
Symbolic Heap Abstraction with Demand-Driven
Axiomatization of Memory Invariants

Isil Dillig Thomas Dillig Alex Aiken

Stanford University

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational vs. Non-Relational Heap analysis

Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Heap analyses can be characterized as relational or
non-relational:

A relational analysis tracks correlations between points-to
targets of two memory locations
A non-relational heap analysis does not.

Relational heap analyses are more precise, but also more
expensive.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational vs. Non-Relational Heap analysis

Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Heap analyses can be characterized as relational or
non-relational:

A relational analysis tracks correlations between points-to
targets of two memory locations
A non-relational heap analysis does not.

Relational heap analyses are more precise, but also more
expensive.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational vs. Non-Relational Heap analysis

Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Heap analyses can be characterized as relational or
non-relational:

A relational analysis tracks correlations between points-to
targets of two memory locations

A non-relational heap analysis does not.

Relational heap analyses are more precise, but also more
expensive.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational vs. Non-Relational Heap analysis

Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Heap analyses can be characterized as relational or
non-relational:

A relational analysis tracks correlations between points-to
targets of two memory locations
A non-relational heap analysis does not.

Relational heap analyses are more precise, but also more
expensive.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational vs. Non-Relational Heap analysis

Goal of heap analysis: Statically describe all possible points-to
relations in the heap for any execution of the program.

Heap analyses can be characterized as relational or
non-relational:

A relational analysis tracks correlations between points-to
targets of two memory locations
A non-relational heap analysis does not.

Relational heap analyses are more precise, but also more
expensive.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Non-relational:

x

y

a

b

Does not encode x and y

must point to same location

Cannot prove the assertion

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Non-relational:

x

y

a

b

Does not encode x and y

must point to same location

Cannot prove the assertion

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Non-relational:

x

y

a

b

Does not encode x and y

must point to same location

Cannot prove the assertion

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Relational:

x

y

a
x

y

b

Heap 1 Heap 2

Perform case split on possible
heaps.

Can prove assertion because
in both heaps x and y point
to same location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

An Example

Consider the code snippet:

if(*)

*x = a;

else

*x = b;

y = x;

assert(*x == *y);

Relational:

x

y

a
x

y

b

Heap 1 Heap 2

Perform case split on possible
heaps.

Can prove assertion because
in both heaps x and y point
to same location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap

⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps

Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps

⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

x

y

a
x

y

b

Heap 1 Heap 2

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Relational Analysis via Heap Splitting

Advantages:

Each abstract location
points to exactly one target
location per heap
⇒ precise relational
reasoning

Disadvantages:

Generates exponential
number of heaps
Duplicates shared portion
of the heaps
⇒ Very expensive and
unscalable

This talk:

Scalable and precise relational
heap analysis without per-
forming explicit case splits on
the heap

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants

Insight:

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

Existence: Every memory
location has at least one value

Uniqueness: Every memory
location has at most one value

⇒ Heap splitting is one way of
enforcing these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants

Insight:

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

Existence: Every memory
location has at least one value

Uniqueness: Every memory
location has at most one value

⇒ Heap splitting is one way of
enforcing these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants

Insight:

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

Existence: Every memory
location has at least one value

Uniqueness: Every memory
location has at most one value

⇒ Heap splitting is one way of
enforcing these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants

Insight:

We can achieve relational reasoning by
enforcing two important memory
invariants that real computer memories
satisfy:

Existence: Every memory
location has at least one value

Uniqueness: Every memory
location has at most one value

⇒ Heap splitting is one way of
enforcing these invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy
Don’t duplicate shared portions of the heap
No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy
Don’t duplicate shared portions of the heap
No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy
Don’t duplicate shared portions of the heap
No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy

Don’t duplicate shared portions of the heap
No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy
Don’t duplicate shared portions of the heap

No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

Idea

Enforce memory invariants symbolically using constraints on a single
heap abstraction.

No explicit case splits on the heap, but solver may internally
need to perform case analysis

Still advantageous because:

Solver can often prove a constraint SAT or UNSAT without
considering all cases: eager vs. lazy
Don’t duplicate shared portions of the heap
No heuristics for merging “similar” heaps

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x a

b

To encode that x cannot point to a and b at the same time,
we can use two constraints φ and ¬φ

⇒ Uniqueness

Also encodes that x must point to either a or b

⇒ Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x a

b

To encode that x cannot point to a and b at the same time,
we can use two constraints φ and ¬φ

⇒ Uniqueness

Also encodes that x must point to either a or b

⇒ Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x a

b

To encode that x cannot point to a and b at the same time,
we can use two constraints φ and ¬φ ⇒ Uniqueness

Also encodes that x must point to either a or b

⇒ Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x a

b

To encode that x cannot point to a and b at the same time,
we can use two constraints φ and ¬φ ⇒ Uniqueness

Also encodes that x must point to either a or b

⇒ Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x a

b

To encode that x cannot point to a and b at the same time,
we can use two constraints φ and ¬φ ⇒ Uniqueness

Also encodes that x must point to either a or b ⇒ Existence

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x

y

a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Memory Invariants

x

y

a

b

Correlation between x and y preserved

x and y point to different locations under φ ∧ ¬φ
⇒ Can prove the assertion!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Unbounded Locations

Easy to enforce these invariants when each abstract location
corresponds to one concrete location.

But what about abstract locations that represent multiple
concrete locations?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Unbounded Locations

Easy to enforce these invariants when each abstract location
corresponds to one concrete location.

But what about abstract locations that represent multiple
concrete locations?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Most techniques represent the array with a summary node.

Graph encodes that any element in x may point to either a
or b.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Most techniques represent the array with a summary node.

Graph encodes that any element in x may point to either a
or b.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Encodes that an element of x cannot point to both a and b

. . . but erroneously encodes x[1] and x[2] must have same
value!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Encodes that an element of x cannot point to both a and b

. . . but erroneously encodes x[1] and x[2] must have same
value!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Memory Invariants on Summary Locations

x a

b

Conclusion

To enforce memory invariants symbolically, we need a way to
refer to individual elements in summary locations.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap Abstraction

Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

This basic symbolic heap does not enforce memory invariants

Describe new technique to enforce memory invariants on the
symbolic heap without explicit case splits

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap Abstraction

Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

This basic symbolic heap does not enforce memory invariants

Describe new technique to enforce memory invariants on the
symbolic heap without explicit case splits

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap Abstraction

Use the symbolic heap from our previous work that allows
distinguishing individual elements in a summary location.

This basic symbolic heap does not enforce memory invariants

Describe new technique to enforce memory invariants on the
symbolic heap without explicit case splits

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Abstract locations that represent more than one concrete
location are qualified by index variables.

Index variables allow us to refer to individual elements inside
the abstract location

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Abstract locations that represent more than one concrete
location are qualified by index variables.

Index variables allow us to refer to individual elements inside
the abstract location

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Abstract locations that represent more than one concrete
location are qualified by index variables.

Index variables allow us to refer to individual elements inside
the abstract location

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

Bracketing constraints on points-to edges qualify which
elements in the source location may and must point to which
elements in the target location.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

This heap does not enforce memory invariants

Uniqueness violated because conjunction of may conditions is
not unsatisfiable.

Existence violated because disjunction of must conditions is
not valid.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

This heap does not enforce memory invariants

Uniqueness violated because conjunction of may conditions is
not unsatisfiable.

Existence violated because disjunction of must conditions is
not valid.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Symbolic Heap

a

b

This heap does not enforce memory invariants

Uniqueness violated because conjunction of may conditions is
not unsatisfiable.

Existence violated because disjunction of must conditions is
not valid.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Making the Symbolic Heap Relational

Goal:

Modify the basic symbolic heap such that:

1 Enforces the existence and uniqueness of memory contents

Symbolically using constraints

Replace original constraints with new constraints ∆ enforcing
these invariants.

2 Preserves all the partial information encoded in the original
symbolic heap

Restore existing information by adding quantified axioms
relating ∆ to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Making the Symbolic Heap Relational

Goal:

Modify the basic symbolic heap such that:

1 Enforces the existence and uniqueness of memory contents

Symbolically using constraints

Replace original constraints with new constraints ∆ enforcing
these invariants.

2 Preserves all the partial information encoded in the original
symbolic heap

Restore existing information by adding quantified axioms
relating ∆ to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Making the Symbolic Heap Relational

Goal:

Modify the basic symbolic heap such that:

1 Enforces the existence and uniqueness of memory contents

Symbolically using constraints
Replace original constraints with new constraints ∆ enforcing
these invariants.

2 Preserves all the partial information encoded in the original
symbolic heap

Restore existing information by adding quantified axioms
relating ∆ to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Making the Symbolic Heap Relational

Goal:

Modify the basic symbolic heap such that:

1 Enforces the existence and uniqueness of memory contents

Symbolically using constraints
Replace original constraints with new constraints ∆ enforcing
these invariants.

2 Preserves all the partial information encoded in the original
symbolic heap

Restore existing information by adding quantified axioms
relating ∆ to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Making the Symbolic Heap Relational

Goal:

Modify the basic symbolic heap such that:

1 Enforces the existence and uniqueness of memory contents

Symbolically using constraints
Replace original constraints with new constraints ∆ enforcing
these invariants.

2 Preserves all the partial information encoded in the original
symbolic heap

Restore existing information by adding quantified axioms
relating ∆ to the original constraints

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Enforcing Existence and Uniqueness on the Symbolic Heap

Consider any location A for which invariants are violated.

Replace constraint on i ’th edge from A with constraint ∆i

enforcing memory invariants on each concrete element in A.

These ∆i ’s are of the form Γi ∧Θi

Γ: Each concrete element →
one abstract target

Θ: In this abstract target, select
one concrete element.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.

∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Γ’s

For any assignment v to i :

Γj (v) ∧ Γm(v) is UNSAT.∨
j Γj (v) is VALID.

Want to ensure i ’th element of A points to exactly one Bj .

Introduce an uninterpreted function δ(i) that selects an edge
for the i ’th element.

⇒ Each concrete element in A has exactly one abstract target.

Correctly allows different indices to point to same target.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

a

b

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

a

b

We can now prove the assertion!

Because x[k] and y[k] point to different locations under
δ(k) ≤ 0 ∧ δ(k) ≥ 1 ⇒ UNSAT

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

a

b

We can now prove the assertion!

Because x[k] and y[k] point to different locations under
δ(k) ≤ 0 ∧ δ(k) ≥ 1 ⇒ UNSAT

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Encodes x[i] cannot point to a and b at the same time.

But x[i] can still point to two different elements in a

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Why do we need Θ?

Encodes x[i] cannot point to a and b at the same time.

But x[i] can still point to two different elements in a

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Θ

Want the heap abstraction to encode that i ’th element of A
must point to exactly one element in B .

Since τ is a function, each element in A is mapped to exactly
one element in B .

Since τ is uninterpreted, each element in A is mapped to an
unknown element in B .

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Θ

Want the heap abstraction to encode that i ’th element of A
must point to exactly one element in B .

Since τ is a function, each element in A is mapped to exactly
one element in B .

Since τ is uninterpreted, each element in A is mapped to an
unknown element in B .

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Θ

Want the heap abstraction to encode that i ’th element of A
must point to exactly one element in B .

Since τ is a function, each element in A is mapped to exactly
one element in B .

Since τ is uninterpreted, each element in A is mapped to an
unknown element in B .

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Θ

Want the heap abstraction to encode that i ’th element of A
must point to exactly one element in B .

Since τ is a function, each element in A is mapped to exactly
one element in B .

Since τ is uninterpreted, each element in A is mapped to an
unknown element in B .

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Constructing Θ

Want the heap abstraction to encode that i ’th element of A
must point to exactly one element in B .

Since τ is a function, each element in A is mapped to exactly
one element in B .

Since τ is uninterpreted, each element in A is mapped to an
unknown element in B .

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

Now encodes that each element in x points to exactly one
concrete element in a or b.

Can now prove assertion.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Example

Now encodes that each element in x points to exactly one
concrete element in a or b.

Can now prove assertion.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

Using original heap, can prove
x[2] cannot point to a[4].

But using the modified heap,
we can no longer prove this.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

Using original heap, can prove
x[2] cannot point to a[4].

But using the modified heap,
we can no longer prove this.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

So far, we have enforced the memory invariants; but we did
not preserve all the information in the original symbolic heap.

Using original heap, can prove
x[2] cannot point to a[4].

But using the modified heap,
we can no longer prove this.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

Solution:

If edge in original heap is qualified by 〈φmay , φmust〉, then
introduce axioms of the form:

∀i . Γ ⇒ φmay

∀i . φmust ⇒ Γ

Can prove everthing provable under original symbolic heap

And much more because we have relational reasoning

Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

Solution:

If edge in original heap is qualified by 〈φmay , φmust〉, then
introduce axioms of the form:

∀i . Γ ⇒ φmay

∀i . φmust ⇒ Γ

Can prove everthing provable under original symbolic heap

And much more because we have relational reasoning

Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

Solution:

If edge in original heap is qualified by 〈φmay , φmust〉, then
introduce axioms of the form:

∀i . Γ ⇒ φmay

∀i . φmust ⇒ Γ

Can prove everthing provable under original symbolic heap

And much more because we have relational reasoning

Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

Solution:

If edge in original heap is qualified by 〈φmay , φmust〉, then
introduce axioms of the form:

∀i . Γ ⇒ φmay

∀i . φmust ⇒ Γ

Can prove everthing provable under original symbolic heap

And much more because we have relational reasoning

Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Preserving Existing Information

Solution:

If edge in original heap is qualified by 〈φmay , φmust〉, then
introduce axioms of the form:

∀i . Γ ⇒ φmay

∀i . φmust ⇒ Γ

Can prove everthing provable under original symbolic heap

And much more because we have relational reasoning

Set of provable assertions is now monotonic with respect to
the precision of the original heap abstraction

This does not hold without enforcing memory invariants!

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Experiments

We implemented this technique as part of
our Compass program analysis system

Verified memory safety properties (absence
of buffer overruns, null derefereces, and
casting errors) in a number of Unix
Coreutils applications and on OpenSSH.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Experiments

We implemented this technique as part of
our Compass program analysis system

Verified memory safety properties (absence
of buffer overruns, null derefereces, and
casting errors) in a number of Unix
Coreutils applications and on OpenSSH.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Compared relational symbolic heap with basic non-relational
symbolic heap for verifying memory safety in OpenSSH.

Relational analysis symbolically enforces memory invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Compared relational symbolic heap with basic non-relational
symbolic heap for verifying memory safety in OpenSSH.

Relational analysis symbolically enforces memory invariants.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Relational technique is very precise.

Technique without memory invariants reports many false positives.

Surprisingly, more precise is also more efficient.

Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Relational technique is very precise.

Technique without memory invariants reports many false positives.

Surprisingly, more precise is also more efficient.

Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Relational technique is very precise.

Technique without memory invariants reports many false positives.

Surprisingly, more precise is also more efficient.

Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Relational technique is very precise.

Technique without memory invariants reports many false positives.

Surprisingly, more precise is also more efficient.

Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Results on OpenSSH

Relational Non-relational

Time (s) 261 788
Max memory used (MB) 208 763
reported buffer errors 2 77
reported null errors 3 53
reported cast errors 0 28

Total # of errors 5 158
Total # of false positives 1 154

Relational technique is very precise.

Technique without memory invariants reports many false positives.

Surprisingly, more precise is also more efficient.

Memory invariant alone is sufficient to discharge many facts.

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

Thank You!

Dillig, I., Dillig, T., Aiken, A.:
Fluid updates: Beyond strong vs. weak updates.
In: ESOP (2010) 246–266

Reps, T.W., Sagiv, S., Wilhelm, R.:
Static program analysis via 3-valued logic.
In: CAV (2004) 15–30

Gopan, D., Reps, T., Sagiv, M.:
A framework for numeric analysis of array operations.
In: POPL (2005) 338–350

Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.:
Revamping TVLA: Making parametric shape analysis competitive.
Lecture Notes in Computer Science 4590 (2007) 221

Manevich, R.:
Partially Disjunctive Shape Analysis.
PhD thesis, Tel Aviv University (2009)

Isil Dillig Thomas Dillig Alex Aiken Symbolic Heap Abstraction with Demand-Driven Axiomatization of Memory Invariants

