.

Klee’s execution (e.g., solver timeouts and concretizing symbolic values).
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Figure 2.4 compares the number of benchmarks solved by the original

version of Klee (using BFS) with its variants using program trimming. Specif-

ically, the x-axis shows how many benchmarks were solved (i.e., identified as

safe or unsafe) by each variant (sorted by running time), and the y-axis shows

the corresponding running time per benchmark. For instance, we can see that

TrimL + KleeBFS solves 246 benchmarks within less than one second each,

whereas the original version of Klee only solves 203 benchmarks.

Summary. Overall, the results shown in Table 2.3 and Figure 2.4

demonstrate that program trimming significantly improves the effectiveness

and performance of a mature, state-of-the-art symbolic execution tool. In

particular, program trimming allows Klee to find more bugs and prove more

programs correct within a given resource limit independently of its search

strategy.
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Figure 2.4: Quantile plot of time and solved benchmarks for selected Klee
variants.
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Chapter 3

Symbolic Reasoning for Automatic Signal

Placement

A common challenge in concurrent programming is to coordinate ac-

cess to shared resources and achieve correct synchronization between differ-

ent threads. While there are many different language constructs that can be

used to perform synchronization, a widely-established programming pattern is

to encapsulate inter-thread coordination using monitors [116, 136, 162]. At a

high level, a monitor encapsulates all shared state between threads and guaran-

tees mutual exclusion. In addition, monitors perform synchronization between

threads by blocking and unblocking them depending on the availability of some

shared resource.

Broadly speaking, monitors can be classifed into two categories, de-

pending on the burden they impose on the system vs. the programmer [40].

In particular, explicit-signal monitors typically employ condition variables to

perform synchronization between threads and use an explicit “signal” con-

struct to notify other threads when some shared resource becomes available.

In contrast, implicit-signal (automatic) monitors provide a waituntil(P) con-

struct such that any thread executing this statement blocks until predicate P
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becomes true. In implicit-signal monitors, there is no explicit signal construct,

and it is the responsibility of the system to notify threads that are currently

blocked on a predicate. To give the reader some intuition, Figure 3.1 shows

the implementation of an implicit-signal monitor for the well-known readers-

writers problem, and Figure 3.2 shows its corresponding implementation as an

explicit-signal monitor.

As illustrated by the example from Figures 3.1 and 3.2, programming

with implicit monitors is considerably easier because the programmer does

not need to reason about when and which threads should be notified. In fact,

it is well-known that many concurrency bugs are caused by erroneous sig-

nal placement in explicit-signal implementations [111, 146]. However, despite

their easier programmability, implicit-signal monitors are not widely-used due

to performance considerations. In particular, because the system needs to

notify threads that are blocked on a predicate, run-time support for implicit-

signal monitors may result in considerable overhead. For example, according

to Buhr et al., automatic monitors can be 10-50 times slower than explicit

signals [40]. Even though recent work by Hung and Garg proposes a more

efficient implementation of automatic monitors [141], explicit-signal monitors

still remain the de-facto synchronization mechanism in real-world concurrent

programs.

In this thesis, we propose a new solution —based on static analysis—

to programming with implicit-signal monitors. Given the implementation of

an implicit-signal monitor, our method automatically synthesizes an efficient
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and semantically equivalent explicit-signal implementation. We believe this

approach has two advantages compared to prior run-time techniques: First,

because our method does not require additional run-time book-keeping, it has

the potential to be as efficient as a performant hand-written explicit-signal

implementation. Second, because the code generated by our system can be

inspected and further refined by the programmer, it is more transparent com-

pared to automatic-signaling systems that provide run-time instrumentation.

While it is straightforward to generate any semantically equivalent

explicit-signal implementation of an automatic-signal monitor, a key consider-

ation is the efficiency of the synthesized code. In particular, the synthesized

code should not spuriously wake up threads that are blocked on a predicate

that evaluates to false.1 In practice, this means that the generated code should

not notify threads blocked on a predicate P , if P is guaranteed to be false at

the time of notification. Furthermore, whenever possible, the generated code

should notify a single –rather than all– threads blocked on a predicate in order

to avoid unnecessary context switches.

In addition to avoiding spurious wake-ups, another important efficiency

consideration is to minimize the use of conditional signals, which notify other

threads only if some condition evaluates to true. Because conditional signals

require evaluating the truth value of (potentially complex) predicates at run-

time, it is desirable to use unconditional signals whenever possible. In fact,

1While a thread that is spuriously woken up will “go back to sleep”, this introduces
significant overhead due to an unnecessary context-switch.
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while some run-time solutions, such as AutoSynch [141] avoid spurious wake-

ups altogether, they may still incur significant overhead due to the frequent

evaluation of predicates at run-time.

The solution that we adopt in this thesis tries to minimize both the use

of spurious wake-ups as well as conditional signals by performing precise static

analysis of the monitor code. In particular, our method automatically gener-

ates Hoare triples, that, if valid, allow us to establish that a program fragment

does not need to signal other threads waiting on a predicate. For program

fragments where signaling may be necessary, our method generates additional

Hoare triples whose validity allows us to minimize the use of conditional signals

as well as broadcast operations that notify all threads.

In order to successfully discharge the generated Hoare triples, our method

uses so-called monitor invariants, which are assertions that hold every time a

thread enters or leaves the monitor. Our approach automatically infers these

monitor invariants by combining abductive reasoning and predicate abstrac-

tion, allowing the synthesis of non-trivial invariants that involve disjunctions.

Monitor invariants allow us to discharge verification conditions that could not

be proven otherwise (e.g., by strengthening the precondition of the gener-

ated Hoare triples) and are therefore crucial for generating efficient explicit-

signaling code.

We have implemented our proposed ideas in a tool called Expresso

and evaluate the efficiency of the code generated by Expresso by comparing it

against manually written explicit-signal monitors as well as the state-of-the-art
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AutoSynch tool that provides run-time support for implicit-signal monitors.

Our evaluation shows that the performance of the code synthesized by Ex-

presso is an average of 1.56x faster than AutoSynch and comparable to that

of hand-written code.

In all, we make the following key contributions:

• We propose a novel technique, based on static analysis, for generating effi-

cient explicit-signal implementations of implicit-signal monitors.

• We show how the automatic signal placement problem can be reduced to

proving the validity of certain kinds of Hoare triples in concurrent programs.

• We introduce the notion of monitor invariants and show how to automati-

cally infer them using abductive reasoning and monomial predicate abstrac-

tion.

• We implement the proposed techniques in a tool called Expresso and eval-

uate it by comparing against AutoSynch, a state-of-the art runtime system

for implicit-signal monitors, as well as hand-written code.

3.1 Overview of Technique

In this section, we give a high-level overview of our approach with

the aid of the reference Readers-Writers example, shown in Figure 3.1. In

particular, we explain the reasoning performed by Expresso to automatically
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1 class RWLock {

2 unsigned int readers = 0;

3 boolean writerIn = false;

4

5 atomic void enterReader() {

6 waituntil(!writerIn);

7 readers++;

8 }

9 atomic void exitReader() {

10 if(readers > 0) readers--;

11 }

12 atomic void enterWriter() {

13 waituntil(readers == 0 && !writerIn);

14 writerIn = true;

15 }

16 atomic void exitWriter() {

17 writerIn = false;

18 } }

Figure 3.1: Implicit-signal monitor for readers-writers lock.

generate the code shown in Figure 3.2 by analyzing the implicit-signal monitor

of Figure 3.1.

Expresso starts its analysis by inferring a monitor invariant, which

is an assertion that holds every time a thread enters or exits the monitor. For

the code in Figure 3.1, Expresso successfully infers the invariant readers ≥ 0.

Then, Expresso uses this invariant to determine for each conditional critical

section in Figure 3.1 (a) if signaling is necessary, (b) whether to signal or

broadcast, and (c) whether to do so conditionally or unconditionally.

EnterReader. Consider a reader thread tr executing the method enterReader.

To generate explicit signaling code, we need to determine whether tr needs to

notify any writer threads blocked on predicate Pw = (readers = 0∧¬writerIn)
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at line 13. Towards this goal, we ask the following question: “Assuming that

a writer thread tw is blocked on Pw, is it possible that Pw becomes true af-

ter tr executes the code in enterReader?”. If the answer to this question is

“no”, we have established that tr does not need to signal. Thus, to prove that

no signals are necessary, Expresso generates and checks the validity of the

following Hoare triple:

{readers ≥ 0 ∧ ¬writerIn ∧ ¬Pw} readers++ {¬Pw}

Here, the precondition states that (a) the monitor invariant holds when tr

enters the monitor, (b) !writerIn must hold if tr executes readers++, and (c)

Pw is false, meaning that some writer thread may be blocked at line 13. The

post-condition says that Pw continues to stay false after tr exits the monitor.

Since this Hoare triple is indeed valid, Expresso establishes that no signaling

is necessary. Observe that dropping the conjunct readers ≥ 0 from the pre-

condition would result in a Hoare triple that is not valid; thus, the monitor

invariant is crucial for avoiding the signal operation in this example.

ExitReader. For the exitReader method, Expresso needs to determine

whether we should signal any reader threads blocked at line 6 or writer threads

blocked at line 13. Using similar reasoning as in enterReader, it is easy to

establish that we do not need to signal reader threads because readers-- does

not affect the truth value of the predicate writerIn. Now, to determine the

necessity of signaling writer threads, Expresso generates the following Hoare
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triple:

{readers ≥ 0 ∧ ¬Pw} if(readers > 0) readers-- {¬Pw}

Since this Hoare triple is not valid, signalling is necessary.

Next, Expresso tries to determine whether it suffices to notify a single

writer thread or we need to notify all writers blocked at line 13. To answer

this question, we ask “Is it possible that Pw stays true after some writer thread

tw executes enterWriter?”. If not, we have proven that it is unnecessary (and

wasteful) to wake up multiple threads, since Pw becomes false after the first

writer thread executes. Thus, Expresso generates and checks the following

Hoare triple:

{readers ≥ 0 ∧ Pw} writerIn = true {¬Pw}

Since this triple is valid, Expresso has determined that broadcasting is not

necessary.

Finally, Expresso checks whether it can signal unconditionally, mean-

ing that Pw is guaranteed to hold after the reader thread tr exits the monitor.

Towards this goal, we perform the following check:

{readers ≥ 0 ∧ ¬Pw} if(readers > 0) readers-- {Pw}

This Hoare triple is not valid, so Expresso signals conditionally in order to

avoid a spurious wake-up.
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1 class RWLock {

2 unsigned int readers = 0;

3 boolean writerIn = false;

4 Lock l = new ReentrantLock();

5 Condition readers = l.newCondition(),

6 writers = l.newCondition();

7 void enterReader() {

8 l.lock();

9 while(writerIn) readers.await();

10 readers++;

11 l.unlock();

12 }

13 void exitReader() {

14 l.lock();

15 if (readers > 0) readers--;

16 if (readers == 0) writers.signal();

17 l.unlock();

18 }

19 void enterWriter() {

20 l.lock();

21 while(readers != 0 || writerIn) writers.await();

22 writerIn = true;

23 l.unlock();

24 }

25 void exitWriter() {

26 l.lock();

27 writerIn = false;

28 if (readers == 0) writers.signal();

29 readers.signalAll();

30 l.unlock();

31 } }

Figure 3.2: Explicit-signal monitor for readers-writers lock.

EnterWriter. Using similar reasoning as in enterReader, Expresso can

establish that enterWriter does not need to signal any readers because the

following Hoare triple is valid:

{readers ≥ 0 ∧ Pw ∧ writerIn} writerIn = true {writerIn}
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ExitWriter. For exitWriter, Expresso establishes that it is necessary to

notify both reader and writer threads. Using similar reasoning as in exitReader,

we can prove that broadcasting for all writer threads is not necessary, how-

ever, we need to perform conditional signaling to avoid spurious wake-ups. For

reader threads, Expresso determines that broadcasting is necessary since

!writerIn continues to hold after executing the statement readers++. Fur-

thermore, since the Hoare triple

{readers ≥ 0 ∧ writerIn} writerIn = false {¬writerIn}

is valid, Expresso can establish that !writerIn must be true after the writer

thread exits. Thus, Expresso instruments the code to signal reader threads

unconditionally.

Summary. For this example, the code generated by Expresso is precisely

the same one as the human-written explicit-signal implementation shown in

Figure 3.2. Observe that Expresso can prove the gratuitousness of broad-

casts, and it can also establish that enterReader and enterWriter do not need

to signal. Finally, note that some of the Hoare triples generated by Expresso

could not be established without the useful monitor invariant readers ≥ 0.

3.2 Source and Target Languages

In this section, we present some preliminary concepts related to con-

current programming and describe the source and target languages that can
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be used to implement implicit- and explicit-signal monitors respectively. The

goal of the two languages presented here is to provide a unified theoretical

framework suitable for automatic reasoning. In Section 4.5, we discuss how

the target language can be instantiated in a concrete monitor implementation.

3.2.1 Preliminaries

In this thesis, we consider a shared-memory concurrency model in which

all accesses to shared resources occur inside a monitor. In other words, all

variables accessed outside the monitor are assumed to be thread-local. We

represent threads using integer identifiers drawn from the set T ⊆ N. Because

we do not impose any restrictions on the number of threads that can execute

monitor code, our approach is applicable to parametrized concurrent programs.

We partition program variables used in the monitor into two disjoint

sets, namely L and G , representing thread-local and shared (global) variables

respectively. As stated by the definition below, the state σ of a monitor iden-

tifies the values of program variables for each thread.

Definition 8. (Monitor state) A monitor state, , is a mapping from (thread

identifier, monitor variable) pairs to a value. We require monitor states to

agree on the values of shared variables for all threads; i.e.,

∀t1 , t2 ∈ T , v ∈ G . σ(t1 , v) = σ(t2 , v)
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3.2.2 Source Language

Because our approach transforms an automatic-signal monitor to an

explicit-signal one, we first present the source language in which automatic-

signal monitors are implemented.

The syntax of our source language is presented in Figure 4.9. Since

our implementation targets Java programs, we consider implicit-signal mon-

itors written in a simple object-oriented language with Java-like syntax. In

particular, an automatic-signal monitor consists of a set of field declarations

and a set of atomic methods – i.e., the body of a method m executes with-

out interruption unless the thread blocks on some waituntil statement whose

corresponding predicate evaluates to false. To simplify presentation, we will

assume that local variables of different methods have unique names.

The body of each monitor method is a sequence of statements of the

form waituntil(p){s}, where p is a predicate and s is a statement (assignment,

store, sequence, loop etc.). Observe that a statement s is a special case of

a waituntil statement whose corresponding predicate is true. We refer to

predicate p as the guard of the waituntil construct and to statement s as its

body and sometimes write w = (p, s) to denote a waituntil statement with

guard p and body s. Given a monitor M , we use the notation CCRs(M ) to

represent the set of all waituntil statements used in any method in M .

While waituntil statements can only appear as top-level statements

in our source language, we note that this design decision does not sacrifice
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Monitor M ::= monitor M { (fld | m)* }

Field fld ::= f : τ

Method m ::= atomic m(~v) {w*; return v; }

WUntil w ::= waituntil(p){ s }

Statement s ::= skip | s1; s2 | v := e | v.f := e
| if (p) {s1} else {s2}
| while (p) {s}

Figure 3.3: Implicit-signal monitor language. Here, e and p denote expressions
and predicates respectively.

expressiveness. For example, consider the code snippet if (c) waituntil(p),

which is not supported by our source language. Observe that the check if(c)

can be moved outside of the monitor if c is not on shared data. On the other

hand, if c does involve shared data, the condition is either checked in a logically

racy way 2 or the programmer knows that c cannot change while the thread

is blocked on p. In either case, the program’s logic is preserved or enhanced if

condition c is moved inside the waituntil statement.

In the rest of this thesis, we assume the standard semantics of waituntil(p){s}

statements where a thread t atomically performs the following actions: It first

evaluates the boolean predicate p. If p evaluates to true, t also executes s

immediately after the evaluation of p. Otherwise, t is blocked until p becomes

true.

2i.e., condition c could have changed while the thread is waiting on p
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(1a)

e = (t , w, false)
e 6∈ B (σ, t) 6|= Guard(w)

(σ, e,B,N ) −→ (σ, ε,B ∪ {e},N )

(1b)

e = (t , w, false)
e ∈ N (σ, t) 6|= Guard(w)

(σ, e,B,N ) −→ (σ, ε,B,N\{e})

(2a)

e = (t , w, true)
e 6∈ B (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N ′ = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B,N ∪N ′)

(2b)

e = (t , w, true)
e = min(N ) (σ, t) |= Guard(w)

〈Body(w), t , σ〉 ⇓ σ′
N ′ = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B\{e}, (N ∪N ′)\{e})

(3)
(σ, e,B,N ) −→ (σ′, ε,B′,N ′)

(σ, e :: τ,B,N ) −→ (σ′, τ,B′,N ′)

Figure 3.4: Transition relation for implicit-signal monitor traces. Given an
event e = (t , w, b), e denotes (t , w). We assume there is a total order relation
≺ between events and min picks the minimum one with respect to ≺.

Since the semantics of statements s are standard, we do not present

them in detail and use the notation 〈s, t , σ〉 ⇓ σ′ to indicate the resulting mon-

itor state σ′ when thread t executes statement s under initial state σ. Given

a monitor state σ, thread t, and predicate p, we write (σ, t) |= p if p evaluates

to true and (σ, t) 6|= p if p evaluates to false.

Monitor traces. To define the semantics of monitors, we first introduce the

notion of a monitor trace. A monitor trace τ is a sequence of monitor events
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where each event e is a triple (t , w, b) where t is a thread identifier, w is a

waituntil statement, and b is a boolean indicating whether the guard of w

evaluates to true or false. In particular, the event (t, w, false) indicates that

thread t was blocked on the guard of w, whereas the event (t, w, true) indicates

that t was able to execute w in its entirety. Given an event e = (t , w, b), we

write e to denote the pair (t , w).

We say that a monitor trace is syntactically well-formed if it (a) respects

the relative ordering of statements within a method, (b) obeys the requirement

that a thread cannot execute method m′ before finishing the execution of

method m, and (c) satisfies the invariant that a thread exits the monitor either

by blocking on a predicate or by finishing the execution of a method. A more

formal definition of syntactic well-formedness is presented in the Appendix A.

Example 5. Consider the following monitor M , where we elide the “atomic”

keywords for brevity:

monitor M {

...

m1() {waituntil(x>0) {...}; waituntil{y>0}{...}}

m2() {waituntil(z>0) {...}; waituntil{w>0}{...}}

}

Let us refer to the j’th waituntil statement in method i as wij. The

trace [(1, w12, true), (1, w11, true)] is not syntactically well-formed since the same

thread cannot execute w12 before w11 (i.e., it violates requirement (a)). Simi-

larly, the trace [(1, w11, false), (1, w21, true)] is also not syntactially well-formed
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since the same thread cannot execute method m2 before finishing the execution

of m1 (violates (b)). Finally, the following trace is also not syntactically well-

formed:

[(1, w11, false), (2, w21, true), (1, w11, true), (1, w12, true)]

In particular, it violates requirement (c) since thread 2 exists the monitor with-

out getting blocked or finishing the execution of m2. On the other hand, the

following trace is syntactically well-formed:

[ (1, w11, false), (2, w21, true), (2, w22, false),
(1, w11, true), (1, w12, true), (2, w22, true) ]

In this trace, thread 1 attempts to execute the body of w11 but is blocked (i.e.,

x > 0 evaluates to false). Then, thread 2 executes the first waituntil statement

in method m2, but gets blocked on the second one. After thread 2 executes w21,

x > 0 becomes true, and thread 1 is able to finish executing method m1. Finally

thread 2 finishes executing method m2.

Semantics. We now define the semantics of implicit-signal monitors in terms

of the feasibility of well-formed monitor traces. Given a monitor M and a mon-

itor state σ, we say that a trace τ is feasible under σ iff (a) it is syntactically

well-formed and (b) (σ, τ, ∅, ∅) −→∗ (σ′, ε, , ) where −→∗ denotes the reflex-

ive transitive closure of the transition relation −→ defined in Figure 3.4.

Transition relations for implicit-signal monitors are described in Fig-

ure 3.4 using judgments of the form

(σ, τ,B,N ) −→ (σ′, τ ′,B′,N ′)
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(1a)

e = (t , w, false)
e 6∈ B (σ, t) 6|= Guard(w)

(σ, e,B,N ) =⇒ (σ, ε,B ∪ {e},N )

(1b)

e = (t , w, false)
e ∈ N (σ, t) 6|= Guard(w)

(σ, e,B,N ) =⇒ (σ, ε,B,N\{e})

(2a)

e = (t , w, true)
e 6∈ B (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N1 = GetSignals(w, σ′,B)
N2 = GetBroadcasts(w, σ′,B)

(σ, e,B,N ) =⇒ (σ′, ε,B,N ∪N1 ∪N2)

(2b)

e = (t , w, true)
e = min(N ) (σ, t) |= Guard(w)

〈Body(w), t , σ〉 ⇓ σ′
N1 = GetSignals(w, σ′,B)
N2 = GetBroadcasts(w, σ′,B)

(σ, e,B,N ) =⇒ (σ′, ε,B\{e}, (N ∪N1 ∪N2)\{e})

(3)
(σ, e,B,N ) =⇒ (σ′, ε,B′,N ′)

(σ, e :: τ,B,N ) =⇒ (σ′, τ,B′,N ′)

Figure 3.5: Transition relation for explicit-signal monitor traces. Given an
event e = (t , w, b), e denotes (t , w).
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Events(B, p) = {(t, w) | (t, w) ∈ B ∧Guard(w) = p}

GetSignals(w, σ,B) =

(t ′, w′)
∣∣ (p, c) ∈ Signals(w) ∧

(t′, w′) = min(Events(B, p)) ∧
(c = X ∨ (σ, t ′) |= p)


GetBroadcasts(w, σ,B) =

(t ′, w′)
∣∣ (p, c) ∈ Broadcasts(w) ∧

(t′, w′) ∈ Events(B, p) ∧
(c = X ∨ (σ, t ′) |= p)


Figure 3.6: Auxiliary functions used in Figure 3.5

where B and N describe blocked and notified threads respectively. In partic-

ular, (t , w) ∈ B indicates that thread t is currently blocked on the predicate

of w. In contrast, (t , w) ∈ N indicates that thread t should be woken up

to recheck the predicate of w. The meaning of the judgment (σ, τ,B,N ) −→

(σ′, τ ′,B′,N ′) is that executing the first event e in τ under σ,B, and N yields

a new state σ′ as well as a new set of blocked and notified threads B′ and N ′

respectively. We now explain the transition relations from Figure 3.4 in more

detail.

According to rules (1a) and (1b), an event e of the form (t , w, false)

is only feasible when (σ, t) 6|= Guard(w) (i.e., the predicate of w evaluates to

false). If e = (t , w) was not previously in the blocked thread set B, rule (1a)

adds e to B. If e was already in B, then e is only feasible if e was “notified”

by the system (i.e., e ∈ N in rule (1b)).

The next two rules (2a) and (2b) state that an event e = (t , w, true)

56



is only feasible when (σ, t) |= Guard(w) (i.e., the predicate of w evaluates to

true). Both rules execute the body of w to obtain a new monitor state σ′.

Now, since the execution of w may cause the predicates of blocked threads to

become true, N ′ contains all (t , w) pairs that were previously in B and whose

predicates evaluate to true under σ′.

3.2.3 Target Language

Our target language is very similar to the source language from Fig-

ure 4.9, except that the body of waituntil statements contain explicit signals.

In particular, a waituntil construct in the target language looks as follows:

waituntil(p){ s; signal(S1); broadcast(S2) }

Here, S1 and S2 are sets of pairs (p, c) where p is a predicate and c ∈ {?,X}.

The informal semantics of signal and broadcast are as follows: If (p,X) is

in S1, then the system will notify (i.e., wake up) a single thread blocked on

predicate p. In contrast, if (p,X) ∈ S2, then the system notifies all threads

blocked on p. On the other hand, if (p, ?) is in S1 (resp. S2), then p will

be evaluated at run-time, and, if p evaluates to true, then one thread (resp.

all threads) blocked on p will be notified. Given a waituntil statement in

the target language, we write Signals(w) to indicate S1 and Broadcasts(w) to

represent S2.

We also describe the formal semantics of explicit-signal monitors in

terms of monitor traces, where the definitions of trace, event, and well-formedness
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remain the same as in Section 3.2.2. However, the concept of feasibility is de-

fined with respect to a different transition relation =⇒, shown in Figure 3.5.

In particular, we say that an explicit-signal monitor trace τ is feasible if (a)

it is syntactically well-formed, and (b) (σ, τ, ∅, ∅) =⇒∗ (σ′, ε, , ) where =⇒∗

denotes the reflexive transitive closure of the transition relation =⇒ from Fig-

ure 3.5.

The transition relation =⇒ is defined similarly as −→ except for events

of the form (t , w, true). In contrast to implicit signal monitors which wake up

all threads whose predicates have become true, explicit-signal monitors decide

which threads to notify based on Signals(w) and Broadcasts(w). In particu-

lar, rules (2a) and (2b) use auxiliary functions GetSignals and GetBroadcasts

(defined in Figure 3.6) to decide which threads to add to the notification set

N . If (p, c) ∈ Signals(w), then we notify a single event (t′, w′) ∈ B such

that the predicate of w′ is p. If c = ?, we additionally check that p evaluates

to true under σ′ before adding (t′, w′) to the notification set. The function

GetBroadcasts is defined similarly except that it notifies all threads blocked

on the specified predicate rather than a single one.

3.2.4 Equivalence

We are now ready to define what it means for an implicit-signal monitor

M from the source language and an explicit-signal monitor M ′ from the target

language to be equivalent. Towards this goal, we first define a normal form for

traces:
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Definition 9. (Normalization) Let τ be an implicit-signal monitor trace.

We say that τ is normalized with respect to monitor state σ if we can de-

rive (σ, τ, ∅, ∅) −→∗ (σ, ε, , ) without using rule (1b) from Figure 3.4 in the

derivation.

Since rule (1b) corresponds to a spurious notification, a trace is nor-

malized if threads are woken up only when their predicates evaluate to true.

Observe that we can always find a normalized feasible trace for any feasible

trace by changing the order in which threads are woken up.3

Definition 10. (Equivalence) Let M,M ′ be implicit- and explicit-signal

monitors respectively. We say that M and M ′ are semantically equivalent,

written M ∼M ′, iff for all monitor states σ and all well-formed traces τ , the

following two conditions are satisfied:

1. If (σ, τ, ∅, ∅) =⇒∗ (σ′, ε, , ), then it is also the case that (σ, τ, ∅, ∅) −→∗

(σ′, ε, , ).

2. If (σ, τ, ∅, ∅) −→∗ (σ′, ε, , ) and τ is normalized with respect to σ, then

(σ, τ, ∅, ∅) =⇒∗ (σ′, ε, , ).

Here, the first condition states that any feasible trace of the explicit-

signal monitor M ′ must also be a feasible trace of its implicit version M .

3Recall that our notion of feasibility does not require the sets B,N to be empty. In
particular, a trace τ is feasible under σ if (σ, τ, ∅, ∅) −→∗ (σ′, ε,B,N ) for any B and N .
Therefore, a notification that would have been eliminated by rule (1b) can just be ignored
indefinitely, i.e., remain in the N set without affecting other transitions.
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However, in general, we cannot expect the converse of this statement to hold:

Since the explicit-signal monitor may be more efficient than its implicit-signal

counterpart, we cannot require that all feasible traces of M to be also feasi-

ble in the explicit-monitor case. Thus, the second condition states that any

normalized feasible trace of M should also be feasible in M ′.

3.3 Signal Placement Algorithm

In this section, we describe our algorithm for automatically transform-

ing an implicit-signal monitor M in the source language to an explicit-signal

monitor M ′ in the target language. Our algorithm ensures that M and M ′ are

equivalent in the sense of Definition 10 and also tries to minimize the number

of spurious wake-ups and conditional signals in M ′. We start with a basic

version of the algorithm and then describe extensions and improvements later

in this section.

3.3.1 Basic Algorithm

Our basic signal placement algorithm is shown in Algorithm 1. The

PlaceSignals algorithm takes as input an implicit-signal monitor M as well

as a monitor invariant I , which is an assertion that holds every time a thread

enters and exits the monitor. Since automated inference of monitor invari-

ants is described in the next section, we will assume that an oracle provides

them for the time being. In this section, we further assume that guards used

in waituntil statements do not contain thread-local variables. Given such
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Algorithm 1 Signal Placement Algorithm

1: function PlaceSignals(M , I )

2: input: M , an implicit signal monitor
3: input: I , a monitor invariant
4: output: M ′, an explicit signal monitor

5: Σ← [w 7→ ∅ | w ∈ CCRs(M )]

6: for (w, p) ∈ CCRs(M)×Guards(M) do

7: if ` {I ∧Guard(w) ∧ ¬p} Body(w) {¬p} :
8: continue;

9: if ` {I ∧Guard(w) ∧ ¬p} Body(w){p} :
10: cond← X
11: else
12: cond← ?

13: if ∀(p, s′) ∈ CCRs(M ). ` {I ∧ p} s′{¬p} :
14: bcast← false
15: else
16: bcast← true

17: Σ(w)← Σ(w) ∪ {(p, cond, bcast)}
18: return Instrument(M,Σ)

an implicit-signal monitor M and its invariant I , PlaceSignals returns an

explicit-signal monitor M ′ such that M ∼M ′.

The algorithm maintains a mapping from each conditional critical re-

gion (CCR) (i.e., waituntil statement) w in M to a set of notifications that

should be performed after executing w and before exiting the monitor. The

algorithm represents these notification as triples of the form (p, cond, bcast),

where p is a predicate, cond ∈ {?,X} indicates whether the notification is con-

ditional or unconditional, and bcast is a boolean indicating whether it is nec-

essary to notify all threads blocked on p as opposed to a single one. Once the
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algorithm computes this mapping Σ, it instruments the original implicit-signal

monitor M as shown in Figure 3.7 to obtain an explicit-signal monitor M ′.

The key part of the PlaceSignals algorithm is the loop in lines 6–17.

For each conditional critical region w and predicate p used in the monitor,

the algorithm first decides whether w may need to notify threads blocked on

predicate p. This decision is made based on the provability of the following

Hoare triple:

{I ∧Guard(w) ∧ ¬p} Body(w) {¬p}

Essentially, this triple says that executing the body of w in a state in which ¬p

holds ensures that predicate p continues to remain false. Hence, any thread

t blocked on p will remain blocked after executing w, so there is no need

to notify t. Observe that the precondition of the Hoare triples also assumes

I ∧ Guard(w) because (a) Guard(w) is a prerequisite for executing the body

of w and, (b) by definition of monitor invariant, I must hold before executing

the body of any CCR.

Next, lines 9–12 determine whether the notification should be condi-

tional or not. Recall that a conditional notification for predicate p checks

whether p evaluates to true before waking up threads blocked on p. While

conditional notifications prevent spurious wake-ups, it is desirable to avoid

evaluating p at run-time if p is guaranteed to hold after executing w. Thus,

line 9 checks the validity of the following Hoare triple:

{I ∧Guard(w) ∧ ¬p} Body(w) {p}
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In other words, assuming we execute w in a state where a thread is blocked

on p, the execution of Body(w) results in a state where p is true. Thus, there

is no need to evaluate p at run time before signaling threads blocked on p.

The last part of Algorithm 1 (lines 13–16) determines whether we

should notify all threads blocked on predicate p. Suppose there are n threads

T = {t1, . . . , tn} blocked on p, and suppose that an arbitrary thread ti gets

unblocked. If executing ti is guaranteed to result in a state where predicate p

is false, then it is not necessary to notify any of the remaining threads T\{ti}.

Thus, the algorithm checks the following Hoare triple for all CCRs w′ with

guard p:

{I ∧ p} Body(w′) {¬p}

If this Hoare triple holds for all CCRs with guard p, then it is safe to signal

rather than broadcast.

Theorem 3. 4 Let PlaceSignals(M , I ) = M ′. If I is a correct monitor

invariant and guards of CCRs in M do not contain thread-local variables, then

M ∼ M ′.

3.3.2 Handling Thread-Local Variables

To simplify presentation, our algorithm from Section 3.3.1 assumes that

guards of CCRs in the input monitor do not contain thread-local variables.

4The proofs of all theorems are in the appendix.
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w = waituntil(p′){s}
S1 = {(p, c) | (p, c, false) ∈ Σ(w)}
S2 = {(p, c) | (p, c, true) ∈ Σ(w)}
s′ = signal(S1); broadcast(S2)

Σ ` w  waituntil(p′){s; s′}

Σ ` w1  w′1 . . . Σ ` wn  w′n
Σ ` w1; . . . ;wn  w′1; . . . ;w′n

Figure 3.7: Performing instrumentation

However, if the input monitor M does not satisfy this assumption, the explicit-

signal monitor M ′ generated by Algorithm 1 may not be equivalent to M . We

illustrate the problem using the following example:

Example 6. Consider the following monitor:

monitor M {

int y=0;

m1(int x) {

waituntil(x < y) {x = y+1;}

}

m2() {

y = y+2;

}

}

Suppose we have threads t1, t2, t3, where t1, t2 are blocked in m1, and t3

is executing m2, after which the value of y becomes 2. Further, suppose that the

value of the thread-local variable x is 0 for t1 and 1 for t2. Since the predicate

x < y has become true for both t1, t2 and executing t1 does not change the value

of the predicate in t2 (and vice versa), t3 should notify both threads. Thus, the

explicit-signal monitor should use broadcast instead of signal.
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However, recall that Algorithm 1 determines whether m2 should broad-

cast or signal by checking the validity of {x < y} x = y + 1 {x ≥ y}. Since

this Hoare triple is valid, we would erroneously conclude that it is safe for m2

to notify a single thread instead of all threads.

As illustrated by this example, Algorithm 1 is unsound when guards

contain thread-local variables. To remedy this situation, we need to rename

thread-local variables when checking validity. In particular, recall that PlaceS-

ignals checks the validity of Hoare triples of the form {P1∧P2} S {Q} where

P1 is an assumption about the currently running thread, whereas P2 and Q are

assumptions/assertions about some other thread. Since S and P1 may refer

to thread-local variables that are also used in P2 and Q, we need to rename

thread-local variables and check the validity of the following modified Hoare

triple:

{P1 ∧ P2[V ′/V ]} S {Q[V ′/V ]}

where V = Locals(P2) ∪ Locals(Q) and V ′ denotes a fresh set of variables not

used elsewhere in P1, P2, S, and Q.5

3.3.3 Improvement over the Basic Algorithm

In this section, we consider an improvement over Algorithm 1 that aims

to further reduce the number of broadcasts in the synthesized explicit-signal

monitor. Recall that Algorithm 1 determines whether a CCR should notify

5Another subtlety with local variables is how to signal conditionally. We discuss evalua-
tion of predicates with local variables in Section 4.5.
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one vs. all threads blocked on predicate p by checking the validity of the

following Hoare triple for all CCRs w with guard p:

{I ∧ p} Body(w) {¬p} (3.1)

In some cases, it is possible to further strengthen the pre-condition of

this Hoare triple. In particular, suppose that the signaling CCR is w′ with

body s′ and guard p′ and suppose that φ is guaranteed to hold after executing

s′. In general, we cannot assume φ in the pre-condition of Equation 3.1 because

other threads may have invalidated φ before the notified thread has a chance

to execute. However, if s commutes with the body of every other CCR in

the monitor, then the monitor state after executing s for any interleaving is

equivalent to one in which we execute s immediately after s′. In this case,

we can safely assume that s executes immediately after s′ since the resulting

states are equivalent. This insight allows us to strengthen the precondition of

Equation 3.1 by using the post-condition φ of the signaling thread.

To make this discussion more precise, let us define a predicate Comm(w,M )

as follows:

Comm(w,M ) ⇔
(
∀w′ ∈ CCRs(M )\{w}.

Body(w′); Body(w) ≡ Body(w); Body(w′)
)

Essentially, this predicate is true if the body of w commutes with every other

CCR in the monitor. Now, using this definition, we can state a weaker suf-

ficient condition for CCR w to notify one –rather than all– threads blocked

on predicate p. In particular, we can change the condition at line 13 of Algo-

rithm 1 to the following weaker one:
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∀w′ = (p, s′) ∈ CCRs(M ).
(
` {I ∧ p}s′{¬p} ∨

(Comm(w′,M )∧ ` {I ∧Guard(w) ∧ ¬p}Body(w); s′{¬p})
) (3.2)

The first line of Equation 3.2 corresponds to the same check we perform

at line 13 in Algorithm 1 to determine whether it is safe to signal rather than

broadcast. However, if this condition does not hold, we may still be able

to prove that broadcasting is unnecessary as long as s′ commutes with every

other CCR in the monitor and we can prove that p is falsified after executing

Body(w); s′.

The correctness of Equation 3.2 follows from the following theorem (and

the proof of Theorem 6):

Theorem 4. Let τ = τ0e be a monitor trace and let τ ′ = eτ0 where e =

(t, w, b). If (σ, τ,B,N ) −→∗ (σ′, ε,B′,N ′) and Comm(w,M ), then we have

(σ, τ ′,B,N ) −→∗ (σ′, ε,B′,N ′).

Remark. Our discussion in this section assumes non-preemptive signal se-

mantics [10] where a signaled thread is not guaranteed to consume the signal

immediately. However, if we assume preemptive signal semantics, we can per-

form this optimization more liberally by only checking whether predicate p is

invalidated by the sequential composition of the segment that produces the

signal and Body(w).
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Algorithm 2 Monitor Invariant Inference

1: function InferMonitorInv(M , Θ)

2: input: M , an implicit signal monitor
3: input: Θ, set of Hoare triples of the form {P} s {Q}
4: output: I, a monitor invariant

5: Φ← ∅
6: for {P} s {Q} ∈ Θ do
7: Φ← Φ ∪ abduce(P, wp(s,Q))

8: do
9: numPreds← |Φ|

10: for ψ ∈ Φ do
11: if 0 {true} Ctr(M ) {ψ} :
12: Φ← Φ \ {ψ}
13: continue;

14: I ← ∧
ψi∈Φ

ψi

15: if ∃w ∈ CCRs(M ). 0 {I ∧Guard(w)} Body(w) {ψ} :
16: Φ← Φ \ {ψ}
17: while numPreds 6= |Φ|
18: return I

3.4 Inference of Monitor Invariants

Our signal placement algorithm from Section 3.3 relies on a monitor

invariant I that holds at the entry and exit of every CCR. In this section, we

describe our method for automatically inferring useful monitor invariants.

Our inference algorithm is property-directed in that it only infers in-

variants that are useful for proving the Hoare triples generated by the signal

placement algorithm. Specifically, our inference engine uses abductive reason-

ing [81] to automatically infer predicates that are useful for proving a given set

of Hoare triples. Given a universe of predicates Φ generated using abduction,

it then infers the strongest conjunctive monitor invariant over predicates in Φ.
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Therefore, our invariant inference engine can be viewed as marrying the power

of abductive reasoning with predicate abstraction [98, 156]. The advantage of

this approach is two-fold: First, rather than relying on a hard-coded universe

of predicate templates, our algorithm infers useful predicates automatically

using abduction. Second, because the predicates inferred using abduction can

involve disjunctions, the monitor invariants synthesized by our algorithm are

not restricted to pure conjunctions.

With this intution in mind, we now explain our InferMonitorInv

procedure from Algorithm 2 in more detail. This procedure takes two in-

puts, namely, an implicit-signal monitor M and a set Θ of Hoare triples of

the form {P} s {Q}. Note that Θ simply corresponds to the set of Hoare

triples generated by Algorithm 1, but with I set to true. The return value

of InferMonitorInv is a formula I representing a valid monitor invariant

of M .

Conceptually, the InferMonitorInv procedure operates in two phases.

The first phase (lines 5–7) generates a universe Φ of candidate predicates, and

the second phase (lines 8–17) performs fixed-point computation to infer the

strongest conjunctive monitor invariant I over predicates in Φ.

In the first phase of the algorithm, we iterate over all Hoare triples

{P} s {Q} in Θ and look for a strengthening ψ of the precondition such

that the Hoare triple {P ∧ ψ} s {Q} becomes valid. Because the correctness

of the Hoare triple {P} s {Q} boils down to checking the validity of the

formula P ⇒ wp(s,Q), we can find a suitable strengthening of P by solving
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the following abductive reasoning problem:

Find ψ such that :
(1) P ∧ ψ |= wp(s,Q) (2) P ∧ ψ 6|= false

(3.3)

Here condition (1) states that {P ∧ ψ} s {Q} is a valid Hoare triple, and (2)

states that the speculated invariant ψ is consistent with precondition P . Since

abductive reasoning is a well-studied problem, we use the abduce procedure

described in prior work [81] to automatically infer candidate strengthenings

ψ. Also, note that a call to abduce at line 7 may yield multiple predicates

ψ1, . . . , ψn, all of which constitute valid solutions for Equation 3.3.

Since the predicates Φ generated using abduction in lines 5–7 are merely

candidate invariants, the next phase of the algorithm performs a fixed-point

computation in which we drop every ψ ∈ Φ that is not a monitor invariant.

Specifically, for each predicate ψ in Φ, we check whether (a) it holds initially

(lines 11–13) and (b) whether it is preserved by each CCR in the monitor

(lines 15–16). To determine whether ψ holds initially, we check the validity of

the Hoare triple {true} Ctr(M) {ψ}, where Ctr(M) denotes the constructor

of M .6 If this Hoare triple is not valid, we simply drop ψ from set Φ. Next,

to determine whether ψ is preserved by CCR w, we check the validity of the

Hoare triple {I ∧ Guard(w)} Body(w) {ψ}, where I denotes the conjunction

of all predicates in Φ. If this triple is invalid for any CCR in M , we again

drop ψ from the set Φ. We then repeate this process until I satisfies both

6For simplicity, we assume a single constructor; if there are multiple ones, this triple
needs to be checked for all constructors.
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the initiation and consecution requirements. It is easy to see that formula I

returned by InferMonitorInv constitutes a valid monitor invariant.

3.5 Implementation

We have implemented our proposed method in a tool called Expresso.

Our implementation leverages the Soot program analysis infrastructure [207]

and invokes the Z3 SMT solver [75] for checking logical validity. In what

follows, we discuss some important design choices that are not addressed in

previous sections.

Generating Java code. While the target language (IR) presented in Sec-

tion 3.2.3 is convenient for describing our transformation, it does not yield

valid Java code. Our implementation converts programs in this IR to valid

Java code in the following manner. First, we associate a condition variable

with the guard of every waituntil statement. Now, given a waituntil state-

ment w with associated guard p, body s, and condition variable c, we then

generate the following code7:

while(!p) {c.await();}; s

Furthermore, for each (pi, ?) ∈ Signals(w), we generate the code if(pi) ci.signal(),

and for (pi,X) ∈ Signals(w), we emit ci.signal(). For each (pi, ) ∈ Broadcasts(w),

we generate the same code where signal is replaced with signalAll.

7Note that our implementation uses the ReentrantLock class.

71



Instrumentation for predicates with local variables. To support con-

ditional signaling for predicates with local variables, Expresso augments the

monitor code with a data structure that tracks the values of local variables for

any thread that is blocked on a predicate p. The code generated by Expresso

then uses this data structure to check whether p actually evaluates to true at

program points that require conditional signaling for p.

Lazy broadcasts. Expresso provides an option for performing broadcasts

lazily. Consider a waituntil statement w such that (p, ) ∈ Broadcasts(w).

Rather than emitting the code c.signalAll() after the body of w, “lazy broad-

cast” notifies a single thread t blocked on p and ensures that t notifies all other

threads by adding the instrumentation if(p) c.signal() after every waitun-

til statement with guard p. In our implementation, we enable this option by

default to minimize context switches.

Discharging Hoare triples. Expresso discharges any Hoare triple {P} s {Q}

by computing the weakest precondition of Q with respect to s and perfoming

a validity check. Since s can contain pointers, Expresso uses the points-to

information provided by Doop [39] to produce a whole-program model of the

heap. In particular, given a store statement v.f = e, Expresso generates

additional statements of the form if(v = xi) xi.f = e where xi is a potential

alias of v.
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3.6 Evaluation

We evaluate Expresso by performing experiments that are designed

to answer the following research questions:

• How does the code generated by Expresso compare against hand-written

explicit-signal code?

• How does our solution compare against run-time systems that provide sup-

port for implicit signals?

• How long does Expresso take to generate code?

Benchmarks. The benchmarks used in our evaluation come from two dif-

ferent sources, namely all AutoSynch benchmarks from [141] and monitors

collected from popular open-source projects from Github. We collected the

Github benchmarks by writing a crawler that identifies potential monitors in

Java programs using keywords such as wait, signal, notify etc. We then

manually inspected these results in decreasing order of Github ranking (a mix

of stars and forks) and identified self-contained modules (i.e., monitors) that

encapsulate shared state. This process requires manual effort because we need

to isolate the monitor code and insert it in a stress-testing harness.

Performance evaluation methodology. We evaluate performance using

the same methodology used for evaluating AutoSynch in [141]. Specifically, we

use saturation tests [41] in which threads only access the monitor and perform
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Figure 3.8: Performance over AutoSynch benchmarks and readers-writers ex-
ample.
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no extra work outside of the monitor. This set-up allows us to stress-test the

monitor code and meaningfully compare our solution with run-time solutions

and near-optimal hand-written code (from the original AutoSynch benchmarks

or from the GitHub project).

We perform measurements using the JMH framework [195], which is

a benchmarking tool for rigorous measurement in JVM-based languages. All

measurements are conducted on a 16-way (8 core x 2 SMT) Intel Xeon CPU

E5-2640 v3 2.60GHz with 132 GB of memory using JDK 1.8.0 101-b13.

Performance results. The results of our performance evaluation are pre-

sented in Figures 3.8 and 3.9. Specifically, Figure 3.8 shows the results for

the AutoSynch benchmarks, augmented with the readers-writers example of

Section 3.1. Figure 3.9 presents results for monitors found in popular GitHub

projects. Each graph plots the average time (in milliseconds) per monitor

operation (e.g., enterReader) against the number of threads.

In virtually all cases, the performance of Expresso-generated code is

very close to hand-written explicit-signal code. The only significant differ-

ences are in the “H2O Barrier” benchmark under low concurrency and “Din-

ing Philosophers” under high concurrency. In the latter, the explicit signalling

code has knowledge of the problem structure itself, so it avoids all wakeups

that do not lead to progress.

Comparing to AutoSynch, Expresso outperforms it by 1.56x on av-

erage over all benchmarks. Expresso significantly outperforms AutoSynch
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for about half the benchmarks of Figure 3.8, which are chosen or written by

the AutoSynch authors themselves. On a few occasions, AutoSynch slightly

outperforms Expresso-generated code. As we discuss in Section 5.2, Au-

toSynch offers dynamic structures for quick inequality comparisons between

shared variables and local values (which are captured as constants while the

thread is waiting). This custom optimization can also be added to Expresso

but the emphasis of our work has been on statically eliminating unnecessary

signalling, rather than minimizing the overhead of dynamic checks.

The monitors found in GitHub projects (Figure 3.9) are more represen-

tative of synchronization patterns in-the-wild. Expresso performs very well

on these benchmarks, matching hand-optimized code and significantly outper-

forming AutoSynch: by 1.62x on average, and up to 2.5x on a high-concurrency

setting with 128 threads.

Upon closer inspection of these benchmarks, we observe that the sym-

bolic reasoning needed to achieve the results from Figure 3.9 is far from trivial.

As a simple example, “ConcurrencyThrottle” from the Spring framework has

a waiting condition threadCount < threadLimit triggered by the statement

threadCount-- in the monitor exit operation. In order to avoid broadcasts,

Expresso needs to infer a monitor invariant that allows it to establish that

whenever a thread enters the monitor, the waiting condition has to become

true again due to a threadCount++ operation. Because these increment and

decrement operations are distant, symbolic reasoning has to model the seman-

tics of all intervening program statements and establish that the operations
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commute. This kind of reasoning is necessary for Expresso to achieve the per-

formance results from Figure 3.9 in all benchmarks. Furthermore, the inferred

monitor invariants are often intricate—for instance, the “AsyncDispatch” in-

variant (shown in Appendix) from the Gradle codebase has 22 sub-terms (12

equality/inequality comparisons and arithmetic operations and 10 logical con-

nectives).

To summarize, these results demonstrate the plausibility of a practi-

cal and efficient implementation for implicit-signal monitors. In particular,

the code generated by Expresso is comparable to hand-written code even

for saturation tests that stress-test the monitor. Furthermore, Expresso’s

implicit-signal monitor implementation consistently outperforms AutoSynch

on monitors extacted from real-world codebases such as Spring framework,

Gradle, ExoPlayer, greenDAO, etc.

Analysis time. Table 3.1 shows the time that Expresso takes to synthesize

the explicit-signal code from its corresponding implicit-signal version for each

benchmark. In most cases, the symbolic reasoning time is in the order of a few

seconds. The only exception is the largest benchmark, AsyncDispatch, whose

compilation takes 28.3 seconds. This example takes longer to analyze because

some of the predicates depend on Java library operations that Expresso

also needs to analyze. Overall, these results demonstrate that Expresso is

practical and that it generates code whose performance is comparable to hand-

written code in virtually all cases.
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Benchmark Time (sec.)

BoundedBuffer 2.5
H2OBarrier 2.3
Sleeping Barber 1.6
Round Robin 1.2
Ticketed Readers-Writers 3.8
Param. Bounded Buffer 2.5
Dining Philosophers 5.4
Readers-Writers 1.5

ConcurrencyThrottle 1.0
PendingPostQueue 0.5
AsyncDispatch 28.3
SimpleBlockingDeployment 0.4
SimpleDecoder 10.7
AsyncOperationExecutor 2.1

Table 3.1: Compilation time for benchmarks.

Generated code. We also assessed the quality of the code generated by

Expresso by manually inspecting the synthesized explicit-signal monitors.

For most benchmarks obtained from Github projects, we found that the code

generated by Expresso is very similar to hand-written code. In the case of

the AutoSynch benchmarks, however, we found some examples (e.g., Dining

Philosophers) where the Expresso-generated code differs significantly from

hand-written code. For these benchmarks, manually-written code leverages

dynamic data structures to achieve optimal signaling, whereas Expresso uses

the fixed strategy described in Section 4.5 for handling predicates with local

variables.
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Chapter 4

Verifying Correct Usage of Context-Free API

Protocols

Over the last decade, there has been a flurry of research activity on

checking the correct usage of APIs [7, 12, 31, 32, 97, 149, 158, 188]. Despite sig-

nificant advances in this area, almost all existing verification techniques focus

on typestate analysis [201], which requires the API protocol to be express-

ible as a regular language. In reality, however, several APIs have context-free

–rather than regular– specifications. For instance, almost all reentrant lock

APIs require calls to lock to be balanced by a corresponding call to unlock.

Similarly, many APIs provide functionality for saving and restoring internal

state, and it is an error to call restore more times than the corresponding save

function. As a final example, in APIs for structured document formats (e.g.,

JSON), the usage of the library needs to conform to the underlying context-

free document specification. All of these examples are instances of context-free

API protocols, and incorrect usage of such APIs typically results in run-time

exceptions or resource leaks.

Motivated by this observation, prior research has developed run-time

techniques for specifying context-free properties and monitoring them dur-
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ing program execution [73, 145, 174, 178]. However, there has been very little

(if any) work on statically verifying conformance between a program and a

context-free API protocol. In this thesis, we present a new verification tech-

nique that addresses this problem. In particular, given a specification ex-

pressed as a parameterized context-free grammar (CFG) GS and a program P

using that API, our method automatically checks whether or not P conforms

to protocol GS. However, solving this problem introduces two key technical

challenges that motivate the novel components of our solution: First, we need

to prove that the program satisfies the API protocol for all, potentially infinite,

relevant objects created by the input program. To address this challenge, we

propose a novel program instrumentation that transforms the input program

so it uses the same vocabulary as GS and ensures that if the transformed pro-

gram conforms to the API protocol so does the original. Second, because such

APIs are often used in recursive procedures, it is important to reason precisely

both about inter-procedural control flow as well as feasible API call sequences.

Since both of these properties, namely matching call-and-return structure as

well as the target API protocol, are context-free, standard program analysis

techniques, such as CFL reachability [191] or visibly pushdown automata [9],

do not address our problem. Instead, we reduce the context-free protocol veri-

fication problem to that of checking inclusion between two CFGs1 and propose

a counterexample-guided abstraction refinement (CEGAR) approach for check-

1While inclusion checking between two CFGs is undecidable, many problems of practical
interest can be solved by existing tools.
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ing whether every feasible execution of the program belongs to the grammar

defined by the protocol (see Figure 4.1).

The heart of our technique consists of a novel abstraction mechanism

that represents the input program P as a context-free grammar GP , whose

language L(GP) defines P ’s feasible API call sequences. The productions R of

this grammar model relevant API calls as well as intra- and inter-procedural

control-flow. For instance, a production such as L1 → fL2 indicates that

API method f is called at program location L1 and that L2 is a successor

of L1. In addition, productions precisely model inter-procedural control flow

and enforce that every call statement must be matched by its corresponding

return.

While the CFG extracted from the program is always sound, it may be

imprecise due to data dependencies that are not captured by the current CFG

productions. That is, if an API call sequence w is feasible in some program

execution, then w is guaranteed to be in L(GP); however, the membership of

w in L(GP) does not guarantee the feasibility of the corresponding API call

sequence. Our verification approach deals with this potential imprecision by

using a novel abstraction refinement technique that iteratively improves the

program’s CFG abstraction until the property can be either refuted or verified.

In more detail, our approach works as follows: First, given context-free

protocol GS and current program abstraction GP , we query whether there ex-

ists a word w that is in GP but not GS. If not, then the algorithm terminates

with a proof of correctness. Otherwise, our method reconstructs the corre-
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Figure 4.1: Overview of verification approach

sponding program path π associated with w and checks its feasibility using

an SMT solver. If π is indeed feasible, then so is the call sequence w, and

our method terminates with a real counterexample. Otherwise, w must be a

spurious counterexample caused by imprecision in the CFG. In this case, our

algorithm refines the CFG abstraction by computing a proof of infeasibility of

π in the form of a nested sequence interpolant [122]. Similar to many other

software model checkers, the interpolant drives the refinement process inside

the CEGAR loop; however, unlike other techniques, our approach uses the

interpolant to figure out which new non-terminals and productions to add to

the grammar. In essence, these new non-terminals correspond to “clones” of

existing program locations and allow us to selectively introduce both intra-

and inter-procedural path-sensitivity to our CFG-based program abstraction.

We have implemented our proposed verification algorithm in a proto-

type called CFPChecker for Java programs and evaluated it on 10 widely-

used clients of 5 popular APIs with context-free specifications. Our evaluation
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demonstrates that CFPChecker is able to verify correct usage of the API

in clients that use it correctly and produces counterexamples for those that

do not. We also implement and evaluate three baselines that reduce the prob-

lem to assertion checking and then discharge these assertions using existing

tools. Our experiments demonstrate that CFPChecker is practical enough

to successfully analyze real-world Java applications and that it enables the

verification of safety properties that are beyond the reach of existing tools.

In summary, this chapter makes the following contributions:

• We propose a novel CEGAR-based verification algorithm for verifying cor-

rect usage of context-free API protocols.

• We describe a new CFG-based program abstraction that over-approximates

feasible API call sequences.

• We propose a new refinement method that selectively and modularly adds

path-sensitivity to the program abstraction by introducing new non-terminals

and productions.

• We evaluate our method on widely-used clients of popular Java APIs with

context-free specifications and demonstrate that our proposed approach is

applicable to real-world software verification tasks.
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4.1 Motivating Example

In this section, we give a high level overview of our approach through a

simple motivating example. Consider a re-entrant lock API that requires every

call to lock on some object o to be matched by the same number of calls to

unlock on o. This property is context-free but not regular because it requires

”counting” the number of calls to lock and unlock. In our framework, the

user can specify this property using the following parametrized context-free

grammar GS:

S → ε | $1.lock() S $1.unlock() S (4.1)

This CFG is parametrized in the sense that it uses a ”wildcard” symbol $1

that matches any object of type Lock. Thus, the specification requires that, for

every object o, each call o.lock() must be matched by a call to o.unlock().

To illustrate our technique, Figure 4.2(a) shows a very simple client of

this Lock API. Here, foo is a recursive procedure that calls l.lock before every

recursive call to foo and calls l.unlock afterwards. Since the receiver object

is the same before and after the call, the specification from Equation 4.1 is

satisfied. In the remainder of this section, we explain how our technique verifies

correct usage of the Lock API in this example.

The first step in our technique is to automatically instrument the

program from Figure 4.2(a) so that API calls in the program involve the

same wildcard symbol $1 used in the specification. The instrumented ver-

sion is shown in Figure 4.2(b), which uses a new global variable called $1 (i.e.,
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1 void foo(Lock l){

2 if (*) {

3 acquire(l);

4 foo(l);

5 release(l);

6 }

7 }

8

9 void acquire(Lock l1){

10 l1.lock();

11 }

12

13 void release(Lock l2){

14 l2.unlock();

15 }

(a) Original Program

1 static Lock $1 = *;

2

3 void foo(Lock l){

4 if (*) {

5 acquire(l);

6 foo(l);

7 release(l);

8 }

9 }

10

11 void acquire(Lock l1){

12 if (l1 == $1)

13 $1.lock();

14 }

15

16 void release(Lock l2){

17 if (l2 == $1)

18 $1.unlock();

19 }

(b) Transformed Program

Figure 4.2: Motivating Example
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<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f2
<latexit sha1_base64="qZUDwtM6aeGRJ5XlgvA6st3eg2A=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnoMe9VeqexW3DnIKvFyUoYc9V5p1u3HLI1QGiao1h3PTYw/ocpwJnBa7KYaE8pGdIAdSyWNUPuT+apTcm6VPgljZZ80ZK7+7pjQSOtxFFhnRM1QL00LBT5LP7NktX8tqQlv/AmXSWpQssV/YSqIiUl2PulzhcyIsSWUKW5XJmxIFWXGhlS0WXh/L18lzWrFu6x4D1fl2m2eSgFO4QwuwINrqME91KEBDAbwCm/w7mjnw/l0vhbWNSfvOYElON8/4O2Qig==</latexit>

f3
<latexit sha1_base64="dkPS41fGCdK5YEFSrfVF/9tMCVs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPQY9i575Ypbdecgq8TLSQVy1HvlWbcfszRCaZigWnc8NzH+hCrDmcBpqZtqTCgb0QF2LJU0Qu1P5qtOyZlV+iSMlX3SkLn6u2NCI63HUWCdETVDvTQtFPgs/cyS1f61pCa88SdcJqlByRb/hakgJibZ+aTPFTIjxpZQprhdmbAhVZQZG1LJZuH9vXyVNC+q3mXVe7iq1G7zVIpwAqdwDh5cQw3uoQ4NYDCAV3iDd0c7H86n87WwFpy85xiW4Hz/AOJ4kIs=</latexit>

f4
<latexit sha1_base64="6P7Ph3epr0zzo1h40VFYXMDPhQ0=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewqiR6JXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhNe+xMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5Kni6q3mXVu69V6jd5KkU4gVM4Bw+uoA530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOQDkIw=</latexit>

f5
<latexit sha1_base64="pbm37LOimqIJ0eZ2yomtlQzZrOk=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiiez6ET0SvXjEKEICG9Its9DQ7a5t14QQfoJXjTfj1V/Ev7ELexDxJU1e3ryZzrwgEVwb1506hZXVtfWN4mZpa3tnd6+8f/Ck41QxbLBYxKoVUI2CS2wYbgS2EoU0CgQ2g+FtVm++oNI8lo9mlKAf0b7kIWfUWOkh7F52yxW36s5AlomXkwrkqHfL004vZmmE0jBBtW57bmL8MVWGM4GTUifVmFA2pH1sWypphNofz1adkBOr9EgYK/ukITP1d8eYRlqPosA6I2oGemFaKPBZ+pklq/1rSU147Y+5TFKDks3/C1NBTEyy80mPK2RGjCyhTHG7MmEDqigzNqSSzcL7e/kyeTqreudV7/6iUrvJUynCERzDKXhwBTW4gzo0gEEfXuEN3h3tfDifztfcWnDynkNYgPP9A+WOkI0=</latexit>

f6
<latexit sha1_base64="wGH/5zwQkBfYgIQAAbrU6u2cNfg=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqUY9ELx4xipDAhnTLLDR0u2vbNSGEn+BV48149Rfxb+zCHkR8SZOXN2+mMy9IBNfGdadOYWV1bX2juFna2t7Z3SvvHzzpOFUMGywWsWoFVKPgEhuGG4GtRCGNAoHNYHib1ZsvqDSP5aMZJehHtC95yBk1VnoIu5fdcsWtujOQZeLlpAI56t3ytNOLWRqhNExQrduemxh/TJXhTOCk1Ek1JpQNaR/blkoaofbHs1Un5MQqPRLGyj5pyEz93TGmkdajKLDOiJqBXpgWCnyWfmbJav9aUhNe+2Muk9SgZPP/wlQQE5PsfNLjCpkRI0soU9yuTNiAKsqMDalks/D+Xr5Mns6q3nnVu7+o1G7yVIpwBMdwCh5cQQ3uoA4NYNCHV3iDd0c7H86n8zW3Fpy85xAW4Hz/AOcZkI4=</latexit>

f7
<latexit sha1_base64="pjnsVxCkj5vz2UPjKnYJv+xUO78=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqCR6JXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhNe+xMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5Kni6q3mXVu7+q1G/yVIpwAqdwDh7UoA530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOikkI8=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f8
<latexit sha1_base64="HWroXY7wxmtRvbi13B+8qZZWQQI=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqiRyJXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPW/AmXSWpQssV/YSqIiUl2PulzhcyIsSWUKW5XJmxIFWXGhlSyWXh/L18lTxdV77Lq3V9V6jd5KkU4gVM4Bw+uoQ530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOovkJA=</latexit>

assume(true); 

assume(true); 

l1acq = l; call acquire; lfoo = l; call foo; l2rel = l;

call release;

(a) Initial PCFA for foo.

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

a0
<latexit sha1_base64="wYdZZaI3eRpH6HXiT5XLetLgAlY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPRIe26vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f1haQgw==</latexit>

a1
<latexit sha1_base64="ffFD/eifwzVv7pt818U5tS3Cg94=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPRIe16vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f16GQhA==</latexit>

a2
<latexit sha1_base64="kp0LoL0P8cMgVNZqsOdXjZ1HRAw=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnqkvWqvVHYr7hxklXg5KUOOeq806/ZjlkYoDRNU647nJsafUGU4EzgtdlONCWUjOsCOpZJGqP3JfNUpObdKn4Sxsk8aMld/d0xopPU4Cqwzomaol6aFAp+ln1my2r+W1IQ3/oTLJDUo2eK/MBXExCQ7n/S5QmbE2BLKFLcrEzakijJjQyraLLy/l6+SZrXiXVa8h6ty7TZPpQCncAYX4ME11OAe6tAABgN4hTd4d7Tz4Xw6XwvrmpP3nMASnO8f2SyQhQ==</latexit>

a3
<latexit sha1_base64="TMTYp3zw+7uPdoRF/uZjNuSzfjY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPRIe5e9csWtunOQVeLlpAI56r3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5KmhdV77LqPVxVard5KkU4gVM4Bw+uoQb3UIcGMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/ANq3kIY=</latexit>

l1 = l1acq;

assume(l1 == $1); 

assume(l1 != $1); 

$1.lock();

(b) Initial PCFA for acquire.

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

l2 = l2rel;

assume(l2 == $1); 

assume(l2 != $1); 

$1.unlock();

r0
<latexit sha1_base64="81mEcWF8HiZHbJrPwaRkmQcl8iY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoem6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8HOQlA==</latexit>

r1
<latexit sha1_base64="jtjmHj3qsVDY5Io1eHmxmlzMG8g=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoel6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8f6QlQ==</latexit>

r2
<latexit sha1_base64="mMiP/z6DcCeM8NQl9tH8iqQAWvI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnpUvWqvVHYr7hxklXg5KUOOeq806/ZjlkYoDRNU647nJsafUGU4EzgtdlONCWUjOsCOpZJGqP3JfNUpObdKn4Sxsk8aMld/d0xopPU4Cqwzomaol6aFAp+ln1my2r+W1IQ3/oTLJDUo2eK/MBXExCQ7n/S5QmbE2BLKFLcrEzakijJjQyraLLy/l6+SZrXiXVa8h6ty7TZPpQCncAYX4ME11OAe6tAABgN4hTd4d7Tz4Xw6XwvrmpP3nMASnO8f84mQlg==</latexit>

r3
<latexit sha1_base64="V5fVnbOdz6qX8EALpWqRM2fnwtg=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPSoepe9csWtunOQVeLlpAI56r3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5KmhdV77LqPVxVard5KkU4gVM4Bw+uoQb3UIcGMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/APUUkJc=</latexit>

(c) Initial PCFA for release.

Figure 4.3: Initial PCFAs for input program. The PCFAs contain additional
formal-to-actual assignments.
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Foo → F0

F0 → F1

F1 → F2 | F8

F2 → F3

F3 → Acquire F4

F4 → F5

F5 → Foo F6

F6 → F7

F7 → Release F8

F8 → ε

Acquire → A0

A0 → A1

A1 → A2 | A3

A2 → $1.lock() A3

A3 → ε

Release → R0

R0 → R1

R1 → R2 | R3

R2 → $1.unlock()
R3

R3 → ε

Figure 4.4: Initial context-free grammar.

the wildcard symbol in the grammar) and replaces every call to x.lock()

(resp. x.unlock()) with the conditional invocation if(x = $1) $1.lock()

(resp. if(x = $1) $1.unlock()). Intuitively, the goal of this instrumenta-

tion is two-fold: First, it ensures that the CFG abstraction of the program

uses the same ”vocabulary” (i.e., terminals) as the specification CFG. Second,

it deals with challenges that arise from potential aliasing between pointers.

In the next step, our method extracts a context-free grammar that

over-approximates the relevant API call behavior of the program. Towards

this goal, we represent the program as a mapping from each function to a

predicated control-flow automaton (PCFA) that will be iteratively refined as

the algorithm progresses. At a high level, a PCFA captures control-flow within

a method while also maintaining a mapping from program locations to a set
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$1.lock(); ✏
<latexit sha1_base64="vlsj0rAEhv12HR9byhudHYCOHv0=">AAAB9nicbVBNSwMxEJ2tX7V+VT16WSyCp7Krgh6LXjxWsB/QLiWbzrah2WRNsmJZ+ie8Kt7Eq3+n/8a03YO1Phh4vHmTzLww4Uwbz5s6hbX1jc2t4nZpZ3dv/6B8eNTUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrHN3N+q1nVJpJ8WjGCQYxGQgWMUqMldpdTDTjUvTKFa/qzeGuEj8nFchR75Wn3b6kaYzCUE607vheYoKMKMMox0mpm2pMCB2RAXYsFSRGHWTzfSfumVX6biSVLWHcufp7IiOx1uM4tM6YmKFeei3i+CSCmWXW+9eSmugmyJhIUoOCLv6LUu4a6c4ycPtMITV8bAmhitmVXTokilBjkyrZLPy/l6+S5kXVv6z6D1eV2m2eShFO4BTOwYdrqME91KEBFDi8whu8Oy/Oh/PpfC2sBSefOYYlON8/TMGTGw==</latexit>

A2
<latexit sha1_base64="t8AyHebJ4DROOUFpzFNBUxBxjQc=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVZIq6LLqxmUF+4A2lMn0ph06maQzE6GEfIdbxZ249WP6N07aLqz1wMDh3HNnzhw/5kxpx5lZhY3Nre2d4m5pb//g8Kh8fNJSUSIpNmnEI9nxiULOBDY10xw7sUQS+hzb/vghn7dfUCoWiWc9jdELyVCwgFGijeT1QqJHlPD0LuvX+uWKU3XmsNeJuyQVWKLRL896g4gmIQpNOVGq6zqx9lIiNaMcs1IvURgTOiZD7BoqSIjKS+ehM/vCKAM7iKQ5Qttz9fdGSkKlpqFvnHlItXJbwHEivNySz/61JDq49VIm4kSjoIv3goTbOrLzIuwBk0g1nxpCqGQmsk1HRBKqTV0l04X79+frpFWruldV9+m6Ur9ftlKEMziHS3DhBurwCA1oAoUJvMIbvFuZ9WF9Wl8La8Fa7pzCCqzvH6sJlPc=</latexit>

A3
<latexit sha1_base64="Jjq2Vct/KOSJ5gKno8EVPsaeMdo=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIr6LLqxmUF+4A2lMn0ph06maQzE6GEfIdbxZ249WP6N07aLqz1wMDh3HNnzhw/5kxpx5lZhY3Nre2d4m5pb//g8Kh8fNJSUSIpNmnEI9nxiULOBDY10xw7sUQS+hzb/vghn7dfUCoWiWc9jdELyVCwgFGijeT1QqJHlPD0LuvX+uWKU3XmsNeJuyQVWKLRL896g4gmIQpNOVGq6zqx9lIiNaMcs1IvURgTOiZD7BoqSIjKS+ehM/vCKAM7iKQ5Qttz9fdGSkKlpqFvnHlItXJbwHEivNySz/61JDq49VIm4kSjoIv3goTbOrLzIuwBk0g1nxpCqGQmsk1HRBKqTV0l04X79+frpHVVdWtV9+m6Ur9ftlKEMziHS3DhBurwCA1oAoUJvMIbvFuZ9WF9Wl8La8Fa7pzCCqzvH6yUlPg=</latexit>

Acquire
<latexit sha1_base64="ZLJQj3EYuNIUSAJYES8lvtEh1jc=">AAACAHicbVBNT8JAEJ3iF+JX1aOXRmLiibRqokfUi0dMBEmgIdtlChu227K7JSENF3+HV40349V/wr9xCxxEfMkmL2/ezM68IOFMadedWoW19Y3NreJ2aWd3b//APjxqqDiVFOs05rFsBkQhZwLrmmmOzUQiiQKOz8HgPq8/j1AqFosnPU7Qj0hPsJBRoo3Use12RHSf6eyWDlMmcdKxy27FncFZJd6ClGGBWseetrsxTSMUmnKiVMtzE+1nRGpGOU5K7VRhQuiA9LBlqCARKj+bbT5xzozSdcJYmie0M1N/d2QkUmocBcaZ76mWpoUch8LPLXntX0uqwxs/YyJJNQo6/y9MuaNjJ0/D6ZqTqeZjQwiVzKzs0D6RhGqTWclk4f29fJU0LireZcV7vCpX7xapFOEETuEcPLiGKjxADepAYQSv8Abv1ov1YX1aX3NrwVr0HMMSrO8fLjeW6w==</latexit>

✏
<latexit sha1_base64="vlsj0rAEhv12HR9byhudHYCOHv0=">AAAB9nicbVBNSwMxEJ2tX7V+VT16WSyCp7Krgh6LXjxWsB/QLiWbzrah2WRNsmJZ+ie8Kt7Eq3+n/8a03YO1Phh4vHmTzLww4Uwbz5s6hbX1jc2t4nZpZ3dv/6B8eNTUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrHN3N+q1nVJpJ8WjGCQYxGQgWMUqMldpdTDTjUvTKFa/qzeGuEj8nFchR75Wn3b6kaYzCUE607vheYoKMKMMox0mpm2pMCB2RAXYsFSRGHWTzfSfumVX6biSVLWHcufp7IiOx1uM4tM6YmKFeei3i+CSCmWXW+9eSmugmyJhIUoOCLv6LUu4a6c4ycPtMITV8bAmhitmVXTokilBjkyrZLPy/l6+S5kXVv6z6D1eV2m2eShFO4BTOwYdrqME91KEBFDi8whu8Oy/Oh/PpfC2sBSefOYYlON8/TMGTGw==</latexit>

F5
<latexit sha1_base64="M4ycy++y1+41iFl0XL6pMO5szvg=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIf6LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjO1CmvrG5tbxe3Szu7e/kH58KipokRSbNCIR7LtE4WcCWxopjm2Y4kk9Dm2/NF9Pm+9oFQsEs96EqMXkoFgAaNEG8nrhkQPKeHpQ9a77pUrTtWZwV4l7oJUYIF6rzzt9iOahCg05USpjuvE2kuJ1IxyzErdRGFM6IgMsGOoICEqL52Fzuwzo/TtIJLmCG3P1N8bKQmVmoS+ceYh1dJtAcex8HJLPvvXkujg1kuZiBONgs7fCxJu68jOi7D7TCLVfGIIoZKZyDYdEkmoNnWVTBfu35+vkuZF1b2suk9XldrdopUinMApnIMLN1CDR6hDAyiM4RXe4N3KrA/r0/qaWwvWYucYlmB9/wC3cJT/</latexit>

F1
<latexit sha1_base64="Cq82OwnX2Bgn5M/MuyxuljKEPY4=">AAAB+3icbVBNS8NAFHypX7V+VT16CRbBU0lU0GNREI8VrC20oWy2L+3SzSbd3Qgl5Hd4VbyJV39M/42bNgdrHVgY5s3bnR0/5kxpx5lZpbX1jc2t8nZlZ3dv/6B6ePSsokRSbNGIR7LjE4WcCWxppjl2Yokk9Dm2/fFdPm+/oFQsEk96GqMXkqFgAaNEG8nrhUSPKOHpfdZ3+9WaU3fmsFeJW5AaFGj2q7PeIKJJiEJTTpTquk6svZRIzSjHrNJLFMaEjskQu4YKEqLy0nnozD4zysAOImmO0PZc/b2RklCpaegbZx5SLd0WcJwIL7fks38tiQ5uvJSJONEo6OK9IOG2juy8CHvAJFLNp4YQKpmJbNMRkYRqU1fFdOH+/fkqeb6ou5d19/Gq1rgtWinDCZzCObhwDQ14gCa0gMIEXuEN3q3M+rA+ra+FtWQVO8ewBOv7B7FElPs=</latexit>

Foo
<latexit sha1_base64="RMvSel+atCt4oTJ+sEpS+EMkq0M=">AAAB+nicbVDNSgMxGMzWv1r/qh69BIvgqeyqoMeiIB4r2FroLiWbZtvQbLIm3wpl7Wt4VbyJV1+mb2O23YO1DgSG+eZLJhMmghtw3alTWlldW98ob1a2tnd296r7B22jUk1ZiyqhdCckhgkuWQs4CNZJNCNxKNhjOLrJ54/PTBuu5AOMExbEZCB5xCkBK/l+TGDIIbtVatKr1ty6OwNeJl5BaqhAs1ed+n1F05hJoIIY0/XcBIKMaOBUsEnFTw1LCB2RAetaKknMTJDNMk/wiVX6OFLaHgl4pv7eyEhszDgOrTPPaBZuiwR7kkFuyWf/WlKIroKMyyQFJun8vSgVGBTOe8B9rhkFMbaEUM1tZEyHRBMKtq2K7cL7+/Nl0j6re+d17/6i1rguWimjI3SMTpGHLlED3aEmaiGKEvSK3tC78+J8OJ/O19xacoqdQ7QA5/sHgB2U7A==</latexit>

✏
<latexit sha1_base64="vlsj0rAEhv12HR9byhudHYCOHv0=">AAAB9nicbVBNSwMxEJ2tX7V+VT16WSyCp7Krgh6LXjxWsB/QLiWbzrah2WRNsmJZ+ie8Kt7Eq3+n/8a03YO1Phh4vHmTzLww4Uwbz5s6hbX1jc2t4nZpZ3dv/6B8eNTUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrHN3N+q1nVJpJ8WjGCQYxGQgWMUqMldpdTDTjUvTKFa/qzeGuEj8nFchR75Wn3b6kaYzCUE607vheYoKMKMMox0mpm2pMCB2RAXYsFSRGHWTzfSfumVX6biSVLWHcufp7IiOx1uM4tM6YmKFeei3i+CSCmWXW+9eSmugmyJhIUoOCLv6LUu4a6c4ycPtMITV8bAmhitmVXTokilBjkyrZLPy/l6+S5kXVv6z6D1eV2m2eShFO4BTOwYdrqME91KEBFDi8whu8Oy/Oh/PpfC2sBSefOYYlON8/TMGTGw==</latexit>

R3
<latexit sha1_base64="cdBUi96PaZT3NFCZo8cVYsdQ3l8=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIr6LLoxmUV+4A2lMn0ph06maQzE6GEfIdbxZ249WP6N07aLqz1wMDh3HNnzhw/5kxpx5lZhY3Nre2d4m5pb//g8Kh8fNJSUSIpNmnEI9nxiULOBDY10xw7sUQS+hzb/vg+n7dfUCoWiWc9jdELyVCwgFGijeT1QqJHlPD0KevX+uWKU3XmsNeJuyQVWKLRL896g4gmIQpNOVGq6zqx9lIiNaMcs1IvURgTOiZD7BoqSIjKS+ehM/vCKAM7iKQ5Qttz9fdGSkKlpqFvnHlItXJbwHEivNySz/61JDq49VIm4kSjoIv3goTbOrLzIuwBk0g1nxpCqGQmsk1HRBKqTV0l04X79+frpHVVdWtV9/G6Ur9btlKEMziHS3DhBurwAA1oAoUJvMIbvFuZ9WF9Wl8La8Fa7pzCCqzvH8cClQk=</latexit>

R1
<latexit sha1_base64="ztbKAjXQwn2nDqUJJx5gpFaeoqc=">AAAB+3icbVBNT8JAFHzFL8Qv1KOXRmLiibRqokeiF49oREigIdvlFTZst2V3a0Ka/g6vGm/Gqz+Gf+MWehBxkk0m8+btzo4fc6a048ys0tr6xuZWebuys7u3f1A9PHpWUSIptmjEI9nxiULOBLY00xw7sUQS+hzb/vgun7dfUCoWiSc9jdELyVCwgFGijeT1QqJHlPD0Meu7/WrNqTtz2KvELUgNCjT71VlvENEkRKEpJ0p1XSfWXkqkZpRjVuklCmNCx2SIXUMFCVF56Tx0Zp8ZZWAHkTRHaHuu/t5ISajUNPSNMw+plm4LOE6El1vy2b+WRAc3XspEnGgUdPFekHBbR3ZehD1gEqnmU0MIlcxEtumISEK1qatiunD//nyVPF/U3cu6+3BVa9wWrZThBE7hHFy4hgbcQxNaQGECr/AG71ZmfVif1tfCWrKKnWNYgvX9A8PslQc=</latexit>

Release
<latexit sha1_base64="VbNRVhbEafeWO3lSA8f3EbvFyoE=">AAACAHicbVBNS8NAEN3Ur1q/oh69BIvgqSQq6LHoxWMV+wFtKJvtpF262cTdSaGEXvwdXhVv4tV/0n/jpu3BWgcWHm/ezLx9QSK4RtedWoW19Y3NreJ2aWd3b//APjxq6DhVDOosFrFqBVSD4BLqyFFAK1FAo0BAMxje5f3mCJTmsXzCcQJ+RPuSh5xRNFTXtjsRxQHH7BEEmD2Trl12K+6snFXgLUCZLKrWtaedXszSCCQyQbVue26CfkYVciZgUuqkGhLKhrQPbQMljUD72cz5xDkzTM8JY2WeRGfG/p7IaKT1OAqMMvepl7aFAp6ln0vy3r+SFMMbP+MySREkm98LU+Fg7ORpOD2ugKEYG0CZ4saywwZUUYYms5LJwvv781XQuKh4lxXv4apcvV2kUiQn5JScE49ckyq5JzVSJ4yMyCt5I+/Wi/VhfVpfc2nBWswck6Wyvn8AIGiW4g==</latexit>

F2
<latexit sha1_base64="cZQp7kMT/Dr1Wwk4FuB1l781a0I=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVZIq6LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRw66VMxIlGQRfvBQm3dWTnRdgDJpFqPjWEUMlMZJuOiCRUm7pKpgv378/XSatWda+q7tN1pX63bKUIZ3AOl+DCDdThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7LPlPw=</latexit>

F3
<latexit sha1_base64="qA9zXhypV2eBKd5OvLY4p5n12gc=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIr6LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRw66VMxIlGQRfvBQm3dWTnRdgDJpFqPjWEUMlMZJuOiCRUm7pKpgv378/XSeuq6taq7tN1pX63bKUIZ3AOl+DCDdThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7RalP0=</latexit> F4

<latexit sha1_base64="pIzH7YPYUC6CY27ieHsjpSCGvgA=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIt6LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRw66VMxIlGQRfvBQm3dWTnRdgDJpFqPjWEUMlMZJuOiCRUm7pKpgv378/XSeuq6l5X3adapX63bKUIZ3AOl+DCDdThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7XllP4=</latexit>

✏
<latexit sha1_base64="vlsj0rAEhv12HR9byhudHYCOHv0=">AAAB9nicbVBNSwMxEJ2tX7V+VT16WSyCp7Krgh6LXjxWsB/QLiWbzrah2WRNsmJZ+ie8Kt7Eq3+n/8a03YO1Phh4vHmTzLww4Uwbz5s6hbX1jc2t4nZpZ3dv/6B8eNTUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrHN3N+q1nVJpJ8WjGCQYxGQgWMUqMldpdTDTjUvTKFa/qzeGuEj8nFchR75Wn3b6kaYzCUE607vheYoKMKMMox0mpm2pMCB2RAXYsFSRGHWTzfSfumVX6biSVLWHcufp7IiOx1uM4tM6YmKFeei3i+CSCmWXW+9eSmugmyJhIUoOCLv6LUu4a6c4ycPtMITV8bAmhitmVXTokilBjkyrZLPy/l6+S5kXVv6z6D1eV2m2eShFO4BTOwYdrqME91KEBFDi8whu8Oy/Oh/PpfC2sBSefOYYlON8/TMGTGw==</latexit>

F1
<latexit sha1_base64="Cq82OwnX2Bgn5M/MuyxuljKEPY4=">AAAB+3icbVBNS8NAFHypX7V+VT16CRbBU0lU0GNREI8VrC20oWy2L+3SzSbd3Qgl5Hd4VbyJV39M/42bNgdrHVgY5s3bnR0/5kxpx5lZpbX1jc2t8nZlZ3dv/6B6ePSsokRSbNGIR7LjE4WcCWxppjl2Yokk9Dm2/fFdPm+/oFQsEk96GqMXkqFgAaNEG8nrhUSPKOHpfdZ3+9WaU3fmsFeJW5AaFGj2q7PeIKJJiEJTTpTquk6svZRIzSjHrNJLFMaEjskQu4YKEqLy0nnozD4zysAOImmO0PZc/b2RklCpaegbZx5SLd0WcJwIL7fks38tiQ5uvJSJONEo6OK9IOG2juy8CHvAJFLNp4YQKpmJbNMRkYRqU1fFdOH+/fkqeb6ou5d19/Gq1rgtWinDCZzCObhwDQ14gCa0gMIEXuEN3q3M+rA+ra+FtWQVO8ewBOv7B7FElPs=</latexit>

Foo
<latexit sha1_base64="RMvSel+atCt4oTJ+sEpS+EMkq0M=">AAAB+nicbVDNSgMxGMzWv1r/qh69BIvgqeyqoMeiIB4r2FroLiWbZtvQbLIm3wpl7Wt4VbyJV1+mb2O23YO1DgSG+eZLJhMmghtw3alTWlldW98ob1a2tnd296r7B22jUk1ZiyqhdCckhgkuWQs4CNZJNCNxKNhjOLrJ54/PTBuu5AOMExbEZCB5xCkBK/l+TGDIIbtVatKr1ty6OwNeJl5BaqhAs1ed+n1F05hJoIIY0/XcBIKMaOBUsEnFTw1LCB2RAetaKknMTJDNMk/wiVX6OFLaHgl4pv7eyEhszDgOrTPPaBZuiwR7kkFuyWf/WlKIroKMyyQFJun8vSgVGBTOe8B9rhkFMbaEUM1tZEyHRBMKtq2K7cL7+/Nl0j6re+d17/6i1rguWimjI3SMTpGHLlED3aEmaiGKEvSK3tC78+J8OJ/O19xacoqdQ7QA5/sHgB2U7A==</latexit>

A1
<latexit sha1_base64="FZG9gooRnlJu0GOAgTggtpjcSEk=">AAAB+3icbVBNT8JAFHzFL8Qv1KOXRmLiibRqokfUi0dMREigIdvlFTZst2V3a0Ka/g6vGm/Gqz+Gf+MWehBxkk0m8+btzo4fc6a048ys0tr6xuZWebuys7u3f1A9PHpWUSIptmjEI9nxiULOBLY00xw7sUQS+hzb/vg+n7dfUCoWiSc9jdELyVCwgFGijeT1QqJHlPD0Nuu7/WrNqTtz2KvELUgNCjT71VlvENEkRKEpJ0p1XSfWXkqkZpRjVuklCmNCx2SIXUMFCVF56Tx0Zp8ZZWAHkTRHaHuu/t5ISajUNPSNMw+plm4LOE6El1vy2b+WRAc3XspEnGgUdPFekHBbR3ZehD1gEqnmU0MIlcxEtumISEK1qatiunD//nyVPF/U3cu6+3hVa9wVrZThBE7hHFy4hgY8QBNaQGECr/AG71ZmfVif1tfCWrKKnWNYgvX9A6l+lPY=</latexit>

A0
<latexit sha1_base64="TzvU+Wtegq6G2xVvnk8dH43Ahck=">AAAB+3icbVBNT8JAFHzFL8Qv1KOXRmLiibRqokfUi0dMREigIdvlFTZst2V3a0Ka/g6vGm/Gqz+Gf+MWehBxkk0m8+btzo4fc6a048ys0tr6xuZWebuys7u3f1A9PHpWUSIptmjEI9nxiULOBLY00xw7sUQS+hzb/vg+n7dfUCoWiSc9jdELyVCwgFGijeT1QqJHlPD0Nus7/WrNqTtz2KvELUgNCjT71VlvENEkRKEpJ0p1XSfWXkqkZpRjVuklCmNCx2SIXUMFCVF56Tx0Zp8ZZWAHkTRHaHuu/t5ISajUNPSNMw+plm4LOE6El1vy2b+WRAc3XspEnGgUdPFekHBbR3ZehD1gEqnmU0MIlcxEtumISEK1qatiunD//nyVPF/U3cu6+3hVa9wVrZThBE7hHFy4hgY8QBNaQGECr/AG71ZmfVif1tfCWrKKnWNYgvX9A6fzlPU=</latexit>

F0
<latexit sha1_base64="AvOKZtKA1Krd86doCv2ooKF7bEM=">AAAB+3icbVBNS8NAFHypX7V+VT16CRbBU0lU0GNREI8VrC20oWy2L+3SzSbd3Qgl5Hd4VbyJV39M/42bNgdrHVgY5s3bnR0/5kxpx5lZpbX1jc2t8nZlZ3dv/6B6ePSsokRSbNGIR7LjE4WcCWxppjl2Yokk9Dm2/fFdPm+/oFQsEk96GqMXkqFgAaNEG8nrhUSPKOHpfdZ3+tWaU3fmsFeJW5AaFGj2q7PeIKJJiEJTTpTquk6svZRIzSjHrNJLFMaEjskQu4YKEqLy0nnozD4zysAOImmO0PZc/b2RklCpaegbZx5SLd0WcJwIL7fks38tiQ5uvJSJONEo6OK9IOG2juy8CHvAJFLNp4YQKpmJbNMRkYRqU1fFdOH+/fkqeb6ou5d19/Gq1rgtWinDCZzCObhwDQ14gCa0gMIEXuEN3q3M+rA+ra+FtWQVO8ewBOv7B6+5lPo=</latexit>

F8
<latexit sha1_base64="E+VJC45zGr9ptWjrUxu0rLqcDfo=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIV7LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRQ81Im4kSjoIv3goTbOrLzIuwBk0g1nxpCqGQmsk1HRBKqTV0l04X79+frpHVVda+r7tNNpX63bKUIZ3AOl+DCLdThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7wRlQI=</latexit>

R0
<latexit sha1_base64="ldgpLdoz5RAD5AFkstHa1wH2mXI=">AAAB+3icbVBNT8JAFHzFL8Qv1KOXRmLiibRqokeiF49oREigIdvlFTZst2V3a0Ka/g6vGm/Gqz+Gf+MWehBxkk0m8+btzo4fc6a048ys0tr6xuZWebuys7u3f1A9PHpWUSIptmjEI9nxiULOBLY00xw7sUQS+hzb/vgun7dfUCoWiSc9jdELyVCwgFGijeT1QqJHlPD0Mes7/WrNqTtz2KvELUgNCjT71VlvENEkRKEpJ0p1XSfWXkqkZpRjVuklCmNCx2SIXUMFCVF56Tx0Zp8ZZWAHkTRHaHuu/t5ISajUNPSNMw+plm4LOE6El1vy2b+WRAc3XspEnGgUdPFekHBbR3ZehD1gEqnmU0MIlcxEtumISEK1qatiunD//nyVPF/U3cu6+3BVa9wWrZThBE7hHFy4hgbcQxNaQGECr/AG71ZmfVif1tfCWrKKnWNYgvX9A8JhlQY=</latexit>

F6
<latexit sha1_base64="RBxWJhM7enI9Ib77L+r9dBOgf9c=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIVdVkUxGUF+4A2lMn0ph06maQzE6GEfIdbxZ249WP6N07aLqz1wMDh3HNnzhw/5kxpx5lahbX1jc2t4nZpZ3dv/6B8eNRUUSIpNmjEI9n2iULOBDY00xzbsUQS+hxb/ug+n7deUCoWiWc9idELyUCwgFGijeR1Q6KHlPD0Ietd98oVp+rMYK8Sd0EqsEC9V552+xFNQhSacqJUx3Vi7aVEakY5ZqVuojAmdEQG2DFUkBCVl85CZ/aZUfp2EElzhLZn6u+NlIRKTULfOPOQaum2gONYeLkln/1rSXRw66VMxIlGQefvBQm3dWTnRdh9JpFqPjGEUMlMZJsOiSRUm7pKpgv3789XSfOi6l5W3aerSu1u0UoRTuAUzsGFG6jBI9ShARTG8Apv8G5l1of1aX3NrQVrsXMMS7C+fwC4+5UA</latexit>

F7
<latexit sha1_base64="rHdWXEDHlm+6kC0trvDTGn3Jw9M=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIV6rIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRw66VMxIlGQRfvBQm3dWTnRdgDJpFqPjWEUMlMZJuOiCRUm7pKpgv378/XSeuq6l5X3aebSv1u2UoRzuAcLsGFGtThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7qGlQE=</latexit>

F8
<latexit sha1_base64="E+VJC45zGr9ptWjrUxu0rLqcDfo=">AAAB+3icbVDLSsNAFL2pr1pfVZdugkVwVRIV7LIoiMsK9gFtKJPpTTt0MklnJkIJ+Q63ijtx68f0b5y0XVjrgYHDuefOnDl+zJnSjjOzChubW9s7xd3S3v7B4VH5+KSlokRSbNKIR7LjE4WcCWxqpjl2Yokk9Dm2/fF9Pm+/oFQsEs96GqMXkqFgAaNEG8nrhUSPKOHpQ9av9csVp+rMYa8Td0kqsESjX571BhFNQhSacqJU13Vi7aVEakY5ZqVeojAmdEyG2DVUkBCVl85DZ/aFUQZ2EElzhLbn6u+NlIRKTUPfOPOQauW2gONEeLkln/1rSXRQ81Im4kSjoIv3goTbOrLzIuwBk0g1nxpCqGQmsk1HRBKqTV0l04X79+frpHVVda+r7tNNpX63bKUIZ3AOl+DCLdThERrQBAoTeIU3eLcy68P6tL4W1oK13DmFFVjfP7wRlQI=</latexit>

F0
<latexit sha1_base64="AvOKZtKA1Krd86doCv2ooKF7bEM=">AAAB+3icbVBNS8NAFHypX7V+VT16CRbBU0lU0GNREI8VrC20oWy2L+3SzSbd3Qgl5Hd4VbyJV39M/42bNgdrHVgY5s3bnR0/5kxpx5lZpbX1jc2t8nZlZ3dv/6B6ePSsokRSbNGIR7LjE4WcCWxppjl2Yokk9Dm2/fFdPm+/oFQsEk96GqMXkqFgAaNEG8nrhUSPKOHpfdZ3+tWaU3fmsFeJW5AaFGj2q7PeIKJJiEJTTpTquk6svZRIzSjHrNJLFMaEjskQu4YKEqLy0nnozD4zysAOImmO0PZc/b2RklCpaegbZx5SLd0WcJwIL7fks38tiQ5uvJSJONEo6OK9IOG2juy8CHvAJFLNp4YQKpmJbNMRkYRqU1fFdOH+/fkqeb6ou5d19/Gq1rgtWinDCZzCObhwDQ14gCa0gMIEXuEN3q3M+rA+ra+FtWQVO8ewBOv7B6+5lPo=</latexit>

(a) Parse Tree.

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

l1acq = l
<latexit sha1_base64="4KCa265A67iM7P9/BLnMRo3UpBc=">AAAB+nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjBPOAZAmzk95kyOzsZmZWCGt+w6viTbz6M/kbJ4+DMRY0FNXVM90VJIJr47oTJ7e2vrG5ld8u7Ozu7R8UD4/qOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxjcT/uNZ1Sax/LJjBL0I9qTPOSMGiu1hdfJKBuOyS0RnWLJLbszkFXiLUgJFqh2ipN2N2ZphNIwQbVueW5i/Iwqw5nAcaGdakwoG9AetiyVNELtZ7Odx+TMKl0SxsqWNGSm/p7IaKT1KAqsM6Kmr5deCwUOpT+1THv/WlIT3vgZl0lqULL5f2EqiInJNAfS5QqZESNLKFPcrkxYnyrKjE2rYLPw/l6+SuoXZe+y7D1elSp3i1TycAKncA4eXEMFHqAKNWCQwCu8wbvz4nw4n87X3JpzFjPHsATn+wcPXJP/</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

lfoo = l;
assume(true);
l1acq = l;
call acquire;
    l1 = l1acq;
    assume(l1 == $1);
    $1.lock();
    return;
lfoo = l; 
call foo;
    l = lfoo;
    assume(true);
    return;
l2rel = l;
call release;
    l2 = l2rel;
    assume(l2 != $1);
    return;

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

l1acq = l1
<latexit sha1_base64="aDO9C6gslwHisVPbAQV2FXR0Vbc=">AAAB+3icbZDLSgMxFIbP1Futt6pLN8EiuCozKuhGKLpxWcHaQjuUTHqmDc1kpklGKMM8h1vFnbj1Yfo2ppeFtR4IfPznP8nJHySCa+O6E6ewtr6xuVXcLu3s7u0flA+PnnWcKoYNFotYtQKqUXCJDcONwFaikEaBwGYwvJ/2my+oNI/lkxkn6Ee0L3nIGTVW8oXXzSgb5eSWWCxX3Ko7K7IK3gIqsKh6tzzp9GKWRigNE1Trtucmxs+oMpwJzEudVGNC2ZD2sW1R0gi1n82WzsmZVXokjJU90pCZ+nsio5HW4yiwzoiagV66LRQ4kv7UMu39a0lNeONnXCapQcnm74WpICYm0yBIjytkRowtUKa4XZmwAVWUGRtXyWbh/f35KjxfVL3Lqvd4VandLVIpwgmcwjl4cA01eIA6NIDBCF7hDd6d3PlwPp2vubXgLGaOYamc7x+ECpQ6</latexit>

l1acq = $1
<latexit sha1_base64="sSd7lSQLX8lk6mmPdRVQ5ukqnpM=">AAAB/HicbVDLSgMxFL1TX7W+qi7dBKvgqkxU0I1QdOOygn1AO5ZMmmlDM5lpkhHKUL/DreJO3Pov/RszbRfWeuDC4dxzk3uPHwuujetOnNzK6tr6Rn6zsLW9s7tX3D+o6yhRlNVoJCLV9IlmgktWM9wI1owVI6EvWMMf3GX9xjNTmkfy0Yxi5oWkJ3nAKTFWehK4kxI6HKMb1D7BnWLJLbtToGWC56QEc1Q7xUm7G9EkZNJQQbRuYTc2XkqU4VSwcaGdaBYTOiA91rJUkpBpL51uPUanVumiIFK2pEFT9fdESkKtR6FvnSExfb3wWiDYUHqZJev9a0lMcO2lXMaJYZLO/gsSgUyEsiRQlytGjRhZQqjidmVE+0QRamxeBZsF/nv5Mqmfl/FFGT9cliq381TycATHcAYYrqAC91CFGlBQ8Apv8O68OB/Op/M1s+ac+cwhLMD5/gHL/5RY</latexit>

l1acq = $1
<latexit sha1_base64="sSd7lSQLX8lk6mmPdRVQ5ukqnpM=">AAAB/HicbVDLSgMxFL1TX7W+qi7dBKvgqkxU0I1QdOOygn1AO5ZMmmlDM5lpkhHKUL/DreJO3Pov/RszbRfWeuDC4dxzk3uPHwuujetOnNzK6tr6Rn6zsLW9s7tX3D+o6yhRlNVoJCLV9IlmgktWM9wI1owVI6EvWMMf3GX9xjNTmkfy0Yxi5oWkJ3nAKTFWehK4kxI6HKMb1D7BnWLJLbtToGWC56QEc1Q7xUm7G9EkZNJQQbRuYTc2XkqU4VSwcaGdaBYTOiA91rJUkpBpL51uPUanVumiIFK2pEFT9fdESkKtR6FvnSExfb3wWiDYUHqZJev9a0lMcO2lXMaJYZLO/gsSgUyEsiRQlytGjRhZQqjidmVE+0QRamxeBZsF/nv5Mqmfl/FFGT9cliq381TycATHcAYYrqAC91CFGlBQ8Apv8O68OB/Op/M1s+ac+cwhLMD5/gHL/5RY</latexit>

l = $1
<latexit sha1_base64="OtNwWNkHq38WaGvK7nG/5oYZYc4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoBch6MVjBPOAZAmzk95kyOzsOjOrhCUf4VXxJl79nvyNk8fBGAsaiurqme4KEsG1cd2xk1tZXVvfyG8WtrZ3dveK+wd1HaeKYY3FIlbNgGoUXGLNcCOwmSikUSCwEQzuJv3GMyrNY/lohgn6Ee1JHnJGjZUagtyQ9onXKZbcsjsFWSbenJRgjmqnOG53Y5ZGKA0TVOuW5ybGz6gynAkcFdqpxoSyAe1hy1JJI9R+Nl13RE6t0iVhrGxJQ6bq74mMRloPo8A6I2r6euG1UOCT9CeWSe9fS2rCaz/jMkkNSjb7L0wFMTGZREC6XCEzYmgJZYrblQnrU0WZsUEVbBbe38uXSf287F2UvYfLUuV2nkoejuAYzsCDK6jAPVShBgwG8Apv8O68OB/Op/M1s+ac+cwhLMD5/gF0gZFV</latexit>

l = $1
<latexit sha1_base64="OtNwWNkHq38WaGvK7nG/5oYZYc4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoBch6MVjBPOAZAmzk95kyOzsOjOrhCUf4VXxJl79nvyNk8fBGAsaiurqme4KEsG1cd2xk1tZXVvfyG8WtrZ3dveK+wd1HaeKYY3FIlbNgGoUXGLNcCOwmSikUSCwEQzuJv3GMyrNY/lohgn6Ee1JHnJGjZUagtyQ9onXKZbcsjsFWSbenJRgjmqnOG53Y5ZGKA0TVOuW5ybGz6gynAkcFdqpxoSyAe1hy1JJI9R+Nl13RE6t0iVhrGxJQ6bq74mMRloPo8A6I2r6euG1UOCT9CeWSe9fS2rCaz/jMkkNSjb7L0wFMTGZREC6XCEzYmgJZYrblQnrU0WZsUEVbBbe38uXSf287F2UvYfLUuV2nkoejuAYzsCDK6jAPVShBgwG8Apv8O68OB/Op/M1s+ac+cwhLMD5/gF0gZFV</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

l = $1
<latexit sha1_base64="OtNwWNkHq38WaGvK7nG/5oYZYc4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBqPgKeyqoBch6MVjBPOAZAmzk95kyOzsOjOrhCUf4VXxJl79nvyNk8fBGAsaiurqme4KEsG1cd2xk1tZXVvfyG8WtrZ3dveK+wd1HaeKYY3FIlbNgGoUXGLNcCOwmSikUSCwEQzuJv3GMyrNY/lohgn6Ee1JHnJGjZUagtyQ9onXKZbcsjsFWSbenJRgjmqnOG53Y5ZGKA0TVOuW5ybGz6gynAkcFdqpxoSyAe1hy1JJI9R+Nl13RE6t0iVhrGxJQ6bq74mMRloPo8A6I2r6euG1UOCT9CeWSe9fS2rCaz/jMkkNSjb7L0wFMTGZREC6XCEzYmgJZYrblQnrU0WZsUEVbBbe38uXSf287F2UvYfLUuV2nkoejuAYzsCDK6jAPVShBgwG8Apv8O68OB/Op/M1s+ac+cwhLMD5/gF0gZFV</latexit>

l2rel = $1
<latexit sha1_base64="waRIuOiT/PRE7iRMzqKD6KlTtrg=">AAAB/HicbVBNSwMxEJ31s9avqkcvwSp4Krsq6EUoevFYwdZCu5ZsOmtDs9k1yQplqb/Dq+JNvPpf+m/Mtj1Y64OBx5s3ycwLEsG1cd2Rs7C4tLyyWlgrrm9sbm2XdnYbOk4VwzqLRayaAdUouMS64UZgM1FIo0DgfdC/zvv3z6g0j+WdGSToR/RR8pAzaqz0IE46mUIxJJekfeh1SmW34o5B5ok3JWWYotYpjdrdmKURSsME1brluYnxM6oMZwKHxXaqMaGsTx+xZamkEWo/G289JEdW6ZIwVrakIWP190RGI60HUWCdETU9PfNaKPBJ+rkl7/1rSU144WdcJqlBySb/hakgJiZ5EqTLFTIjBpZQprhdmbAeVZQZm1fRZuH9vXyeNE4q3mnFuz0rV6+mqRRgHw7gGDw4hyrcQA3qwEDBK7zBu/PifDifztfEuuBMZ/ZgBs73D+O2lGc=</latexit>

true
<latexit sha1_base64="9eIZlJMQ2/C7iFMf48JGlBM8Sl0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0s4m7E6GE/gWvijfx6h/qv3Gb5mCtDxYeb97MzrwgkcKg686c0tr6xuZWebuys7u3f1A9PGqbONUcWjyWse4EzIAUClooUEIn0cCiQMJTML6b159eQBsRq0ecJOBHbKhEKDjDXNIp9Ks1t+7moKvEK0iNFGj2q7PeIOZpBAq5ZMZ0PTdBP2MaBZcwrfRSAwnjYzaErqWKRWD8LN91Ss+sMqBhrO1TSHP1d0fGImMmUWCdEcORWZoWSnhW/twyr/1rSTG88TOhkhRB8cV/YSopxnR+Px0IDRzlxBLGtbArUz5imnG0KVVsFt7fy1dJ+6LuXda9h6ta47ZIpUxOyCk5Jx65Jg1yT5qkRTgZkVfyRt4ddD6cT+drYS05Rc8xWYLz/QM9p5Fd</latexit>

l2rel 6= $1
<latexit sha1_base64="gy3C2CQ2T94ezoz1BIiRtw3/xd4=">AAACAXicbVDLTsMwEHR4lvJK4cjFoiBxqpKCBMcKLhyLRB9SE1WOu2mtOk5qO6Aq6onv4ArihrjyJf0b3DYHShlppdHsrL07QcKZ0o4ztdbWNza3tgs7xd29/YNDu3TUVHEqKTRozGPZDogCzgQ0NNMc2okEEgUcWsHwbtZvPYFULBaPepyAH5G+YCGjRBupa5d4tZtJ4BPsCRhh78zt2mWn4syBV4mbkzLKUe/aU68X0zQCoSknSnVcJ9F+RqRmlMOk6KUKEkKHpA8dQwWJQPnZfPUJPjdKD4exNCU0nqu/JzISKTWOAuOMiB6opddCDiPhzyyz3r+WVIc3fsZEkmoQdPFfmHKsYzyLA/eYBKr52BBCJTMrYzogklBtQiuaLNy/l6+SZrXiXlbch6ty7TZPpYBO0Cm6QC66RjV0j+qogSh6Rq/oDb1bL9aH9Wl9LaxrVj5zjJZgff8AAX2WGQ==</latexit>

l2rel = l2
<latexit sha1_base64="y0cmRfB/NPt/gyugbEOUQQrW0sc=">AAAB+3icbZDLSgMxFIbP1Futt6pLN8EiuCozVdCNUHTjsoK9QDuUTHqmDc1kpklGKEOfw63iTtz6MH0b08vCWg8EPv7zn+TkDxLBtXHdqZPb2Nza3snvFvb2Dw6PiscnDR2nimGdxSJWrYBqFFxi3XAjsJUopFEgsBkMH2b95gsqzWP5bMYJ+hHtSx5yRo2VfFHpZgrFhNwRi8WSW3bnRdbBW0IJllXrFqedXszSCKVhgmrd9tzE+BlVhjOBk0In1ZhQNqR9bFuUNELtZ/OlJ+TCKj0Sxsoeachc/T2R0UjrcRRYZ0TNQK/cFgocSX9mmfX+taQmvPUzLpPUoGSL98JUEBOTWRCkxxUyI8YWKFPcrkzYgCrKjI2rYLPw/v58HRqVsndV9p6uS9X7ZSp5OINzuAQPbqAKj1CDOjAYwSu8wbszcT6cT+drYc05y5lTWCnn+wedPZRK</latexit>

false
<latexit sha1_base64="6OFeK2VFmN8MpGAXdjDxhuIUDk8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKphbaUDbbSbt0s4m7G6GE/gavijfx6g/qv3Hb5mCtDwYeb97szrwwFVwb1506pbX1jc2t8nZlZ3dv/6B6eNTSSaYY+iwRiWqHVKPgEn3DjcB2qpDGocCncHQ36z+9oNI8kY9mnGIQ04HkEWfUWMmPqNDYq9bcujsHWSVeQWpQoNmrTrv9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz5edkDOr9EmUKFvSkLn6eyKnsdbjOLTOmJqhXnotEvgsg5ll1vvXkpnoJsi5TDODki3+izJBTEJmAZA+V8iMGFtCmeJ2ZcKGVFFmbEwVm4X39/JV0rqoe5d17+Gq1rgtUinDCZzCOXhwDQ24hyb4wIDDK7zBu5M5H86n87Wwlpxi5hiW4Hz/ANeikbI=</latexit>

(b) Trace & Interpolants.

Figure 4.5: Tree and Trace for Counterexample $1.lock().

of logical predicates. For example, Figure 4.3 shows the initial PCFAs for

Figure 4.2(b): here, nodes correspond to program locations, and edges corre-

spond to transitions. Observe that the PCFAs from Figure 4.3 contain a single

node for each program location; hence, these PCFAs look like standard control

flow automata (CFA) used in software model checking [122, 191]. However, the

PCFA representation diverges from a standard CFA as the algorithm proceeds.

In particular, the PCFA can contain multiple nodes for the same program lo-

cation and allows our method to selectively introduce path-sensitivity to the

program abstraction.

89



Given these initial PCFAs, our method programmatically extracts from

them a context-free grammar over-approximating the program’s feasible API

call sequences. In particular, Figure 4.4 shows the initial CFG abstraction

for our example. Here, non-terminals (e.g., F1,A2) correspond to nodes (e.g.,

f1, a2) in the PCFAs, and terminals (e.g., $1.lock()) denote API calls. Addi-

tionally, there is one non-terminal symbol (e.g., Foo, Acquire) for each method.

The productions in the CFG are obtained directly from the PCFA by ignor-

ing all statements that are not function calls: For example, the production

A2 → $1.lock() A3 comes from the PCFA edge from a2 to a3. In addition,

the CFG productions faithfully and precisely model inter-procedural control

flow. For instance, the production F3 → Acquire F4 models the call from

Foo to Acquire and A3 → ε models its corresponding return.

Next, our method checks inclusion between the grammar GP extracted

from the program and API protocol GS. While this problem is, in general,

undecidable, we have found the resulting CFG inclusion checking problems

to be amenable to automation by modern tools. Going back to our running

example, the language of GP from Figure 4.4 is not a subset of the language of

GS — for example, the word $1.lock() can be generated using GP but not GS.

This means that either the program actually misuses the API or the current

abstraction is imprecise. In order to determine which one, our method maps

the word $1.lock() to an execution path of the program. Towards this goal, we

first obtain the parse tree from Figure 4.5a that shows how $1.lock() can be

derived from GP . This derivation corresponds precisely to the program path,
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{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f0
<latexit sha1_base64="yW5xfxAKy6V+rqwnGRSWM6votT4=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPQY9txeueJW3RnIKvEWpAIL1HvlabcfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aoTcmaVPgljZZ80ZKb+7shopPU4Cqwzomaol6aFAp+ln1vy2r+W1IQ3fsZlkhqUbP5fmApiYpKfT/pcITNibAllituVCRtSRZmxIZVsFt7fy1dJ86LqXVa9h6tK7XaRShFO4BTOwYNrqME91KEBDAbwCm/w7mjnw/l0vubWgrPoOYYlON8/3deQiA==</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f1
<latexit sha1_base64="VnkIdA89jPGB1sBgaHKSsPM95gQ=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPQY9rxeueJW3RnIKvEWpAIL1HvlabcfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aoTcmaVPgljZZ80ZKb+7shopPU4Cqwzomaol6aFAp+ln1vy2r+W1IQ3fsZlkhqUbP5fmApiYpKfT/pcITNibAllituVCRtSRZmxIZVsFt7fy1dJ86LqXVa9h6tK7XaRShFO4BTOwYNrqME91KEBDAbwCm/w7mjnw/l0vubWgrPoOYYlON8/32KQiQ==</latexit>

lfoo = l; 

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f2
<latexit sha1_base64="qZUDwtM6aeGRJ5XlgvA6st3eg2A=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnoMe9VeqexW3DnIKvFyUoYc9V5p1u3HLI1QGiao1h3PTYw/ocpwJnBa7KYaE8pGdIAdSyWNUPuT+apTcm6VPgljZZ80ZK7+7pjQSOtxFFhnRM1QL00LBT5LP7NktX8tqQlv/AmXSWpQssV/YSqIiUl2PulzhcyIsSWUKW5XJmxIFWXGhlS0WXh/L18lzWrFu6x4D1fl2m2eSgFO4QwuwINrqME91KEBDAbwCm/w7mjnw/l0vhbWNSfvOYElON8/4O2Qig==</latexit>

f3
<latexit sha1_base64="dkPS41fGCdK5YEFSrfVF/9tMCVs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPQY9i575Ypbdecgq8TLSQVy1HvlWbcfszRCaZigWnc8NzH+hCrDmcBpqZtqTCgb0QF2LJU0Qu1P5qtOyZlV+iSMlX3SkLn6u2NCI63HUWCdETVDvTQtFPgs/cyS1f61pCa88SdcJqlByRb/hakgJibZ+aTPFTIjxpZQprhdmbAhVZQZG1LJZuH9vXyVNC+q3mXVe7iq1G7zVIpwAqdwDh5cQw3uoQ4NYDCAV3iDd0c7H86n87WwFpy85xiW4Hz/AOJ4kIs=</latexit>

f4
<latexit sha1_base64="6P7Ph3epr0zzo1h40VFYXMDPhQ0=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewqiR6JXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhNe+xMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5Kni6q3mXVu69V6jd5KkU4gVM4Bw+uoA530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOQDkIw=</latexit>

f5
<latexit sha1_base64="pbm37LOimqIJ0eZ2yomtlQzZrOk=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiiez6ET0SvXjEKEICG9Its9DQ7a5t14QQfoJXjTfj1V/Ev7ELexDxJU1e3ryZzrwgEVwb1506hZXVtfWN4mZpa3tnd6+8f/Ck41QxbLBYxKoVUI2CS2wYbgS2EoU0CgQ2g+FtVm++oNI8lo9mlKAf0b7kIWfUWOkh7F52yxW36s5AlomXkwrkqHfL004vZmmE0jBBtW57bmL8MVWGM4GTUifVmFA2pH1sWypphNofz1adkBOr9EgYK/ukITP1d8eYRlqPosA6I2oGemFaKPBZ+pklq/1rSU147Y+5TFKDks3/C1NBTEyy80mPK2RGjCyhTHG7MmEDqigzNqSSzcL7e/kyeTqreudV7/6iUrvJUynCERzDKXhwBTW4gzo0gEEfXuEN3h3tfDifztfcWnDynkNYgPP9A+WOkI0=</latexit>

f6
<latexit sha1_base64="wGH/5zwQkBfYgIQAAbrU6u2cNfg=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqUY9ELx4xipDAhnTLLDR0u2vbNSGEn+BV48149Rfxb+zCHkR8SZOXN2+mMy9IBNfGdadOYWV1bX2juFna2t7Z3SvvHzzpOFUMGywWsWoFVKPgEhuGG4GtRCGNAoHNYHib1ZsvqDSP5aMZJehHtC95yBk1VnoIu5fdcsWtujOQZeLlpAI56t3ytNOLWRqhNExQrduemxh/TJXhTOCk1Ek1JpQNaR/blkoaofbHs1Un5MQqPRLGyj5pyEz93TGmkdajKLDOiJqBXpgWCnyWfmbJav9aUhNe+2Muk9SgZPP/wlQQE5PsfNLjCpkRI0soU9yuTNiAKsqMDalks/D+Xr5Mns6q3nnVu7+o1G7yVIpwBMdwCh5cQQ3uoA4NYNCHV3iDd0c7H86n8zW3Fpy85xAW4Hz/AOcZkI4=</latexit>

f7
<latexit sha1_base64="pjnsVxCkj5vz2UPjKnYJv+xUO78=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqCR6JXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhNe+xMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5Kni6q3mXVu7+q1G/yVIpwAqdwDh7UoA530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOikkI8=</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

f8
<latexit sha1_base64="HWroXY7wxmtRvbi13B+8qZZWQQI=">AAAB8XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyqiRyJXjxiFCGBDemWWWjodte2a0IIP8Grxpvx6i/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweg2q7deUGkey0czTtCP6EDykDNqrPQQ9mq9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPW/AmXSWpQssV/YSqIiUl2PulzhcyIsSWUKW5XJmxIFWXGhlSyWXh/L18lTxdV77Lq3V9V6jd5KkU4gVM4Bw+uoQ530IAmMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/AOovkJA=</latexit>

assume(true); 

assume(true); 

l1acq = l;

call acquire;

call release;

f 0
4

<latexit sha1_base64="5rIYKKZgnZjOHqSAwJOUmNaiBTE=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHaVRI9ELx4xESGBDemWLjR0u2s7a0IIf8Grxpvx6h/i39iFPYj4kiYvb95MZ16QSGHQdWdOYW19Y3OruF3a2d3bPygfHj2ZONWMN1ksY90OqOFSKN5EgZK3E81pFEjeCkZ3Wb31wrURsXrEccL9iA6UCAWjmElhr3beK1fcqjsHWSVeTiqQo9Erz7r9mKURV8gkNabjuQn6E6pRMMmnpW5qeELZiA54x1JFI278yXzXKTmzSp+EsbZPIZmrvzsmNDJmHAXWGVEcmqVpoeTPys8sWe1fS4rhjT8RKkmRK7b4L0wlwZhk95O+0JyhHFtCmRZ2ZcKGVFOGNqWSzcL7e/kqebqseldV76FWqd/mqRThBE7hAjy4hjrcQwOawGAIr/AG7w46H86n87WwFpy85xiW4Hz/AEYnkL0=</latexit>

f 0
5

<latexit sha1_base64="DA7JBxBS0mEO0ybxi5SN005LC/E=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHb9iB6JXjxiIkICG9Its9DQ7a5t14Rs+AteNd6MV/8Q/8YucBDxJU1e3ryZzrwgEVwb1504hZXVtfWN4mZpa3tnd6+8f/Ck41QxbLBYxKoVUI2CS2wYbgS2EoU0CgQ2g+FdXm++oNI8lo9mlKAf0b7kIWfU5FLYvTrtlitu1Z2CLBNvTiowR71bnnR6MUsjlIYJqnXbcxPjZ1QZzgSOS51UY0LZkPaxbamkEWo/m+46JidW6ZEwVvZJQ6bq746MRlqPosA6I2oGemFaKPBZ+rklr/1rSU1442dcJqlByWb/hakgJib5/aTHFTIjRpZQprhdmbABVZQZm1LJZuH9vXyZPJ1XvYuq93BZqd3OUynCERzDGXhwDTW4hzo0gMEAXuEN3h3jfDifztfMWnDmPYewAOf7B0ezkL4=</latexit>

f 0
6

<latexit sha1_base64="lynndcrMk966yEj25ooHReCnR5k=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbVqEeiF4+YiJDAhnTLLDR0u2vbNSEb/oJXjTfj1T/Ev7ELHER8SZOXN2+mMy9IBNfGdSdOYWV1bX2juFna2t7Z3SvvHzzpOFUMGywWsWoFVKPgEhuGG4GtRCGNAoHNYHiX15svqDSP5aMZJehHtC95yBk1uRR2r0675Ypbdacgy8SbkwrMUe+WJ51ezNIIpWGCat323MT4GVWGM4HjUifVmFA2pH1sWypphNrPpruOyYlVeiSMlX3SkKn6uyOjkdajKLDOiJqBXpgWCnyWfm7Ja/9aUhPe+BmXSWpQstl/YSqIiUl+P+lxhcyIkSWUKW5XJmxAFWXGplSyWXh/L18mT+dV76LqPVxWarfzVIpwBMdwBh5cQw3uoQ4NYDCAV3iDd8c4H86n8zWzFpx5zyEswPn+AUk/kL8=</latexit>

f 0
7

<latexit sha1_base64="qzZsnA42GX3hzD7qBjwS4p6AnHY=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbVBI9ELx4xESGBDemWLjR0u2s7a0IIf8Grxpvx6h/i39iFPYj4kiYvb95MZ16QSGHQdWdOYW19Y3OruF3a2d3bPygfHj2ZONWMN1ksY90OqOFSKN5EgZK3E81pFEjeCkZ3Wb31wrURsXrEccL9iA6UCAWjmElhr3beK1fcqjsHWSVeTiqQo9Erz7r9mKURV8gkNabjuQn6E6pRMMmnpW5qeELZiA54x1JFI278yXzXKTmzSp+EsbZPIZmrvzsmNDJmHAXWGVEcmqVpoeTPys8sWe1fS4rhjT8RKkmRK7b4L0wlwZhk95O+0JyhHFtCmRZ2ZcKGVFOGNqWSzcL7e/kqebqseldV7+G6Ur/NUynCCZzCBXhQgzrcQwOawGAIr/AG7w46H86n87WwFpy85xiW4Hz/AErLkMA=</latexit>

{l1acq = l}
<latexit sha1_base64="sPNd2hWaFYBoy2gf/dNjCjYMOFs=">AAACAHicbVBNS8NAEJ3Ur1q/oh69LBbBU0lU0ItQ9OKxgq2FJpTNdtMu3WzS3U2hhF78HV4Vb+LVf9J/46bNwVofDDzevNmdeUHCmdKOM7NKa+sbm1vl7crO7t7+gX141FJxKgltkpjHsh1gRTkTtKmZ5rSdSIqjgNPnYHif95/HVCoWiyc9Sagf4b5gISNYG6lr217G3W6GyWiKbhH3pl276tScOdAqcQtShQKNrj3zejFJIyo04Vipjusk2s+w1IxwOq14qaIJJkPcpx1DBY6o8rP55lN0ZpQeCmNpSmg0V39PZDhSahIFxhlhPVBLr4WcjoSfW/Lev5ZUhzd+xkSSairI4r8w5UjHKE8D9ZikRPOJIZhIZlZGZIAlJtpkVjFZuH8vXyWti5p7WXMfr6r1uyKVMpzAKZyDC9dQhwdoQBMIjOEV3uDderE+rE/ra2EtWcXMMSzB+v4By3SWCA==</latexit>

{l = $1}
<latexit sha1_base64="hW/IDUogOVKB8jb4iHxCrd1KynQ=">AAAB+XicbVBNSwMxEJ2tX7V+VT16CVbBU9lVQS9C0YvHCtYWukvJptk2NJusSVYoS3+GV8WbePXX9N+YbfdgrQ8GHm/eJDMvTDjTxnWnTmlldW19o7xZ2dre2d2r7h88aZkqQltEcqk6IdaUM0FbhhlOO4miOA45bYeju7zffqFKMykezTihQYwHgkWMYGOlrp9xdIP8E8+f9Ko1t+7OgJaJV5AaFGj2qlO/L0kaU2EIx1p3PTcxQYaVYYTTScVPNU0wGeEB7VoqcEx1kM1WnqBTq/RRJJUtYdBM/T2R4VjrcRxaZ4zNUC+8FnH6LILckvf+taQmug4yJpLUUEHm/0UpR0aiPAbUZ4oSw8eWYKKYXRmRIVaYGBtWxWbh/b18mTyd172LuvdwWWvcFqmU4QiO4Qw8uIIG3EMTWkBAwiu8wbuTOR/Op/M1t5acYuYQFuB8/wCuoZMt</latexit>

{l = $1}
<latexit sha1_base64="hW/IDUogOVKB8jb4iHxCrd1KynQ=">AAAB+XicbVBNSwMxEJ2tX7V+VT16CVbBU9lVQS9C0YvHCtYWukvJptk2NJusSVYoS3+GV8WbePXX9N+YbfdgrQ8GHm/eJDMvTDjTxnWnTmlldW19o7xZ2dre2d2r7h88aZkqQltEcqk6IdaUM0FbhhlOO4miOA45bYeju7zffqFKMykezTihQYwHgkWMYGOlrp9xdIP8E8+f9Ko1t+7OgJaJV5AaFGj2qlO/L0kaU2EIx1p3PTcxQYaVYYTTScVPNU0wGeEB7VoqcEx1kM1WnqBTq/RRJJUtYdBM/T2R4VjrcRxaZ4zNUC+8FnH6LILckvf+taQmug4yJpLUUEHm/0UpR0aiPAbUZ4oSw8eWYKKYXRmRIVaYGBtWxWbh/b18mTyd172LuvdwWWvcFqmU4QiO4Qw8uIIG3EMTWkBAwiu8wbuTOR/Op/M1t5acYuYQFuB8/wCuoZMt</latexit>

{l = $1}
<latexit sha1_base64="hW/IDUogOVKB8jb4iHxCrd1KynQ=">AAAB+XicbVBNSwMxEJ2tX7V+VT16CVbBU9lVQS9C0YvHCtYWukvJptk2NJusSVYoS3+GV8WbePXX9N+YbfdgrQ8GHm/eJDMvTDjTxnWnTmlldW19o7xZ2dre2d2r7h88aZkqQltEcqk6IdaUM0FbhhlOO4miOA45bYeju7zffqFKMykezTihQYwHgkWMYGOlrp9xdIP8E8+f9Ko1t+7OgJaJV5AaFGj2qlO/L0kaU2EIx1p3PTcxQYaVYYTTScVPNU0wGeEB7VoqcEx1kM1WnqBTq/RRJJUtYdBM/T2R4VjrcRxaZ4zNUC+8FnH6LILckvf+taQmug4yJpLUUEHm/0UpR0aiPAbUZ4oSw8eWYKKYXRmRIVaYGBtWxWbh/b18mTyd172LuvdwWWvcFqmU4QiO4Qw8uIIG3EMTWkBAwiu8wbuTOR/Op/M1t5acYuYQFuB8/wCuoZMt</latexit>

{l2rel = $1}
<latexit sha1_base64="B7eeRYZ7bSrtzUK8mf3y7+tsjck=">AAACAnicbVBNT8JAEN3iF+IX4tHLRjTxRFo00YsJ0YtHTARJaNNslyls2G7r7tZIGm7+Dq8ab8arf4R/4wI9iPiSSV7evNmdeUHCmdK2PbEKK6tr6xvFzdLW9s7uXnm/0lZxKim0aMxj2QmIAs4EtDTTHDqJBBIFHB6C4c20//AEUrFY3OtRAl5E+oKFjBJtJL9ccTNe9zMJfIyvsHvsuGO/XLVr9gx4mTg5qaIcTb88cXsxTSMQmnKiVNexE+1lRGpGOYxLbqogIXRI+tA1VJAIlJfNdh/jE6P0cBhLU0Ljmfp7IiORUqMoMM6I6IFaeC3k8Ci8qWXa+9eS6vDSy5hIUg2Czv8LU451jKd54B6TQDUfGUKoZGZlTAdEEqpNaiWThfP38mXSrtecs5pzd15tXOepFNEhOkKnyEEXqIFuURO1EEXP6BW9oXfrxfqwPq2vubVg5TMHaAHW9w+igZZw</latexit>

{l 6= $1}
<latexit sha1_base64="nP6jTdIplwrZ/LbG4yaIA2Uoc2U=">AAAB/HicbVDLTsMwENzwLOVV4MjFoiBxqhJAgiOCC8ci0YfUhMpxN61Vxwm2g1RF5Tu4grghrvxL/wb3caCUkVYazc7auxOmgmvjuiNnaXlldW29sFHc3Nre2S3t7dd1kimGNZaIRDVDqlFwiTXDjcBmqpDGocBG2L8d9xvPqDRP5IMZpBjEtCt5xBk1Vnr0c0F8iU/EP/b8YbtUdivuBGSReDNShhmq7dLI7yQsi1EaJqjWLc9NTZBTZTgTOCz6mcaUsj7tYstSSWPUQT7ZekhOrNIhUaJsSUMm6u+JnMZaD+LQOmNqenrutUjgkwzGlnHvX0tmoqsg5zLNDEo2/S/KBDEJGSdBOlwhM2JgCWWK25UJ61FFmbF5FW0W3t/LF0n9rOKdV7z7i/L1zSyVAhzCEZyCB5dwDXdQhRowUPAKb/DuvDgfzqfzNbUuObOZA5iD8/0DUGKUrg==</latexit>

{l 6= $1}
<latexit sha1_base64="nP6jTdIplwrZ/LbG4yaIA2Uoc2U=">AAAB/HicbVDLTsMwENzwLOVV4MjFoiBxqhJAgiOCC8ci0YfUhMpxN61Vxwm2g1RF5Tu4grghrvxL/wb3caCUkVYazc7auxOmgmvjuiNnaXlldW29sFHc3Nre2S3t7dd1kimGNZaIRDVDqlFwiTXDjcBmqpDGocBG2L8d9xvPqDRP5IMZpBjEtCt5xBk1Vnr0c0F8iU/EP/b8YbtUdivuBGSReDNShhmq7dLI7yQsi1EaJqjWLc9NTZBTZTgTOCz6mcaUsj7tYstSSWPUQT7ZekhOrNIhUaJsSUMm6u+JnMZaD+LQOmNqenrutUjgkwzGlnHvX0tmoqsg5zLNDEo2/S/KBDEJGSdBOlwhM2JgCWWK25UJ61FFmbF5FW0W3t/LF0n9rOKdV7z7i/L1zSyVAhzCEZyCB5dwDXdQhRowUPAKb/DuvDgfzqfzNbUuObOZA5iD8/0DUGKUrg==</latexit>

{l 6= $1}
<latexit sha1_base64="nP6jTdIplwrZ/LbG4yaIA2Uoc2U=">AAAB/HicbVDLTsMwENzwLOVV4MjFoiBxqhJAgiOCC8ci0YfUhMpxN61Vxwm2g1RF5Tu4grghrvxL/wb3caCUkVYazc7auxOmgmvjuiNnaXlldW29sFHc3Nre2S3t7dd1kimGNZaIRDVDqlFwiTXDjcBmqpDGocBG2L8d9xvPqDRP5IMZpBjEtCt5xBk1Vnr0c0F8iU/EP/b8YbtUdivuBGSReDNShhmq7dLI7yQsi1EaJqjWLc9NTZBTZTgTOCz6mcaUsj7tYstSSWPUQT7ZekhOrNIhUaJsSUMm6u+JnMZaD+LQOmNqenrutUjgkwzGlnHvX0tmoqsg5zLNDEo2/S/KBDEJGSdBOlwhM2JgCWWK25UJ61FFmbF5FW0W3t/LF0n9rOKdV7z7i/L1zSyVAhzCEZyCB5dwDXdQhRowUPAKb/DuvDgfzqfzNbUuObOZA5iD8/0DUGKUrg==</latexit>

{l2rel 6= $1}
<latexit sha1_base64="QU9qnF+iFSN6mm8htzw2K+H2tMc=">AAACBXicbVDLSsNAFJ3UV62vqrhyM1gFVyWpgi6LblxWsA9oQplMb9qhk0k6MxFKyNrvcKu4E7d+R//GaZuFtR64cDj33Jl7jx9zprRtT63C2vrG5lZxu7Szu7d/UD48aqkokRSaNOKR7PhEAWcCmpppDp1YAgl9Dm1/dD/rt59BKhaJJz2JwQvJQLCAUaKN1CufuCmv9VIJPMOugDF2zx0365UrdtWeA68SJycVlKPRK0/dfkSTEISmnCjVdexYeymRmlEOWclNFMSEjsgAuoYKEoLy0vn6Gb4wSh8HkTQlNJ6rvydSEio1CX3jDIkeqqXXAg5j4c0ss96/lkQHt17KRJxoEHTxX5BwrCM8iwT3mQSq+cQQQiUzK2M6JJJQbYIrmSycv5evklat6lxVncfrSv0uT6WITtEZukQOukF19IAaqIkoStErekPv1ov1YX1aXwtrwcpnjtESrO8fTS2X8Q==</latexit>call acquire;

lfoo = l; call foo; l2rel = l;

call release;

lfoo = l; call foo; l2rel = l;

(a) Refined PCFA for foo.

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

a0
<latexit sha1_base64="wYdZZaI3eRpH6HXiT5XLetLgAlY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPRIe26vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f1haQgw==</latexit> a1

<latexit sha1_base64="ffFD/eifwzVv7pt818U5tS3Cg94=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPRIe16vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f16GQhA==</latexit>

a2
<latexit sha1_base64="kp0LoL0P8cMgVNZqsOdXjZ1HRAw=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnqkvWqvVHYr7hxklXg5KUOOeq806/ZjlkYoDRNU647nJsafUGU4EzgtdlONCWUjOsCOpZJGqP3JfNUpObdKn4Sxsk8aMld/d0xopPU4Cqwzomaol6aFAp+ln1my2r+W1IQ3/oTLJDUo2eK/MBXExCQ7n/S5QmbE2BLKFLcrEzakijJjQyraLLy/l6+SZrXiXVa8h6ty7TZPpQCncAYX4ME11OAe6tAABgN4hTd4d7Tz4Xw6XwvrmpP3nMASnO8f2SyQhQ==</latexit>

a3
<latexit sha1_base64="TMTYp3zw+7uPdoRF/uZjNuSzfjY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPRIe5e9csWtunOQVeLlpAI56r3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5KmhdV77LqPVxVard5KkU4gVM4Bw+uoQb3UIcGMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/ANq3kIY=</latexit>

l1 = l1acq;

assume(l1 == $1); 

assume(l1 != $1); 

$1.lock();

{l1acq = l1}
<latexit sha1_base64="jGZUrCFMN2oO/ejQ0YS+SLcHXIA=">AAACAXicbVDLSgMxFM3UV62vqS7dBIvgqkxU0I1QdOOygn1AZxgyaaYNzWSmSUYpw6z8DreKO3Hrl/RvTNtZWOuBC4dzz03uPUHCmdKOM7VKa+sbm1vl7crO7t7+gV09bKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN3N+p0nKhWLxaOeJNSL8ECwkBGsjeTbVTfjyM8wGefwBnLk5r5dc+rOHHCVoILUQIGmb0/dfkzSiApNOFaqh5xEexmWmhFO84qbKppgMsID2jNU4IgqL5uvnsNTo/RhGEtTQsO5+nsiw5FSkygwzgjroVp6LeR0LLyZZdb715Lq8NrLmEhSTQVZ/BemHOoYzuKAfSYp0XxiCCaSmZUhGWKJiTahVUwW6O/lq6R9XkcXdfRwWWvcFqmUwTE4AWcAgSvQAPegCVqAgGfwCt7Au/VifVif1tfCWrKKmSOwBOv7B0GRlkM=</latexit>

a0
3

<latexit sha1_base64="CRh7F8XGcFjVNQwJsSyQsiEsg34=">AAAB8nicbVBNTwIxEO3iF+IX6tFLIzF6IrtiokeiF4+YiJDAhnTLLDR0u2s7a0IIf8Grxpvx6h/i39iFPYj4kiYvb95MZ16QSGHQdWdOYW19Y3OruF3a2d3bPygfHj2ZONUcmjyWsW4HzIAUCpooUEI70cCiQEIrGN1l9dYLaCNi9YjjBPyIDZQIBWeYSaxXO++VK27VnYOuEi8nFZKj0SvPuv2YpxEo5JIZ0/HcBP0J0yi4hGmpmxpIGB+xAXQsVSwC40/mu07pmVX6NIy1fQrpXP3dMWGRMeMosM6I4dAsTQslPCs/s2S1fy0phjf+RKgkRVB88V+YSooxze6nfaGBoxxbwrgWdmXKh0wzjjalks3C+3v5Knm6rHq1qvdwVanf5qkUyQk5JRfEI9ekTu5JgzQJJ0PySt7Iu4POh/PpfC2sBSfvOSZLcL5/ADzVkLc=</latexit>

{l1acq = $1}
<latexit sha1_base64="/6cxUuIdh3IrBTUQd1ybT0YcscE=">AAACAnicbVC7TsMwFHV4lvIKZWSxKEhMVQxIsCBVsDAWiT6kJqoc12mtOk5qO4gqysZ3sILYECs/0r/BaTNQypGudHTuufa9x485U9pxptbK6tr6xmZpq7y9s7u3bx9UWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2R3d5v/1EpWKReNSTmHohHggWMIK1kXp2xU056qWYjDN4A90T5GY9u+rUnBngMkEFqYICjZ49dfsRSUIqNOFYqS5yYu2lWGpGOM3KbqJojMkID2jXUIFDqrx0tnsGT43Sh0EkTQkNZ+rviRSHSk1C3zhDrIdq4bWA07Hwckve+9eS6ODaS5mIE00Fmf8XJBzqCOZ5wD6TlGg+MQQTyczKkAyxxESb1MomC/T38mXSOq+hixp6uKzWb4tUSuAIHIMzgMAVqIN70ABNQMAzeAVv4N16sT6sT+trbl2xiplDsADr+weKrJZh</latexit>

{l1acq = $1}
<latexit sha1_base64="/6cxUuIdh3IrBTUQd1ybT0YcscE=">AAACAnicbVC7TsMwFHV4lvIKZWSxKEhMVQxIsCBVsDAWiT6kJqoc12mtOk5qO4gqysZ3sILYECs/0r/BaTNQypGudHTuufa9x485U9pxptbK6tr6xmZpq7y9s7u3bx9UWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2R3d5v/1EpWKReNSTmHohHggWMIK1kXp2xU056qWYjDN4A90T5GY9u+rUnBngMkEFqYICjZ49dfsRSUIqNOFYqS5yYu2lWGpGOM3KbqJojMkID2jXUIFDqrx0tnsGT43Sh0EkTQkNZ+rviRSHSk1C3zhDrIdq4bWA07Hwckve+9eS6ODaS5mIE00Fmf8XJBzqCOZ5wD6TlGg+MQQTyczKkAyxxESb1MomC/T38mXSOq+hixp6uKzWb4tUSuAIHIMzgMAVqIN70ABNQMAzeAVv4N16sT6sT+trbl2xiplDsADr+weKrJZh</latexit>

{l1acq 6= $1}
<latexit sha1_base64="CtoqpPOjQ0QzzYR4e6Tx7JEN4CA=">AAACBXicbVBNS8NAEN3Ur1q/ouLJy2IVPJVEBT0WvXisYG2hCWGznbRLN5t0dyOU0LO/w6viTbz6O/pv3LQ9WOuDgcebN7szL0w5U9pxJlZpZXVtfaO8Wdna3tnds/cPnlSSSQpNmvBEtkOigDMBTc00h3YqgcQhh1Y4uCv6rWeQiiXiUY9S8GPSEyxilGgjBfaRl3M3yAkdjrEnYIi9U9cbB3bVqTlT4GXizkkVzdEI7InXTWgWg9CUE6U6rpNqPydSM8phXPEyBSmhA9KDjqGCxKD8fLr+GJ8ZpYujRJoSGk/V3xM5iZUaxaFxxkT31cJrEYeh8AtL0fvXkunoxs+ZSDMNgs7+izKOdYKLSHCXSaCajwwhVDKzMqZ9IgnVJriKycL9e/kyebqouZc19+GqWr+dp1JGx+gEnSMXXaM6ukcN1EQU5egVvaF368X6sD6tr5m1ZM1nDtECrO8fNSuX4g==</latexit>

(b) Refined PCFA for acquire.

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

r0
<latexit sha1_base64="81mEcWF8HiZHbJrPwaRkmQcl8iY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoem6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8HOQlA==</latexit>

r1
<latexit sha1_base64="jtjmHj3qsVDY5Io1eHmxmlzMG8g=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoel6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8f6QlQ==</latexit>

r2
<latexit sha1_base64="mMiP/z6DcCeM8NQl9tH8iqQAWvI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnpUvWqvVHYr7hxklXg5KUOOeq806/ZjlkYoDRNU647nJsafUGU4EzgtdlONCWUjOsCOpZJGqP3JfNUpObdKn4Sxsk8aMld/d0xopPU4Cqwzomaol6aFAp+ln1my2r+W1IQ3/oTLJDUo2eK/MBXExCQ7n/S5QmbE2BLKFLcrEzakijJjQyraLLy/l6+SZrXiXVa8h6ty7TZPpQCncAYX4ME11OAe6tAABgN4hTd4d7Tz4Xw6XwvrmpP3nMASnO8f84mQlg==</latexit>

r3
<latexit sha1_base64="V5fVnbOdz6qX8EALpWqRM2fnwtg=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPSoepe9csWtunOQVeLlpAI56r3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5KmhdV77LqPVxVard5KkU4gVM4Bw+uoQb3UIcGMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/APUUkJc=</latexit>

r03
<latexit sha1_base64="j/cDXF8fripRZNaHNwTBSu2mSRM=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbFRI9ELx4xESGBDemWWWjodte2a0IIf8Grxpvx6h/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweguq7deUGkey0czTtCP6EDykDNqMkn1aue9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn812n5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsftLnCpkRY0soU9yuTNiQKsqMTalks/D+Xr5Kni6rXq3qPVxV6rd5KkU4gVO4AA+uoQ730IAmMBjCK7zBu2OcD+fT+VpYC07ecwxLcL5/AFdDkMg=</latexit>

l2 = l2rel;

assume(l2 == $1); 

assume(l2 != $1); 

$1.unlock();

$1.unlock();{l2rel = l2}
<latexit sha1_base64="zvRIUGEZRaAPtj2xTQ36bA4digk=">AAACAXicbVDLSsNAFJ3UV62vVpduBovgqiRV0I1QdOOygn1AG8pketMOnUzizEQpISu/w63iTtz6Jf0bJ20W1nrgwuHcc2fuPV7EmdK2PbMKa+sbm1vF7dLO7t7+Qbly2FZhLCm0aMhD2fWIAs4EtDTTHLqRBBJ4HDre5Dbrd55AKhaKBz2NwA3ISDCfUaKNNChX+gmvDxIJPMXXmNf76aBctWv2HHiVODmpohzNQXnWH4Y0DkBoyolSPceOtJsQqRnlkJb6sYKI0AkZQc9QQQJQbjJfPcWnRhliP5SmhMZz9fdEQgKlpoFnnAHRY7X0ms/hUbiZJev9a4m1f+UmTESxBkEX//kxxzrEWRx4yCRQzaeGECqZWRnTMZGEahNayWTh/L18lbTrNee85txfVBs3eSpFdIxO0Bly0CVqoDvURC1E0TN6RW/o3XqxPqxP62thLVj5zBFagvX9A1rkllM=</latexit>

{l2rel 6= $1}
<latexit sha1_base64="QU9qnF+iFSN6mm8htzw2K+H2tMc=">AAACBXicbVDLSsNAFJ3UV62vqrhyM1gFVyWpgi6LblxWsA9oQplMb9qhk0k6MxFKyNrvcKu4E7d+R//GaZuFtR64cDj33Jl7jx9zprRtT63C2vrG5lZxu7Szu7d/UD48aqkokRSaNOKR7PhEAWcCmpppDp1YAgl9Dm1/dD/rt59BKhaJJz2JwQvJQLCAUaKN1CufuCmv9VIJPMOugDF2zx0365UrdtWeA68SJycVlKPRK0/dfkSTEISmnCjVdexYeymRmlEOWclNFMSEjsgAuoYKEoLy0vn6Gb4wSh8HkTQlNJ6rvydSEio1CX3jDIkeqqXXAg5j4c0ss96/lkQHt17KRJxoEHTxX5BwrCM8iwT3mQSq+cQQQiUzK2M6JJJQbYIrmSycv5evklat6lxVncfrSv0uT6WITtEZukQOukF19IAaqIkoStErekPv1ov1YX1aXwtrwcpnjtESrO8fTS2X8Q==</latexit>

{l2rel = $1}
<latexit sha1_base64="B7eeRYZ7bSrtzUK8mf3y7+tsjck=">AAACAnicbVBNT8JAEN3iF+IX4tHLRjTxRFo00YsJ0YtHTARJaNNslyls2G7r7tZIGm7+Dq8ab8arf4R/4wI9iPiSSV7evNmdeUHCmdK2PbEKK6tr6xvFzdLW9s7uXnm/0lZxKim0aMxj2QmIAs4EtDTTHDqJBBIFHB6C4c20//AEUrFY3OtRAl5E+oKFjBJtJL9ccTNe9zMJfIyvsHvsuGO/XLVr9gx4mTg5qaIcTb88cXsxTSMQmnKiVNexE+1lRGpGOYxLbqogIXRI+tA1VJAIlJfNdh/jE6P0cBhLU0Ljmfp7IiORUqMoMM6I6IFaeC3k8Ci8qWXa+9eS6vDSy5hIUg2Czv8LU451jKd54B6TQDUfGUKoZGZlTAdEEqpNaiWThfP38mXSrtecs5pzd15tXOepFNEhOkKnyEEXqIFuURO1EEXP6BW9oXfrxfqwPq2vubVg5TMHaAHW9w+igZZw</latexit>

{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

(c) Refined PCFA for release.

Figure 4.6: Refined PCFAs for input program.
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shown in Figure 4.5b. Furthermore, observe that this path goes through the

“then” branch of the if statement in method acquire and the “else” branch in

method release. However, this path is clearly infeasible, so we need to refine

GP to eliminate the spurious derivation.

Our method refines the program’s CFG abstraction by adding new non-

terminals and productions to the grammar. Towards this goal, we first refine

the PCFA abstraction by selectively cloning some program locations, with

the goal of introducing path-sensitivity where needed. The cloning of PCFA

nodes is driven by an interpolation engine that computes a sequence of nested

interpolants [122]. In particular, the right-hand side of Figure 4.5b shows the

interpolants computed for each program location for our running example.

Intuitively, ”tracking” these predicates at the corresponding program location

would allow us to remove the spurious trace. Thus, in the next iteration,

we generate the new PCFAs shown in Figure 4.6 by cloning all PCFA nodes

that correspond to program locations in the counterexample. Observe that

the refined PCFAs contain multiple nodes (e.g., f4, f
′
4) for the same program

location, and the predicates in the PCFA correspond to those that appear

in the interpolant. For instance, even though nodes r3, r
′
3 both represent the

same program location, one is annotated with predicate l2rel 6= $1, whereas r′3

is annotated with l2rel = $1. Furthermore, the refined PCFA contains an edge

between two nodes iff the semantics of the statement labeling that edge are

consistent with the annotations of the source and target nodes. For instance,

there is an edge from node a1 to a3 but not from a1 to a′3 because the predicates
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Foo → F0

F0 → F1

F1 → F2 | F8

F2 → F3

F3 → Acquireφ1 F4

| Acquireφ2 F ′4
F4 → F5

F ′4 → F ′5
F5 → Foo F6

F ′5 → Foo F ′6
F6 → F7

F ′6 → F ′7
F7 → Releaseφ3 F8

F ′7 → Rleaseφ4 F8

F8 → ε

Acquireφ1 → A0,φ1

A0,φ1 → A1,φ1

A1,φ1 → A2,φ1

A2,φ1 → $1.lock() A′3,φ1
A′3,φ1 → ε

Acquireφ2 → A0,φ2

A0,φ2 → A1,φ2

A1,φ2 → A3,φ2

A3,φ2 → ε

Releaseφ3 → R0,φ3

R0,φ3 → R1,φ3

R1,φ3 → R2,φ3

R2,φ3 → $1.unlock()
R′3,φ3

R′3,φ3 → ε

Releaseφ4 → R0,φ4

R0,φ4 → R1,φ4

R1,φ4 → R2,φ4

R1,φ4 → R3,φ4

R2,φ4 → $1.unlock()
R3,φ4

R3,φ4 → ε

Figure 4.7: Refined CFG, where φ1 = {l1acq = $1}, φ2 = {l1acq 6= $1},
φ3 = {l2rel = $1}, and φ4 = {l2rel 6= $1}.

l1acq = l1, l1acq = $1 labeling a1 and a′3 are inconsistent with the statement

assume(l1 != $1).

Given this new PCFA representation, our verification algorithm ex-

tracts the refined grammar G ′P shown in Figure 4.7. As before, we construct

the grammar based on PCFA edges; however, note that there are two different

sets of grammar rules for each of the methods acquire and release. In gen-

eral, for a given function f , our technique introduces as many non-terminals
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{true}
<latexit sha1_base64="S/kOs47KFO8EJPRksFvsv3Liefg=">AAAB9nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFNKJvtpF262cTdjVhC/4RXxZt49e/037hpc7DWBwOPN292Z16QcKa048ys0tr6xuZWebuys7u3f1A9PGqrOJUUWzTmsewGRCFnAluaaY7dRCKJAo6dYHyX9zvPKBWLxaOeJOhHZChYyCjRRup6mZYpetN+tebUnTnsVeIWpAYFmv3qzBvENI1QaMqJUj3XSbSfEakZ5TiteKnChNAxGWLPUEEiVH4233dqnxllYIexNCW0PVd/T2QkUmoSBcYZET1SS6+FHJ+En1vy3r+WVIc3fsZEkmoUdPFfmHJbx3aegT1gEqnmE0MIlcysbNMRkYRqk1TFZOH+vXyVtC/q7mXdfbiqNW6LVMpwAqdwDi5cQwPuoQktoMDhFd7g3XqxPqxP62thLVnFzDEswfr+AXV2kzU=</latexit>

r0
<latexit sha1_base64="81mEcWF8HiZHbJrPwaRkmQcl8iY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoem6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8HOQlA==</latexit>

r1
<latexit sha1_base64="jtjmHj3qsVDY5Io1eHmxmlzMG8g=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskJZ+hO8Kt7Eq7+o/8Zs24O1Pgg83ryZzLwgEVwb1506hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbwegur7deUGkeyyczTtCP6EDykDNqrPSoel6vXHGr7gxklXgLUoEF6r3ytNuPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZbNUJObNKn4Sxsk8aMlN/d2Q00nocBdYZUTPUS9NCgc/Szy157V9LasIbP+MySQ1KNv8vTAUxMcnPJ32ukBkxtoQyxe3KhA2poszYkEo2C+/v5aukeVH1Lqvew1WldrtIpQgncArn4ME11OAe6tAABgN4hTd4d7Tz4Xw6X3NrwVn0HMMSnO8f8f6QlQ==</latexit>

r2
<latexit sha1_base64="mMiP/z6DcCeM8NQl9tH8iqQAWvI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0GPRi8eK9gPapWTT2TY0m12TrFBKf4JXxZt49Rf135ht92CtDwKPN28mMy9IBNfGdWfO2vrG5tZ2Yae4u7d/cFg6Om7qOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHSX1VsvqDSP5ZMZJ+hHdCB5yBk1VnpUvWqvVHYr7hxklXg5KUOOeq806/ZjlkYoDRNU647nJsafUGU4EzgtdlONCWUjOsCOpZJGqP3JfNUpObdKn4Sxsk8aMld/d0xopPU4Cqwzomaol6aFAp+ln1my2r+W1IQ3/oTLJDUo2eK/MBXExCQ7n/S5QmbE2BLKFLcrEzakijJjQyraLLy/l6+SZrXiXVa8h6ty7TZPpQCncAYX4ME11OAe6tAABgN4hTd4d7Tz4Xw6XwvrmpP3nMASnO8f84mQlg==</latexit>

r3
<latexit sha1_base64="V5fVnbOdz6qX8EALpWqRM2fnwtg=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2g9ol5JNZ9vQbHZNskIp/QleFW/i1V/Uf2O23YO1Pgg83ryZzLwgEVwb1505hbX1jc2t4nZpZ3dv/6B8eNTUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweguq7deUGkeyyczTtCP6EDykDNqrPSoepe9csWtunOQVeLlpAI56r3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn81Wn5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsfNLnCpkRY0soU9yuTNiQKsqMDalks/D+Xr5KmhdV77LqPVxVard5KkU4gVM4Bw+uoQb3UIcGMBjAK7zBu6OdD+fT+VpYC07ecwxLcL5/APUUkJc=</latexit>

r03
<latexit sha1_base64="j/cDXF8fripRZNaHNwTBSu2mSRM=">AAAB8nicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbFRI9ELx4xESGBDemWWWjodte2a0IIf8Grxpvx6h/i39iFPYj4kiYvb95MZ16QCK6N686cwtr6xuZWcbu0s7u3f1A+PHrScaoYNlksYtUOqEbBJTYNNwLbiUIaBQJbweguq7deUGkey0czTtCP6EDykDNqMkn1aue9csWtunOQVeLlpAI5Gr3yrNuPWRqhNExQrTuemxh/QpXhTOC01E01JpSN6AA7lkoaofYn812n5MwqfRLGyj5pyFz93TGhkdbjKLDOiJqhXpoWCnyWfmbJav9aUhPe+BMuk9SgZIv/wlQQE5PsftLnCpkRY0soU9yuTNiQKsqMTalks/D+Xr5Kni6rXq3qPVxV6rd5KkU4gVO4AA+uoQ730IAmMBjCK7zBu2OcD+fT+VpYC07ecwxLcL5/AFdDkMg=</latexit>

l2 = l2rel;

assume(l2 == $1); 

assume(l2 != $1); 

$1.unlock();

{l2rel = l2}
<latexit sha1_base64="zvRIUGEZRaAPtj2xTQ36bA4digk=">AAACAXicbVDLSsNAFJ3UV62vVpduBovgqiRV0I1QdOOygn1AG8pketMOnUzizEQpISu/w63iTtz6Jf0bJ20W1nrgwuHcc2fuPV7EmdK2PbMKa+sbm1vF7dLO7t7+Qbly2FZhLCm0aMhD2fWIAs4EtDTTHLqRBBJ4HDre5Dbrd55AKhaKBz2NwA3ISDCfUaKNNChX+gmvDxIJPMXXmNf76aBctWv2HHiVODmpohzNQXnWH4Y0DkBoyolSPceOtJsQqRnlkJb6sYKI0AkZQc9QQQJQbjJfPcWnRhliP5SmhMZz9fdEQgKlpoFnnAHRY7X0ms/hUbiZJev9a4m1f+UmTESxBkEX//kxxzrEWRx4yCRQzaeGECqZWRnTMZGEahNayWTh/L18lbTrNee85txfVBs3eSpFdIxO0Bly0CVqoDvURC1E0TN6RW/o3XqxPqxP62thLVj5zBFagvX9A1rkllM=</latexit>

{l2rel 6= $1}
<latexit sha1_base64="QU9qnF+iFSN6mm8htzw2K+H2tMc=">AAACBXicbVDLSsNAFJ3UV62vqrhyM1gFVyWpgi6LblxWsA9oQplMb9qhk0k6MxFKyNrvcKu4E7d+R//GaZuFtR64cDj33Jl7jx9zprRtT63C2vrG5lZxu7Szu7d/UD48aqkokRSaNOKR7PhEAWcCmpppDp1YAgl9Dm1/dD/rt59BKhaJJz2JwQvJQLCAUaKN1CufuCmv9VIJPMOugDF2zx0365UrdtWeA68SJycVlKPRK0/dfkSTEISmnCjVdexYeymRmlEOWclNFMSEjsgAuoYKEoLy0vn6Gb4wSh8HkTQlNJ6rvydSEio1CX3jDIkeqqXXAg5j4c0ss96/lkQHt17KRJxoEHTxX5BwrCM8iwT3mQSq+cQQQiUzK2M6JJJQbYIrmSycv5evklat6lxVncfrSv0uT6WITtEZukQOukF19IAaqIkoStErekPv1ov1YX1aXwtrwcpnjtESrO8fTS2X8Q==</latexit>

{l2rel = $1}
<latexit sha1_base64="B7eeRYZ7bSrtzUK8mf3y7+tsjck=">AAACAnicbVBNT8JAEN3iF+IX4tHLRjTxRFo00YsJ0YtHTARJaNNslyls2G7r7tZIGm7+Dq8ab8arf4R/4wI9iPiSSV7evNmdeUHCmdK2PbEKK6tr6xvFzdLW9s7uXnm/0lZxKim0aMxj2QmIAs4EtDTTHDqJBBIFHB6C4c20//AEUrFY3OtRAl5E+oKFjBJtJL9ccTNe9zMJfIyvsHvsuGO/XLVr9gx4mTg5qaIcTb88cXsxTSMQmnKiVNexE+1lRGpGOYxLbqogIXRI+tA1VJAIlJfNdh/jE6P0cBhLU0Ljmfp7IiORUqMoMM6I6IFaeC3k8Ci8qWXa+9eS6vDSy5hIUg2Czv8LU451jKd54B6TQDUfGUKoZGZlTAdEEqpNaiWThfP38mXSrtecs5pzd15tXOepFNEhOkKnyEEXqIFuURO1EEXP6BW9oXfrxfqwPq2vubVg5TMHaAHW9w+igZZw</latexit>

{l2rel = $1}
<latexit sha1_base64="B7eeRYZ7bSrtzUK8mf3y7+tsjck=">AAACAnicbVBNT8JAEN3iF+IX4tHLRjTxRFo00YsJ0YtHTARJaNNslyls2G7r7tZIGm7+Dq8ab8arf4R/4wI9iPiSSV7evNmdeUHCmdK2PbEKK6tr6xvFzdLW9s7uXnm/0lZxKim0aMxj2QmIAs4EtDTTHDqJBBIFHB6C4c20//AEUrFY3OtRAl5E+oKFjBJtJL9ccTNe9zMJfIyvsHvsuGO/XLVr9gx4mTg5qaIcTb88cXsxTSMQmnKiVNexE+1lRGpGOYxLbqogIXRI+tA1VJAIlJfNdh/jE6P0cBhLU0Ljmfp7IiORUqMoMM6I6IFaeC3k8Ci8qWXa+9eS6vDSy5hIUg2Czv8LU451jKd54B6TQDUfGUKoZGZlTAdEEqpNaiWThfP38mXSrtecs5pzd15tXOepFNEhOkKnyEEXqIFuURO1EEXP6BW9oXfrxfqwPq2vubVg5TMHaAHW9w+igZZw</latexit>

(a) Second refined PCFA for method
release.

Releaseφ3 → R0,φ3

R0,φ3 → R1,φ3

R1,φ3 → R2,φ3

R2,φ3 → $1.unlock() R′3,φ3
R′3,φ3 → ε

Releaseφ4 → R0,φ4

R0,φ4 → R1,φ4

R1,φ4 → R3,φ4

R3,φ4 → ε

(b) Refined grammar for Release.

Figure 4.8: Refined PCFA and grammar for method release (second itera-
tion).
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for f as there are PCFA nodes for f ’s exit location. This strategy allows

our verification algorithm to lazily perform ”method cloning”, thereby intro-

ducing inter-procedural path-sensitivity where needed. For instance, observe

that there are two non-terminals (Acquireφ1 , Acquireφ2) representing acquire

in Figure 4.7, and predicates φ1, φ2 correspond to the predicates l1acq = $1,

l1acq 6= $1 labeling nodes a3 and a′3 in the PCFA from Figure 4.6(b). Fur-

thermore, observe that there are two different sets of grammars for Acquireφ1

and Acquireφ2 , and each grammar is generated by looking at the portion of

the PCFA that is backwards reachable from the corresponding exit node. For

example, there is no production A1,φ2 → A2,φ2 in Figure 4.7 because node a2 is

not backwards reachable from the exit node labeled with φ2 in Figure 4.6(b).

In the second iteration, our algorithm again checks inclusion between

the two grammars, namely G ′P and GS. This time, G ′P is still not contained in

GS, and the new counterexample is $1.unlock(), whose derivation corresponds

to a program path that goes through the “else” branch in acquire and “then”

branch in release. In this case, the culprit is the PCFA edge between nodes

r2 and r3 in method release (Figure 4.6c), which can again be eliminated by

computing nested interpolants and cloning node r2.

In the next and final iteration, our algorithm can now prove that the

language defined by the program’s CFG is indeed a subset of the specifica-

tion GS, and the algorithm terminates with a proof of correctness. The final

abstraction is identical to the one from previous iteration except for method

release whose final PCFA and context-free grammar are shown in Figure 4.8.
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Class C ::= class C { fld* m* }
Field fld ::= f : τ = e | static f : τ = e

Method m ::= void m(~v) {s*; }
Stmt s ::= skip | s1; s2 | v := e | v.f := e | assume(p) | if (p) {s1} else {s2} |

v := new C
| call v.m(~v) | api call v.m(~v)

Expr e ::= v | v.f | c | ∗ | e1 	 e2, 	 ∈ {+,−,×}
Pred p ::= e | ¬p | p1 ∧ p2 | p1 ∨ p2 j e1 ⊕ e2, ⊕ ∈ {<,>,=}

Figure 4.9: Input Language.

4.2 Problem Statement

In this section, we introduce context-free API protocols and formally

define our problem in the context of a simple object-oriented programming

language.

4.2.1 Input Language

Figure 4.9 presents the programming language used for our formaliza-

tion. In this language, a class consists of a set of field declarations followed by

a set of method definitions. Fields can be either object-specific (declared as

f : τ) or static, meaning they are shared between all instances of the class.

Statements include standard constructs like assignment, load, store, etc. We

differentiate between two kinds of call statements, namely call which is a call

to a regular method defined in the same program and api call which invokes

a method defined by a third-party API. We assume that the source code of

third-party libraries are not available for analysis; thus, we require any side
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effects of API calls to be modeled using stub methods. In particular, we as-

sume that each call to an API method foo in the original program has been

replaced by a stub foo stub that invokes foo and captures its side effects via

assignment. Thus, in the remainder, we assume, without loss of generality,

that API calls have no side effects on program state.

For the purposes of this chapter, a program state σ is a mapping from

program variables (V ) and field references (V × F ) to an integer value. We

use the notation 〈s, σ〉 ⇓ σ′ to indicate that σ′ is the resulting state after

executing statement s on program state σ. Furthermore, we use sp(s, P ) to

denote the strongest postcondition of statement s with respect to the first-

order logic formula P . A program trace, τ = 〈s1, σ1〉, 〈s2, σ2〉, ..., 〈sn, σn〉, is a

sequence of (statement, program state) pairs such that 〈si, σi〉 ⇓ σi+1.2 Given

a program P , we write Traces(P) to denote the (infinite) set of traces that can

arise during executions of P .

4.2.2 Context-Free API Protocols

We express API protocols using a (parametrized) context-free gram-

mar GS = (T ,N ,R, S ) where each terminal t ∈ T is of the form “api call

$i1.m($i2, ..., $ip)”, n ∈ N is a non-terminal, R is a set of productions, and

S is the start symbol. Given grammar GS, we write Tm to denote the subset

of terminals involving a call to method m. As mentioned in Section 4.1, each

2We assume that program traces are in SSA form. That is, each re-definition of a program
variable is assigned a unique name within the trace.
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$ij is a so-called wildcard that can match any value of the appropriate type.

To omit explicit type declarations, we assume the existence of a typing oracle

Γ that returns the type of a wildcard w, and, as standard, we use the notation

Γ ` w : τ to indicate that w is of type τ. We also define a function to extract

all wildcard symbols that appear in the grammar:

Definition 11. (Wildcard extractor, W) Given a context-free protocol

GS = (T ,N ,R, S ), we write W(GS) to denote the set of all wildcard symbols

that appear in GS.

4.2.3 Semantic Conformance to API Protocol

Intuitively, a program P conforms to a parametrized CFG specification

GS if it satisfies the spec for every possible instantiation of the wildcards in

GS. To make this statement more precise, we first introduce the notion of an

instantiated API protocol :

Definition 12. (Instantiated spec) Given an API specification GS, we say

that Ĝ is an instantiation of GS, written Ĝ ∈ Inst(GS), if it can be obtained

from GS by substituting every wildcard symbol wi ∈ W(GS) with a concrete

value of the appropriate type.

Next, to determine if a program trace τ conforms to an instantiated

specification Ĝ, we will check “inclusion” of the trace in the language defined

by Ĝ. To this end, we convert the trace to a word over the terminal symbols

in Ĝ using the following TraceToWord function:
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Definition 13. (Trace-to-Word) Let τ be a trace and let Ĝ = (T ,N ,R, S )

be an (instantiated) API protocol. We define TraceToWord(τ, Ĝ) as follows3:

TraceToWord(τ, Ĝ) = [s′ | s′ ∈ T , 〈s, σ〉 ∈ τ, s′ = s[σ(~v)/~v], ~v = Vars(s)]

Example 7. Consider the following trace τ :

τ = 〈l1 = new Lock, σ1〉, 〈l1.lock(), σ2〉, 〈l1.unlock(), σ3〉,

〈l2 = new Lock, σ4〉, 〈l2.lock(), σ5〉, 〈l2.unlock(), σ6〉
and suppose that o1, o2 refer to the addresses of the first and second allocated

Lock objects respectively. Now, consider the following instantiated spec Ĝ:

Ĝ = S → ε | o1.lock() S o1.unlock() S

Then, we have:

TraceToWord(τ, Ĝ) = [o1.lock(), o1.unlock()]

Observe that the generated word “ignores” all statements other than

API calls (e.g., new Lock). Furthermore, since variable l2 has value o2 rather

than o1, the last two lock/unlock statements in the trace are also not included

in the result.

Definition 14. (Semantic conformance) Given a program P and a context-

free API protocol GS, P semantically conforms to GS if and only if the following

holds:

∀τ ∈ Traces(P).∀Ĝ ∈ Inst(GS). TraceToWord(τ, Ĝ) ∈ L(Ĝ) (4.2)

3We use the notation [s | ...] to describe a filter operation on the input trace. The output
preserves the relative order of statements in the input trace.
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(API)

Tm = {t1, ..., tk} gi = guard(ti, s)
s′ = if (g1) t1 ... else if(gk) tk

Γ,GS ` s = api call v.m(~v) ↪→ s′

(Seq)
Γ,GS ` s1 ↪→ s′1 Γ,GS ` s2 ↪→ s′2

Γ,GS ` s1; s2 ↪→ s′1; s′2

(If)
Γ,GS ` s1 ↪→ s′1 Γ,GS ` s2 ↪→ s′2

Γ,GS ` if(p) {s1} else{s2} ↪→ if(p) {s′1} else {s′2}

(Method)
Γ,GS ` s ↪→ s′

Γ,GS ` void m(~v){s} ↪→ void m(~v){s′}

(Class)

wi ∈ W(GS) Γ ` wi : τi
f ′i = static wi : τi = * Γ,GS ` mi ↪→ m′i

Γ,GS ` cl C { f1 ... fn m1 ... mk } ↪→ cl C { f1 ... fn f ′1 ... f
′
j m′1 ... m

′
k }

Figure 4.10: Rules for instrumenting program P for a given specification GS =
(T ,N ,R, S ). For statements that are not shown, we have Γ,GS ` s ↪→ s, and
the definition of guard function is inlined in text.

In other words, a program P satisfies GS if it satisfies the protocol for

all possible instantiations of the wildcards in GS for every program trace.

4.3 Program Instrumentation

In the previous section, we defined conformance of a program to an

API protocol in terms of all possible program traces and all possible instan-

tiations of the wildcard symbols. While this strategy allows us to formally

state the problem, it does not lend itself to a verification algorithm since there

are infinitely many possible instantiations of the wildcard symbols as well

as infinitely many program traces. Thus, rather than checking the contain-
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ment of each trace in all possible instantiations of the parametrized CFG, our

strategy is to instead generate a CFG encoding all possible traces of the pro-

gram as well as all possible instantiations of the wildcard symbols and then

check inclusion between this CFG and the specification grammar. Towards

this goal, we first instrument the program with new fields that are initialized

non-deterministically and that can be used to capture all possible values of

the wildcards in the specification. In addition, our instrumentation deals with

challenges that arise from potential aliasing between different arguments to

API calls.

In more detail, Figure 4.10 describes our program instrumentation using

judgments of the form Γ,GS ` s ↪→ s′, where s′ corresponds to the transformed

version of s.

Class. The top-level rule labeled “Class” introduces a static field for every

wildcard symbol that appears in GS and initializes it to a non-deterministic

value. It also instruments each method within this class.

Method, Seq, If. These three rules reconstruct the statement after recur-

sively transforming the statements nested inside them.

API This rule is the core of our program instrumentation and ensures that

each terminal symbol in the specification grammar has a (syntactically) corre-

sponding API call statement while being semantically equivalent to the original
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API call. As shown in Figure 4.10, this rule transforms an API call s to library

method m to an if-then-else statement. Specifically, the rule iterates over all

the terminals tk ∈ Tm in GS and generates an if statement for each terminal

tk conditioned upon the wildcard symbols matching the variables used in s.

To achieve this goal, we make use of an auxiliary guard function defined as

follows:

guard(tk, s) =
∧
j

$ikj = vj

Here, ~$ik is the sequence of wildcards used in tk and ~v is the sequence of

variables used in s. Thus, given an API call s and a set of terminals Tm, we

generate the following code:

if($i11 = v1 ∧ . . . ∧ $i1n = vn) { t1 }

. . .

else if($ik1 = v1 ∧ . . . ∧ $ikn = vn) { tk }

Hence, our instrumentation ensures that API calls syntactically use the wild-

card symbols in the grammar while preserving program behavior relevant to

the specification.

The following theorem states the correctness of our instrumentation:4

Theorem 5. Let P be a program and GS a context-free API protocol. If we

have Γ,GS ` P ↪→ P ′ and P ′ semantically conforms GS, then so does P.

Proof. Provided in appendix under supplementary materials.

4The proofs of all theorems are in the appendix.
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Observe that the above theorem only states the soundness, but not

completeness, of our program instrumentation. Completeness does not hold

for arbitrary parametrized CFGs. For example, consider the API protocol:

GS → $1.f() $2.g(), where $1 and $2 have different types, and the code frag-

ment “v1.f() v2.g()”. This fragment clearly conforms to the API protocol,

however, our instrumentation would produce the following output:

$1 = *; $2 = *;

if (v1 == $1) $1.f();
if (v2 == $2) $2.g();

The instrumented program does not satisfy the API protocol because it

generates the words “$1.f()” and “$2.g()” that do not belong in L(GS). Such

protocols typically do not occur in practice because such examples refer to

relationships between methods defined in different classes, so this is no longer

a protocol for a single API.

Completeness does hold if all terminals in the grammar use the same set

of wildcards. In practice, every API protocol we have encountered conforms

to this restriction.

4.4 Verification Algorithm

Our verification algorithm takes as input a program that has been in-

strumented as described in Section 4.3. The main idea underlying the algo-

rithm is to extract a context-free grammar from the instrumented program

and iteratively refine this CFG abstraction until the property is either refuted
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or verified. Since our algorithm operates over predicated control flow automata

(PCFA), we start with a discussion of PCFAs and then describe our CEGAR-

based verification approach.

4.4.1 Predicated Control-Flow Automata

We represent each program using a generalized form of control flow

automaton (CFA) that is commonly used in software model checking [123,

124, 127]. A CFA is a directed graph where nodes correspond to program

locations, and an edge from n to n′ labeled with s indicates that the program

transitions from location n to n′ upon the execution of statement s. Predicated

control flow automata (PCFA) augment CFA nodes with logical predicates:

Definition 15. (PCFA) A predicated control-flow automaton A is a tuple

A = (Σ , S , δ) where:

• Σ is the set of atomic program statements.

• S is a set of states, where each s ∈ S is a pair s = (lm , ϕ). Here, lm is a

program location within method m, and ϕ is a formula over some first-order

theory.

• δ is the transition relation δ ⊆ S × Σ × S.

Notation. Given a state s = (l , ϕ), we use Loc(s) and Pred(s) to denote l

and ϕ respectively. Trans(A) denotes the transition relation of A. We use the

notation S�l = {s ∈ S | Loc(s) = l} to represent the subset of states in S that
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involve program location l . In addition, we write In(l , δ) (resp. Out(l , δ)) to

denote the in-coming (resp. out-going) edges of location of l . Finally, we say

that state s′ is reachable from state s, denoted as A ` s  s′, if and only if

(s, , s′) ∈ δ. As standard, we use A ` s  ∗ s′ to represent the transitive

closure of relation  .

4.4.2 Main Algorithm

Figure 4.11 presents our top-level verification algorithm. This proce-

dure takes as input an (instrumented) program P , represented as a mapping

from methods to their PCFAs, as well as a context-free API protocol GS. The

algorithm either returns “Verified” or a counterexample indicating an API

misuse. As a convention, procedure names in small caps are formally defined

later in this chapter, whereas those in camel case are oracles that provide

functionality that is orthogonal to our approach.

The main verification algorithm is a CEGAR loop that consists of the

following steps. First, it calls procedure ConstructCFG (line 6) to obtain a

context-free grammar GP that abstracts the relevant API usage of P . Next, it

checks whether there exists a word w that belongs in L(GP) but not in L(GS)

(line 7). If this is not the case, the program must satisfy GS, so the algorithm

returns “Verified” (line 14).

On the other hand, if there exists a word w ∈ L(GP)\L(GS), we need

to check whether w corresponds to a feasible execution path of P . Given a

derivation d of w, we convert this derivation to an execution path using an
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1: procedure Verify(P , GS)
2: input: P : M → PCFA, program.
3: input: GS, API-Protocol’s context-free grammar.
4: output: Verified or Counterexample.

5: while true do
6: GP ← ConstructCFG(P)
7: if ∃d. d ∈ InclusionCheck(GP ,GS) :
8: (π, )← derivation2path(d)
9: if feasible((π, )) : return π

10: else
11: I ← Interpolant((π, ))

12: Ψ←
{

lm 7→
{
Ij
∣∣ Ij ∈ I, σj ∈ π

Loc(σj) = lm

}}
13: P ← Refine(P ,Ψ)

14: else return Verified

Figure 4.11: Verification Algorithm
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oracle called derivation2path (line 8). Here, we represent an execution path as

a nested trace [122], which is a tuple (π = σ0...σn, ) where π is a sequence of

program statements and is a so-called ”nesting relation” between indices of

π that associates matching call and return statements. That is, if i j, then

σj is a return statement and σi is its matching call statement. Given such a

nested trace, we can easily check whether π is feasible by encoding it as an

SMT formula and querying its satisfiability (line 9). If the path is feasible,

then the algorithm returns π as a witness of API misuse.

In case π is infeasible, then word w is a spurious counterexample, and

our algorithm refines the PCFA abstraction (lines 11-13) to eliminate the same

spurious counterexample in the next iteration. To this end, we first make use of

another oracle, Interpolant , which takes as input a nested word (π = σ0...σn, 

) and returns an inductive sequence of nested interpolants I = [I0, ..., In+1].

Following Heizmann et al. [122], we define nested interpolants as a sequence

of predicates with the following properties: (1) I0 = true, In+1 = false. (2) If

σi is not a return statement, then sp(σi, Ii) ⇒ Ii+1. (3) If σi is a return

statement, then sp(σi, Ii ∧ Ij)⇒ Ii+1 and j  i. Intuitively, the first property

ensures that I can be used to prove infeasibility of (π, ), whereas the latter

two properties ensure that I is inductive.

After calculating a nested interpolant, the algorithm builds a mapping

Ψ that groups interpolants by program location (line 12). That is, Ψ maps

each program location to a set of predicates that should be tracked at that

location. The Refine procedure uses Ψ to determine how to clone program
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locations in the PCFAs such that (π, ) is no longer feasible in the refined

program abstraction.

We now state the following two theorems concerning the soundness and

progress of our approach:

Theorem 6. (Soundness) Let P ,P ′ be the programs before and after the call

to Refine at line 13 respectively. Then, for every feasible execution path π

in P, there exists a derivation d ∈ ConstructCFG(P ′) such that (π, ) =

derivation2path(d).

Proof. Provided under supplementary materials.

Theorem 7. (Progress) Let t be a spurious counterexample returned by

derivation2path and let P ′ be the resulting program after calling Refine on

program P. Then, there does not exist a derivation d ∈ ConstructCFG(P ′)

such that t = derivation2path(d).

Proof. Provided under supplementary materials.

In the following subsections, we describe the Refine (Section 4.4.3)

and ConstructCFG (Section 4.4.4) procedures in more detail.

4.4.3 PCFA Refinement

Our PCFA refinement algorithm is summarized in Figure 4.12. Given

program P and mapping Ψ from locations to predicates, the idea is to ”clone”

any program location l ∈ dom(Ψ) based on the predicates Ψ(l). Intuitively,
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1: procedure Refine(P , Ψ)
2: input: P : M → PCFA, program.
3: input: Ψ : Loc → {Pred}, new predicates to track.
4: output: Refined program with respect to Ψ

5: for (lm ,Preds) ∈ Ψ do
6: (Σ , S , δ)← P [m]
7: Φ← CompleteCubes(Preds)
8: S ′ ← CloneStates(S , lm ,Φ)
9: δ′ ← UpdateTransitions(δ, lm , S

′�lm)
10: P [m]← (Σ , S ′, δ′)

11: return P

Figure 4.12: Program Refinement Algorithm.

the demand-driven cloning of program locations allows our method to be se-

lectively path-sensitive and removes infeasible program paths encountered in

previous iterations. Furthermore, our refinement algorithm is modular in the

sense that we can refine the PCFA of each method independently.

In more detail, the Refine procedure iterates over each program lo-

cation l ∈ dom(Ψ) and determines which new states to create in the PCFA.

Specifically, if Ψ(l) contains n new predicates, then, for each state (l , φ) in the

PCFA, we need to create 2n new states, where each clone represents a copy of

l under a different boolean assignment to the predicates in Ψ(l). Towards this

goal, the Refine procedure first invokes CompleteCubes (line 7) to generate a

different boolean assignment as follows:

CompleteCubes(P ) =
{ |P |∧
i=1

ci | ci ∈ {pi,¬pi}, pi ∈ P
}
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In other words, CompleteCubes(P ) yields a set Φ of (conjunctive) formulas

such that every φ ∈ Φ corresponds to a different boolean assignment to the

predicates in P .

Next, given the new set of predicates Φ to track at location l , the

procedure CloneStates (line 8) generates |Φ| clones of each state (l , φ) ∈ S

as follows:

CloneStates(S , l ,Φ) = (S \ S�l) ∪ {(l , ϕ ∧ ϕ′) | (l , ϕ) ∈ S , ϕ′ ∈ Φ}

In other words, CloneStates removes all existing states (l , φ) associated

with location l and then adds a new state (l, φ ∧ φ′) for each φ′ ∈ Φ. Thus, if

the PCFA contains n states for location l before refinement, then the refined

PCFA contains n× |Φ| states for location l .

Example 8. Consider the initial PCFA for method acquire from Fig. 4.3b and

suppose Ψ(a3) = P = {l1acq = $1}. In this case, we have Φ = CompleteCubes(P ) =

{l1acq = $1, l1acq 6= $1}. Thus, CloneStates removes the original state (a3, true)

and generates two new states (a3, l1acq 6= $1) and (a′3, l1acq = $1) as shown in

Figure 4.6.

After creating the new states S ′, the Refine procedure updates the

transition relation of the PCFA by invoking the UpdateTransitions function

(line 9), defined as follows:
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UpdateTransitions(δ, l , S ′) = δ \ (In(δ, l) ∪Out(δ, l)) ∪

{e = (s, σ, s′) | s′ ∈ S ′, (s, σ, ) ∈ In(δ, l), feasible(e)} ∪

{e = (s′, σ, s) | s′ ∈ S ′, ( , σ, s) ∈ Out(δ, l), feasible(e)}

where feasible((s1, σ, s2)) is defined as SAT (sp(σ,Pred(s1)) ∧ Pred(s2)). In

other words, UpdateTransitions first removes from δ all transitions involving

location l . Then, for each new state s′ ∈ S ′ and for each incoming edge

(s, σ, ) to location l , it adds a new edge (s, σ, s′) as long as the annotation of

the new state s′ is consistent with the annotation of the source node, Pred(s),

and the semantics of statement σ. Outgoing edges from location l are also

updated analogously.

Example 9. Consider again the new states at the end of method acquire.

Observe that UpdateTransitions will not add an edge between states a1,a′3 and

a2,a3 in the refined version of the PCFA (shown in Fig. 4.6b) because feasible

returns false for these edges.

4.4.4 Context-Free Grammar Construction

In this section, we describe how to extract a context-free grammar from

the PCFAs. As explained earlier, the main idea is to represent relevant API

invocations as terminals in the grammar so that words generated by the CFG

correspond to all possible sequences of API calls issued by the program. To-

wards this goal, we introduce one non-terminal symbol for each PCFA state

and generate CFG productions according to the PCFA transitions. The re-
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1: procedure ConstructCFG(P)
2: input: P : M → PCFA, program.
3: output: GP , context-free grammar that abstracts P .

4: (T ,N ,R)← (∅, ∅, ∅)
5: Θ← {(s,m) | s ∈ Exit(P [m])}
6: for (si,m) ∈ Θ do
7: (Ti,Ni,Ri, Si)← GenGrammar(P [m], si,Θ)
8: T ← T ∪ Ti, N ← N ∪ Ni, R ← R ∪ Ri

9: if IsMain(m) : S ← Si

10: return (T ,N ,R, S )

Figure 4.13: Context-Free Grammar Construction

sulting CFG abstraction is (selectively) path-sensitive in that we introduce as

many non-terminal symbols for a method as it has exit states. Intuitively,

different non-terminals for method m correspond to different ”summaries”

conditioned upon facts that hold at m’s call sites.

The ConstructCFG procedure is described in more detail in Fig-

ure 4.13. It generates the program’s CFG abstraction by iterating over every

exit state s of each method m and constructs a separate grammar for (s,m)

using the call to GenGrammar at line 7. The CFG for the whole program is

obtained as the union of all of the individual grammars, and the start symbol

for GP is the one associated with main.

Figure 4.14 summarizes the GenGrammar procedure using inference
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(1)

(s, σ, s′) ∈ Trans(A) ¬callStmt(σ)
A ` s′  ∗ c Pred(c) = ϕ

A, c,Θ ` {Sϕ,S ′ϕ} ⊆ Nc Sϕ → S ′ϕ ∈ Rc

(2)

(s, σ, s′) ∈ Trans(A) σ = api call m(~v)
A ` s′  ∗ c Pred(c) = ϕ

A, c,Θ ` {Sϕ,S ′ϕ} ⊆ Nc σ ∈ Tc Sϕ → σ S ′ϕ ∈ Rc

(3)

feasible(e, ϕ′) Pred(c) = ϕ
e = (s, σ, s′) ∈ Trans(A) σ = call m ′(~v)
(c′,m′) ∈ Θ A ` s′  ∗ c ϕ′ = Pred(c′)

A, c,Θ ` {Sϕ,S ′ϕ} ⊆ Nc Sϕ →M′
ϕ′ S ′ϕ ∈ Rc

(4)
s ∈ Entry(A) A ` s ∗ c ϕ = Pred(c)

A, c,Θ ` Mϕ → Sϕ ∈ Rc Mϕ ∈ Nc Sc =Mϕ

(5)
ϕ = Pred(c)

A, c,Θ ` Cϕ → ε ∈ Rc

Figure 4.14: Rules for constructing CFG = (Tc,Nc,Rc, Sc) given a exit state c
in PCFA A = (Σ , S , δ), and set Θ. For a PCFA state s with predicate ϕ, the
symbol Sϕ denotes the corresponding non-terminal in the grammar.

113



rules of the following shape:

A, c,Θ ` ∆1, . . . ,∆n

Here, the left-hand side of the turnstile represents the arguments of the Gen-

Grammar procedure, and each ∆i is a set inclusion constraint for the CFG

symbols and productions. In more detail, A is the PCFA for the current

method, c is an exit state in A, and Θ is a set of pairs (s,m) where s is an exit

state in method m’s PCFA. (As we will see shortly, GenGrammar uses Θ to

generate grammar productions for method calls.) Given a state s in the PCFA

and predicate ϕ labeling exit state c, GenGrammar generates a non-terminal

Sϕ for each state in the PCFA.

Statements The first rule in Figure 4.14 applies to all statements that are

not function calls. Since atomic statements other than API calls are not

relevant to our abstraction, this rule only captures control-flow dependencies.

Specifically, let (s, σ, s′) be a PCFA edge where σ is a non-call statement.

First, we introduce non-terminals Sϕ,S ′ϕ for states s, s′ and add a production

Sϕ → S ′ϕ to capture that s′ is a successor of s. Observe that this rule (as well

as the next two rules) have A ` s′  ∗ c as a premise because non-terminals

Sϕ,S ′ϕ should only be added to the grammar if s, s′ are backward-reachable

from exit state c.

Example 10. The production A1,φ1 → A2,φ1 in Fig. 4.7 is generated using the

Stmt rule based on the PCFA from Fig 4.6.

114



API The next rule generates productions for API calls. This rule is similar to

the previous one but with two key differences: First, it also adds σ to terminals

Tc. Second, it generates the production Sϕ → σS ′ϕ instead of Sϕ → S ′ϕ because

σ is relevant to the program’s API usage.

Example 11. Consider the production A2,φ1 → $1.lock() A′3,φ1 from Fig-

ure 4.7. This production is generated due to the PCFA transition (a2, $1.lock(), a′3)

from Figure 4.6.

Call. The third rule applies to PCFA edges (s, σ, s′) where σ is a call to

method m′. Since there are multiple ”clones” of m′, let us consider one specific

clone c′ with ”summary” ϕ′. In this case, we generate the production Sϕ →

M′
ϕ′S ′ϕ, where M′

ϕ′ is the start symbol for the grammar associated with

this clone of m′. However, since predicate ϕ′ may be inconsistent with PCFA

transition (s, σ, s′), we first check whether this particular clone of m′ is feasible

at this call site. This is done by requiring feasible(e, ϕ′), defined as follows:

feasible((s, call m’(~v), s′), ϕ′) ≡ SAT (Pred(s) ∧ Pred(s′) ∧ ϕ′)

Example 12. Consider the PCFAs from Figure 4.6. Here, the production

F3 → Acquire{l1acq=$1}F4 belongs to GP because we have feasible(e, l1acq = $1)

for the PCFA edge e from f3 to f4. On the other hand, there is no production

F3 → Acquire{l1acq=$1}F ′4 because l1acq = l∧ l 6= $1∧ l1acq = $1 is unsatisfiable.

Entry and exit. The last two rules in Figure 4.14 deal with the entry and

exit states of the PCFA. Specifically, for any entry state s of the PCFA that is
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backward-reachable from the target exit state c, we add a production Mϕ →

Sϕ, whereMϕ corresponds to the start symbol of the grammar. For exit state

c, we just add the empty production Cϕ → ε.

Example 13. For the PCFA from Figure 4.6b, we add the production Acquireφ1 →

A0,φ1 because a0 is an entry state that is backward-reachable from state a′3.

Similarly, we add a production A′3,φ1 → ε for exit state a′3.

4.5 Implementation

We implemented our approach in a prototype called CFPChecker for

analyzing Java programs. CFPChecker is implemented in Java on top of

the Soot infrastructure [207] and uses the technique of Madhavan et al. [173]

to perform grammar inclusion checks. Our implementation also makes use

of SMTInterpol [57] to obtain nested interpolants and leverages Z3 [75] to

determine satisfiability.

In the remainder of this section, we discuss some design choices and

optimizations that were omitted from the technical presentation.

Slicing input programs. Before running the verification algorithm pre-

sented in Section 4.4, CFPChecker uses slicing to improve scalability. Specif-

ically, we first identify all calls to the API whose usage is being checked and

then compute a backward slice of the program with respect to those state-

ments [199, 211].
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From words to execution paths. As mentioned in Section 4.4, we assume

that the InclusionCheck method returns a derivation d ∈ GP for a word w ∈

L(GP)\L(GS). In practice, GP tends to be highly ambiguous, so obtaining such

a derivation for w can be computationally expensive. To address this issue,

we first convert GP to Chomsky Normal Form (CNF) [56] for which there is a

polynomial algorithm for obtaining a derivation [138], and we then map this

derivation back to the original grammar. While mapping the CNF derivation

to the original grammar is not polynomial time, we have found this strategy to

work much better in practice compared to directly searching for a derivation

in the original grammar.

Handling pointers. In our implementation, we model the heap by using

a fairly standard array-based encoding that has been popularized by ESC-

Java [99]. Specifically, we introduce an array for each field and model loads

and stores using select and update functions in the theory of arrays.

Obtaining PCFAs. Before generating the PCFA of a method, we first per-

form a program transformation similar to the one described by Ball et al. [17]

to enable polymorphic predicate abstraction. Specifically, for each method in

the program, we generate auxiliary variables, referred to as symbolic constants

in prior work, that track the initial value of variables on method entry. This

transformation allows computing polymorphic interpolants that can be reused

across call sites.
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Optimizations. Rather than introducing one non-terminal symbol for every

program location, we instead introduce one non-terminal for each basic block

in order to make the resulting context-free grammar smaller. Also, since the

refinement algorithm may issue an exponential number of satisfiability queries,

we issue SMT queries in parallel whenever possible and memoize the results

of Z3 queries. Finally, since mapping parse trees from the CNF grammar back

to the original version can be a performance bottleneck, we memoize partial

results between refinement iterations.

Limitations. Similar to other verification tools, CFPChecker models sev-

eral Java features (e.g., exceptions, reflection) in a “soundy” way [167]. Fur-

thermore, since CFPChecker models program semantics using the com-

bined theory of arrays and linear integer arithmetic, it also conservatively

over-approximates operations that fall outside of this theory. In particular,

CFPChecker introduces appropriate uninterpreted functions to model op-

erations that involve non-integer variables (e.g., floats, doubles, etc.).

4.6 Evaluation

To evaluate CFPChecker, we collected real-world use cases of Java

APIs and conducted experiments designed to answer the following research

questions:

RQ1: Can CFPChecker verify the correct usage of popular Java APIs in

real-world clients?
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RQ2: Does the proposed technique advance the state-of-the-art in software

verification?

To answer these questions, we conduct two sets of experiments. For

our first experiment, we collect five popular Java APIs with context-free spec-

ifications and evaluate CFPChecker on 10 widely-used Java programs that

leverage at least one of these five APIs. In our second experiment, we compare

CFPChecker against existing verification tools. However, since there is no

off-the-shelf technique that can directly verify correct usage of context-free

API protocols, we instrument (simplified versions of) these 10 Java programs

with suitable assertions that enforce correct API usage, and we then try to dis-

charge these assertions using state-of-the-art verification and model checking

tools.

All of our experiments are run on an Intel Xeon CPU E5-2640 v3 @

2.60GHz machine with 132 GB of memory running the Ubuntu 14.04.1 oper-

ating system.

4.6.1 API Specifications & Benchmarks

For our evaluation, we consider the following five popular Java APIs

whose correct usage is defined by a context-free specification:

1. ReentrantLock: a widely-used Java API that implements a reentrant

lock
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API Name Specification

ReLock
S → $1.acquire() S $1.release() S

| ε

Wifi & Wake Lock

S → RC | $1.setRefCnt(false) NC

NC → ε | NA $1.release()
NA → $1.acquire() NA $1.release() NA | $1.acquire() NA

| $1.acquire()

RC → $1.acquire() RC $1.release() RC | ε
Canvas

S → ε | $1.save() S $1.restore() S
| $1.save() S

Json Gen.

S → ε | Obj | Arr | $1.writeString()
| $1.writeNumber() | $1.writeBoolean()

Obj → $1.writeStartObject() Fld $1.writeEndObject()

Fld → $1.writeFieldName() S F ld | ε

Arr → $1.writeStartArray() V als $1.writeEndArray()

V als → ε | S V als

Table 4.1: Java API Protocol Specifications
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2. WakeLock: a popular Android API that allows the client application

to keep the Android device awake

3. WifiLock: another Android API that allows the applications to keep

the Wi-Fi radio awake

4. Canvas: a graphics API (also for Android) that allows clients to create

views and animations

5. JsonGenerator: a serialization library that allows serializing Java ob-

jects as JSON documents

Specifications. Table 4.1 presents the context-free protocols that clients of

these APIs must adhere to. As used as a running example throughout the

chapter, ReentrantLock requires calls to acquire and release to be balanced,

and failure to follow this protocol results in deadlocks. The next two APIs,

namely WakeLock and WifiLock, have the exact same specification and can be

used in two different modes of operation, reference-counted and non-reference-

counted. The specification for the first mode is the same as ReentrantLock

(i.e., each call to acquire must be matched by a call to release). On the

other hand, the second mode is enabled by the call setRefCnt(false) and

requires the usage pattern to be of the form acquiren releasem where m ≤ n

and n ≥ 1 → m ≥ 1. For both the WakeLock and WifiLock APIs, failure

to follow the protocol causes resource leaks (e.g., the application drains the

phone’s battery). For the Android Canvas API, its documentation states ”It
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Benchmark Info CFPChecker Statistics

Benchmark #Classes LOC Out.
Total
Time

Incl.
Check

Preds / BB
(Avg/Max)

#Preds

W
ifi ExoPl ( ) 898 89,835 Cex 63.8 0.3 2/6 40

ExoPl 898 89,839 Safe 35.2 0.4 1/4 44

W
a
ke

L
o
ck ExoPl ( ) 898 89,835 Cex 66.6 0.3 2/6 40

ExoPl 898 89,839 Safe 47.0 0.5 2/6 39
ConBot ( ) 324 32,506 Cex 392.0 9.3 3/9 107
ConBot 324 32,504 Safe 2336.5 18.3 3/12 133

R
eL

o
ck Hystrix 411 11,457 Safe 20.7 0.3 1/3 21

Guice 599 16,799 Safe 221.5 2.4 3/9 92
Bitcoinj 581 53,648 Safe 3175.3 28.0 1/5 115

C
a
n
va

s Glide 558 24,959 Safe 562.6 544.7 1/3 19
RxTool 591 12,666 Safe 56.4 43.8 1/1 3
Litho 460 33,461 Safe 14.4 0.5 1/3 11

J
so

n

Hadoop 908 51,238 Safe 140.2 64.5 1/4 65
Hystrix-1 437 12,079 Safe 64.4 2.7 2/4 62
Hystrix-2 437 12,082 Safe 24.2 0.6 1/4 55

Table 4.2: Results for CFPChecker. Under the “output” column, ”Cex” de-
notes a counterexample and ”Safe” indicates that the benchmark was verified.
Total time indicates end-to-end running time in seconds, and “Incl. check”
shows the time spent performing grammar inclusion checking queries. “Preds
/ BB”: Average and max predicates tracked per basic block, “# Preds”: total
number of predicates tracked. The number of classes and LOC are prior to
slicing. The effects of slicing widely varies across benchmarks, in some cases
it eliminates a significant portion of the application leaving no more than
10 classes, whereas in some cases the resulting slice contains more than 100
classes.
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JayHorn JPF-BugFinder JPF-Verifier

Bench. Out.
Correct
Output?

Time Out.
Correct
Output?

Time Out.
Correct
Output?

W
ifi ExoPl ( ) UN 7 1212.4 Safe 7 0.6 TO 7

ExoPl UN 7 1119.0 - - - TO 7

W
a
ke

L
o
ck ExoPl ( ) UN 7 1105.3 Safe 7 0.5 TO 7

ExoPl UN 7 1162.8 - - - TO 7
ConBot ( ) UN 7 333.0 Safe 7 0.7 TO 7
ConBot UN 7 164.0 - - - TO 7

R
eL

o
ck Hystrix UN 7 12530.5 TO 7

Guice Safe 3 2383.1 - - - TO 7
Bitcoinj OM 7 - - - - TO 7

C
a
n
va

s Glide TO 7 - - - - TO 7
RxTool TO 7 - - - - TO 7
Litho OM 7 - - - - TO 7

J
so

n

Hadoop OM 7 - - - - TO 7
Hystrix-1 Safe 3 931.7 - - - TO 7
Hystrix-2 OM 7 - - - - TO 7

Table 4.3: Results for other safety-checking tools on simplified benchmarks
using a time limit of 8 hours and memory limit of 16 GB per benchmark.
Values in the “Out.” columns have the following meaning: Cex: feasible
counterexample found, Safe: no violations found, UN: unable to produce nei-
ther a counterexample nor a proof of correctness, TO: timeout, OM: out of
memory. We use a “-” to indicate that a value is not applicable. All execution
times are in seconds.
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is an error to call restore() more times than save() was called.”; thus, its

specification is of the form saven restorem where m ≤ n. Failure to follow this

protocol results in a run-time exception. The last API, called JsonGenerator,

has a relatively complex specification and requires clients to call API methods

(e.g., writeStartObject(), writeEndObject(), etc.) in accordance with the

JSON schema, that is, calls that start (e.g., writeStartObject()) and end (e.g.,

writeEndObject()) a JSON element must be matched and properly nested.

Failure to follow this protocol results in the generation of invalid JSON files.

Clients. To evaluate our approach on realistic usage scenarios of these li-

braries, we collected ten open-source Java programs that use these APIs. The

clients used in our evaluation are widely-used programs such as Hadoop/MapRe-

duce (a distributed computing framework), ExoPlayer (an Android media

player), ConnectBot (secure shell client), Netflix Hystrix (a fault tolerance

library for distributed environments), etc. These applications contain an av-

erage of 571 classes and 36,390 lines of Java code (equivalently, 56,114 Soot

bytecode instructions).

4.6.2 Results for CFPChecker

Table 4.2 summarizes our main experimental results for CFPChecker.

As we can see from the ”Output” column, two of the benchmarks (namely,

ExoPlayer and ConnectBot) actually misuse at least one API. For these bench-

marks (indicated with the  symbol), we also construct a correct variant (in-
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dicated without the  symbol) by manually repairing the original bug. We

now summarize the key take-away lessons from this evaluation.

Verification results for correct benchmarks. CFPChecker is able to success-

fully verify all benchmarks that correctly use the relevant API. On average,

CFPChecker takes 9.3 minutes to verify each application, and its median

verification time is 60.4 seconds. Most of the benchmarks require a significant

number of refinement steps, with 22.5 being the median number of iterations.

Counterexamples for buggy benchmarks. As shown in Table 4.2, CFPChecker

reports three API protocol violations. Two of these violations are in Exo-

Player, which misuses both the WifiLock and WakeLock libraries, and the

other violation is in ConnectBot, which misuses WakeLock. Using the coun-

terexamples reported by CFPChecker, we were able to identify the root

causes of these errors. Interestingly, all three violations share the same root

cause. In particular, ExoPlayer and ConnectBot both call the acquire method

in onStart and the corresponding release method in onStop of an Android Ac-

tivity [90]; however, they fail to release the lock in the onPause method. Since

the Android framework may kill a paused activity when there is memory pres-

sure (see Figure 4.15), the calls to acquire and release are not guaranteed to

be matched. Thus, this bug can result in resource leaks in the form of unin-

tended battery usage. One simple way to fix this issue is to move the acquire

and release calls to the onResume and onPause methods instead. In fact, a
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later version of the ConnectBot application fixes the bug in exactly this way;

however, CFPChecker identified a previously unknown issue in ExoPlayer.

Figure 4.15: Android lifecycle
callbacks

Summary. As these experiments indicate,

verifying the correct usage of context-free

API protocols is of practical relevance in real-

world applications. Our results demonstrate

that CFPChecker is practical enough to

verify the correct usage of context-free API

protocols in widely-used Java applications

and that it can provide useful counterexam-

ples when the property is violated.

4.6.3 Comparison with Baselines

Since there is no existing tool for ver-

ifying correct usage of context-free protocols, we cannot directly compare our

approach against existing baselines. Thus, we construct our own baselines us-

ing the following strategy: First, we instrument each program with suitable

assertions that enforce correct API usage (as explained below). Then, we try

to discharge these assertions using existing safety verifiers. In this section, we

report on our experience implementing and evaluating these baselines using

JayHorn [151] and JavaPathFinder [11] as the assertion checking back-ends.

Note that JayHorn is a state-of-the-art Java verification tool based on con-
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strained Horn clause solvers, and JavaPathFinder is a mature model checking

tool for Java developed by NASA.

Assertion instrumentation. As mentioned earlier, the goal of our instru-

mentation is to generate a program P ′ such that P ′ is free of assertion failures

if and only if the original program P obeys a given context-free API proto-

col. One obvious way to perform this instrumentation is to represent the API

protocol using a push-down automaton (PDA) and then introduce variables

that keep track of the PDA’s state and stack contents. In fact, this strategy

has been used in prior work for performing run-time checking of correct API

usage [52, 145, 178]. However, since static techniques are typically not very

good at reasoning about dynamically allocated data structures (e.g., arrays),

we instead manually perform API-specific instrumentation that avoids intro-

ducing arrays whenever possible. For example, for ReentrantLock, we only

introduce an integer counter c that is incremented (resp. decremented) on

calls to lock (resp. unlock). Then, to enforce the protocol, we assert that c

is positive when unlock is called and that it is zero at the end. Using similar

strategies, we can perform instrumentation using only integer variables for all

APIs except one (JsonGenerator).

Please note that the instrumentation strategy described above requires

human ingenuity and cannot be used to automatically check arbitrary API

protocols. However, it is designed to be as favorable as possible to assertion

checking tools and represents the best possible scenario for existing verifiers.
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Slicing and pre-processing. Recall from Section 4.5 that CFPChecker

incorporates a slicing step to enable better scalability. To ensure a fair compar-

ison, we use the exact same slicing procedure before feeding the instrumented

programs to the assertion checking tools. However, even the slices contain

several features that cannot be handled by at least one of these two tools.

For instance, if we provide the generated slices to JayHorn as-is, it crashes on

most benchmarks. Similarly, JavaPathFinder throws an exception whenever

it encounters a call to a method whose source code is not available. Therefore,

in order to use JayHorn and JavaPathFinder as our assertion-checking back-

ends, we further manually simplified our benchmarks from Section 4.6.1 in a

way that preserves the relevant API usage-related behavior.

Configurations of JavaPathFinder. The JPF tool can be configured in

several different ways. In this experiment, we use two configurations of JPF

for the assertion-checking back-end. The first variant, henceforth called JPF-

BugFinder, is a version of Java Pathfinder that is configured with the default

settings for SVCOMP [11]. Note that these settings are suitable for bug finding

but not for verification. To use JavaPathFinder as a verifier, we also consider a

second variant where we do not restrict its search space. We refer to this vari-

ant as JPF-Verifier. Since JPF-BugFinder is not a verifier, we only evaluate

it on the buggy benchmarks.

Overall results. The results of our comparison against these three baselines

(JayHorn, JPF-BugFinder, and JPF-Verifier) are presented in Table 4.3. The

128



key take-away from this experiment is that none of the three baselines are

effective at successfully verifying (or finding bugs in) our experimental bench-

marks despite manual simplification and instrumentation. In what follows, we

describe the results for each of the three baselines in more detail.

Results for JayHorn. JayHorn verifies only 2 of the 15 benchmarks. For

7 benchmarks, JayHorn reports a possible assertion violation, but is unable to

provide a counterexample. For the remaining 6 benchmarks, JayHorn either

fails to terminate within the 8-hour time limit or runs out of memory. Surpris-

ingly, one of the benchmarks (Hystrix-1) that can be verified by JayHorn uses

the complex JsonGenerator API. We conjecture that JayHorn can verify this

benchmark more easily because it does not involve recursion and all relevant

API usage is confined within a single method.

Results for JPF When using JPF as a bug finder with the default SV-

COMP settings, it fails to find the assertion violations in the three buggy

benchmarks and reports them as safe. This result suggests that the API

protocol violations in the buggy benchmarks are non-trivial to find. On the

other hand, JPF-Verifier fails to terminate within the eight hour time limit

on any benchmark, and it also fails to find the errors in the three buggy

benchmarks.
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Chapter 5

Related Work

We now discuss prior work that is related to all the techniques presented

in this thesis. Section 5.1 discusses work related to Programming Trimming,

Section 5.2 discusses related work for our Automatic Signal-Placement tech-

nique, and Section 5.3 presents prior work related to our technique for verifying

correct usage of Context-Free API protocols.

5.1 Related Work for Program Trimming

Program slicing. One of the most well-known program simplification

techniques is program slicing, which removes program statements that are

not relevant to some criterion of interest (e.g., value of a variable at some pro-

gram point) [2, 33, 204, 210]. A program slice can be computed either statically

or dynamically and includes both forward and backward variants. Program

trimming differs from traditional program slicing in two ways: first, trimming

focuses on removing execution paths as opposed to statements; second, it is

meant as a pre-processing technique for safety checkers rather than a trans-

formation to aid program understanding. In particular, a typical slicing tool

may not produce compilable and runnable code that could be consumed by
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subsequent safety checkers.

More semantic variants of program slicing have also been considered in

later work [18, 46, 66, 96, 117, 144]. For instance, Jhala and Majumdar propose

path slicing to improve the scalability of software model checkers [144]. In

particular, path slicing eliminates all operations that are irrelevant toward the

reachability of the target location in a given program path. Unlike program

trimming, path slicing is not used as a pre-processing step and works on a

single program path that corresponds to a counterexample trace.

Prior work has also considered how to slice the program with respect to

a predicate [46, 66, 96, 117]. Such techniques can be useful for program under-

standing, for example, when the user only wants to see statements that affect

a given condition (e.g., the predicate of a conditional). In contrast, program

trimming is not meant as a program understanding technique and removes

program paths that are irrelevant for a given safety property. Furthermore,

the trimmed program is not meant for human consumption, as it semantically

prunes program paths through the insertion of assume statements.

Slicing has been used before invoking a program analyzer [51, 55, 91,

120, 142, 143, 179]. A key difference with these approaches is that the result

of trimming is valid code, which compiles and runs, instead of an abstract

representation, such as a control flow graph or model.

Pre-processing for program analyzers. In the same spirit as this thesis,

prior work has also used program transformations to improve the precision or
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scalability of program analyzers [58, 60, 61, 115, 157, 194, 213]. For instance, a

transformation for faster goal-directed search [157] moves all assertions to a

single main procedure with the goal of speeding up analysis. Another pro-

gram transformation called loop splitting aims to improve the precision of pro-

gram analyzers by turning multi-phase loops into a sequence of single-phase

loops [194]. However, neither of these techniques instrument the program with

assumptions to guide safety checking tools.

Recent techniques rely on the verification results of a full-fledged ana-

lyzer, such as an abstract interpreter or a model checker, to guide automatic

test case generation tools [58, 60, 71, 72] or other static analyzers [29, 59, 61,

213], some even using slicing as an intermediate step [71]. In contrast, pro-

gram trimming is more lightweight by not relying on previous analyzers and,

thus, can be used as a pre-processing step for any safety checker.

Precondition inference. The use of precondition inference dates back to

the dawn of program verification [79]. Most verification techniques infer a suf-

ficient condition for program safety and prove the correctness of the program

by showing the validity of this condition [22, 24, 49, 79, 100, 132, 133, 135, 181].

In this work, we do not aim to infer the weakest possible safety precondition;

instead, we use lightweight, modular static analysis to infer a sufficient condi-

tion for safety. Furthermore, we use safety conditions to prune program paths

rather than to verify the program.

Program trimming hinges on the observation that the negation of a

sufficient condition for property P yields a necessary condition for the nega-
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tion of P . Prior program analysis techniques also exploit the same observa-

tion [83–85, 220]. For instance, this duality has been used to perform modular

path-sensitive analysis [83] and strong updates on elements of unbounded data

structures [84, 85].

While most program analysis techniques focus on the inference of suf-

ficient preconditions to guarantee safety, some techniques also infer necessary

preconditions [68, 69, 168, 169, 184]. For example, Verification Modulo Versions

(VMV) infers both necessary and sufficient conditions and utilizes previous

versions of the program to reduce the number of warnings reported by veri-

fiers [169]. Similarly, necessary conditions are inferred to repair the program

in such a way that the repair does not remove any “good” traces [168]. Fi-

nally, the techniques described by Cousot et al. infer necessary preconditions,

which are used to improve the effectiveness of the Code Contracts abstract

interpreter [68, 69, 95].

Abductive reasoning. There has been significant work on program anal-

ysis using abductive reasoning, which looks for a sufficient condition that

implies a desired goal [4, 45, 82, 88, 89, 164, 221]. Our analysis for computing

safety conditions can be viewed as a form of abductive reasoning in that we

generate sufficient conditions that are stronger than necessary for ensuring

safety. However, we perform this kind of reasoning in a very lightweight way

without calling an SMT solver or invoking a logical decision procedure.

Modular interprocedural analysis. The safety condition inference we

have proposed in this thesis is modular in the sense that it analyzes each pro-
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cedure independently of its callers. There are many previous techniques for

performing modular (summary-based) analysis [3, 45, 83, 187, 216]. Our tech-

nique differs from these approaches in several ways: First, our procedure sum-

maries only contain safety preconditions, but not post-conditions, as we handle

procedure side effects in a very conservative way. Second, we do not perform

fixed-point computations and achieve soundness by initializing summaries to

false. Finally, we use summary-based analysis for program transformation

rather than verification.

Property-directed program analysis. There is a significant body of work

that aims to make program analyzers property directed. Many of these tech-

niques, such as BLAST [28, 125, 128], SLAM [16, 20, 21], and YOGI [108, 185]

rely on counterexample-guided abstraction refinement (CEGAR) [65] to iter-

atively refine an analysis based on counterexample traces. Another example

of a property-directed analysis is the IC3/PDR algorithm [38, 137], which it-

eratively performs forward and backward analysis for bounded program ex-

ecutions to decide reachability queries. Although abstract interpretation is

traditionally not property directed, there is recent work [192] on adapting and

rephrasing IC3/PDR in the framework of abstract interpretation. In contrast,

we propose a general pre-processing technique to make any eager program

analysis property directed.

Path-exploration strategies. Most symbolic execution and testing tech-

niques utilize different strategies to explore the possible execution paths of

a program. For example, there are strategies that prioritize “deeper paths”

134



(in depth-first search), “less-traveled paths” [165], “number of new instruc-

tions covered” (in breadth-first search), “distance from a target line” [172],

or “paths specified by the programmer” [193]. In the context of symbolic ex-

ecution, program trimming can be viewed as a search strategy that prunes

safe paths and steers exploration toward paths that are more likely to con-

tain bugs. However, as shown in our experiments, our technique is beneficial

independently of a particular search strategy.

5.2 Related Work for Automatic Signaling

Our implicit-signal monitors have several relatives in the literature. We

discuss representative past work, in loose thematic groupings of decreasing

affinity with our work.

Language designs and run-time support for concurrency. There is

a very rich literature on language support for concurrency, dating back to

the early 1960s [10]. Dijkstra originally proposed the concept of semaphores

to provide a friendlier and more efficient programming abstraction than the

busy-wait design [80]. In later work, Hoare proposed the concept of conditional

critical regions (CCR) [134], which overcome some of the difficulties associ-

ated with semaphores by providing a more structured notation for specifying

synchronization. In particular, every shared variable in a CCR must belong

to a resource, and variables in a resource can only be accessed within so-called

region statements of the form region r when B→ S, where B is a guard and S
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is a statement. Concurrently to the introduction of CCRs, Dijkstra proposed

the notion of monitors, which provide more structure than conditional criti-

cal regions and can be implemented as efficiently as semaphores [78]. To this

day, monitors remain a popular concurrent programming paradigm, and the

“monitor pattern” is widely used in many programming languages, including

Java and C++.

Even though early proposals for monitors advocate an implicit signal-

ing mechanism [10, 13], most modern monitor implementations use explicit

signaling due to performance considerations. More recent work in this area

aim to popularize implicit signal monitors by providing a more efficient imple-

mentation [41, 141]. For example, the recent AutoSynch work [141] attempts

to improve the efficiency of automatic signaling through a combination of effi-

cient dynamic indexing and simple static analysis. AutoSynch offers sophisti-

cated handling of local state in a thread. If threads wait on conditions based

on standard equality/inequality patterns over local variables, the system dy-

namically snapshots the values of local variables and treats them as run-time

constants—the variable values cannot have changed while the thread is wait-

ing. As a result, the predicates have a standard structure of comparisons with

constants. The efficient notification algorithm then works much like database

indexing: it computes, given which shared values changed, what waiting pred-

icates could possibly have been affected. Our approach is distinguished by its

use of reasoning techniques for statically inferring when a condition must,may-

not, or may have become true. In order to do so, our technique needs to take
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into consideration several issues that are not addressed by previous work, e.g.,

handling of memory aliases, inter-procedural reasoning, etc. As shown in the

evaluation, our method significantly outperforms the AutoSynch solution on

many benchmarks and is comparable to hand-written code for most examples.

Transactional memoory. CCRs have been recently reified in several lan-

guage designs, such as that of Harris and Frasier [118]. Such designs can be

viewed as special cases of transactional memory (TM) [130], which has at-

tracted enormous attention in the literature, as an alternative of lock-based

synchronization [159].

Our implicit-signal monitors are both less and more ambitious than

transactional memory techniques, in different respects. Monitors do not at-

tempt to automate-away lock-based synchronization: we explicitly require the

programmer to declare different resources together with their synchronization

policy. Concretely, each monitor can be thought of as a single lock, whereas

transactional memory techniques do away with distinctions between locks in

favor of a single atomic construct. The same essential feature is kept in Har-

ris and Frasier’s conditional critical regions [118]: although atomic statements

can have a condition associated with them, their code blocks are guaranteed

to execute with atomic semantics, relative to any other atomic block, under

whichever condition. Therefore, implicit-signal monitors are inherently lower-

level than TM approaches, requiring more care on behalf of the programmer,

but also imposing no overhead for maintaining atomic semantics. At the same
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time, our implicit-signal monitors are more ambitious on the implementation

side. Static reasoning over abstract conditions results in the removal of extra-

neous signaling overheads, enabling high-performance execution.

Automation of synchronization. Static analysis has been applied to the

optimization of synchronization primitives in the past, mostly in the context of

auto-locking or lock-inference techniques [54, 93, 131, 150, 175]. The language

model these techniques implement is much closer to transactional memory than

implicit-signal monitors: the analysis attempts to infer which locks protect

which shared data, as well as which data are not thread-shared. Furthermore,

these static analyses typically produce a whole-program model of shared data

and do not reason over symbolic conditions, as in our approach. Techniques

that infer synchronization given specifications and abstractions [48, 92, 208]

often use similar reasoning techniques as our approach (e.g., SMT solvers), but

start from much more abstract input and place an emphasis on correctness,

not on approaching hand-written code performance. Similar comments apply

to approaches that synthesize synchronization actions, given abstract models

of program behavior, using control theory techniques [152, 209].

Program analysis for concurrency. A major application of static anal-

ysis in the domain of concurrency has been in guaranteeing safety or finding

bugs. There are techniques for ensuring safe programming using advanced

typing [37], analyses for static race detection [183], approaches to concurrency
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bug fixing [146], tools that flag suspicious concurrency patterns [139, 214],

and much more. Additionally, dynamic techniques for concurrency bug detec-

tion [1, 77, 148, 171, 196] often benefit from symbolic reasoning, especially in

approaches inspired by model checking or symbolic execution techniques [147,

153, 182]. Such past work is only superficially related to ours, since the aims,

programming abstractions, and analysis techniques used are quite different.

Abductive reasoning in program analysis. Our proposed approach uses

abductive reasoning for automatically inferring monitor invariants. The use

of abduction in program analysis is quite common, especially in the context

of modular analysis [5, 44, 87], loop invariant generation [86], and specification

inference [5, 222]. However, our use of abductive reasoning differs from prior

work in that we use abduction to generate candidate predicates over which we

synthesize monitor invariants using predicate abstraction.

5.3 Related Work for CFPChecker

We now survey prior work related to our technique for verifying correct

usage of context-free API protocols and highlight their differences from our

approach.

Typestate analysis. Most prior work on checking correct API usage fo-

cuses on protocols that can be expressed as a regular language [15, 97, 201].

This problem is commonly known as typestate analysis [201], and researchers
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have proposed many different approaches to solve this problem ranging from

language-based solutions [7, 31, 76, 105] to program analysis [35, 36, 97] and

model checking [15, 19] to bug finding [149, 217] and run-time verification [8,

52]. Some prior works have also proposed various generalizations of typestate

properties, such as multi-object protocols [25, 189].

Run-time checking for context-free properties. There have been some

proposals, particularly in the context of run time techniques, for checking

correct usage of APIs with context-free specifications. In particular, these

techniques [73, 145, 174, 178] instrument the program with monitors that keep

track of PDA states and dynamically check for property violations. As shown

in our experiments, such an instrumentation-based approach does not work

well for static verification.

Interface grammars. Prior work has proposed interface grammars for spec-

ifying the sequences of method invocations that are allowed by a library [140].

Given an interface grammar for a component, this technique generates a stub

that can be used to analyze clients of that component. While this work ad-

dresses a somewhat different problem, their technique bears similarities to our

instrumentation-based baseline, which, as shown in our evaluation, does not

work well in our setting.

CEGAR Similar to all CEGAR approaches [62, 63, 110, 114, 121, 126, 127,

129], our method starts with a coarse abstraction and iteratively refines it
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based on spurious counterexamples. However, our method differs from most

CEGAR-based techniques in that we abstract the program using a context-free

grammar and perform refinement by adding new non-terminals and produc-

tions to the grammar.

Abstracting programs with CFGs. Similar to our approach, prior work

on has explored abstracting programs using context-free grammars. For ex-

ample, Long et al [170] use CFG inclusion checking to prove assertions in con-

current programs; however, their approach does not refine the program’s CFG

abstraction. Instead, they use a CEGAR approach to solve the CFG inclusion

checking problem through a sequence of increasingly more precise regular ap-

proximations. Furthermore, since they address a different problem, their CFG

abstraction is quite different from ours. Another related approach in this space

is the work by Ganty et al. [104] which also abstracts recursive multi-threaded

programs with a context-free grammar. In contrast to our work, they under-

approximate the reachable state space of recursive multi-threaded programs

by generating a succession of bounded languages that under-approximate the

program’s CFG.

Interpolants. Similar to many CEGAR-based techniques [114, 126, 176, 177],

our method also uses Craig interpolation to learn new predicates when a spu-

rious counterexample is discovered. Given an unsatisfiable formula φ ∧ ψ, a

Craig interpolant is another formula χ such that φ ⇒ χ is valid and ψ ∧ χ

141



is unsatisfiable. Prior work has proposed many variants of Craig interpola-

tion, including sequence interpolants [126], tree interpolants [34], nested inter-

polants [122], and DAG interpolants [6]. In this thesis, we leverage the notion

of nested interpolants introduced by Heizmann et al. [122] to infer useful pred-

icates for recursive procedures; however, our refinement procedure uses these

nested interpolants in a very different way.

Control flow refinement. Our refinement technique bears similarities to

prior work on control-flow refinement [14, 70, 101, 113]. Similar to CFPChecker,

these techniques clone program locations in order to exclude infeasible paths

from their program abstraction. However, all of these techniques abstract the

program using a regular language, and, with the exception of Flores-Montoya

et al. [101], they apply control-flow refinement within a single procedure and

only inside loops. On the other hand, Flores-Montoya et al. [101] refine cost

equations rather than the program abstraction. In contrast to all of these

techniques, our technique refines the CFG abstraction, performs cloning inter-

procedurally, and supports arbitrary recursion.

Directed proof generation. Directed proof generation (DPG) techniques

simultaneously maintain an under- and an over-approximation of the pro-

gram and evolve them in a synergistic way [203]. Specifically, the under-

approximation is used to find feasible counterexamples and learn new predi-

cates which refine the over-approximation. Conversely, the over-approximation
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is used to generate proofs and guides counterexample search to paths that are

more likely to fail. Similar to our technique, DPG-like approaches [26, 107,

112, 203] annotate their control-flow representation with logical predicates and

clone program locations. Our approach differs from these techniques in the

way it discovers potential counterexamples and new predicates. In partic-

ular, CFPChecker performs an inclusion check between two context-free

languages in order to discover a potential API violation and uses interpolation

to discover new predicates. In contrast, DPG techniques use a combination of

graph reachability and test-case generation.

Equivalence of context-free languages. Our approach leverages prior

work on checking containment between two context-free languages [119, 155,

173, 186]. While checking inclusion between arbitrary context-free languages

is known to be undecidable, prior work has studied decidable fragments, such

as LL(k) grammars [186]. Our implementation makes use of the algorithm by

Madhavan et al. [173], which in turn extends prior algorithms for LL gram-

mars. While our technique is orthogonal to checking context-free language

containment, it would directly benefit from advances and new algorithms that

address this problem.

CFL reachability. CFL reachability techniques represent inter-procedural

control flow using a graph representation and then filter out paths that do not

conform to valid call-return structures [191]. This formulation has been used
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to express several fundamental program analyses, such as context-sensitive

pointer analysis [200, 215]. However, adding another level of sensitivity (e.g.,

field-sensitivity,) requires solving two separate CFL reachability problems on

the same execution path, which is known to be undecidable [190]; hence many

techniques over-approximate one of the two CFL reachability problems [50,

166, 197, 198, 200, 215, 218] or propose a more precise generalization of CFL

reachability [202, 219]. Similar to these techniques, we also need to reason

about two context-free properties, namely matching call-return statements

and matching between calls to API methods. However, this work addresses

a somewhat different problem: instead of filtering out execution paths that

do not belong to both context-free languages, our technique verifies that every

API sequence generated by an execution path with a valid call-return structure

belongs to the context-free specification.

Visibly pushdown automata Many model checking techniques use vari-

ants of pushdown automata, such as visibly pushdown automata (VPAs) or

nested word automata (which are equally expressive), to reason about inter-

procedural control flow [9, 53, 94, 127]. Visibly pushdown and nested word

automata are less expressive compared to PDAs; however, they enjoy various

decidability and closure properties for operations like intersection and comple-

ment. However, VPAs cannot capture two separate context-free properties on

the same execution path, which is required by our technique.

There have been some theoretical studies that extend VPAs to use
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multiple stacks [47, 205, 206], and such multi-stack VPAs are significantly more

expressive compared to standard VPAs. For example, 2-VPAs [47] (i.e., VPAs

with two stacks) accept some context-sensitive languages that are not context-

free and some context-free languages that are not accepted by any VPA. We

believe that it would be possible to solve the problem addressed in this thesis

using 2-VPAs, however, the emptiness problem for 2-VPAs is also undecidable.
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Chapter 6

Future Work

The work presented in this dissertation is a just a first step towards

automatically aiding developers to develop and analyze their software. The

problems addressed in this thesis open the way for several future research

directions. Next, we briefly discuss some of those here.

Inferring API Protocols Currently CFPChecker requires the user to

provide the API protocol as input. However, as we have seen in Chapter 4 some

of these protocols can be quite complicated. Therefore, a promising future

direction would be to automatically infer an API’s protocol automatically.

Besides providing an easier interface to CFPChecker users, such a technique

could be used by other automated tools, like Expresso, which can increase

their precision by leveraging CFPChecker’s technique.

Improve Performance of Concurrent Code As shown in Chapter 3, Ex-

presso ensures that different monitor operations run atomically by acquiring

and releasing a single global lock upon entering and exiting each of these oper-

ations. However, this strategy prevents two independent operations to run in

146



parallel since both of them have to acquire the same lock. As a future direc-

tion, we plan to extend Expresso so it produces an explicit-signal monitor

that implements a fine-grained locking policy that enables such operations to

run in parallel. Our goal is to synthesize a monitor that is optimal with respect

to both thread signalling and locking.
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Appendix A

Proofs for Failure-Directed Program Trimming

A.1 Proof of Theorem 1

Proof sketch. For most statements (e.g., assignment, assumption, assertion),

Φ′ is just the standard weakest precondition of s with respect to Φ.

For heap reads and writes, we already argued why Φ′ ⇒ wp(s,Φ). The

heap allocation rule is also correct since it “havocs” the allocated pointer.

The correctness of the procedure call rule follows from the following

two facts: First, summary(prc,Υ, v̄) is a conservative safety condition for the

call to f . In particular, if f ∈ dom(Υ), this follows from the soundness of

Υ. If f 6∈ dom(Υ), false (resp. true) is a sufficient condition for the safety

of any procedure that does (resp. does not) contain an assertion. Second, we

“havoc” the value of any memory location modified in f . The correctness of

our havoc operation follows from (a) the correctness of the store function, and

(b) ∀v.φ⇒ wp(v := e, φ) for any expression e.

A.2 Proof of Theorem 2

Proof. The proof is by induction on the number of statements (i.e., n− i).

Suppose i = n. If sn is not an assertion, then the safety condition is
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true, so we add assume false. Since sn can never fail, false is indeed necessary

for failure. If sn is assert φ, then the necessary condition for failure is ¬φ.

Since the safety condition for sn is φ, our technique instruments the code with

assume ¬φ.

For the inductive step, suppose i < n and let:

Λ,Υ, true ` si+1; . . . ; sn : Φ

By the inductive hypothesis, ¬Φ is a necessary condition for the failure of

si+1, . . . , sn. We consider three cases: (1) si is an assertion assert φ. Then,

the necessary condition for the failure of si; . . . ; sn is ¬φ ∨ ¬Φ. Since the

safety condition for si; . . . ; sn is φ∧Φ, our technique instruments the code with

assume ¬φ ∨ ¬Φ. (2) If si is an assumption assume φ, the necessary condition

for failure is φ ∧ ¬Φ, which is exactly the trimming condition computed by

our technique. (3) Otherwise, the necessary condition for failure is wp(si,¬Φ).

Suppose Λ,Υ,Φ ` si : Φ′. By soundness of the safety condition inference, we

have Φ′ ⇒ wp(si,Φ), and we instrument the code with assume ¬Φ′. Since si

is neither an assertion nor an assumption, we have wp(si,¬Φ) ≡ ¬wp(si,Φ);

thus, wp(si,¬Φ)⇒ ¬Φ′.
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Appendix B

Proofs and Auxiliary Defintions for Automatic

Signaling

B.1 Well-formedness of Monitor Trace

In this section, we formalize what it means for a monitor trace τ to be

syntactically well-formed. Towards this goal, we first define the projection of

a trace τ onto a thread t , denoted as τ ↓ t .

Definition 16. The projection of trace τ onto thread t, denoted τ ↓ t , is

defined as follows:

(t ′, w, true) ↓ t = [w] if t ′ = t
(t ′, w, b) ↓ t = nil if t ′ 6= t or b = false

e :: τ ↓ t = (e ↓ t) :: (τ ↓ t)

Definition 17. We say that τ ↓ t is well-formed if τ ↓ t = [S1, . . . , Sn, Sn+1],

each Si where i ∈ [1, n] corresponds to the body of some method, and Sn+1 is

a prefix of the body of some method.

Using these definitions, we can now define syntactic well-formedness of

monitor traces as follows:

Definition 18. We say that a monitor trace τ is syntactically well-formed if

the following conditions are satisfied:
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1. For every thread t, τ ↓ t = S1; . . . ;Sn;Sn+1 is well-formed

2. If τ [i] = (t, w, true) and τ [i + 1] = (t′, w′, b), then either w is the last

statement in its method or t′ = t and w′ is the successor of w.

B.2 Soundness Proof

In this section, we prove the soundness of the PlaceSignal algorithm.

The proof of Theorem 6 follows immediately from Lemmas 1 and 2.

In the remainder of this section, we use the term event to also refer to

pairs (t , w) without the corresponding boolean. We refer to t as thread(e) and,

if w = (p, s), we refer to p as pred(e). Given two sets N ,N ′, we will assume

that the total order relation ≺ on events is defined in a way that respects the

property N ′ ⊆ N ⇒ min(N ) = min(N ′).

Furthermore, for the rest of the section it is useful to keep in mind that

the source language maintains the following invariant:

Invariant If (σ0, τ, ∅, ∅) −→∗ (σ, ,B,N ), then:

• If (t , w) ∈ N , then we have (t , w) ∈ B.

• If (t , w) ∈ B and (σ, t) |= Guard(w), then (t , w) ∈ N .

Lemma 1. Let M ′ = PlaceSignals(M , I ). If I is a correct monitor invariant,

then for all monitor states σ and all well-formed traces τ , if (σ, τ, ∅, ∅) =⇒∗

(σ′, ε, , ) then (σ, τ, ∅, ∅) −→∗ (σ′, ε, , ).
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Proof. Follows from Lemma 3.

Lemma 2. Let M ′ = PlaceSignals(M , I ). If I is a correct monitor invariant,

then for all monitor states σ and all well-formed traces τ . If (σ, τ, ∅, ∅) −→∗

(σ′, ε, , ) and τ is normalized with respect to σ, then (σ, τ, ∅, ∅) =⇒∗ (σ′, ε, , ).

Proof. Follows from Lemma 4.

Definition 19. (Invalidation). Let e = (w, t) be a monitor event where w =

(p, s), t be a thread identifier, and p a predicate. We write Invalidate(e, t ′, p′),

if, for any state σ such that 〈s, t , σ〉 ⇓ σ′, we have (σ′, t ′) 6|= p′.

Definition 20. (Agreement). We say that (σ,B,N ) agrees with (σ,B′,N ′),

written (σ,B,N ) ∼ (σ,B′,N )′ if the following conditions are satisfied:

1. B = B′

2. N ⊇ N ′

3. If e ∈ (N −N ′), then either

(a) (σ, thread(e)) 6|= pred(e), or

(b) ∃e′ ∈ N ′. e′ ≺ e ∧ pred(e) = pred(e′)

∧ Invalidate(e′, thread(e), pred(e))

Lemma 3. If (σ,B,N ) ∼ (σ,B′,N ′) and

(σ, τ,B′,N ′) =⇒ (σ′, τ ′,B1,N1)
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then we have

(σ, τ,B,N ) −→ (σ′, τ ′,B2,N2)

and (σ′,B1,N1) ∼ (σ′,B2,N2).

Proof. The proof is by induction on τ .

• Base case 1a: τ = e = (t, w, false) and (t, w) 6∈ B′. In this case, we have

(σ, t) 6|= Guard(w) and (σ, e,B′,N ′) =⇒ (σ, ε,B′ ∪ {e},N ′). Since B = B′,

we have (t, w) 6∈ B. Thus, we also have (σ, e,B′,N ) −→ (σ, ε,B′ ∪ {e},N ).

Since N ,N ′ satisfy conditions (2) and (3) of the agreement definition and

the state σ has not changed, N ,N ′ continue to satisfy conditions (2) and

(3). Thus, we have (σ,B′ ∪ {e},N ′) ∼ (σ,B ∪ {e},N ).

• Base case 1b: τ = e = (t, w, false) and (t, w) ∈ N ′. In this case, we have

(σ, e,B′,N ′) =⇒ (σ, ε,B′,N ′\{e}). Since N ⊇ N ′, (t, w) ∈ N , we also have

(σ, e,B′,N ) −→ (σ, ε,B′,N\{e}). Since N ,N ′ satisfy conditions (2) and (3)

of the agreement definition and the state σ has not changed, N ,N ′ continue

to satisfy conditions (2) and (3). Thus, (σ,B′,N ′\{e}) ∼ (σ,B′,N\{e}).

• Base case 2a: τ = e = (t, w, true) and e 6∈ B′. In this case, we have:

e = (t , w, true)
e 6∈ B′ (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N2 = GetSignals(w, σ′,B)
N3 = GetBroadcasts(w, σ′,B)

(σ, e,B′,N ′) =⇒ (σ′, ε,B′,N ′ ∪N2 ∪N3)
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Since B = B′, this implies e 6∈ B, thus, we have:

e = (t , w, true)
e 6∈ B (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N1 = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B,N ∪N1)

Part (a) of the agreement definition trivially holds, since B = B′. For

part (b), we need to show that N1 ∪ N ⊇ N2 ∪ N3 ∪ N ′. That is, if

e∗ ∈ N2 ∪ N3 ∪ N ′, we also have e∗ ∈ N1 ∪ N . Case 1: Suppose e∗ ∈ N ′.

By agreement, we have e∗ ∈ N , thus part (b) of agreement holds in this

case. Case 2: Suppose e∗ ∈ N2 ∪ N3. This means (pred(e∗), c) ∈ P1 ∪ P2

where P1 = Signals(w) and P2 = Broadcasts(w). Case 2a: If c = ?, then e∗

is only added to N2 ∪ N3 if (σ′, thread(e∗)) |= pred(e∗). But then, we have

e∗ ∈ N1. Case 2b: If c = X, then the PlaceSignals algorithm ensures

that ` { I ∧ ¬pred(e∗)}Body(w){pred(e∗)}. By correctness of this Hoare

triple, we have (σ′, thread(e∗)) |= pred(e∗). Thus, e ∈ N1.

For part (c) of the agreement definition, we need to show that if e∗ ∈ (N ∪

N1)\(N ′ ∪N2 ∪N3), then either (i) (σ′, thread(e∗)) 6|= pred(e∗), or (ii) ∃e′ ∈

N2∪N3∪N such that e′ ≺ e∗∧pred(e) = pred(e∗)∧Invalidate(e′, thread(e∗), pred(e∗)).

We consider two cases:

– Case 1: e∗ ∈ N , but e∗ 6∈ N ′ ∪ N2 ∪ N3 (i.e., e∗ 6∈ N ′, e∗ 6∈ N2, e
∗ 6∈

N3). Since e∗ ∈ N − N ′, we have (from agreement) that either (a)

(σ, thread(e∗)) 6|= pred(e∗), or

(b) ∃e′ ∈ N ′ such that e′ ≺ e∗, pred(e′) = pred(e∗) and Invalidate(e′, thread(e∗), pred(e∗)).
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∗ Case 1a: (σ, thread(e∗)) 6|= pred(e∗). If we also have (σ′, thread(e∗)) 6|=

pred(e∗), then part (c) of agreement definition obviously holds. If

(σ′, thread(e∗)) |= pred(e∗), then e∗ ∈ N1, and we argue correctness

in Case 2.

∗ Case 1b: (σ, thread(e∗)) 6|= pred(e∗) and ∃e′ ∈ N ′ such that (e′ ≺

e∗, pred(e′) = pred(e∗), and

Invalidate(e′, thread(e∗), pred(e∗)). Since such an e′ is also in N ′ ∪

N2 ∪N3, part (c) of the agreement definition is preserved.

– Case 2: e∗ ∈ N1, but e∗ 6∈ N ′, e∗ 6∈ N2, and e∗ 6∈ N3. There are only

two ways in which e∗ ∈ N1 but not in N2 or N3:

∗ Case 2a: (pred(e∗), c) 6∈ P1 ∪ P2 where P1 = Signals(w) and P2 ∈

Broadcasts(w). Using the invariant of the PlaceSignals algo-

rithm, this can only happen if ` {I∧¬pred(e∗)}Body(w){¬pred(e∗)}.

If pred(e∗) was true before executing Body(w) (i.e., (σ, thread(e∗)) |=

pred(e∗)), then e∗ would also be inN , which implies it is also inN ′,

so this case is not possible. Otherwise, if (σ, thread(e∗)) 6|= pred(e∗),

the correctness of the Hoare triple implies that (σ′, thread(e∗)) 6|=

pred(e∗), which contradicts the fact that e∗ ∈ N1.

∗ Case 2b: (pred(e∗), c) ∈ P2, but there exists another e′ such that

(i) e′ ≺ e∗, and (ii) pred(e∗) = pred(e). The only way in which e∗

is added to P2 but not P1 by the PlaceSignals algorithm is if

the following Hoare triple holds for all waituntil statements w with
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guard pred(e∗):

{I ∧Guard(w)} Body(w) {¬Guard(w)}}

Since e′ has the same guard as pred(e∗), the validity of the Hoare

triple implies Invalidate(e′, thread(e∗), pred(e∗)). Thus part (c) of

the agreement definition again holds.

• Base case 2b: τ = e = (t, w, true) and e = min(N ′). In this case, we have:

e = (t , w, true)
e = min(N ′) (σ, t) |= Guard(w)

〈Body(w), t , σ〉 ⇓ σ′
N2 = GetSignals(w, σ′,B)
N3 = GetBroadcasts(w, σ′,B)

(σ, e,B,N ′) =⇒ (σ′, ε,B\{e}, (N ′ ∪N2 ∪N3)\{e})

Since N ′ ⊆ N , we have min(N ) = min(N ′); hence:

e = (t , w, true)
e = min(N ) (σ, t) |= Guard(w)

〈Body(w), t , σ〉 ⇓ σ′
N1 = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B\{e}, (N ∪N1)\{e})

Because the sets N1,N2,N3 are constructed in exactly the same way as

Base case 2a, the same argument also applies in this case. However, we

additionally need to show that if e∗ ∈ N\N ′, and pred(e) = pred(e∗), then
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(σ′, thread(e∗)) 6|= pred(e∗). Since e ∈ N ′ and pred(e∗) = pred(e) and e ≺ e∗,

we have Invalidate(e, thread(e∗), pred(e)). By definition of the Invalidate

predicate, this means that (σ′, thread(e∗)) 6|= pred(e∗).

• Inductive step: If trace τ contains multiple events, then we have:

(σ′, e,B′,N ′) =⇒ (σ2, ε,B2,N2)

(σ′, e :: τ,B′,N ′) =⇒ (σ2, τ,B2,N2)

and

(σ, e,B,N ) −→ (σ1, ε,B1,N1)

(σ, e :: τ,B,N ) −→ (σ1, τ,B1,N1)

Using the inductive hypothesis and the assumption that (σ′,B′,N ′) ∼ (σ,B,N ),

we have (σ2,B2,N2) ∼ (σ1,B1,N1).

Lemma 4. If (σ,B,N ) ∼ (σ,B′,N ′), τ is normalized, and

(σ, τ,B,N ) −→ (σ′, τ ′,B1,N1)

then we have

(σ, τ,B′,N ′) =⇒ (σ′, τ ′,B2,N2)

and (σ′,B1,N1) ∼ (σ′,B2,N2).

Proof. The proof is by induction on τ .

• Base case 1a: τ = e = (t, w, false) and (t, w) 6∈ B. In this case, we have

(σ, t) 6|= Guard(w) and (σ, e,B′,N ′) −→ (σ, ε,B′ ∪ {e},N ′). Since B = B′,
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we have (t, w) 6∈ B′. Thus, we also have (σ, e,B′,N ) =⇒ (σ, ε,B′ ∪ {e},N ).

Since N ,N ′ satisfy conditions (2) and (3) of the agreement definition and

the state σ has not changed, N ,N ′ continue to satisfy conditions (2) and

(3). Thus, we have (σ,B′ ∪ {e},N ′) ∼ (σ,B ∪ {e},N ).

• Base case 1b: τ = e = (t, w, false) and (t, w) ∈ N . We do not need to

consider this case because it contradicts the assumption that the trace is

normalized.

• Base case 2a: τ = e = (t, w, true) and e 6∈ B. In this case, we have:

e = (t , w, true)
e 6∈ B (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N1 = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B,N ∪N1)

Since B = B′, this implies e 6∈ B′, thus, we also have:

e = (t , w, true)
e 6∈ B′ (σ, t) |= Guard(w)
〈Body(w), t , σ〉 ⇓ σ′

N2 = GetSignals(w, σ′,B)
N3 = GetBroadcasts(w, σ′,B)

(σ, e,B′,N ′) =⇒ (σ′, ε,B′,N ′ ∪N2 ∪N3)

Thus, the proof is exactly the same as Base Case 2a of Lemma 3

• Base case 2b: τ = e = (t, w, true) and e = min(N ). In this case, we have:
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e = (t , w, true)
e = min(N ) (σ, t) |= Guard(w)

〈Body(w), t , σ〉 ⇓ σ′
N1 = {(t , w) | (t , w) ∈ B, (σ′, t) |= Guard(w)}
(σ, e,B,N ) −→ (σ′, ε,B\{e}, (N ∪N1)\{e})

The existence of e in N does not guarantee the existence of e in N ′. We

consider two cases, namely (1) e ∈ N ′ and (2) e 6∈ N ′. For case (1), the

explicit-signal transitions also use rule (2b), thus the proof is exactly the

same as Case 2b of the proof of Lemma 3.

We will now argue that case 2 (i.e., e 6∈ N ′) is not possible. Suppose

e ∈ N , but not in N ′. Then, by part (c) of the agreement definition,

we have either (i) (σ, t) 6|= Guard(w), or ∃e′ ∈ N ′. e′ ≺ e ∧ pred(e) =

pred(e′) ∧ Invalidate(e′, t, pred(e)). Observe that (i) contradicts the as-

sumption (σ, t) |= Guard(w). For (ii), we have ∃e′ ∈ N ′. e′ ≺ e ∧ pred(e) =

pred(e′) ∧ Invalidate(e′, t, pred(e)). But since N ⊇ N ′, e′ is also in N

and furthermore e′ ≺ e. But this contradicts the assumption that e′ is the

minimum element of N .

• Inductive step: Same as the inductive step of the proof of Lemma 3.

B.3 Proof of Theorem 4

The proof is by induction on the length of τ0. For the base case, we

have τ0 = ε, thus τ ′ = τ and the statement trivially holds. For the induc-
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tive step, we have τ0 = e′τ1. Suppose (σ, e′τ1e,B,N ) −→∗ (σ, ε,B′,N ′) where

(σ, e′,B,N ) −→∗ (σ1, ε,B1,N1) as well as (σ1, τ1e,B1,N1) −→∗ (σ′, ε,B′,N ′).

By the inductive hypothesis, we have (σ1, eτ1,B1,N1) −→∗ (σ′, ε,B′,N ′). This

implies (σ, e′eτ1,B,N ) −→∗ (σ′, ε,B′,N ′). Finally, from the assumption Comm(Body(e),M ),

we have Body(e); Body(e′) ≡ Body(e′); Body(e). Thus, we also have (σ, ee′τ1,B,N ) −→∗

(σ′, ε,B′,N ′)

B.4 Sample Monitor Invariant

To give the reader some idea about the inferred monitor invariants, we

show the invariant (in SMTLIB format) for the AsyncDispatch benchmark

from Gradle:

(let ((a!1 (not (= (queue.size))

0)))

(a!3 (not (>= (queue.size))

(+ 1

(maxQueueSize)))))

(a!5 (not (>= (queue.size))

(maxQueueSize)))))

(let ((a!2 (not (or (= (state)

Stopped)

a!1)))

(a!4 (or (= (queue.size)

0)

(= (queue.first)

0)

(= (state)

Stopped)

a!3)))

(let ((a!6 (and a!4

(or a!1

(= (state)
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Stopped)

a!5))))

(and (or a!2 a!6)

(not (<= (maxQueueSize)

0))

(>= (maxQueueSize)

0)

(>= (queue.size)

0)))))

As another example, we show the monitor invariant for the Bounded-

Buffer benchmark:

(let ((a!1 (not (>= buff.length

0)))

(a!2 (not (>= (count)

buff.length)))

(a!4 (>= (count)

(+ 1

(buff.length))))

(let ((a!3 (or a!1

(not (or a!1 a!2))

(not (<= (count)

(- 1))))))

(and a!3

(>= (count)

0)

(or a!1

(<= (count)

0)

(not a!4)))))
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Appendix C

Proofs and Auxiliary Defintions for

CFPChecker

C.1 Correctness of Program Instrumentation

In this section we prove the correctness of the program instrumentation

presented in Section 4.3. The proof of Theorem 5 follows from lemma 5.

Lemma 5. If we have Γ,GS ` P ↪→ P ′, then for every trace τ ∈ P and

Ĝ ∈ Inst(GS, τ) there exists a trace τ ′ ∈ P ′ such that TraceToWord(τ, Ĝ) =

TraceToWord(τ ′, Ĝ).

Proof. We assume the existence of a map Λ : Loc → Loc, which given a pro-

gram location in P it returns the corresponding location in P ′. For api call

statements, Λ returns the location of the instrumented if-then-else statement

as presented in Figure 4.10.

Now, given a trace in P of the form τ = 〈s1, σ1〉...〈sn, σn〉 and a specifi-

cation instantiation Ĝ ∈ Inst(GS, τ), we show how to construct a trace τ ′ ∈ P ′

with the same trace projection as τ . For the rest of the proof, we will only

describe the statements we append in τ ′ without showing the corresponding

program states since each program state can be obtained by using the oper-

ational semantics (i.e., ⇓ relation) of the preceding (statement, prog. state)
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pair in τ ′. In what follows, we assume that: 1. ~v are the concrete values that

instantiate all the wildcards in the specification, i.e., Ĝ = GS[~v/~w]. 2. For

any 〈si, σi〉 ∈ τ we assume that σi+1 is the result of executing si under σi, i.e.,

〈si, σi〉 ⇓ σi+1 and 3. For any statement si in τ we assume that li represents

its location in P .

First, for every wildcard field wi in P ′ we append the assignment wi =

vi to τ ′, where vi is the i-th element of vector ~v. Next, we iterate over every

pair 〈si, σi〉 in τ and update τ ′ according to the following rules:

1. If si is of the form api call m( ~v1), then for every if (guard(ti, si)) t in

the statement at Λ[li] update τ ′ as follows: If we have that guard(ti, si)

evaluates to true for any pair of si, ti under σi
1, then append ti to τ ′.

Otherwise, append skip to τ ′.

2. Otherwise, append si to τ ′.

Intuitively, the first step, i.e., the field initialization, ensures that the

wildcard fields in P ′ have the same value as the instantiated specification Ĝ,

whereas, the second step ensures that the branches taken in τ ′ are semantically

consistent with the initialization of the wildcard fields. It is easy to see that

τ ′ can be generated by P ′ and that TraceToWord(τ, Ĝ) = TraceToWord(τ ′, Ĝ)

since the only guards that will evaluate to true are the ones where all the

program variables of the API call equal to some value in ~v.

1This can be easily determined by checking whether each value in ~v1 equals to value that
instantiates the corresponding wildcard in ~v.
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C.2 Soundness and Progress Proofs of Main Algorithm

In this section, we prove Theorems 6 and 7, which state the soundness

and progress of our approach respectively. Theorem 6 follows from Lemmas 6

and 8. Theorem 7 follows from Lemmas 6 and 7.

Definition 21. PCFA State Sequence: A PCFA state sequence is a tuple

of the form (s0...sn, ), where each si is a PCFA state of some method m ∈ P

and  is a nesting relation over the indices [0, n].

Definition 22. P-feasible State Sequence: We say that a state sequence

is P-feasible and write P ` (s0...sn, ) if and only if the following hold:

1. For all i, j such that i  j, there exists an edge (si, call m, sj) in

P. Furthermore, we have si+1 ∈ Entry(P [m]), sj−1 ∈ Exit(P [m]), and

SAT (Pred(si) ∧ Pred(sj−1) ∧ Pred(sj)).

2. For all i ∈ [0, n − 1] for which  is undefined, there exists an edge

(si, σ, si+1) in P.

Definition 23. P-feasible Execution Path: An execution path (σ0...σn, )

is P-feasible through state sequence (s0...sn+1, ), denoted as P , (s0...sn+1) `

(σ0...σn, ), if and only if P ` (s0...sn+1, ) and for every statement σi:

1. If i  j, then σi is a call statement, σj−1 is the matching return state-

ment, and (si, σi, sj) is an edge in the PCFA.

2. If σi is not a call or a return statement, then (si, σi, si+1) is an edge in

the PCFA.
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Oracle deriv2seq In a similar manner as derivation2path, we assume the

existence of a similar oracle named deriv2seq which given a derivation d ∈ GP
it returns its corresponding PCFA sequence (s0...sn, ). This can be easily

derived from a derivation since every non-terminal in GP is associated with a

singe PCFA state.

Lemma 6. A derivation d belongs to GP if and only if P ` deriv2seq(d).

Proof. This follows immediately from the construction of GP . Let’s assume

that for a derivation d ∈ GP we have that deriv2seq(d) = (s0...sn, ).

(=⇒) For this direction, we will prove that P ` (s0...sn, ). In order

for deriv2seq to return this sequence the following must hold:

• For all i, j such that i  j, there must exist a rule in GP of the

form Siφ → Mφ′Sjφ, where φ, φ′ refer to the method clones of the

caller and the callee. Additionally we have that si+1 ∈ Entry(P [m]),

sj−1 ∈ Exit(P [m]), and SAT (Pred(si) ∧ Pred(sj) ∧ Pred(sj−1))). By

construction of GP , this implies that there exists an edge of the form

(si, call m, sj) in P .

• For all i that  is undefined, there must exist a rule in GP of the form

Siφ → Si+1φ or Siφ → t Si+1φ where t is a terminal. This also implies

that there exist an edge of the form (si, σ, si+1) in P .

Now, it is easy to see that both these conditions satisfy Definition 22, therefore

we have that P ` (s0...sn, ).
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(⇐=) We now prove that if P ` (s0...sn, ), then there exists d ∈ GP
such that deriv2seq(d) = (s0...sn, ).

This follows by the construction of GP and Definition 22. Specifically,

the first condition of 22 implies that there exists at least one production in

GP of the form Siφ → Mφ′ Sjφ for some clones φ and φ′. Whereas, the

second condition implies that there exists a rule of the form Siφ → Si+1φ or

Siφ → t Si+1φ for some method clone φ. Therefore, we have that there exists

at least one derivation d ∈ GP for which deriv2seq(d) = (s0...sn, ).

Lemma 7. Let P ′ be the program returned by procedure Refine for spu-

rious counterexample (σ0...σn, ) and sequence of nested interpolants I =

[I0, ..., In+1]. Then we have that there does not exist state sequence (s0...sn+1, 

) such that P ′, (s0...sn+1) 0 (σ0...σn, ).

Proof. Let’s assume that P is the program before the refinement. To simplify

the proof we make the following assumptions: 1. (σ0...σn, ) is the first

counterexample, i.e., each PCFA state has true as a predicate 2. a program

location appears only once in the counterexample and 3. the last statement

of main is skip. The third assumption just converts the input program to a

normal form. Later we show how to generalize the proof so it does not require

the first two assumptions.

By Definition 23 and assumptions 1 and 2, there exists a singe state

sequence (s0...sn+1, ) such that P , (s0...sn+1) ` (σ0...σn, ) (i.e., the spu-

rious counterexample is P-feasible). Now, by the way procedure Refine
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works, we have that states s0 through sn+1 have been replaced by states

s′0, s
′′
0, ..., s

′
n+1, s

′′
n+1 in P ′ such that: Loc(s′i) = Loc(s′′i ) = Loc(s) and

Pred(s′i) = Ii, Pred(s′′i ) = ¬Ii. We now show that for any state sequence

of the form (s̄0...s̄n+1, ) where s̄i ∈ {s′, s′′} we have that: P ′, (s̄0...s̄n+1) 0

(σ0...σn+1, ).

Now recall that procedure Refine removes all the edges (s1, σ, s2) for

which UNSAT (sp(σ,Pred(s1)) ∧ Pred(s2)) holds. Since In+1 = false we

have that the counterexample cannot be feasible through any state sequence

that ends with s′n+1 and from the definition of nested interpolants we also

get that UNSAT (sp(σn, In)). Hence, the counterexample cannot be feasible

through any state sequence of the form (s̄′0...s
′
ns
′′
n+1, ). Last, we prove that

P ′, (s̄0...s
′′
ns
′′
n+1) 0 (σ0...σn, ) for any combination of s̄i which concludes the

proof.

The proof is by induction on the length of the counterexample:

• Base case: Here we need to prove that P ′, (s′′0s′′1) 0 (σ0, ). Since I0 is

true, we have UNSAT (sp(σ0, P red(s′′0))) therefore the execution path is

not feasible through state sequence (s′′0s
′′
1)

• Inductive Step: By inductive hypothesis we have that P ′, (s̄0...s
′′
n+1) 0

(σ0...σn, ) for any s̄i. We will now prove that P ′, (s′0...s′n+1s
′′
n+2) 0

(σ0...σn+1). Here we have two cases:

1. σn+1 is not a return statement. By the definition of nested in-

terpolants we have that sp(σn+1,Pred(s′n+1)) ⇒ Pred(s′n+2), this
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implies UNSAT (sp(σn+1,Pred(s′n+1)) ∧ Pred(s′′n+2)). Therefore,

Refine removes the edge (sn+1, σn+1, s
′′
n+2) which make the exe-

cution path infeasible through this predicate sequence.

2. σn+1 is a return statement. By the definition of nested interpolants

we have that sp(σn+1,Pred(s′n+1)∧Pred(s′j))⇒ Pred(s′n+2) for j  

n+2. This implies that UNSAT (sp(σn+1,Pred(s′n+1)∧Pred(s′j))∧

Pred(s′′n+2)), hence by Definition 23 we have that the execution path

is infeasible through this state sequence.

Now, if we lift assumptions 1 and 2 from earlier this means that each

state si from the feasible state sequence will be replaced by multiple new states

in P ′. Recall though that procedure Refine will clone all the states in P with

the same location as si and the resulting clones in P ′ will have one of the

complete cubes as their predicate. This means that for a given interpolant Ii

a clone s′i in P ′ will contain either Ii or ¬Ii, which implies that Pred(s′i)⇒ Ii

or Pred(s′i) ⇒ ¬Ii. Therefore, the proof in the general case is similar to the

one above except that one would have to consider all the clones of P ′ that

contain the predicate ¬Ii.

Lemma 8. If P ′ is the program returned by procedure Refine for se-

quence of nested interpolants I = [I0, ..., In+1], then there exists state sequence

(s0...sm, ) such that P ′, (s0...sm) ` (π, ) for every feasible execution path

in P.
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Proof. Here we make the same assumptions as in Lemma 7, but as before the

proof generalizes for the same reasons.

Let’s assume that (σ0...σn, ) is the spurious counterexample that

triggered the refinement. Again, by Definition 23 and assumptions 1 and

2 from Lemma 7, there exists a singe state sequence (s0...sn+1, ) such that

P , (s0...sn+1) ` (σ0...σn, ) (i.e., the spurious counterexample is P-feasible).

Now, let s′0, s
′′
0, ...s

′
n, s
′′
n be the states that replace each state si in P where

Pred(s′i) = Ii and Pred(s′′i ) = ¬Ii. Now, in order for an execution path to be

eliminated by procedure Refine it must have a statement that labels an edge

whose source or destination state is one of the states si (the rest of the graph

does not change). We prove this is impossible by contradiction:

Let’s assume that there exists an execution path (π = σ0...σm, )

for which there does not exist state sequence (s0...sm+1, ) in P ′ such that

P ′, (s0...sm+1, ) 0 (π, ) and also one of the statements σj in π labels an

edge whose target state2 is one of the cloned states s′j+1 or s′′j+1. Now in order

for this execution path to not be feasible we must have one of the following:

• If σj is not a return statement, then we must have that sp(σj,Pred(sj))∧

Pred(s′j+1)) and sp(σj,Pred(sj))∧Pred(s′′j+1)) which is impossible since

Pred(s′j+1) = Ij+1 and Pred(s′′j+1) = ¬Ij+1.

• If σj is a return statement, then we must have that sp(σj,Pred(sj) ∧

2The case where it labels an edge whose source state is one from the counterexample is
similar.
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Pred(si))∧Pred(s′j+1)) and sp(σj,Pred(sj)∧Pred(si))∧Pred(s′′j+1)) for

i j + 1. Which again it is impossible for the same reason as above.
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plex programs with cost equations. In Jacques Garrigue, editor, Pro-

gramming Languages and Systems, pages 275–295, Cham, 2014. Springer

International Publishing.

[102] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard,

and Peter J. Stuckey. An abstract domain of uninterpreted functions.

In VMCAI, volume 9583 of LNCS, pages 85–103. Springer, 2016.

[103] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard,

and Peter J. Stuckey. Exploiting sparsity in difference-bound matrices.

In SAS, volume 9837 of LNCS, pages 189–211. Springer, 2016.

[104] Pierre Ganty, Rupak Majumdar, and Benjamin Monmege. Bounded

underapproximations. In Tayssir Touili, Byron Cook, and Paul Jackson,

editors, Computer Aided Verification, pages 600–614, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.
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[152] Terence Kelly, Yin Wang, Stéphane Lafortune, and Scott Mahlke. Elim-

inating concurrency bugs with control engineering. Computer, 42(12),

2009.

[153] Sepideh Khoshnood, Markus Kusano, and Chao Wang. Concbugassist:

constraint solving for diagnosis and repair of concurrency bugs. In

Proceedings of the 2015 International Symposium on Software Testing

and Analysis, pages 165–176. ACM, 2015.

[154] James C. King. Symbolic execution and program testing. CACM,

19:385–394, 1976.

[155] Allen J Korenjak and John E Hopcroft. Simple deterministic languages.

In 7th Annual Symposium on Switching and Automata Theory (swat

1966), pages 36–46. IEEE, 1966.

195



[156] Shuvendu K Lahiri and Shaz Qadeer. Complexity and algorithms for

monomial and clausal predicate abstraction. In CADE, pages 214–229.

Springer, 2009.

[157] Akash Lal and Shaz Qadeer. A program transformation for faster goal-

directed search. In FMCAD, pages 147–154. IEEE Computer Society,

2014.

[158] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate

checking using set interfaces and pluggable analyses. ACM SIGPLAN

Notices, 39(3):46–55, 2004.

[159] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan &

Claypool, 2007.

[160] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework

for lifelong program analysis & transformation. In CGO, pages 75–88.

IEEE Computer Society, 2004.

[161] Chris Lattner, Andrew Lenharth, and Vikram S. Adve. Making context-

sensitive points-to analysis with heap cloning practical for the real world.

In PLDI, pages 278–289. ACM, 2007.

[162] Doug Lea. Concurrent Programming in Java. Second Edition: Design

Principles and Patterns. Addison-Wesley, 2nd edition, 1999.

[163] K. Rustan M. Leino. Efficient weakest preconditions. IPL, 93:281–288,

2005.

196



[164] Boyang Li, Isil Dillig, Thomas Dillig, Kenneth L. McMillan, and Mooly

Sagiv. Synthesis of circular compositional program proofs via abduction.

In TACAS, volume 7795 of LNCS, pages 370–384. Springer, 2013.

[165] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering

symbolic execution to less traveled paths. In OOPSLA, pages 19–32.

ACM, 2013.

[166] Yuanbo Li, Qirun Zhang, and Thomas Reps. Fast graph simplification

for interleaved dyck-reachability. In Proceedings of the 41st ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, PLDI 2020, page 780–793, New York, NY, USA, 2020. Association

for Computing Machinery.

[167] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták,
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