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Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Motivation

When we reason about programs statically, uncertainty and
imprecision come up everywhere.

Uncertainty: We often do not (or cannot) model every aspect
of the environment the program executes in

Imprecision: Any analysis is necessarily based on some
abstraction of the program
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Uncertainty

User Input

if(getUserInput() == ’y’) return true;
else return false;

Network data

System state

Many more

e.g., calling an unknown function,
thread scheduling, . . .
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Uncertainty

User Input

Network data

char buf[1024];
recv(socket,buf,1024,0);
struct data* d = (struct data*) buf;

System state

Many more

e.g., calling an unknown function,
thread scheduling, . . .



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Uncertainty

User Input

Network data

System state

int* p = malloc(sizeof(int)*num elems);
if(p == NULL) exit(1);

Many more

e.g., calling an unknown function,
thread scheduling, . . .
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Uncertainty

User Input

Network data

System state

Many more. . .

All of these appear as
non-deterministic en-
vironment choices
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Imprecision

In constrast to uncertainty,
imprecision arises from the
abstraction intentionally
chosen by the analysis
designer

But imprecision results in
similar consequences as
uncertainty
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Imprecision

In constrast to uncertainty,
imprecision arises from the
abstraction intentionally
chosen by the analysis
designer

But imprecision results in
similar consequences as
uncertainty
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

int elem = array[i];
assert(elem != -1);

Many systems do not track “complicated” arithmetic

Many systems cannot infer complicated loop invariants
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types
Many systems do not track “complicated” arithmetic

if(COEF*a*b+MIN SIZE >= MAX)
return -1;

Many systems cannot infer complicated loop invariants
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

Many systems do not track “complicated” arithmetic

if( >= MAX)
return -1;

Many systems cannot infer complicated loop invariants
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

Many systems do not track “complicated” arithmetic
Many systems cannot infer complicated loop invariants

int compute gcd(int a, int b) {
while(b!=0) {
int t = a;

a = b;

b = t % b;

}
return a;

}
assert(x%compute gcd(x,y) == 0);
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

Many systems do not track “complicated” arithmetic

Many systems cannot infer complicated loop invariants

int compute gcd(int a, int b) {

}
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

Many systems do not track “complicated” arithmetic

Many systems cannot infer complicated loop invariants

int compute gcd(int a, int b)

{

}
assert(x% == 0);
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Imprecision

Many program analyis systems do not reason about
unbounded data structures or abstract data types

Many systems do not track “complicated” arithmetic

Many systems cannot infer complicated loop invariants

Sources of imprecision appear as
non-deterministic environment choices
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Modeling Choice in Constraint Based Analyses

In constraint-based systems, environment choice is typically
modeled using unconstrained variables that we call choice
variables.

For example, whenever there is a call to getUserInput(),
introduce a fresh variable β.
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SAT(β = ’y’) ?
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Modeling Choice in Constraint Based Analyses

In constraint-based systems, environment choice is typically
modeled using unconstrained variables that we call choice
variables.

For example, whenever there is a call to getUserInput(),
introduce a fresh variable β.

VALID(β = ’y’) ?
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Modeling Choice in Constraint Based Analyses

In constraint-based systems, environment choice is typically
modeled using unconstrained variables that we call choice
variables.

For example, whenever there is a call to getUserInput(),
introduce a fresh variable β.

VALID(β = ’y’) ? Of course not!
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Modeling Choice in Constraint Based Analyses

Unfortunately, the use of choice variables may introduce two
problems:

Theoretical: It is not clear how to solve recursive constraints
containing choice variables.

Practical: The number of choice variables is proportional to
the size of the analyzed program.

Large formulas ⇒ Poor scalability
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Modeling Choice in Constraint Based Analyses

Unfortunately, the use of choice variables may introduce two
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Theoretical: It is not clear how to solve recursive constraints
containing choice variables.

Practical: The number of choice variables is proportional to
the size of the analyzed program.

Large formulas ⇒ Poor scalability
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

When does queryUser return true?
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Given an arbitrary argument α, what is the constraint Πα,true

under which queryUser returns true?
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true =?
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = (α = true) ∧ ?
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ((α = true) ∧ ( β = ’y’ ∨ ?))
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled) ;

}

Πα,true = ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α][β′/β]]) ))
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Recursive Constraint Example

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

Πα,true = ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α][β′/β])))
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Recursive Constraint Example

If we solve this constraint naively using standard fix-point
computation, we get:

Πα,true = (α = true) ∧ (β = ′y′ ∨ (¬(β = ′n′)∧
Πα,true[true/α][β′/β]))

∧
(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

It is not clear how to solve recursive constraints involving
choice variables.
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Recursive Constraint Example

If we solve this constraint naively using standard fix-point
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Recursive Constraint Example

If we solve this constraint naively using standard fix-point
computation, we get:

Πα,true = (α = true) ∧ (β = ′y′ ∨ (¬(β = ′n′)))∧
(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

It is not clear how to solve recursive constraints involving
choice variables.
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Scalability

Even if we had a way of solving
such recursive constraints, choice
variables remain a source of
scalability problems, even for
reasonably sized programs.
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Scalability Problem Example

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case KEY RSA1:

case KEY RSA:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case KEY DSA:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }
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Scalability Problem Example

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case KEY RSA1:

case KEY RSA:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case KEY DSA:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }

Assume KEY RSA1, KEY RSA, and KEY DSA are #define’d as
1, 2 and 3 respectively.
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Scalability Problem Example

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case 1:

case 2:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case 3:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }
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Scalability Problem Example

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case 1:

case 2:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case 3:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }

What is the constraint under which key new private
successfully returns a new key?
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Scalability Problem Example

Denoting the argument of key new private by α, let us slice
the relevant part of the function:
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Scalability Problem Example

Denoting the argument of key new private by α, let us slice
the relevant part of the function:

key new private(α) {
if (α == 1 || α == 2 ) {

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

}
if (α == 3)

if (BN new()) == NULL) /* fail */

/* success */

}
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Scalability Problem Example

Denoting the argument of key new private by α, let us slice
the relevant part of the function:

key new private(α) {
if (α == 1 || α == 2 ) {

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

}
if (α == 3)

if (BN new()) == NULL) /* fail */

/* success */

}

Here, BN NEW is a malloc wrapper; hence, its return value
should be treated as non-deterministic environment choice
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Scalability Problem Example

Denoting the argument of key new private by α, let us slice
the relevant part of the function:

key new private(α) {
if (α == 1 || α == 2 ) {

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

if (BN new() == NULL) /* fail */

}
if (α == 3)

if (BN new()) == NULL) /* fail */

/* success */

}

We replace each call to BN NEW with a fresh choice variable βi.
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Scalability Problem Example

key new private(α) {
if (α == 1 || α == 2 ) {

if (β1 == 0 || β2 == 0 || β3 == 0 || β4 == 0 || β5 == 0)

/* fail */

}
if (α == 3)

if (β6 == 0) /* fail */

/* success */

}

The condition under which the function succeeds is:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

Very verbose way of stating the success condition!



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Scalability Problem Example

key new private(α) {
if (α == 1 || α == 2 ) {

if (β1 == 0 || β2 == 0 || β3 == 0 || β4 == 0 || β5 == 0)

/* fail */

}
if (α == 3)

if (β6 == 0) /* fail */

/* success */

}

The condition under which the function succeeds is:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

Very verbose way of stating the success condition!



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Scalability Problem Example

key new private(α) {
if (α == 1 || α == 2 ) {

if (β1 == 0 || β2 == 0 || β3 == 0 || β4 == 0 || β5 == 0)

/* fail */

}
if (α == 3)

if (β6 == 0) /* fail */

/* success */

}

The condition under which the function succeeds is:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

Very verbose way of stating the success condition!



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Scalability Problem Example

Now consider some calling context of this function:

Key* rsa1 key = key new private(KEY RSA1);

Key* rsa key = key new private(KEY RSA);

Key* dsa key = key new private(KEY DSA);

/* SUCCESS */

What is the constraint under which we reach /*SUCCESS*/?

(1 ≤ 1 ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(1 = 3 ∧ β6 6= 0) ∨ 1 ≤ 0 ∨ 1 ≥ 4) ∧

(1 ≤ 2 ≤ 2 ∧ (β′1 6= 0 ∧ β′2 6= 0 ∧ β′3 6= 0 ∧ β′4 6= 0 ∧ β′5 6= 0)
∨(2 = 3 ∧ β′6 6= 0) ∨ 2 ≤ 0 ∨ 2 ≥ 4) ∧

(1 ≤ 3 ≤ 2 ∧ (β′′1 6= 0 ∧ β′′2 6= 0 ∧ β′′3 6= 0 ∧ β′′4 6= 0 ∧ β′′5 6= 0)
∨(3 = 3 ∧ β′′6 6= 0) ∨ 3 ≤ 0 ∨ 3 ≥ 4)
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Now consider some calling context of this function:
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(1 ≤ 3 ≤ 2 ∧ (β′′1 6= 0 ∧ β′′2 6= 0 ∧ β′′3 6= 0 ∧ β′′4 6= 0 ∧ β′′5 6= 0)
∨(3 = 3 ∧ β′′6 6= 0) ∨ 3 ≤ 0 ∨ 3 ≥ 4)
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Scalability Problem Example

Now consider some calling context of this function:

Key* rsa1 key = key new private(KEY RSA1);

Key* rsa key = key new private(KEY RSA);

Key* dsa key = key new private(KEY DSA);

/* SUCCESS */

What is the constraint under which we reach /*SUCCESS*/?

(1 ≤ 1 ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(1 = 3 ∧ β6 6= 0) ∨ 1 ≤ 0 ∨ 1 ≥ 4) ∧

(1 ≤ 2 ≤ 2 ∧ (β′1 6= 0 ∧ β′2 6= 0 ∧ β′3 6= 0 ∧ β′4 6= 0 ∧ β′5 6= 0)
∨(2 = 3 ∧ β′6 6= 0) ∨ 2 ≤ 0 ∨ 2 ≥ 4) ∧

(1 ≤ 3 ≤ 2 ∧ (β′′1 6= 0 ∧ β′′2 6= 0 ∧ β′′3 6= 0 ∧ β′′4 6= 0 ∧ β′′5 6= 0)
∨(3 = 3 ∧ β′′6 6= 0) ∨ 3 ≤ 0 ∨ 3 ≥ 4)
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Conclusion from the Examples

Introducing choice variables causes problems both with
scalability and solving recursive constraints

It is desirable to eliminate these choice variables from the
constraints

Idea: Compute an over-approximation of the constraint not
containing any choice variables
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Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Strongest Necessary Conditions

An over-approximation dφe of a constraint φ not containing
choice variables is implied by the original constraint, i.e. dφe
is a necessary condition.

φ⇒ dφe

But rather than computing any necessary condition, we want
to compute the strongest necessary condition:

∀φ′.((φ⇒ φ′)⇒ (dφe ⇒ φ′))

Because strongest necessary condition dφe preserves the
satisfiability of φ:

SAT(φ)⇔ SAT(dφe)
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is a necessary condition.
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satisfiability of φ:
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SNC Example 1

Consider the constraint from key new private:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary condition for this formula is just true.
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(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary condition for this formula is just true.



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

SNC Example 1

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case KEY RSA1:

case KEY RSA:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case KEY DSA:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }

key new private MAY successfully return a valid key no matter
what the type of the requested cryptographic key is.
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SNC Example 2

Consider the constraint from the queryUser function:

Πα,true = ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α][β′/β])))

The strongest necessary condition for Πα,true is α = true.
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SNC Example 2

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

If feature enabled is true in the calling context, queryUser
MAY return true

If feature enabled is false, queryUser will not return true.



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Weakest Sufficient Conditions

Assuming we have a way of computing the strongest necessary
condition in a given theory, are we done?

Unfortunately, if we only compute strongest necessary
conditions, we can no longer safely negate our constraints. . .

d¬φe 6⇔ ¬dφe

Therefore, we need a dual notion of strongest necessary
conditions, i.e. weakest sufficient conditions.
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d¬φe 6⇔ ¬dφe

Therefore, we need a dual notion of strongest necessary
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Weakest Sufficient Conditions

The weakest sufficient condition bφc of formula φ not
containing any choice variables satisfies:

(1) bφc ⇒ φ
(2) ∀φ′.((φ′ ⇒ φ)⇒ (φ′ ⇒ bφc))

Just as strongest necessary conditions preserve satisfiability,
weakest sufficient conditions preserve validity:

VALID(φ)⇔ VALID(bφc)
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WSC Example 1

Consider the constraint from key new private:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The weakest sufficient condition for this formula is
α ≤ 0 ∨ α ≥ 4.
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WSC Example 1

Key * key new private(int type) {
Key *k = key new(type);

switch (type) {
case KEY RSA1:

case KEY RSA:

if ((k->rsa->d = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->iqmp = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->q = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->p = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmq1 = BN new()) == NULL) fatal("BN new failed");

if ((k->rsa->dmp1 = BN new()) == NULL) fatal("BN new failed");

break;

case KEY DSA:

if ((k->dsa->priv key = BN new()) == NULL) fatal("BN new failed");

default:

break; }
return k; }

key new private MUST successfully return a valid key if the
type of the requested cryptographic key is neither KEY RSA1,
nor KEY RSA, nor KEY DSA
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WSC Example 2

Consider the constraint from the queryUser function:

Πα,true = ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α][β′/β])))

The weakest sufficient condition for this formula is false.
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Consider the constraint from the queryUser function:

Πα,true = ((α = true) ∧ (β = ’y’ ∨ (β 6= ’n’ ∧Πα,true[true/α][β′/β])))

The weakest sufficient condition for this formula is false.
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WSC Example 2

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;

char userInput = getUserInput();

if(userInput == ’y’) return true;

if(userInput==’n’) return false;

printf("Input must be y or n! Please try again");

return queryUser(featureEnabled);

}

No condition on feature enabled is sufficient to guarantee
queryUser will return true.

Hence, the weakest sufficient condition is false.
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Negation Revisited

By having pairs of necessary and sufficient conditions,
(dφe, bφc), we can now make negation work:

¬(dφe, bφc) = (¬bφc,¬dφe)

The strongest necessary condition for ¬φ is given by the
negation of its weakest sufficient condition, ¬bφc.

Similarly, the weakest sufficient condition for ¬φ is given by
the negation of φ’s strongest necessary condition, ¬dφe.
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Negation Example

Consider once more the constraint:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary and weakest sufficient conditions for
success:

(true, α ≤ 0 ∨ α ≥ 4)

Strongest necessary and weakest sufficient conditions for
failure:
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Negation Example

Consider once more the constraint:
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(1 ≤ α ≤ 3, ?)
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Negation Example

Consider once more the constraint:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary and weakest sufficient conditions for
success:

(true, α ≤ 0 ∨ α ≥ 4)

Strongest necessary and weakest sufficient conditions for
failure:

(1 ≤ α ≤ 3,¬true)



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Negation Example

Consider once more the constraint:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary and weakest sufficient conditions for
success:

(true, α ≤ 0 ∨ α ≥ 4)

Strongest necessary and weakest sufficient conditions for
failure:
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Negation Example

Consider once more the constraint:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary and weakest sufficient conditions for
success:

(true, α ≤ 0 ∨ α ≥ 4)

Strongest necessary and weakest sufficient conditions for
failure:

(1 ≤ α ≤ 3, false)

Nothing guarantees key new private will fail; i.e. weakest
sufficient condition is false.
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Negation Example

Consider once more the constraint:

(1 ≤ α ≤ 2 ∧ (β1 6= 0 ∧ β2 6= 0 ∧ β3 6= 0 ∧ β4 6= 0 ∧ β5 6= 0)
∨(α = 3 ∧ β6 6= 0) ∨ α ≤ 0 ∨ α ≥ 4)

The strongest necessary and weakest sufficient conditions for
success:

(true, α ≤ 0 ∨ α ≥ 4)

Strongest necessary and weakest sufficient conditions for
failure:

(1 ≤ α ≤ 3, false)

Requested key must have type KEY RSA1, KEY RSA, or
KEY DSA for function to fail.
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What Have We Done So Far?

We identified a special class of variables, called choice
variables that model uncertainty and imprecision in
constraint-based analysis.

We argued that computing pairs of strongest necessary and
weakest sufficient conditions not containing choice variables
allows us:

to overcome termination problems
to mitigate scalability problems
to negate constraints in a sound way
and preserve satisfiability and validity
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What Have We Done So Far?

We identified a special class of variables, called choice
variables that model uncertainty and imprecision in
constraint-based analysis.

We argued that computing pairs of strongest necessary and
weakest sufficient conditions not containing choice variables
allows us:

to overcome termination problems
to mitigate scalability problems
to negate constraints in a sound way
and preserve satisfiability and validity
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What Have We Not Done So Far?

We have not shown how to compute strongest necessary
and weakest sufficient conditions in any specific theory
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Rest of This Talk

We show how to compute strongest necessary and weakest
sufficient conditions for a system of recursive constraints
representing the exact path- and context-sensitive conditions
under which a property holds

We use these strongest necessary and weakest sufficient
conditions to perform sound and complete path- and
context-sensitive program analysis for answering may and
must queries

Completeness assumes a user-provided finite abstraction

No choice variables

⇒ Small formulas ⇒ Good scalability
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context-sensitive program analysis.

Model checking tools: Bebop, BLAST, SLAM, ...

Lighter-weight static analysis tools: Saturn, ESP, ...

Tradeoff?
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Contributions

A sound and complete algorithm for path- and context-
sensitive program analysis that scales to multi-million line
programs

Key Insight:

While choice variables are useful within their scoping boundary,
they can be eliminated without losing completeness for
answering may and must queries about program properties
outside of this scoping boundary.
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}

User input is represented by a choice variable
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}

Branch correlation arises from test on choice variable
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}

Correct matching of fopen()/fclose()
depends on this branch correlation
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}

Since this user input is not visible in calling contexts of
process file, the choice variable is only useful within this scope
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Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f);

if(user input == ’y’)

fclose(f);

}

If we are interested in answering may and must queries, we can
safely eliminate choice variables at their scoping boundaries
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if(user input == ’y’)
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process file internal(f); /* dereference f */

if(user input == ’y’)

fclose(f);

}

May the original input file f be dereferenced by process file?

YES!
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if(user input == ’y’)
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}

Must the original input file f be dereferenced by process file?

NO!



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Choice Variables and Scope

void process file(File* f) {
printf(‘‘Open new file?\n’’);
char user input = getUserInput();

if(user input == ’y’)

f = fopen(NEW FILE NAME);

process file internal(f); /* dereference f */

if(user input == ’y’)

fclose(f);

}

Must the original input file f be dereferenced by process file?
NO!



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Algorithm Outline

1 Set up a recursive constraint system describing the constraints
under which each function f returns an abstract value Ci

2 Convert this system to recursive boolean constraints

3 Eliminate choice variables

4 Ensure that the system preserves strongest necessary and
weakest sufficient conditions under syntactic substitution

5 Solve using standard fixed-point computation
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Algorithm Outline

1 Set up a recursive constraint system describing the constraints
under which each function f returns an abstract value Ci

2 Convert this system to recursive boolean constraints

3 Eliminate choice variables

4 Ensure that the system preserves strongest necessary and
weakest sufficient conditions under syntactic substitution

5 Solve using standard fixed-point computation



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Step 1: Generate constraints

Set up a recursive system E of constraints describing the
constraint Πfi,α,Cj under which a function fi, given input α,
returns some abstract value Cj :

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


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Step 1: Generate constraints

Set up a recursive system E of constraints describing the
constraint Πfi,α,Cj under which a function fi, given input α,
returns some abstract value Cj :

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


Constraints φij are boolean combinations of α = Ci, β = Ci,
Πfi,α,Cj and Ci = Cj .
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Step 1: Generate constraints

Set up a recursive system E of constraints describing the
constraint Πfi,α,Cj under which a function fi, given input α,
returns some abstract value Cj :

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


α’s represent function inputs, provided by the calling context.
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Step 1: Generate constraints

Set up a recursive system E of constraints describing the
constraint Πfi,α,Cj under which a function fi, given input α,
returns some abstract value Cj :

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


β’s represent choice variables. The scope of each β is the
function body in which it is introduced.
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Step 1: Generate constraints

Set up a recursive system E of constraints describing the
constraint Πfi,α,Cj under which a function fi, given input α,
returns some abstract value Cj :

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


Π’s on the right hand side result from function calls.
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Example

int f(int x) {
int y = getUserInput();

if(x == 1 || y == 2) return 1;

return f(1);

}

Consider abstract values C1, C2, and C3 such that:

C1 : {1}, C2 : {2}, C3 : Z\{1, 2}

Then,

Πf,α,C1 = (α = 1 ∨ β = 2∨
((¬α = 1 ∧ ¬β = 2 ∧Πf,α,C1 [1/α][β′/β]))
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Example
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}

Consider abstract values C1, C2, and C3 such that:
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Step 2: Convert to Boolean Constraints

Convert the previous constraint system to boolean constraints
as follows:

Ci = Ci ⇔ true
Ci = Cj ⇔ false i 6= j
vi = Cj ⇔ vij (vij fresh)

Converting

Πf,α,C1 = (α = 1 ∨ β = 2∨
((¬α = 1 ∧ ¬β = 2 ∧Πf,α,C1 [1/α][β′/β]))

we obtain:

Πf,α,C1 = (α1 ∨ β2∨
((¬α1 ∧ ¬β2 ∧Πf,α,C1 [true/α1][false/α2][false/α3][β′i/βi]))
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Step 2: Convert to Boolean Constraints

Since each variable vi must have exactly one abstract value
Cj , the boolean constraints must satisfy the following
additional existence and uniqueness constraints:

1. Uniqueness : ψunique = (
V
j 6=k ¬(vij ∧ vik))

2. Existence : ψexist = (
W
j vij)

To enforce these additional existence and uniqueness
constraints, define satisfiability and validity as follows:

SAT∗(φ) ≡ SAT(φ ∧ ψexist ∧ ψunique)
VALID∗(φ) ≡ ({ψexist} ∪ {ψunique} |= φ)

For instance, using the variables in the previous example,

UNSAT∗(α1 ∧ α2)
VALID∗(β1 ∨ β2 ∨ β3)
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Since each variable vi must have exactly one abstract value
Cj , the boolean constraints must satisfy the following
additional existence and uniqueness constraints:

1. Uniqueness : ψunique = (
V
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W
j vij)

To enforce these additional existence and uniqueness
constraints, define satisfiability and validity as follows:

SAT∗(φ) ≡ SAT(φ ∧ ψexist ∧ ψunique)
VALID∗(φ) ≡ ({ψexist} ∪ {ψunique} |= φ)

For instance, using the variables in the previous example,
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Step 3: Eliminate Choice Variables

SNC(φ, β) = φ[true/β] ∨ φ[false/β]

WSC(φ, β) = φ[true/β] ∧ φ[false/β]
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Resulting Constraints

E =

 [~Πf1,α,Ci ] = [~φ1i(~α1, ~β1, ~Π[~b1/~α][~β′/~β])]
...

...

[~Πfk,α,Ci ] = [~φki(~αk, ~βk, ~Π[~bk/~α][~β′/~β])]


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Resulting Constraints

ENC =

 dΠf1,α,C1e = φ′11( ~α1, ~dΠe[~b1/~α])
...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])



ESC =

 bΠf1,α,C1c = φ′11( ~α1, ~bΠc[~b1/~α])
...

bΠfk,α,Cnc = φ′kn(~αk, ~bΠc[~bk/~α])


No more choice variables
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Resulting Constraints

ENC =

 dΠf1,α,C1e = φ′11( ~α1, ~dΠe[~b1/~α])
...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])



ESC =

 bΠf1,α,C1c = φ′11( ~α1, ~bΠc[~b1/~α])
...

bΠfk,α,Cnc = φ′kn(~αk, ~bΠc[~bk/~α])


But still recursive
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Example

If we eliminate the choice variables from the constraint

Πf,α,C1 = (α1 ∨ β2∨
((¬α1 ∧ ¬β2 ∧Πf,α,C1 [true/α1][false/α2][false/α3][β′i/βi]))

we obtain:

dΠf,α,C1e =

bΠf,α,C1c =
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Example

If we eliminate the choice variables from the constraint

Πf,α,C1 = (α1 ∨ β2∨
((¬α1 ∧ ¬β2 ∧Πf,α,C1 [true/α1][false/α2][false/α3][β′i/βi]))

we obtain:

dΠf,α,C1e = true
bΠf,α,C1c = (α1 ∨ true∨

((¬α1 ∧ ¬true ∧Πf,α,C1 [true/α1][false/α2][false/α3]))
∧

(α1 ∨ false∨
((¬α1 ∧ ¬false ∧Πf,α,C1 [true/α1][false/α2][false/α3]))
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Example

If we eliminate the choice variables from the constraint

Πf,α,C1 = (α1 ∨ β2∨
((¬α1 ∧ ¬β2 ∧Πf,α,C1 [true/α1][false/α2][false/α3][β′i/βi]))

we obtain:

dΠf,α,C1e = true
bΠf,α,C1c = true ∧

(α1 ∨ (¬α1 ∧Πf,α,C1 [true/α1][false/α2][false/α3]))
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Example

If we eliminate the choice variables from the constraint

Πf,α,C1 = (α1 ∨ β2∨
((¬α1 ∧ ¬β2 ∧Πf,α,C1 [true/α1][false/α2][false/α3][β′i/βi]))

we obtain:

dΠf,α,C1e = true
bΠf,α,C1c = α1 ∨Πf,α,C1 [true/α1][false/α2][false/α3]



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Step 4: Preservation of SNC’s and WSC’s under
Syntactic Substitution

For subsequent fixed-point computation, the constraints must
preserve SNC’s and WSC’s under syntactic substitution.

In their current form, ENC and ESC do not have this property
for two reasons:

Recall from earlier: ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc

Contradictions and tautologies must be explicitly enforced
when applying substitution

Consider Πf,α,C1 ∧Πf,α,C2 where dΠf,α,C1e and dΠf,α,C2e
are both true
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Step 4: Preservation under Syntactic Substitution I

To deal with the first problem:

Either replace ¬Πf,α,ci
with

∨
j 6=i Πf,α,cj

Or use the property d¬φe ⇔ ¬bφc and b¬φc ⇔ ¬dφe

The latter requires simultaneous fixpoint computation of
strongest necessary and weakest sufficient conditions

But important for a practical implementation
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Step 4: Preservation under Syntactic Substitution II

A simple way to enforce contradictions (for necessary
conditions) and tautologies (for sufficient conditions):

For Necessary Conditions: Convert to DNF and drop
contradictions of the form Πf,α,Ci

∧Πf,α,Cj
and

Πf,α,Ci
∧ ¬Πf,α,Ci

in each clause

For Sufficient Conditions: Convert to CNF and drop
tautologies

The resulting constraints preserve strongest necessary and
weakest sufficient conditions under syntactic substitution.
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Step 5: Compute fixed point

Since the modified system of con-
straints preserve strongest neces-
sary and weakest sufficient condi-
tions under syntactic substitution,
compute a fixed-point solution by
repeated substitution



Constraint-Based Analysis in the Presence of Uncertainty and Imprecision

Example

int f(int x) {
int y = getUserInput();

if(x == 1 || y == 2) return 1;

return f(1);

}

Original constraint:

Πf,α,C1 = (α = 1 ∨ β = 2∨
((¬α = 1 ∧ ¬β = 2 ∧Πf,α,C1 [1/α][β′/β]))
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Πf,α,C1 = (α = 1 ∨ β = 2∨
((¬α = 1 ∧ ¬β = 2 ∧Πf,α,C1 [1/α][β′/β]))

In the previous step, we computed:

dΠf,α,C1e = true
bΠf,α,C1c = α1 ∨ bΠf,α,C1c[true/α1]
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Example

int f(int x) {
int y = getUserInput();

if(x == 1 || y == 2) return 1;

return f(1);

}

Original constraint:

Πf,α,C1 = (α = 1 ∨ β = 2∨
((¬α = 1 ∧ ¬β = 2 ∧Πf,α,C1 [1/α][β′/β]))

Compute greatest fixed-point:

dΠf,α,C1e = true
bΠf,α,C1c = true

The sufficient condition expresses that the function MUST
return 1 because VALID(bΠf,α,C1c) holds.
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Main Result

The technique is sound and complete for answering
satisfiability and validity queries with respect to some
user-provided finite abstraction.

No choice variables

⇒ Small formulas ⇒ Good scalability
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Experiments I

We compute the full interprocedural constraint -in terms of
SNC’s and WSC’s- for every pointer dereference in OpenSSH,
Samba and the Linux kernel (>6 MLOC).

Stress-test: pointer dereferences are ubiquitous in C programs.
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Experiments II

We also used this technique for an interprocedurally
path-sensitive null dereference analysis.

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2
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Future Directions I

Caveat: Previous experiments do not track NULL values in
unbounded data structures.

Underlying framework collapses all unbounded data structures
into one summary node

Imprecise for verifying memory safety.

Analysis of contents of position dependent data structures,
such as arrays, linked lists etc., is one of our current projects.
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Future Directions II

Computing strongest necessary and weakest sufficient
conditions in richer theories

e.g., theory of uninterpreted functions; combined theory of
linear arithmetic over integers and uninterpreted functions, . . .

Closely related to cover algorithms for existential quantifier
elimination (“Cover Algorithms and Their Combination” by
Gulwani and Musuvathi)
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