
Available

CAV
Evaluation

Artifact

Integer Reasoning Modulo Different Constants
in SMT

Elizaveta Pertseva1 , Alex Ozdemir1 , Shankara Pailoor2 , Alp Bassa2 ,

Sorawee Porncharoenwase4
⋆

, Işil Dillig2,3 , and Clark Barrett1

1 Stanford University (pertseva@stanford.edu)
2 Veridise

3 The University of Texas at Austin
4 Amazon Web Services

Abstract. This paper presents a new refutation procedure for multi-
modular systems of integer constraints that commonly arise when verify-
ing cryptographic protocols. These systems, involving polynomial equal-
ities and disequalities modulo different constants, are challenging for ex-
isting solvers due to their inability to exploit multimodular structure.
To address this issue, our method partitions constraints by modulus and
uses lifting and lowering techniques to share information across subsys-
tems, supported by algebraic tools like weighted Gröbner bases. Our
experiments show that the proposed method outperforms existing state-
of-the-art solvers in verifying cryptographic implementations related to
Montgomery arithmetic and zero-knowledge proofs.

1 Introduction
Throughout history, cryptosystems have been defined using modular arithmetic.
The first symmetric cipher—the Caesar cipher—used arithmetic modulo the
alphabet size. The first public key exchange (Diffie-Hellman [24]) used arithmetic
modulo a large prime. The first digital signature (RSA [72]) used arithmetic
modulo a large biprime. More recently, cryptosystems that compute on secret
data, such as homomorphic encryption [37], multiparty computation [83], and
zero-knowledge proofs (ZKPs) [38], often perform computation modulo a prime.

The relationship between integer arithmetic systems with different moduli
plays a central role in implementing cryptography. Generally, this is because the
cryptosystem is defined using a modulus that is different from the one natively
supported by the computational model. For example, microprocessors efficiently
perform arithmetic modulo powers of two (e.g., 216, 232, 264, . . .), but elliptic-
curve cryptosystems require arithmetic modulo ≈256-bit primes. To bridge the
gap, implementations use techniques such as Montgomery and Barrett reduc-
tion [7, 56]. Similar problems (and solutions) arise in other contexts, such as when
using ZKPs. ZKPs often only support arithmetic modulo a large prime [78] and
must then find ways to express and prove any properties that are not natively
defined modulo that prime.
⋆ work done while at Veridise

https://zenodo.org/records/15220343
http://orcid.org/0000-0001-9950-672X
http://orcid.org/0000-0002-0181-6752
http://orcid.org/0000-0002-9253-9585
http://orcid.org/0000-0002-9685-7361
http://orcid.org/0000-0003-3900-5602
http://orcid.org/0000-0001-8006-1230
http://orcid.org/0000-0002-9522-3084

2 E. Pertseva et al.

Z

Z2 Z7 · · ·

algebraic reasoning
lemma exchange

Fig. 1: Overview of our refutation procedure. Integer-reasoning interacts with
modules for reasoning about equations modulo constants, e.g. (in this figure,
modulo 2 and 7).

Thus, when the correctness of a cryptosystem is expressed as a logical formula,
such as a Satisfiability Modulo Theories (SMT) formula, it often contains equa-
tions with different moduli. Some of the equations express the cryptographic
specification (e.g., modulo the prime 2255 − 19), and others express the opera-
tions performed by the implementation (e.g., modulo 264). We call such sets of
constraints multimodular systems.

Unfortunately, such multimodular systems are hard for existing SMT solvers.
One approach is to use a theory that explicitly supports the modulus opera-
tor, such as integers or bit-vectors. In practice, this leads to poor performance
because the solvers for these theories are designed for general modular reduc-
tion (i.e., where the modulus could be a variable) and are not optimized for
the special case of many constraints with constant moduli. Another approach is
to combine theories optimized for different constant moduli, such as bit-vectors
(modulo a power of two) and finite fields (modulo a prime). This also performs
poorly because existing combination mechanisms cannot exchange sufficiently
powerful lemmas between the theories.

The primary contribution of this paper is a novel refutation procedure for mul-
timodular systems. The procedure, illustrated in Figure 1, partitions constraints
into subsystems based on their moduli and then does local reasoning within each
subsystem to detect conflicts. Global reasoning is done by exchanging lemmas
across subsystems. This is facilitated by two key techniques: lifting, which pro-
motes modular constraints to the integer domain, and lowering, which projects
integer constraints into specific moduli. The derivation and exchange of lemmas
is further supported by two complementary strategies. First, range analysis is
used to verify whether a literal can be soundly lifted or lowered without altering
the satisfiability of the overall system. Second, the procedure identifies addi-
tional literals implied by a given subsystem using algebraic techniques, such as
weighted Gröbner bases and integer linear programming, to uncover constraints
that enhance cross-subsystem reasoning.

We apply our procedure to unsatisfiable benchmarks based on three kinds
of cryptographic implementations. The implementations include Montgomery
arithmetic [56], non-native field arithmetic for a ZKP [64, 75], and multi-precision
bit-vector arithmetic for a ZKP [49]. We implement our procedure in cvc5 [3],
and show that it significantly outperforms prior solvers on these benchmarks.
To summarize, our contributions are:
1. a refutation procedure for multimodular systems;

Integer Reasoning Modulo Different Constants in SMT 3

2. two algorithms for finding shareable lemmas, one using a weighted monomial
order and the other using integer linear constraints; and

3. multimodular benchmarks from cryptographic verification applications.
The rest of the paper is organized as follows. We give a motivating example

in Section 2, provide background in Section 3, introduce a logic for multimod-
ular systems in Section 4, explain our refutation procedure in Section 5 and its
implementation in Section 6, present benchmarks and experiments in Section 7,
discuss related work in Section 8, and conclude in Section 9.

2 Motivating Example
Consider the following system of constraints Φ, which is based on code from a
zero-knowledge proof library written by Succinct Labs [75]:

Φ ≜ xy ≡ r1 + c1p mod q ∧ 0 ≤ r1, c1 < p ∧
r1y ≡ r2 + c2p mod q ∧ 0 ≤ r2, c2 < p ∧

x+ r2 ≡ r3 + c3p mod q ∧ 0 ≤ r3, c3 < p

Here, p and q are concrete primes of 32 and 256 bits respectively, but their
specific values are not important. Φ is designed to ensure a correctness condition
C ≜ (x+ xy2 ≡ r3 mod p), assuming bounds on the inputs x and y: B ≜ (0 ≤
x, y < p). Formally, proving Φ is correct is equivalent to proving the validity of
(Φ ∧B)⇒ C, or to proving the unsatisfiability of:

Φ ∧B ∧ ¬C (1)

It is easy enough to refute Formula (1) by hand. First, observe that the range
constraints in B and Φ ensure that none of the equivalences in Φ can overflow
mod q—so the equivalences hold over the integers. Second, observe that said
equivalences must also hold mod p:

xy ≡ r1 mod p ∧ r1y ≡ r2 mod p ∧ x+ r2 ≡ r3 mod p

Third, these equivalences imply x+ xy2 ≡ r3 (mod p), which contradicts ¬C.
However, existing SMT solvers fail to do this refutation. For example, when

Formula (1) is encoded in QF_NIA using explicit modular reductions, state-of-
the-art SMT solvers (including cvc5, z3, MathSAT, and Yices) fail to solve it.
And when the formula is encoded in QF_BV using 512-bit bit-vectors, none of
cvc5, z3, nor bitwuzla can solve it.1 QF_FF solvers (cvc5 and Yices) do not apply
because they cannot encode a variable modulo more than one prime.

The key ingredients in the manual refutation were lifting equalities from a
modular space into the integers—and then lowering them back to a different
modular space. In this paper, we show how to design a procedure that performs
this lifting and lowering automatically.

3 Background
In this section, we define notation and provide a brief overview of algebra [54],
ideals [22], and SMT [6]. More details can be found in the cited work.
1 All tests were run with a time limit of 20 minutes and a memory limit of 8GB.

4 E. Pertseva et al.

3.1 Algebra

Sets, Intervals, and Functions Let Z be the integers, Z≥0 the non-negative in-
tegers, and Z+ the positive integers. Let Z+

∞ be Z+ ∪ {∞}, and let Zn be the
non-negative integers less than n. X denotes the set of variables {x1, . . . , xk}.
For a set S and some t, the notation S,t abbreviates S ∪ {t}. [i, j] denotes the
closed integer interval from i to j. Interval intersection is defined in the usual
way: [a, b]∩ [c, d] = [max(a, c),min(b, d)]. For an interval, pair, or sequence t, we
denote by ti the ith element of t, e.g., (a, b)1 = a. We use two variants of the
modulo function. a mod n, for a ∈ Z and n ∈ Z+, is the unique r ∈ Zn such that
a = qn+ r for some q ∈ Z (as in SMT-LIB [5]). The signed variant a smod n is
defined as a mod n if that value is at most n

2 and (a mod n)− n otherwise.

Polynomial Rings Let R be a ring [25]. We overload Z to also denote the integer
ring and Zn to also denote the ring over {0, . . . , n− 1}, with addition and mul-
tiplication modulo n. Both Z and Zn are principal ideal rings (PIR), and if n is
prime, Zn is also a field. Let R[X] denote the ring of polynomials with variables
in X and coefficients in R. In this paper, we focus on the following rings: (1)
Z[X], which is the ring of polynomials with integer coefficients, and (2) Zn[X],
which is the ring of polynomials with integer coefficients modulo n. In ring R[X],
a monomial is a polynomial of the form xe1

1 · · ·x
ek
k , with ei ∈ Z≥0. When ei = 0

for every i, we denote the monomial as 1. A term is a monomial multiplied by a
coefficient. Polynomials are written as a sum of terms with distinct monomials.

Monomial Orders A monomial order ≤ is a total order on monomials that
satisfies the following properties: (i) 1 ≤ m for every monomial m; and (ii)
for all monomials m1,m2,m, if m1 ≤ m2, then m1m ≤ m2m. Examples of
monomial orders for a monomial of the form xe1

1 · · ·x
ek
k include the following:

lexicographic order compares monomials by (lexicographically) comparing their
exponent tuples (e1, . . . , ek), graded reverse lexicographic order by comparing
(
∑k

i=1 ei,−ek, . . . ,−e1), and weighted reverse lexicographic order by comparing
(
∑k

i=1 wiei,−ek, . . . ,−e1) for a fixed tuple of weights (w1 . . . wk). Given a mono-
mial order, the leading monomial of a polynomial p, denoted lm(p), is the largest
monomial occurring in p with respect to the monomial order. The leading term,
denoted lt(p), is that monomial’s term.

3.2 Ideals

For a set of polynomials S = {f1, . . . , fn} ⊂ R[X], I(S) = {g1f1 + · · · + gnfn |
gi ∈ R[X]} is the ideal generated by S. In order to disambiguate which ring R
is meant in the definition of an ideal, we use the notation In(S), with n ∈ Z+

∞.
The meaning of In(S) is either the ideal generated by S with gi ∈ Zn[X], when
n ∈ Z+, or the ideal generated by S with gi ∈ Z[X], when n =∞.

A solution to the polynomial system S ⊂ R[X], is a ∈ Rk such that for
all f ∈ S, f(a1, . . . , ak) = 0. The set of all solutions is called the variety of S,
denoted V(S). As above, we use the subscript n to distinguish among rings. Thus
Vn(S) for n ∈ Z+ is a subset of Zk

n and V∞(S) is a subset of Zk. If 1 ∈ In(S),
then Vn(S) = ∅, i.e., S has no solution. However, the converse does not hold.

Integer Reasoning Modulo Different Constants in SMT 5

One incomplete test for ideal membership is reduction. For the polynomials p,
g, and r ∈ R[X], where R is a PIR, p reduces to r modulo g, written p→g r, if
some term t of p is divisible by lt(g) with r = p− t

lt(g)g [27]. If R is a field, then
p→g r, if some term t of p is divisible by lm(g). Reduction is also defined for a
set of polynomials S, written as p →S r. p reduces to r modulo S if there is a
sequence of reductions from p to r, each modulo some polynomial in S, and no
further reduction of r modulo S is possible. If p reduces to 0 modulo S then p
belongs to the ideal generated by S. However, once again, the converse does not
hold.

Gröbner bases A Gröbner basis [13] is a set of polynomials with special proper-
ties, including that reduction is a complete test for ideal membership: p reduces
to 0 modulo a Gröbner basis iff p belongs to the ideal generated by the Gröbner
basis. There exist numerous algorithms for computing Gröbner bases, including
Buchberger’s algorithm [13], F4 [32], and F5 [33]. We use GBn,≤ with n ∈ Z+

∞ to
refer to a Gröbner basis computation. The subscript n indicates which ring the
Gröbner basis is computed in (n ∈ Z+ means Zn[X] and n = ∞ means Z[X]),
while ≤ indicates which monomial order to use. In this paper, we assume Gröb-
ner bases are strong and reduced, meaning that GBn,≤ is always deterministic,
producing a single unique basis.

3.3 SMT

In addition to the algebraic domains above, we also work in the logical setting
of many-sorted first-order logic with equality [29]. Σ denotes a signature with a
set of sort symbols (including Bool), a symbol family ≈σ with sort σ×σ → Bool
for all sorts σ ∈ Σ,2 and a set of interpreted function symbols. We assume the
usual definitions of well-sorted Σ-terms and literals, and refer to Σ-terms of
sort Bool as formulas. To distinguish logical Σ-terms from algebraic terms in
polynomials (defined above), we write Σ-term to refer to the former, where Σ
is the signature. A theory is a pair T = (Σ, I), where Σ is a signature and
I is a class of Σ-interpretations. A logic is a theory together with a syntactic
restriction on formulas. A formula ϕ is satisfiable if it evaluates to true in some
interpretation in I. Otherwise, ϕ is unsatisfiable.

The CDCL(T) framework of SMT aims to determine if a formula ϕ is satisfi-
able. At a high level, a core module explores the propositional abstraction of ϕ
and forwards literals corresponding to the current propositional assignment to
the theory solver. A theory solver, specialized for a particular theory T , checks if
there exists an interpretation that satisfies the received set of literals. We focus
on three main theories. The theory of finite fields (defined in [65]), which we
refer to as TFF, reasons about finite fields, i.e., rings Zn[X] where n is prime.
We also make use of the standard SMT-LIB [5] theories of bit-vectors, which we
denote TBV, and integer arithmetic, which we denote TInt. For two TInt terms s,
t, we abbreviate the literal ¬(s ≈ t) as s ̸≈ t. We use ▷◁ to refer to an operator
in the set {≈, ̸≈}. QF_NIA refers to the SMT-LIB logic that uses the theory TInt
and restricts formulas to be quantifier-free.

2 We drop the σ subscript when it is clear from context.

6 E. Pertseva et al.

Symbol Arity

n ∈ Z Int
−,+,× Int × Int → Int
mod Int × Int → Int
≈ Int × Int → Bool
≤,≥ Int × Int → Bool

(a) Signature used by QF_MIA.

Op→ × | + | -
Exp→ (Exp Op Exp) | Var | Int

BExp→ Var ≤ Int | Var ≥ Int

EqExp→ Exp ≈ 0 | Exp mod Int ≈ 0

Atom→ BExp | EqExp
Literal→ Atom | ¬Atom

(b) QF_MIA grammar; Int ∈ Z and Var ∈ X.

Fig. 2: The signature and grammar for QF_MIA, a fragment of QF_NIA.

4 A Multimodular Logic

Previous work on verifying arithmetic modulo large primes [65, 66] encodes con-
straints using TFF. However, the signature of TFF does not support non-prime
moduli or constraints that share variables and use different moduli, limiting the
range of problems that can be encoded. Instead, we encode multimodular con-
straints directly in TInt. However, we restrict the syntax of TInt by defining a
logic called QF_MIA (multimodular integer arithmetic), which is a fragment of
QF_NIA. Importantly, QF_MIA is not semantically weaker than QF_NIA; it includes
integer polynomials and predicates, so all of QF_NIA can be encoded in QF_MIA

via standard rewrites. Rather, QF_MIA is a syntactic restriction of QF_NIA that
is designed to make the multimodular structure of queries clearer so that our
procedure can leverage that structure.

The subset of the signature of TInt used by QF_MIA is shown in Figure 2a. From
now on, we use Σ to denote this signature. A grammar for the syntactic fragment
of QF_MIA is shown in Figure 2b. We assume a set X = {x1, . . . , xk} of logical
variables of sort Int and define corresponding categories of Σ-terms as follows. A
QF_MIA expression (produced by Exp) is either an integer constant, a variable (in
X), or an application of one of the operators −, +, or × to two expressions. For
simplicity, we often represent multiplication with juxtaposition (e.g., ab instead
of a×b) and leave out parentheses when clear from context (i.e., when they can be
inferred from standard operator precedence rules). A QF_MIA atom (produced by
Atom) is an inequality (between a variable and a constant), an equality between
an expression and 0, or an equality between an expression modulo some integer
constant and zero. A QF_MIA literal (produced by Literal) is either an atom
or the negation of an atom. From now on, unless otherwise noted, expressions,
atoms, and literals are QF_MIA expressions, atoms, and literals. We also assume
that interpretations are TInt-interpretations and all notions of satisfiability are
modulo TInt. Since we need to work in both the algebraic and the logical domains,
we assume a bijection from logical variables in X to algebraic variables in X and
define an operator J·K that takes a logical Σ-term and returns the corresponding
polynomial in Z[X] (distributing multiplication and combining like terms as
necessary to obtain a sum of terms, each with a unique monomial).

Integer Reasoning Modulo Different Constants in SMT 7

5 Refutation Procedure
In this section, we describe our refutation procedure. First we describe our ap-
proach at a high level, and then we discuss its key technical ingredients.

5.1 Key Ideas

A naive approach to solving a multimodular system of constraints is to use a
standard encoding in QF_NIA, introducing an auxiliary variable for each modular
constraint. For instance, x ≡ y (mod n) would be encoded as x ≈ y+ n · k using
an auxiliary integer variable k. While sound, this naive approach scales poorly,
as we show experimentally in Section 7. Our key insight is that this limitation
can often be overcome by partitioning the original system into a set of different
subsystems, one for each specific modulus. Reasoning in each subsystem can be
done efficiently, and if any subsystem is unsatisfiable, then so is the original set
of constraints. However, since the converse is not true, our procedure seeks to
exchange as much information as possible between the different subsystems, with
the goal of improving our ability to detect unsatisfiable constraints. To enable
the exchange of information between the different subsystems, we employ the
concepts of lifting and lowering.

Definition 1 (Liftable). Let C be a set of QF_MIA literals. A literal of the form
e mod n ▷◁ 0 is liftable (in C) if C ∪ {e mod n ▷◁ 0} is equisatisfiable to C ∪ {e
mod n ▷◁ 0, e ▷◁ 0}.
In other words, a constraint is liftable if adding the constraint without the mod-
ulus n maintains equisatisfiability.

Definition 2 (Lowerable). Let C be a set of QF_MIA literals. A literal the
form e ▷◁ 0 is lowerable (in C) with respect to n if C ∪ {e ▷◁ 0} and C ∪ {e ▷◁
0, e mod n ▷◁ 0} are equisatisfiable.

In other words, a constraint is lowerable w.r.t. n if adding it with a modular
reduction maintains equisatisfiability.

Remark 1. If the literal e mod n ▷◁ 0 is implied by C, then the lifting definition
reduces to: C and C ∪ {e ▷◁ 0} must be equisatisfiable. Similarly, if the literal
e ▷◁ 0 is implied by C, it is lowerable w.r.t. n if C and C ∪ {e mod n ▷◁ 0} are
equisatisfiable. In the remainder of the paper, we rely on these simpler versions
of the definitions.

Lifting provides a way for each subsystem containing modular constraints to
share information in a common language without adding new variables. Lowering
adds constraints to individual subsystems and can often result in significant
simplifications: when we lower an equation with respect to n, all integer constants
divisible by n can be replaced by 0. For example, lowering x1 − 6x2 ≈ 0 with
respect to 6 adds a new equality x1 ≈ 0 to the subsystem with modulus 6.
We denote by simpn(e) the result of replacing every integer constant c in e by
c smod n 3 and simplifying.
3 We use smod instead of mod to reduce the magnitude of coefficients of simpn(e)

and increase the likelihood that simpn(e) is liftable according to Lemma 1.

8 E. Pertseva et al.

▷◁ ∈ {=, ̸=} (e mod n ▷◁ 0) ∈ C
ModExp

C := C \ {e mod n ▷◁ 0} R▷◁
n := R▷◁

n , simpn(e)

▷◁ ∈ {=, ̸=} (e ▷◁ 0) ∈ C
IntExp

C := C \ {e ▷◁ 0} R▷◁
∞ := R▷◁

∞, e

(x ≥ n) ∈ C
GEQ

C := C \ {x ≥ n} B(x)1 := max(B(x)1, n)

(x ≤ n) ∈ C
LEQ

C := C \ {x ≤ c} B(x)2 := min(B(x)2, n)

¬(x ≥ n) ∈ L
nGEQ

C := C \ {¬(x ≥ n)} B(x)2 := min(B(x)2, n− 1)

¬(x ≤ n) ∈ L
nLEQ

C := C \ {¬(x ≤ n) B(x)1 := max(B(x)1, n+ 1)

Fig. 3: Encoding rules for a multimodular system C, where e is an expression
and n ∈ Z+

∞.

As expected, not all constraints are liftable or lowerable. In order to facili-
tate the inference of liftable and lowerable constraints, our method splits the
constraint system into the following subsystems, for n ∈ Z+

∞:

– Modulus-n equality subsystems are sets of expressions {e1, . . . , em}. Each
ei represents the constraint ei mod n ≈ 0 when n ̸=∞ or the constraint ei ≈ 0
when n =∞. We write R≈

n to denote the set of expressions.
– Modulus-n disequality subsystems are sets of expressions {e1, . . . , em}.

Each ei represents the constraint ei mod n ̸≈ 0 when n ̸=∞ or the constraint
ei ̸≈ 0 when n =∞. We write R ̸≈

n to denote the set of expressions.
– Variable bounds: Our method also maintains a mapping B from each vari-

able in X to its lower and upper bound (with −∞/∞ denoting unbounded
variables). As we will see shortly, this bound information is crucial for identi-
fying lowerable and liftable equations.

Given a multimodular system C, we assume that it is encoded as a tuple
(B,R≈

∞, R ̸≈
∞, R≈

n1
, R ̸≈

n1
, . . . , R≈

nk
, R ̸≈

nk
), where {n1, . . . , nk} is the set of all integer

constants greater than 1 appearing anywhere in a literal in C. For example,
for a multimodular system {2x mod 3 ≈ 0, x < 5}, the resulting tuple would
be (B,R≈

∞, R ̸≈
∞, R≈

2 , R
̸≈
2 , R

≈
3 , R

̸≈
3 , R

≈
5 , R

̸≈
5 }. A set of rules for accomplishing the

encoding is included in Figure 3.
Going forward, we use C to refer both to the original set of constraints and to

the tuple encoding. We also define CalcBds(B, e) as a function that returns the
maximum and minimum possible values that expression e can take when evalu-
ated at the variable assignments permitted by the variable bounds map B, based

Integer Reasoning Modulo Different Constants in SMT 9

on standard interval arithmetic [45]. For example, given an equality x1x2 mod 6 ≈
0 and variable bounds B = {x1 : [0, 6], x2 : [0, 6]}, CalcBds(B, x1x2) would return
the interval [0, 36]. Using this machinery, we now state the following lemmas that
help identify liftable and lowerable constraints. We include the proofs in the ex-
tended version of the paper [69]. Recall that In computes the ideal generated by
a set of polynomials.

Lemma 1. Let C be a multimodular system with bounds B and modulus-n equal-
ity subsystem R≈

n , with n ∈ Z+. Then, an equality e mod n ≈ 0 is liftable in C
if (1) JeK ∈ In(JR≈

n K) and (2) CalcBds(B, e) ⊆ [1− n, n− 1].

This lemma is useful in two ways. First, if e is in R≈
n , then certainly, JeK is in

In(JR≈
n K); thus, checking whether the constraint represented by an element of

R≈
n is liftable reduces to computing CalcBds(B, e), which can be done in linear

time. Second, this lemma gives a way to find additional liftable equalities that are
not part of the original constraint system by identifying polynomials that are in
the ideal of JR≈

∞K. While listing all the polynomials in an ideal is infeasible, later
subsections (Sections 5.4 and 5.5) explore effective methods to identify useful
polynomials that are in the ideal. The next lemma states that disequalities are
always liftable.

Lemma 2. Let C be a multimodular system with modulus-n disequality subsys-
tem R ̸≈

n , with n ∈ Z+. Then a disequality e mod n ̸≈ 0 is liftable in C w.r.t. n
if e ∈ R ̸≈

n .

This lemma states that all of the original disequalities are liftable. However,
unlike the equality case, we cannot infer additional disequalities using ideals,
as disequalities are not preserved under the operations used to construct the
elements of an ideal. The next two lemmas are dual to Lemmas 1 and 2, but are
for lowerability instead of liftability.

Lemma 3. Let C be a multimodular system with integer equalities R≈
∞. If e is

an expression and JeK ∈ I∞(JR≈
∞K), then e ≈ 0 is lowerable w.r.t. every n ∈ Z+.

Lemma 4. Let C be a multimodular system with integer disequalities R ̸≈
∞ and

bounds B. Then, if n ∈ Z+, a disequality e ̸≈ 0 is lowerable in C w.r.t. to n if
(1) e ∈ R ̸≈

∞ and (2) CalcBds(B, e) ⊆ [1− n, n− 1]

5.2 Refutation Calculus

Next, we leverage the notions of liftability and lowerability defined in the pre-
vious subsection to formulate our refutation calculus (presented in Fig. 4). The
rules in our calculus serve four main roles. First, they establish whether a spe-
cific subsystem is unsatisfiable. Second, they attempt to tighten existing bounds
and learn new equalities from these bounds. Third, they leverage Lemmas 1–4
to exchange information between different subsystems via lifting and lowering.
Finally, they simplify unliftable equalities via branching.

10 E. Pertseva et al.

1 ∈ In(JR≈
n K)

UnsatOne
unsat

e ∈ R ̸≈
n JeK ∈ In(JR≈

n K)
UnsatDiseq

unsat

B(xi)1 > B(xi)2
UnsatBds

unsat

JeK ∈ I∞(JR≈
∞K) e = axi + e′ xi /∈ e′ B(xi)1 ≤ B(xi)w

ConstrBds
B(xi) := CalcBds(B,− 1

a
(e− axi)) ∩B(xi)

B(xi)1 = B(xi)2 Jxi −B(xi)1K /∈ I∞(JR≈
∞K)

InfEq
R≈

∞ := R≈
∞, xi −B(xi)1

n ̸=∞ JeK ∈ In(JR≈
n K) CalcBds(B, e) ⊆ [1− n, n− 1] JeK /∈ I∞(JR≈

∞K)
LiftEq

R≈
∞ := R≈

∞, e

n ̸=∞ e ∈ R ̸≈
n e /∈ R ̸≈

∞LiftDiseq
R ̸≈

∞ := R ̸≈
∞, e

JeK ∈ I∞(JR≈
∞K) n ̸=∞ Jsimpn(e)K /∈ In(JR≈

n K) R≈
n ∈ C

LowerEq
R≈

n := R≈
n , simpn(e)

e ∈ R ̸≈
∞

n ̸=∞ CalcBds(B, e) ⊆ [1− n, n− 1] simpn(e) /∈ R ̸≈
n R ̸≈

n ∈ C
LowerDiseq

R ̸≈
n := R ̸≈

n , simpn(e)

JeK ∈ In(JR≈
n K) n ̸=∞

CalcBds(B, e) ̸⊆ [1− n, n− 1] CalcBds(B, e) ⊆ [1− 2n, 2n− 1]

Je− nK /∈ I∞(JR≈
∞K) JeK /∈ I∞(JR≈

∞K) Je+ nK /∈ I∞(JR≈
∞K)

RngLift
R≈

∞ := R≈
∞, e− n | | R≈

∞ := R≈
∞, e | | R≈

∞ := R≈
∞, e+ n

JeK ∈ In(JR≈
n K) JeK = s2 − s

n ̸=∞ IsPrime(n) JsK /∈ In(JR≈
n K) Js− 1K /∈ In(JR≈

n K)
ZeroOrOne

R≈
n := R≈

n , s | | R≈
n := R≈

n , s− 1

Fig. 4: Derivation rules. e, s are expressions, a ∈ Z, and n ∈ Z+
∞.

We present the calculus as rules that modify configurations, as is common
in SMT procedures [50, 74]. Here, a configuration is the representation of the
system of constraints C as the tuple (B,R≈

∞, R ̸≈
∞, R≈

n1
, R ̸≈

n1
, . . . , R≈

nk
, R ̸≈

nk
) as

described in Section 5.1. The rules are presented in guarded assignment form,
where the premises describe the conditions on the current configuration under
which the rule can be applied, and the conclusion is either unsat or indicates how
the configuration is modified. A rule may have multiple alternative conclusions
separated by | |. An application of a rule is redundant if it does not change
the configuration in any way. A configuration other than unsat is saturated if
every possible application is redundant. A derivation tree is a tree where each

Integer Reasoning Modulo Different Constants in SMT 11

node is a configuration and its children, if any, are obtained by a non-redundant
application of a rule of the calculus. A derivation tree is closed if all of its leaves
are unsat. A derivation is a sequence of derivation trees in which each element
in the sequence (after the first) is obtained by expanding a single leaf node in
the previous tree. We explain each class of rules in the calculus in more detail
below.

Checking Unsatisfiability UnsatOne is used to conclude unsatisfiability using
algebraic techniques: As explained in Section 3, if some ideal JR≈

n K contains the
polynomial 1, this indicates that the constraints represented by R≈

n have no
common solution in the modulus-n subsystem. Hence, we can conclude that the
whole system is unsatisfiable. UnsatDiseq checks if any of the polynomials in
the ideal of JR≈

n K match an expression in R ̸≈
n . Finally, UnsatBds concludes unsat

if some variable’s lower bound exceeds its upper bound.

Tightening Bounds ConstrBds tightens bounds based on equations in R≈
∞. Sup-

pose e is an expression, with JeK ∈ I∞(JR≈
∞K), consisting of the sum of axi and

some other expression e′. ConstrBds uses e to compute new bounds for xi and
then intersects these with the current bounds for xi. InfEq uses the bounds in-
formation to infer new equalities: When a variable’s upper and lower bounds
become equal, we can obtain a new equality.

Lifting/Lowering The lifting and lowering rules are directly based on the lemmas
stated in Section 5.1. The rules LiftEq and LiftDiseq lift (dis)equalities from
R▷◁

n to R▷◁
∞, by relying on Lemmas 1 and 2. We also check entailment (polynomial

ideal containment for equalities and set containment for disequalities) to avoid
adding redundant information. Dually, the rules LowerEq and LowerDiseq lower
(dis)equalities from from R▷◁

∞ to R▷◁
n by relying on Lemmas 3 and 4.

Branching Rules When encountering equations that are almost liftable, we rely
on branching rules to either lift or simplify them. For example, if CalcBds(B, x) =
[0, 7], x mod 6 ≈ 0 is almost liftable, as its range exceeds the liftable range only
slightly. RngLift branches on possible values for e that are within |n| of the
liftable range. ZeroOrOne detects when the value of a variable can only be 0 or
1; it applies only to prime moduli because other moduli have zero divisors.

We state soundness and termination theorems for our calculus and include
the proofs in the extended version of the paper [69]. However, the calculus is not
complete—a saturated leaf in a derivation tree does not necessarily mean that
the constraints at the root of the tree are satisfiable.

Theorem 1. Soundness: If T is a closed derivation tree with root node C, then
C is unsatisfiable in TInt.

Theorem 2. Termination: Every derivation starting from a finite configuration
C where every variable is bounded is finite.

5.3 Refutation Algorithm

Our implementation of the calculus follows the following strategy. It first per-
forms lifting via the LiftEq and LiftDiseq rules to exhaustion (i.e., until these

12 E. Pertseva et al.

In: A set of constraints C
Out: unsat/unknown

1 def Refute(C):
2 (B,R≈

∞, R ̸≈
∞ . . . R≈

n , R
̸≈
n)← Split(C) // Figure 3

3 while Exchange((B,R≈
∞, R ̸≈

∞ . . . R≈
n , R

̸≈
n)) // Section 5.2-5.5

4 do
5 if CheckUnsat((B,R≈

∞, R ̸≈
∞ . . . R≈

n , R
̸≈
n)) // Section 5.2

6 then
7 return unsat

8 if S ← Branch((B,R≈
∞, R ̸≈

∞ . . . R≈
n , R

̸≈
n)) then

9 for ci ∈ S do
10 if Refute(ci) == unknown then
11 return unknown

12 return unsat

13 return unknown
Algorithm 1: Overview of the Refutation Procedure

rules no longer apply) and then attempts to refute each subsystem using the
UnsatOne and UnsatDiseq rules for each R≈

n , n ̸=∞. If this fails, it applies the
bounds-related rules (ConstrBds, InfEq, UnsatBds) and lowering rules (LowerEq
and LowerDiseq), also to exhaustion. It then once again attempts refutation, but
with n = ∞. If that also fails, it applies a branching rule, if applicable (trying
first ZeroOrOne, then RngLift), and then the entire strategy repeats.

Algorithm 1 presents an algorithmic view of the overall process. Given con-
straints C, the procedure starts by encoding C into a configuration using the
Split routine, which creates the tuple encoding described in Section 5.1 and
applies the rules from Figure 3. The main refutation procedure consists of the
while loop in lines 3–7 and works as follows. First, it exchanges expressions be-
tween the different subsystems via lifting and lowering and tightens bounds or
learns new equations from bounds (line 3). Since lifting requires finding addi-
tional polynomials that are in the ideal, the implementation of the Exchange

procedure utilizes the methods described in Sections 5.4 and 5.5 to find ad-
ditional polynomials corresponding to exchangeable expressions. The methods
can be used individually or in combination, and we defer the discussion of their
ordering to Section 7. Next, at line 5, the algorithm invokes CheckUnsat to at-
tempt to refute any of the subsystems. If CheckUnsat returns true, the algorithm
terminates with unsat. Otherwise, the algorithm attempts to apply a branching
rule (lines 8-12). If successful, it recursively calls the Refute procedure on a
new set of constraints and returns unsat if all recursive calls perform successful
refutation. Since our algorithm is intended only for refutation rather than model
construction, it returns unknown in all other cases.

5.4 Finding Liftable Equalities via Weighted Gröbner bases

Recall that several rules in our refutation calculus require finding liftable or
lowerable constraints that correspond to a polynomial in the ideal of some exist-

Integer Reasoning Modulo Different Constants in SMT 13

ing set of polynomials. As explained earlier, finding additional liftable/lowerable
constraints is useful because they can make it easier to prove unsatisfiability.
However, since ideals are infinite, we need some algorithm for selecting which
polynomials to target. In this section, we present a method for computing “use-
ful” polynomials—those that are likely to correspond to liftable constraints. We
focus on the liftability of equalities only, because all equalities are already low-
erable, and disequalities do not form an ideal and thus are easy to enumerate.

Based on Lemma 1, a polynomial’s bound endpoints are the most important
indicators of liftability. As a result, we target polynomials that we call near-zero
polynomials, or polynomials with a bound whose endpoints have small absolute
value. Based on this definition, a polynomial with a bound [−5, 5] is closer to
zero than a polynomial with a bound of [−50, 50] or [49, 50].

Since we cannot enumerate the ideal, one possibility is to construct a basis
for the ideal that contains polynomials that are more likely to refer to liftable
constraints. As discussed in Section 3, one possible basis is a Gröbner basis,
which uses a monomial order. A Gröbner basis is computed via an algorithm
that often eliminates larger monomials with respect to the order. Our idea is
to compute a Gröbner basis using a carefully chosen monomial order in which
monomials that are closer to zero are smaller than those farther from zero. The
insight is that polynomials with near-zero monomials are generally (though not
always) more likely to be liftable. To achieve this, our monomial order must
encode information about bounds on the monomials. To this end, we first take
the maximum of the absolute values of the lower and upper bounds on each
variable. Additionally, since weighted monomial orders are determined by the
dot product of variable exponents and assigned weights, we apply logarithmic
scaling to ensure that the influence of a bound is appropriately adjusted by each
variable’s degree. Based on this intuition, we use a weighted reverse lexicographic
monomial order (Sec. 3), with weights:

weights←
[
log

(
max (|B(xi)1|, |B(xi)2|) + ϵ4

)
| xi ∈ X

]
(2)

When applying the LiftEq rule in the refutation calculus our algorithm com-
putes a Gröbner basis according to the order defined by (2) and only checks the
liftability of the polynomials in this Gröbner basis.

Ideally, when we apply the LiftEq rule, we want to find a complete set of
liftable equations—that is, any other liftable constraint should be implied by the
ones inferred by our technique. Our weighted Gröbner basis method does not
have this completeness guarantee in general, but the following theorem states a
weaker completeness guarantee that it does provide:

Theorem 3. Let C be a constraint system containing a modulus-n equality sub-
system R≈

n and variable bounds B s.t. for all xi ∈ X , 0 ∈ B(xi). Let G =
GBn,≤(JR≈

n K) be a Gröbner basis computed with a weighted reverse lexicograph-
ical order with weights from Equation 2. Finding liftable equalities derived from

3 The ϵ serves to avoid log(0) which is undefined.

14 E. Pertseva et al.

I(R≈
n) by computing G is complete if every generator JeK ∈ G that has a lead-

ing monomial JmK s.t. CalcBds(B,m) ⊆ [1 − n, n − 1] corresponds to a liftable
expression e mod n in C.

Completeness implies that the ideal generated by the generators of G, which cor-
respond to liftable expressions, contains all polynomials corresponding to liftable
expressions from In(JR≈

n K).
Intuitively, completeness means {JpK : CalcBds(B, p) ⊆ [1 − n, n − 1] ∧ JpK ∈

In(JR≈
n K)} ⊆ In({JgK : CalcBds(B, g) ⊆ [1−n, n−1]∧JgK ∈ G}). A detailed proof

can be found in the extended version of the paper [69]. This theorem is useful
because it allows us to identify cases when additional heuristics for identifying
liftable polynomials might be useful.

5.5 Finding Liftable Equalities via Integer Linear Constraints

Now we present another method, complementary to the one in Section 5.4, for
finding liftable constraints. This new method is motivated by the following ob-
servation: In many cases, liftable equalities can be obtained from linear com-
binations of existing expressions—i.e., they are of the form e′ =

∑l
i=1 aiei for

existing expressions ei and constant coefficients ai. The method proposed here
aims to find these unknown coefficients a1, . . . , an by setting up an auxiliary
integer linear constraint. If this linear constraint is feasible, then the inferred
equality is guaranteed to satisfy the conditions from Lemma 1.

To emphasize that the coefficients ai are the unknowns being solved for,
we depict them using a bold font below. Our goal is to encode the condition
CalcBds(B, e′) ⊂ [1 − n, n − 1] in the generated constraint. Since CalcBds

depends on e′’s coefficients, we express those coefficients in terms of the ai.
Let Jm1K, . . . , JmtK be all the monomials present in JR≈

n K, including the con-
stant monomial 1 ∈ Z[X]. Moreover, let JeiK have coefficients ci,j , such that
JeiK =

∑t
j=1 ci,jJmjK. Then, the coefficient of JmjK in Je′K, denoted coefj , is the

linear polynomial, coefj ≜
∑t

i=1 aici,j .
We can now express the relevant bounds. The lower and upper bounds on each

monomial mj can be concretely computed as uj ≜ CalcBds(B,mj)1 and lj ≜
CalcBds(B,mj)0. Then, the lower and upper bounds on e′ itself are respectively:

lb ≜
∑t

j=1(lj · ReLU(coefj)− uj · ReLU(−coefj))

ub ≜
∑t

j=1(uj · ReLU(coefj)− lj · ReLU(−coefj)),

where ReLU(a) is max(a, 0). ReLU constraints capture how negating a monomial
affects its upper and lower bounds: if coefj > 0, uj contributes to the upper
bound of e′; otherwise, it contributes to the lower bound. These constraints can
be encoded using binary variables when the upper and lower bounds are known
[76]. Since the operations are performed modulo n, all coefficients must lie within
the interval [1− n, n− 1]. Our encoding Φ is then:

Φ ≜ lb > −n ∧ ub < n ∧
∑k

i=1 (ReLU(coefj) + ReLU(−coefj)) > 0

The first two conditions ensure e′ is liftable, and the last ensures that e′ ̸= 0.

Integer Reasoning Modulo Different Constants in SMT 15

Theorem 4. Let C be a constraint system containing modulus-n equality sub-
system R≈

n and variable bounds B. Φ is satisfiable iff there exists a linear com-
bination of the form e′ =

∑l
i=1 aiei, ai ∈ Z and ei ∈ R≈

n , s.t. e′ is liftable in C
and e′ ̸= 0.

In the case that Φ is satisfiable, we seek to find all linearly independent solu-
tions, as different solutions correspond to different liftable equations, all of which
may be useful for proving unsatisfiability. Thus, we add constraints ruling out
linear combinations of solutions found so far and iterate until ϕ is unsatisfiable.

6 Implementation
We implemented our refutation procedure in the cvc5 SMT solver [3] as an
alternative to the existing nonlinear integer solver. We use Singular v4.4.0 [23]
for the algebraic components of our procedure and glpk [52] v4.6.0 for solving
the integer linear constraints problems from Section 5.5. Below we describe the
key details in our implementation.

Rewrites Our implementation disables all rewrites for the mod operator but
retains the remaining cvc5 rewrites and pre-processing passes.

Ideal Membership Check To check if a polynomial version of an expression is
in In(JR≈

n K) we compute a Gröbner basis (GB) of JR≈
n K using graded reverse

lexicographic order unless JR≈
n K is already a GB. (Recall that reduction by a

GB is a complete ideal membership test.) To prevent GB computation from
becoming a bottleneck, we impose a 30-second timeout. If a timeout occurs, we
only check inclusion in the set instead of the ideal.

Liftable Equalities via Integer Linear Constraints Experimental results showed
that integer linear constraint solvers perform poorly on problems with large
integer constants. To address this issue, our implementation uses an approximate
version where we scale constants using signed log defined as slog2(a) =

|a|
a log2(a)

and use a 30-second timeout. Details of our approximation, including empirical
results that motivate this approximation can be found in the extended version of
the paper [69]. All experimental results reported in the paper use this relaxation
of the encoding.

7 Experiments
Our experiments are designed to answer two key empirical questions 1. How
does our refutation procedure compare to the state of the art? 2. Do our lifting
algorithms (Sec. 5.4 and 5.5) improve performance? All of our expriments are
run on a cluster with Intel Xeon E5-2637 v4 CPUs. Each run is limited to one
physical core, 8GB memory, and 20 minutes.

7.1 Benchmarks

The benchmarks used in our experimental evaluation consist of logical formulas
encoding the correctness of simulating arithmetic operations in a given specifi-
cation domain using arithmetic in a corresponding base domain. Each domain
is either a finite field (Fp or Fq) or a bit-vector domain (Z2b). Implementations

16 E. Pertseva et al.

Family Spec. Base Reference

f/b(s) Fp Z2b Montgomery arithmetic [56]
f/b(m) Fp Z2b Montgomery arithmetic [56]
f/f(s) Fp Fq Succinct labs [43, 75]
f/f(m) Fp Fq o1-labs [64]
b/f(m) Z2b Fp xjSnark [49]

Table 1: Our benchmarks, which verify arithmetic implementations with various
specification domains, base domains and numeric precisions.

that represent values in the specification domain as multiple limbs in the base
domain are referred to as multiprecision (m), while those using a single repre-
sentation are classified as single precision (s). As summarized in Table 1, our
benchmarks fall under the following categories:

– f/b(s) encode the correctness of single-precision Montgomery arithmetic [56],
which implements arithmetic modulo p using bit-vector operations, without
mod-p reductions, and is common in prime field CPU implementations. The
benchmarks verify the correctness of the REDC subroutine and the end-to-end
correctness of Montgomery’s approach for evaluating expressions mod p.

– f/b(m) encode correctness of multi-precision Montgomery arithmetic.
– f/f(s) encode implementations of arithmetic modulo the 31-bit Goldilocks

prime [43] modulo a 255-bit prime (the order of the BLS 12-381 elliptic
curve [4, 10]). The benchmarks model a Succinct labs implementation [75]
that is used for recursive zero-knowledge proofs (ZKPs).

– f/f(m) encode the correctness of implementations of arithmetic modulo one
255-bit prime using arithmetic modulo another 255-bit prime. Multiple limbs
are used to avoid unintended overflow in the base domain. The benchmarks
model an o1-labs implementation [64] used for recursive ZKPs.

– b/f(m) encode correctness of multi-precision implementations of bit-vector
arithmetic modulo a 255-bit prime. The benchmarks model techniques from
the xjSnark ZKP compiler [49] that are used to check RSA signatures.

Determinism We include determinism [66] benchmarks in addition to correct-
ness for families with a finite field base domain. Determinism is a weaker property
than correctness but rules out most bugs in practice [15]. We do not include de-
terminism f/f(m) benchmarks because they are correct but nondeterministic.
Additional benchmark statistics are included in the extended version of the pa-
per [69].

7.2 State of the Art Comparison

Baselines Our benchmarks are SMT problems in QF_MIA (Sec. 4). Since all
variables have finite bounds, our benchmarks can also be encoded in QF_BV. Our
determinism benchmarks contain only variable bounds and equations modulo
one prime and can thus be encoded in QF_FF using standard F encodings of
range constraints [49]. As a result, the baselines for our work are existing solvers
for QF_NIA, QF_BV, and QF_FF. We compare against Yices v2.6.5 [26], cvc5

Integer Reasoning Modulo Different Constants in SMT 17

Family

f/b(s) f/b(m) f/f(s) f/f(m) b/f(m)

Solver/Logic cor cor cor det cor cor det Total

ours QF_MIA 53 14 10 84 50 24 20 255
z3 QF_NIA 49 21 3 34 40 22 21 190
cvc5 QF_NIA 40 35 0 19 50 14 8 166
yices QF_NIA 32 24 0 2 10 13 8 89
bitwuzla(abst.) QF_BV 49 49 0 2 25 9 8 142
bitwuzla QF_BV 49 49 0 0 0 9 8 115
cvc5 QF_BV 43 48 0 0 0 9 7 107
z3 QF_BV 48 37 0 0 0 9 8 102
cvc5 QF_FF – – – 1 – – 23 24
yices QF_FF – – – 0 – – 20 20
cvc5 (split GB) QF_FF – – – 2 – – 9 11

Benchmarks 72 58 10 98 50 24 24 336

Table 2: Solved benchmarks. Here, cor stands for correctness and det for deter-
minism. – indicates the benchmark family cannot be encoded into the logic.

Family

f/b(s) f/b(m) f/f(s) f/f(m) b/f(m)

Ablation cor cor cor det cor cor det Total Uniq.

Weighted GB 53 14 10 84 50 24 20 255 11
Unweighted GB 41 25 10 61 50 17 20 223 1
Lin. Constraints 37 18 0 7 0 7 3 72 3
Weighted GB & Lin. 54 23 10 73 50 24 20 254 12

Benchmarks 72 58 10 98 50 24 24 336

Table 3: Results with different lifting algorithms

v1.2.2 [3], bitwuzla v0.5.0 [60], and z3 v4.13.1 [57], which are state of the art for
these logics. We evaluate bitwuzla with and without abstraction [62] and cvc5’s
QF_FF solver with and without split Gröbner bases [66].

Comparison Table 2 shows the number of unsat benchmarks solved by family,
type, logic, and tool, and Figure 5 shows the performance for the top 5 solvers.
Here, ‘ours’ stands for the best version of our solver: one with a lifting algorithm
based on a weighted Gröbner basis (Section 5.4). This configuration outperforms
existing tools on 5 out of the 7 categories, as well as in total benchmarks solved.
It is also the most efficient and has the most unique solves, with 76 benchmarks
not solved by any other solver. Of the 81 benchmarks our tool fails to solve, 27
remain unsolved by any solver. For these 81 benchmarks, 10 run out of memory,
29 time out, and 42 return unknown. Our solver performs the worst on the

18 E. Pertseva et al.

0 50 100 150 200 250

Solved Instances

0

500

1000

Ti
m

e
(s

) Solver
ours
z3
cvc5
yices
bitwuzla(abst.)

Fig. 5: Benchmarks solved over time for top 5 solvers: ours (QF_MIA), z3
(QF_NIA), cvc5 (QF_NIA), yices (QF_NIA), and bitwuzla w/ abstractions (QF_BV)

f/b(m) family; it accounts for 34 of the unknown benchmarks. We believe the
poor performance in this domain is due to our algorithm’s inability to find liftable
equalities necessary to detect unsatisfiability, even though such equalities exist
in the ideal.

7.3 Evaluation of Lifting Methods

Recall that our method relies on identifying liftable equations, with Sections 5.4
and 5.5 introducing two potentially complementary approaches for this purpose.
We now present the results of an evaluation comparing these lifting methods. As
summarized in Table 3, the weighted Gröbner basis method achieves the best
overall performance. However, on the f/b(m) benchmark family, the unweighted
Gröbner basis method outperforms the weighted variant, supporting our hypoth-
esis that the weighted Gröbner basis’s inability to find certain liftable equalities
contributes to its weaker performance in this category. Lifting based on integer
linear constraints performs the poorest, identifying almost no liftable equalities
required for refutation. Nevertheless, when combined with the weighted Gröbner
basis method (in cases where the Gröbner basis method is not guaranteed to be
complete per Theorem 3), this hybrid approach has the most unique solves (12).

8 Related work
There are many SMT theory solvers for different kinds of modular integer arith-
metic. Some solvers target theories of non-linear integer arithmetic with an ex-
plicit modulus operator, such as the theory of integers [2, 8, 14, 17, 19, 35, 46–
48, 53, 58, 77, 80], and the theory of bit-vectors [11, 39, 59, 61, 62]. These solvers
can be used to solve multimodular systems, but generally perform poorly because
they are designed to support general modular reduction (i.e., reduction modulo
a variable) rather than reduction by constants. There are solvers that efficiently
support reduction by a single constant or class of constants. For example, finite
field solvers [40–42, 65, 66] support reduction modulo primes, while bit-vector
solvers support reduction modulo powers of two. But, none of these can reason
simultaneously about equations modulo a large prime and powers of two. The
Omega test reasons about equations modulo arbitrary constants—but the equa-
tions must be linear [71]. Our procedure supports non-linear equations modulo
arbitrary constants.

Some of the above solvers use Gröbner bases: an algebraic tool for under-
standing polynomial systems [12]. For example, most similar to our refutation

Integer Reasoning Modulo Different Constants in SMT 19

procedure, cvc5’s finite field solver [65, 66] also relies on a Gröbner basis to detect
unsatisfiability of constraint subsystems. However, unlike our approach, it does
not separate bounds or apply lifting, lowering, or weighted ordering techniques
to share expressions across subsystems.

Many computer algebra systems (CASs) implement algorithms for comput-
ing different kinds of Gröbner bases [1, 9, 21, 23, 27, 28, 36, 44, 55, 82, 84].
Following in this vein, our procedure uses strong Gröbner bases [63], and our
implementation uses the Singular CAS [23].

Formal methods for modular arithmetic have a long history of applications
to cryptography. Interactive theorem provers (ITPs) have been used to verify
many cryptographic implementations [31, 70, 73], including the Fiat cryptogra-
phy library, which is used in all major web-browsers [30]. ITPs have also been
used to verify zero-knowledge proofs (ZKPs) [16, 18, 34, 51]. But ITP-based ver-
ification requires significant manual effort and expertise. SMT solvers for finite
fields [67, 68] and static analyses [20, 79, 81] have been used to verify ZKPs auto-
matically, but these tools are limited by challenging tradeoffs between scalability
and generality.

9 Conclusion and Future Work
In this paper we presented a novel refutation procedure for multimodular con-
straints and two algorithms for sharing lemmas: one based on a weighted Gröbner
basis and another utilizing integer linear constraints. Our experiments demon-
strate improvement over state-of-the-art solvers on benchmarks that arise from
verifying cryptographic implementations. They also show the promise of lift-
ing algorithms, both individually and in combination. Nevertheless, substantial
future work remains.

First, as discussed in Sections 5.4 and 5.5, none of our lifting algorithms are
complete. Exploring solutions with more completeness guarantees could boost
the performance of our method. Second, as shown in the extended version of the
paper [69], lifting using linear integer constraints shows poor performance due to
the limitations of existing solvers. A custom solver tailored to our encoding could
lead to better results. Third, our method focuses on unsatisfiable benchmarks
and does not address model construction for satisfiable instances. However, we
believe that leveraging the subsystem structure could also be beneficial for re-
stricting the search space of possible assignments for satisfiable multimodular
problems. Finally, our method treats Gröbner basis computation as a black box.
Exploring more iterative methods based on s-polynomials could also boost per-
formance.

Acknowledgements We thank Ben Sepanski and Kostas Ferles for helpful conver-
sations. We acknowledge funding from NSF grant number 2110397, the Stanford
Center for Automated Reasoning, and the Simons foundation.

Disclosure of Interest Shankara Pailoor, Alp Bassa, and Işil Dillig are employed at
Veridise. Alex Ozdemir and Sorawee Porncharoenwase previously worked at Veridise.
Sorawee Porncharoenwase is currently employed at Amazon Web Services (AWS). Clark
Barrett is an Amazon Scholar.

Bibliography

[1] J. Abbott and A. M. Bigatti. CoCoALib: A C++ library for computations in
commutative algebra... and beyond. In International Congress on Mathematical
Software, 2010.

[2] E. Ábrahám, J. H. Davenport, M. England, and G. Kremer. Deciding the
consistency of non-linear real arithmetic constraints with a conflict driven search
using cylindrical algebraic coverings. Journal of Logical and Algebraic Methods
in Programming, 119, 2021.

[3] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner,
A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and
industrial-strength SMT solver. In TACAS, 2022.

[4] P. S. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In SCN, 2003.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2016.

[6] C. Barrett and C. Tinelli. Satisfiability modulo theories. In E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
305–343. Springer International Publishing, 2018.

[7] P. Barrett. Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In CRYPTO, 1986.

[8] N. Bjørner and L. Nachmanson. Arithmetic solving in z3. In CAV, 2024.
[9] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user

language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.
[10] S. Bowe. BLS12-381: New zk-snark elliptic curve construction, Mar. 2017.

https://electriccoin.co/blog/new-snark-curve/.
[11] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors

and arrays. In TACAS, 2009.
[12] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
University of Innsbruck, 1965.

[13] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin, 1976.

[14] B. F. Caviness and J. R. Johnson. Quantifier elimination and cylindrical
algebraic decomposition. Springer Science & Business Media, 2012.

[15] S. Chaliasos, J. Ernstberger, D. Theodore, D. Wong, M. Jahanara, and
B. Livshits. SoK: What don’t we know? understanding security vulnerabilities in
SNARKs. In USENIX Security, 2024.

[16] C. Chin, H. Wu, R. Chu, A. Coglio, E. McCarthy, and E. Smith. Leo: A
programming language for formally verified, zero-knowledge applications, 2021.
Preprint at https://ia.cr/2021/651.

[17] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani. Incremental
linearization for satisfiability and verification modulo nonlinear arithmetic and
transcendental functions. ACM TOCL, 19(3), 2018.

[18] A. Coglio, E. McCarthy, E. Smith, C. Chin, P. Gaddamadugu, and M. Dellepere.
Compositional formal verification of zero-knowledge circuits, 2023.
https://ia.cr/2023/1278.

https://electriccoin.co/blog/new-snark-curve/
https://ia.cr/2021/651
https://ia.cr/2023/1278

Integer Reasoning Modulo Different Constants in SMT 21

[19] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In SAT, 2015.

[20] F. Dahlgren. It pays to be Circomspect.
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/,
2022. Accessed: 15 October 2023.

[21] J. Davenport. The axiom system, 1992.
[22] C. David. Ideals, Varieties, and Algorithms-An Introduction to Computational

Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics, 1991.

[23] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-4-0 — A
computer algebra system for polynomial computations.
http://www.singular.uni-kl.de, 2024.

[24] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6), 1976.

[25] D. S. Dummit and R. M. Foote. Abstract algebra, volume 3. Wiley Hoboken,
2004.

[26] B. Dutertre. Yices 2.2. In CAV, 2014.
[27] C. Eder and T. Hofmann. Efficient Gröbner bases computation over principal

ideal rings. Journal of Symbolic Computation, 103:1–13, 2021.
[28] D. Eisenbud, D. R. Grayson, M. Stillman, and B. Sturmfels. Computations in

algebraic geometry with Macaulay 2, volume 8. Springer Science & Business
Media, 2001.

[29] H. B. Enderton. A mathematical introduction to logic. Elsevier, 2001.
[30] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Systematic

generation of fast elliptic curve cryptography implementations. Technical report,
MIT, 2018.

[31] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple high-level
code for cryptographic arithmetic: With proofs, without compromises. ACM
SIGOPS Operating Systems Review, 54(1), 2020.

[32] J. C. Faugére. A new efficient algorithm for computing Gröbner bases (f4).
Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[33] J. C. Faugére. A new efficient algorithm for computing Gröbner bases without
reduction to zero (f5). In ISSAC. ACM, 2002.

[34] C. Fournet, C. Keller, and V. Laporte. A certified compiler for verifiable
computing. In CSF, 2016.

[35] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation, 1(3-4), 2006.

[36] GAP – Groups, Algorithms, and Programming, Version 4.13dev.
https://www.gap-system.org, this year.

[37] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
[38] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of

interactive proof systems. SIAM Journal of Computation, 18(1):186–208, 1989.
[39] S. Graham-Lengrand, D. Jovanović, and B. Dutertre. Solving bitvectors with

MCSAT: explanations from bits and pieces. In IJCAR, 2020.
[40] T. Hader. Non-linear SMT-reasoning over finite fields, 2022. MS Thesis (TU

Wein).
[41] T. Hader, D. Kaufmann, and L. Kovács. SMT solving over finite field

arithmetic. In LPAR, 2023.
[42] T. Hader and L. Kovács. Non-linear SMT-reasoning over finite fields. In SMT,

2022. Extended Abstract.

https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
http://www.singular.uni-kl.de
https://www.gap-system.org

22 E. Pertseva et al.

[43] M. Hamburg. Ed448-goldilocks, a new elliptic curve, 2015.
https://ia.cr/2015/625.

[44] A. Heck and W. Koepf. Introduction to MAPLE, volume 1993. 1993.
[45] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to

implementation. ACM, 48(5):1038–1068, Sept. 2001.
[46] D. Jovanović. Solving nonlinear integer arithmetic with MCSAT. In VMCAI,

2017.
[47] D. Jovanović and L. De Moura. Solving non-linear arithmetic. ACM

Communications in Computer Algebra, 46(3/4), 2013.
[48] D. Jovanović and L. d. Moura. Cutting to the chase solving linear integer

arithmetic. In CADE, 2011.
[49] A. Kosba, C. Papamanthou, and E. Shi. xJsnark: A framework for efficient

verifiable computation. In IEEE S&P, 2018.
[50] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T)

theory solver for a theory of strings and regular expressions. In CAV. Springer.
[51] J. Liu, I. Kretz, H. Liu, B. Tan, J. Wang, Y. Sun, L. Pearson, A. Miltner,

I. Dillig, and Y. Feng. Certifying zero-knowledge circuits with refinement types,
2023. https://ia.cr/2023/547.

[52] A. Makhorin. GNU linear programming kit version 4.6.0.
http://www.gnu.org/software/glpk/glpk.html, 2024.

[53] A. Maréchal, A. Fouilhé, T. King, D. Monniaux, and M. Périn. Polyhedral
approximation of multivariate polynomials using handelman’s theorem. In
VMCAI, 2016.

[54] N. H. McCoy. Rings and ideals, volume 8. American Mathematical Soc., 1948.
[55] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin,

A. Kumar, S. Ivanov, J. K. Moore, S. Singh, et al. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103, 2017.

[56] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of computation, 44(170):519–521, 1985.

[57] L. d. Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
[58] L. d. Moura and D. Jovanović. A model-constructing satisfiability calculus. In

VMCAI, 2013.
[59] A. Niemetz and M. Preiner. Ternary propagation-based local search for more

bit-precise reasoning. In FMCAD, 2020.
[60] A. Niemetz and M. Preiner. Bitwuzla. In CAV, 2023.
[61] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. Barrett, and C. Tinelli.

Towards bit-width-independent proofs in SMT solvers. In CADE, 2019.
[62] A. Niemetz, M. Preiner, and Y. Zohar. Scalable bit-blasting with abstractions.

In CAV, 2024.
[63] G. H. Norton and A. Sǎlǎgean. Strong Gröbner bases for polynomials over a

principal ideal ring. Bulletin of the Australian Mathematical Society,
64(3):505–528, 2001.

[64] o1-labs. Foreign field multiplication gate, 2024.
https://github.com/o1-labs/rfcs/blob/
eeb8070c9901c611c9a557464022bbf9237900b9/0006-ffmul-revised.md.

[65] A. Ozdemir, G. Kremer, C. Tinelli, and C. Barrett. Satisfiability modulo finite
fields. In CAV, 2023.

[66] A. Ozdemir, S. Pailoor, A. Bassa, K. Ferles, C. Barrett, and I. Dillig. Split
Gröbner Bases for satisfiability modulo finite fields. In CAV, 2024.

[67] A. Ozdemir, R. S. Wahby, F. Brown, and C. Barrett. Bounded verification
for finite-field-blasting. In CAV, 2023.

https://ia.cr/2015/625
https://ia.cr/2023/547
https://github.com/o1-labs/rfcs/blob/eeb8070c9901c611c9a557464022bbf9237900b9/0006-ffmul-revised.md
https://github.com/o1-labs/rfcs/blob/eeb8070c9901c611c9a557464022bbf9237900b9/0006-ffmul-revised.md

Integer Reasoning Modulo Different Constants in SMT 23

[68] S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. Van Geffen, J. Morton, M. Chu,
B. Gu, Y. Feng, and I. Dillig. Automated detection of under-constrained circuits
in zero-knowledge proofs. In PLDI, 2023.

[69] E. Pertseva, A. Ozdemir, S. Pailoor, A. Bassa, S. Porncharoenwase, I. Dillig, and
C. Barrett. Integer reasoning modulo different constants in smt, 2025.
https://arxiv.org/abs/2505.14998.

[70] J. Philipoom. Correct-by-construction finite field arithmetic in Coq. PhD thesis,
Massachusetts Institute of Technology, 2018.

[71] W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In SC, 1991.

[72] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[73] P. Schwabe, B. Viguier, T. Weerwag, and F. Wiedijk. A Coq proof of the
correctness of X25519 in TweetNaCl. In CSF, 2021.

[74] Y. Sheng, A. Nötzli, A. Reynolds, Y. Zohar, D. Dill, W. Grieskamp, J. Park,
S. Qadeer, C. Barrett, and C. Tinelli. Reasoning about vectors using an SMT
theory of sequences. In IJCAR, 2022.

[75] Succinct Labs. Gnark Plonky2 recursive verifier: The goldilocks field
implementation, 2024.
https://github.com/succinctlabs/gnark-plonky2-verifier/tree/
7025b2efd67b5ed30bd85f93c694774106d21b3d/goldilocks.

[76] C. Tsay, J. Kronqvist, A. Thebelt, and R. Misener. Partition-based formulations
for mixed-integer optimization of trained relu neural networks. NeurIPS, 2021.

[77] V. X. Tung, T. V. Khanh, and M. Ogawa. raSAT: An SMT solver for
polynomial constraints. In IJCAR, 2016.

[78] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting
them. Communications of the ACM, 58(2):74–84, 2015.

[79] F. Wang. Ecne: Automated verification of ZK circuits, 2022.
https://0xparc.org/blog/ecne.

[80] V. Weispfenning. Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing,
8(2), 1997.

[81] H. Wen, J. Stephens, Y. Chen, K. Ferles, S. Pailoor, K. Charbonnet, I. Dillig,
and Y. Feng. Practical security analysis of zero-knowledge proof circuits, 2023.
https://ia.cr/2023/190.

[82] S. Wolfram. Mathematica: a system for doing mathematics by computer.
Addison Wesley Longman Publishing Co., Inc., 1991.

[83] A. C. Yao. Protocols for secure computations. In FOCS, 1982.
[84] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse,

F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, et al. Computational
mathematics with SageMath. SIAM, 2018.

https://github.com/succinctlabs/gnark-plonky2-verifier/tree/7025b2efd67b5ed30bd85f93c694774106d21b3d/goldilocks
https://github.com/succinctlabs/gnark-plonky2-verifier/tree/7025b2efd67b5ed30bd85f93c694774106d21b3d/goldilocks
https://0xparc.org/blog/ecne
https://ia.cr/2023/190

	 Integer Reasoning Modulo Different Constants in SMT
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Algebra
	3.2 Ideals
	3.3 SMT

	4 A Multimodular Logic
	5 Refutation Procedure
	5.1 Key Ideas
	5.2 Refutation Calculus
	5.3 Refutation Algorithm
	5.4 Finding Liftable Equalities via Weighted Gröbner bases
	5.5 Finding Liftable Equalities via Integer Linear Constraints

	6 Implementation
	7 Experiments
	7.1 Benchmarks
	7.2 State of the Art Comparison
	7.3 Evaluation of Lifting Methods

	8 Related work
	9 Conclusion and Future Work

