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Abstract

A key challenge for program verification systems is precise reasoning about the con-

tents of unbounded data structures. A particularly important and widely-used family

of data structures is containers, which support operations for inserting, retrieving, re-

moving, and iterating over sets of elements. Typical examples of containers include

arrays, lists, vectors, maps, sets, deques, queues, etc.

In this thesis, we propose a novel static analysis technique that allows precise

reasoning for container-manipulating programs. We describe a symbolic heap ab-

straction which integrates reasoning about containers directly into a heap analysis,

allowing the technique to precisely track heap objects as they flow in and out of

containers. The proposed analysis is fully automatic and practical, scaling to real

programs of up to 100,000 lines of code. Furthermore, the abstraction we propose

can reason about key-value correlations and supports arbitrary nestings of container

data structures.

More specifically, in this thesis, we first describe a static analysis for a language

with only the most basic kind of container, namely arrays. We then refine this basic

analysis to obtain a more precise heap abstraction, which is always guaranteed to

be relational. We then generalize the framework used for reasoning about arrays to

general-purpose containers, which may not expose a notion of position.

The symbolic heap abstraction we describe reduces a large part of the difficulty

of reasoning about containers to linear inequalities over integers. Thus, the efficiency

of our static analysis is contingent upon practical techniques for solving systems of

linear integer inequalities. Another contribution of this thesis is a new and practical

algorithm called Cuts-from-Proofs for solving linear inequalities over integers.
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Chapter 1

Introduction

“If builders built buildings the way programmers write programs, then the first wood-

pecker that came along would destroy civilization.” –Gerald M. Weinberg

1.1 Motivation

Today, as a civilization, we are becoming increasingly dependent on software: Every

check we deposit, every business transaction we make, every trip on the subway, and

even every phone call we make increasingly depends on the correct behavior of many

layers of complex software. Furthermore, this trend is here to stay: In the near future,

we will not be able to drive our cars, get medical treatment, or even heat our houses

without being at the mercy of the alleged correctness of a web of computer software.

Unfortunately, despite this crucial reliance on software applications in every aspect

of our daily lives, most software applications deployed today remain buggy, unreliable,

and prone to crashes and security exploits. For example, just in the year 2010, various

software errors were responsible for brake failures in Toyota Prius [12], for the removal

of wrong organs from 25 donors in the UK [15], and for the double-charging of many

customers on black Friday [13].

As these examples illustrate, software errors have very serious consequences in our

daily lives, but standard techniques for enforcing software quality, such as testing,

1



CHAPTER 1. INTRODUCTION 2

do not guarantee the absence of catastrophic software errors. In contrast to more

conventional testing and bug finding approaches, the goal of software verification is

to discover and eradicate all potential errors of a given kind from software systems.

While proving the absence of certain kinds of software errors is a desirable goal,

it is well known that deciding any non-trivial property of an arbitrary program writ-

ten in a Turing-complete language is impossible. Thus, to guarantee the termination

of the verification algorithm for all input programs, sound program analyses over-

approximate the behavior of the input program rather than constructing an exact

representation of the set of program states. Unfortunately, this overapproximation

comes at a cost: Although the error states discovered by the analysis are always inside

the overapproximation, they may be outside the actual feasible states of the program.

In this case, the program analysis tool reports a so-called false alarm or false positive,

which is a spurious report generated by the analysis that does not correspond to an

actual error in the original program.

Thus, the key challenge in software verification is to construct abstractions (i.e.,

overapproximations) of the program that are sufficiently precise so as to minimize

the number of false alarms generated by the tool. Furthermore, this abstraction must

be practical enough to scale to programs of realistic size and should not consume

too much of the programmer’s time, for example by requiring many cumbersome

annotations. Finally, the error reports generated by the tool should be accessible to

programmers so that users of the analysis can easily understand and diagnose these

error reports.

1.2 The Challenge

A particularly big challenge in program verification arises from the difficulty of stat-

ically reasoning about contents of heap data structures: Since the size of data struc-

tures such as dynamically allocated arrays, lists, maps etc. are unknown at compile

time, program analysis techniques typically make gross over-approximations involving

these unbounded data structures. For example, a common approach is to represent

all elements in an array using one abstract memory location called a summary node
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such that modifications to a particular array element contaminate the information

available to the analysis about all the other array elements. The result of this coarse

abstraction is a conservative, but very imprecise analysis that is unable to reason

about individual elements of arrays or other unbounded data structures.

This thesis addresses the problem of precise and automatic static reasoning about

an important class of commonly-used data structures known as containers, which

support operations such as inserting, retrieving, removing, and iterating over a set of

elements. Typical examples of containers include arrays, vectors, lists, maps, stacks,

queues, sets, multimaps, and so on.

Precise reasoning about containers is, in practice, very important because these

data structures are used extremely widely. For example, some containers such as

arrays are often built-in language constructs, and other containers like maps and

vectors are often provided as part of standard libraries, such as the Standard Template

Library in C++ or the Collection libraries in Java.

Furthermore, the correctness argument of many program properties relies on a

fairly detailed understanding of container elements. For instance, to prove that a

value read from a map with a certain key k is valid (i.e., non-null), we must know

that the key k was previously inserted into the map. Similarly, to prove the safety of

a code fragment that iterates over a list and deletes all elements, we must know that

no elements in this list alias each other. In some cases, even control flow in a program

is determined by container elements: In C code, function pointers are frequently

stored in arrays, making a detailed understanding of array contents a prerequisite for

constructing a sufficiently precise call graph.

No previous fully-automatic and scalable technique for heap analysis is able to

precisely reason about container elements. In particular, all practical techniques for

this purpose treat container data structures as a bag of values and are unable to

reason about key-value correlations. The consequence of this coarse abstraction is

that modifying one element in the container pollutes the analysis information for

all other elements. Thus, in realistic programs which make heavy use of containers,

standard analysis techniques are woefully inadequate for verification purposes.
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1.3 Contributions

In this thesis, we describe the first approach for precise, practical, and fully-automatic

reasoning about container data structures. Our static analysis seamlessly integrates

detailed, per-element reasoning about containers into a heap analysis for answering

queries about contents of memory locations. Our technique is capable of tracking

position-value and key-value correlations in data structures and allows precise rea-

soning about arbitrary nestings of containers. Furthermore, our technique is practical

enough to be applied for the verification of memory safety properties in real, com-

monly used programs that manipulate heap objects through containers.

The main idea underlying our technique is to construct a symbolic heap abstraction

that combines a graph-based representation of heap objects with logical formulas on

points-to edges. These constraints qualifying points-to edges allow our technique to

express correlations between keys and values and reduces much of the difficulty of

data structure reasoning to a combination of standard logic operations and integer

constraints.

More specifically, the rest of this thesis is organized as follows:

• Chapter 2 surveys the standard graph-based heap abstraction.

• Chapter 3 gives an overview of our symbolic heap representation.

• Chapter 4 presents a static analysis for a language with the most basic kind of

container, namely arrays.

• Chapter 5 explains how the technique from Chapter 4 can be extended to en-

force important memory invariants, which is necessary for a fully-relational

abstraction.

• Chapter 6 generalizes the analysis described so far to general containers, such

as maps, stacks, and sets.

• Chapter 7 surveys existing approaches for reasoning about arrays and heap data

structures.
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• Chapter 8 presents a new algorithm for solving linear inequalities over integers.

Since our analysis partly reduces heap reasoning to constraints involving integer

inequalities, a practical algorithm for solving these constraints greatly benefits

the analysis.

• Finally, Chapter 9 concludes.



Chapter 2

Background

The most standard abstraction for reasoning about heap contents is a may points-to

graph. A may points-to graph is a directed graph where nodes correspond to abstract

memory locations, which represent one or more concrete (run-time) locations, and an

edge from one node A to another node B in this graph indicates that any concrete

location represented by A may point to any concrete location represented by node B.

To illustrate the standard heap representation, consider the following code snippet,

written in C-like syntax:

int** foo(int** b, int size)

{

int** a = malloc(sizeof(int*) * size);

for(int i=0; i<size; i++)

{

a[i] = b[i];

}

return a;

}

In this code snippet, b, which is an input to the program, points to an array of

integer arrays. The code snippet in foo dynamically allocates a new array pointed

to by variable a, and after the loop, each a[i] points to the same elements pointed

to by b[i].

6
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M

*b

**b

a

b

Figure 2.1: An example may points-to graph

Figure 2.1 shows an abstraction describing the state of the heap at the end of

function foo. The abstract memory locations labeled a and b represent the locations

of program variables a and b. The abstract location labeled *b represents the array

of integer arrays pointed to by b, and **b abstracts all integer arrays pointed to by

any b[i]. Finally, the node labeled M models all elements of the heap allocated array

in function foo.

In this standard abstraction, observe that there is a distinction between two classes

of abstract memory locations: Nodes indicated by double circles are summary loca-

tions, which represent multiple concrete locations, and nodes indicated by single

circles are non-summary locations, representing exactly one concrete location. For

instance, in Figure 2.1, the node labeled M is a summary node because it represents all

concrete elements of the dynamically allocated array. On the other hand, the node

labeled a is a non-summary location as it corresponds to one single concrete memory

location.

Unfortunately, this standard abstraction has two important drawbacks for repre-

senting container data structures, such as arrays. First of all, since a points-to edge

from some summary node A to another summary node B indicates that any concrete

location in A may point to any concrete location in B, an edge in this representation

corresponds to a full cross-product between the run-time locations modeled by the

summary nodes. As a result, this abstraction cannot precisely encode correlations

between the indices involved in the points-to relations. For instance, in our example,

the standard abstraction cannot express that the i’th element in the heap allocated
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array points to the same location as the i’th element in array b. Instead, the abstrac-

tion shown in Figure 2.1 encodes that the i’th element in array a may point to the

same location as any element in array b.

The second drawback of the standard representation is that it requires making

a distinction between two kinds of updates to abstract memory locations when per-

forming a flow-sensitive analysis, i.e., an analysis that is sensitive to the order of

statements in the program. Specifically, a strong update to an abstract memory lo-

cation A removes all existing points-to edges outgoing from A before establishing a

new points-to relation. On the other hand, a weak update preserves existing points-to

edges from A but also adds new ones. Whenever safe, it is preferable to apply strong

updates in order to increase the precision of the analysis.

Unfortunately, applying strong updates to an abstract memory location A requires

that A be a non-summary location. If A is a summary location, we cannot apply a

strong update to A, because modifying one concrete element represented by A does

not affect the other concrete elements also abstracted by A. As a result, existing

analyses deal with this difficulty in one of two ways: (i) They either allow only

weak updates to summary locations, or (ii) more sophisticated techniques, such as

3-valued logic analysis [73], first isolate individual elements of an unbounded data

structure via a focus operation to apply a strong update, and the isolated element

is folded back into the summary location via a dual blur operation to avoid creating

an unbounded number of abstract memory locations. While the latter approach

allows precise reasoning about unbounded data structures, finding the right focus and

blur strategies is challenging and hard to automate without the aid of user-provided

instrumentation predicates [73].



Chapter 3

Overview of the Symbolic Heap

In this chapter, we give an overview of our heap representation, called the symbolic

heap abstraction, that overcomes the main problems of the standard heap represen-

tation (described in Chapter 2) for reasoning about container data structures.

3.1 Key Ideas

Similar to the heap representation surveyed in Chapter 2, the symbolic heap abstrac-

tion is a directed graph where nodes correspond to abstract memory locations and a

directed edge from one node A to another node B indicates that concrete elements

modeled by A may point to concrete elements modeled by B. However, our symbolic

heap abstraction differs from the standard heap representation in three important

ways to facilitate reasoning about container data structures.

The first key idea that underlies our approach is that container data structures are

modeled using indexed locations rather than as summary locations described in Chap-

ter 2. More specifically, any abstract memory location associated with a container

is labeled 〈l〉i where the subscript i is an index variable that ranges over the indices

in the container. While an indexed location 〈l〉i abstracts all the elements in the

container, the unique index variable i associated with this location allows us to select

particular subsets of concrete elements by specifying constraints on i. For example, if

an array a is modeled using an indexed location 〈a〉i, then the constraint i = 1 selects

9
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only the second element in the array. Similarly, the constraint 0 ≤ i < size allows us

to refer to all the elements of the array in the range [0, size).

The second important distinction between the symbolic heap and the standard

heap abstraction is that points-to edges in this graph are qualified by constraints on

the index variables associated with the source and target nodes. These constraints

allow us to specify which elements in the source container point to which elements

in the target container. For example, consider two arrays a and b modeled by the

indexed locations 〈a〉i1 and 〈b〉i2 . If an edge from 〈a〉i1 to 〈b〉i2 is qualified by the

constraint i1 = i2∧ 0 ≤ i1 < size, then this symbolic heap fragment expresses that all

elements of array a whose indices are in the range [0, size) point to an element with

the same corresponding index in array b.

The third idea behind the symbolic heap analysis is that it overcomes the di-

chotomy between the traditional weak and strong updates to abstract memory loca-

tions described in Chapter 2. More specifically, points-to relations in the symbolic

heap are modified by what we call a fluid update operation, which applies to any kind

of abstract memory location, regardless of how many concrete locations this node rep-

resents. For example, consider a store operation a[2] = c, where array a is modeled

by the node 〈a〉i. To statically analyze a store operation to the container, we first

compute a constraint φindex on i that specifies which elements in the container are

modified by the store. In our simple example, this index constraint is i = 2, express-

ing that only the third element in the array is modified. Once this constraint φindex

is computed, a fluid update operation then adds an edge from the node modeling the

container to its new points-to target (in our example, a node modeling variable c)

under this index constraint φindex. Finally, to encode that those elements that were

modified by the store operation no longer point to their old points-to targets, the

fluid update operation conjoins all existing points-to edges outgoing from the con-

tainer with ¬φindex. The symbolic heap after the fluid update now reflects that only

those elements that satisfy φindex are modified, whereas all other elements (i.e., those

that satisfy ¬φindex) remain unchanged.

Unfortunately, in the general case, we may not know the exact subset of the con-

crete elements in the container that are modified by a store operation. For example,
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consider the statement a[complicated()%5] = c, where complicated is a very com-

plex function whose return value the static analysis cannot understand. In this case,

we cannot write a constraint that exactly describes the only element in the array that

is modified by the statement. Thus, in the general case, the constraint φindex that

we compute is not an exact description of the modified elements, but is instead an

overapproximation. In our example, although we cannot give an exact description of

the one element that is modified, we can nonetheless overapproximate those elements

that may be modified using the constraint 0 ≤ i ≤ 4, since any number modulo 5

must be in the range [0, 4].

Now, recall that the fluid update operation sketched out above requires us to

compute the negation of the constraint φindex in order to describe those elements in

the container that are not modified. However, if φindex is an overapproximation of

those container elements that are modified, then ¬φindex is an underapproximation of

the container elements that are not modified. This is problematic because, for our

heap abstraction to be sound, we also need to be able to overapproximate container

elements that are not modified by store operations.

To deal with the difficulties that arise from combining the negation operation

with approximations, the constraints we use in the symbolic heap are a special kind

of constraints that we call bracketing constraints. More specifically, bracketing con-

straints are pairs of constraints of the form 〈φmay, φmust〉 where φmay corresponds to

an overapproximation and φmust is an underapproximation.

The crucial property of bracketing constraints is that they preserve over- and

underapproximations under the following negation operation:

¬〈φmay, φmust〉 = 〈¬φmust,¬φmay〉

In other words, if φmay and φmust are valid over- and underapproximations of some

property P , then ¬φmust and ¬φmay are correct over- and underapproximations of

the property ¬P . Figure 3.1 clarifies this discussion pictorially using Venn diagrams.

Since bracketing constraints are closed under all the boolean connectives including

negations, all the constraints that are used in the symbolic heap representation and
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in the fluid update operation are bracketing constraints. Furthermore, since the fluid

update operation relies on performing negation in a sound way, the use of bracketing

constraints is crucial for the correctness of our approach.

(a) Yellow region exact description of P ,
green region overapproximation, red re-
gion underapproximation

(b) Yellow region exact description of ¬P

(c) Taking the complement (negation) of
underapproximation of P yields overap-
proximation of ¬P

(d) Taking the complement (negation) of
overapproximation of P yields underap-
proximation of ¬P

Figure 3.1: Complements of over- and underapproximations

3.2 Example

To illustrate the key ideas discussed so far, we now consider the following example

program fragment written in C-like syntax:
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void send_packets(struct packet** buf, int c, int size) {

assert(2*c <= size);

for(int j=0; j< 2*c; j+=2) {

if(transmit_packet(buf[j]) == SUCCESS) {

free(buf[j]); buf[j] = NULL;

}

}

}

The function send packets takes an array buf of packet∗’s, an integer c repre-

senting the number of high-priority packets to be sent, and an integer size, denoting

the number of elements in buf. All even indices in buf correspond to high-priority

packets whereas all odd indices are low-priority.1 This function submits one high-

priority packet at a time; if the transfer is successful (which may depend on network

traffic), it sets the corresponding element in buf to NULL to indicate the packet has

been processed.

The figure above shows the symbolic heap representation at the entry of send packets.

Here, the dereference of variable buf is an array, hence, it is qualified by an index vari-

able i, and the location labeled 〈∗buf〉i represents all elements of array ∗buf. We use

the convention that primed index variables on an edge qualify the edge’s target, and

unprimed index variables qualify the source. If the over- and underapproximations

on an edge are the same, we write a single constraint instead of a pair.

In the drawing, the edge from buf to 〈∗buf〉i is qualified by i′ = 0 because buf

points to the first element of the array 〈∗buf〉i. The constraint i = i′ on the edge

from 〈∗buf〉i to ∗〈∗buf〉i indicates that the i’th element of array ∗buf points to some

corresponding target called ∗〈∗buf〉i.

The concrete elements modified by the statement buf[j] = NULL cannot be spec-

ified exactly at analysis time since the success of transmit packet depends on an

1The distinction between even and odd-numbered elements in a network buffer arises in many real network
applications, for example in packet scheduling [65] and p2p video streaming [70] .
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environment choice (i.e., network state). The loop may, but does not have to, set all

even elements between 0 and 2c to NULL. Hence, the best over-approximation of the

indices of ∗buf modified by this statement is 0 ≤ i < 2c ∧ i mod 2 = 0. On the other

hand, the best underapproximation of the set of indices updated in the loop is the

empty set (indicated by the constraint false) since no element is guaranteed to be

updated by the statement buf[j] = NULL.

Figure 3.2 shows the symbolic heap representation at the end of send packets.

Since the set of concrete elements that may be updated by buf[j] = NULL is given

by 〈0 ≤ i < 2c ∧ i mod 2 = 0, false〉, the fluid update adds an edge from 〈∗buf〉i to

∗NULL under this bracketing constraint. The existing edge from 〈∗buf〉i to ∗〈∗buf〉i
is preserved under ¬〈0 ≤ i < 2c ∧ i mod 2 = 0, false〉. Thus, assuming i ≥ 0, this is

equivalent to 〈true, i ≥ 2c ∨ i mod 2 6= 0〉. Since the initial constraint on the edge

stipulates i = i′, the edge constraint after the fluid update becomes 〈i = i′, (i ≥

2c ∨ i mod 2 6= 0) ∧ i = i′〉. The new edge condition correctly and precisely states that

any element of ∗buf may still point to its original target when the function exits, but

only those elements whose index satisfies the constraint i ≥ 2c or i mod 2 6= 0 must

point to their original target.

As this example illustrates, our approach has the following salient characteristics:

• The combination of indexed location and constraints on points-to edges allows

our abstraction to reason about position-value correlations in arrays and other

containers.

Figure 3.2: The points-to graph at the end of function send packets
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• Our technique does not require concretizing individual elements of containers

to statically analyze updates in a precise way, making operations such as focus

and blur [73] unnecessary.

• Our technique never constructs explicit partitions of containers, making this

approach less vulnerable to the kind of state space explosion problem that other

precise approaches, such as [73], are prone to.

• Our analysis preserves partial information despite imprecision and uncertainty.

In the above example, although the result of transmit packet is unknown, the

analysis can still determine that no odd packet is set to NULL.



Chapter 4

Analysis of a Language with Arrays

In this chapter, we describe our full static analysis algorithm for a small imperative C-

like language with arrays, pointers, and pointer arithmetic. This language is defined

by the following grammar:

Program P := F+

Function F := define f(v1, . . . , vn) = S

Statement S := S1;S2 | v1 = v2 |v1 = c | v1 = alloc(v2) |v1 = v2[v3] | v2[v3] = v1

| v1 = v2 ⊕ v3 |v1 = v2 intop v3 | v1 = v2 predop v3 |
if v 6= 0 then S1 else S2 | while v 6= 0 do S end

In this grammar, v is a variable, and c is an integer constant. Types are defined by

the grammar:

τ := int | pointer(array(τ))

Load (v1 = v2[v3]) and store (v2[v3] = v1) statements are defined on pointers v2 and

integers v3, and we assume programs are well-typed. The expression v[i] first deref-

erences v and then selects the i’th element of the array pointed to by v. Pointer

arithmetic v1 = v2 ⊕ v3 makes v1 point to offset v3 in the array pointed to by v2.

Integer operations (intop) include +,−, and ×. Predicate operators (predop) are

=, 6= and <, and predicates evaluate to 0 (false) or 1 (true). The alloc(v2) statement

allocates an array with v2 elements.

16
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4.1 Operational Semantics

Figure 4.1 present an operational semantics of our language with arrays. In the

operational semantics, a concrete memory location lc is a pair (s, i) where s is a start

address for a block of memory and i is an offset from s. For scalars, we use the

notation (v, ·) to indicate that the value stored in lc is v and that the offset is not

relevant. The environment E: Var → lc maps variables to concrete locations, and

the store S: lc → lc maps locations to other locations. The notation S ′ = S[l ← e]

denotes that store S ′ is identical to store S except that it maps location l to e. The

function newloc(S, c) returns the start address of freshly allocated memory containing

c cells such that no cell overlaps existing memory cells.

4.1.1 Constraint Language

The constraints used in the analysis are defined by:

Term T := c | v | T1 intop T2 |select(T1, T2) | deref(T )

Literal L := true | false |T1 predop T2 | T mod c = 0

Atom A := L | ¬A | A1 ∧A2 | A1 ∨A2

Constraint C := 〈ANC, ASC〉

Terms are constants, variables, arithmetic terms, and the uninterpreted function

terms select(T1, T2), which represents the result of selecting element at index T2 of

array T1, and deref(T ), which represents the result of dereferencing T .

Literals are true, false, comparisons (=, 6=, <) between two terms, and divisibility

checks on terms. Atomic constraints A are arbitrary boolean combinations of liter-

als. Satisfiability and validity of atomic constraints are decided over the combined

theory of uninterpreted functions and linear integer arithmetic extended with divisi-

bility predicates. Bracketing constraints C are pairs of atomic constraints of the form

〈ANC, ASC〉 representing necessary and sufficient conditions for some fact. A brack-

eting constraint is well-formed if and only if ASC ⇒ ANC. We write dφe to denote

the necessary condition of a bracketing constraint φ and bφc to denote the sufficient

condition of φ.
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Sequence

E,S ` s1 : S′

E,S′ ` s2 : S′′

E,S ` s1; s2 : S′′

Variable Assign

E ` v1 : l1, v2 : l2
S ` l2 : e

E,S ` v1 = v2 : S[l1 ← e]

Constant Assign

E ` v : l
S′ = S[l← (c, ·)]
E,S ` v = c : S′

Alloc

E ` v1 : l1, v2 : l2
S ` l2 : (c, 0)
s = newloc(S, c)
S′ = S[(s, 0)← 0, ..., (s, c− 1)← 0]
S′′ = S′[l1 ← (s, 0)]

E,S ` v1 = alloc(v2) : S′′

Array Load

E ` v1 : l1, v2 : l2, v3 : l3
S ` l3 : (c, ·)
S ` l2 : (s, i)
S ` (s, i+ c) : e
S′ = S[l1 ← e]

E,S ` v1 = v2[v3] : S′

Array Store

E ` v1 : l1, v2 : l2, v3 : l3
S ` l3 : (c, ·)
S ` l2 : (s, i)
S ` l1 : e
S′ = S[(s, i+ c)← e]

E,S ` v2[v3] = v1 : S′

Pointer plus

E ` v1 : l1, v2 : l2, v3 : l3
S ` l2 : (s, i)
S ` l3 : (c, ·)
S′ = S[l1 ← (s, i+ c)]

E,S ` v1 = v2 ⊕ v3 : S′

Intop, Predop

E ` v1 : l1, v2 : l2, v3 : l3
S ` l2 : (c, ·)
S ` l3 : (c′, ·)
S′ = S[l1 ← (c op c′, ·)]
E,S ` v1 = v2 op v3 : S′

If-True

E ` v : l
S ` l : (c, ·)
c 6= 0 : true
E,S ` s1 : S′

E,S ` ifv 6= 0 then s1else s2 : S′

If-False

E ` v : l
S ` l : (c, ·)
c 6= 0 : false
E,S ` s2 : S′

E,S ` ifv 6= 0 then s1else s2 : S′

While-True

E ` v : l
S ` l : (c, ·)
c 6= 0 : true
E,S ` s : S′

E,S′ ` while v 6= 0 do s end : S′′

E,S ` while v 6= 0 do s end : S′′

While-False

E ` v : l
S ` l : (c, ·)
c 6= 0 : false

E,S ` while v 6= 0 do s end : S

Figure 4.1: Operational Semantics for the Language with Arrays
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Example 1 Consider an edge from location 〈∗a〉i to ∗NULL qualified by 〈0 ≤ i <

size, 0 ≤ i < size〉. This constraint expresses that all elements of the array with

indices between 0 and size are NULL. Since it is sufficient that i is between 0 and size

for 〈∗a〉i to point to ∗NULL, it follows that all elements in this range are NULL. On the

other hand, if the constraint on the edge is 〈0 ≤ i < size, false〉, any element in the

array may be NULL, but no element must be NULL.

Boolean operators ¬,∧, and ∨ on bracketing constraints are defined as:

¬〈ANC, ASC〉 = 〈¬ASC,¬ANC〉
〈ANC1, ASC1〉 ? 〈ANC2, ASC2〉 = 〈ANC1 ? ANC2, ASC1 ? ASC2〉 (? ∈ {∧,∨})

Since the negation of the overapproximation for some set S is an underapproxima-

tion for the complement of S, necessary and sufficient conditions are swapped under

negation. The following lemma is easy to show:

Lemma 1 Bracketing constraints preserve the well-formedness property ASC ⇒ ANC

under boolean operations.

Proof 1 We only prove this for disjunction. We have ASC1 ⇒ ANC1 and ASC2 ⇒
ANC2. By weakening, this implies ASC1 ⇒ ANC1 ∨ ANC2 and ASC2 ⇒ ANC1 ∨ ANC2.

From this, it follows immediately that ASC1 ∨ ASC2 ⇒ ANC1 ∨ ANC2.

Definition 1 (Satisfiability, Validity) Satisfiability and validity of bracketing con-

straints are defined as follows:

SAT(〈ANC, ASC〉) ≡ SAT(ANC) VALID(〈ANC, ASC〉) ≡ VALID(ASC)

Lemma 2 Bracketing constraints do not obey the law of the excluded middle and

non-contradiction, but they satisfy the following weaker properties:

VALID(d〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉e) UNSAT(b〈ANC, ASC〉 ∧ ¬〈ANC, ASC〉c)

Proof 2 d〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉e is (ANC ∨ ¬ASC) ⇔ (ASC ⇒ ANC) ⇔ true, where

the last equivalence follows from well-formedness. Similarly, b〈ANC, ASC〉 ∧ ¬〈ANC, ASC〉c

is (ASC ∧ ¬ANC)⇔ false, where the last step follows from the well-formedness property.
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4.2 Abstract Locations and the Symbolic Heap

Abstract locations are named by access paths [64] and defined by the grammar:

Access Path π := lv | allocid | 〈π〉i | ∗ π | c | π1 intop π2 | >

Here, lv denotes the abstract location corresponding to variable v, and allocid denotes

locations allocated at program point id. Any array location is represented by an

access path 〈π〉i, where π represents the array and i is an index variable ranging over

the indices of π (similar to [35]). The location ∗π represents the dereference of π.

The access path c denotes constants, π1 intop π2 represents the result of performing

intop on π1 and π2, and > denotes any possible value.

A memory access path, denoted πmem, is any access path that does not involve c,

π1 intop π2, and >. We differentiate memory access paths because only locations that

are identified by memory access paths may be written to; other kinds of access paths

are only used for encoding values of scalars.

Given a concrete store S and an environment E mapping program variables to

locations as defined in Section 4.1, a function γ maps abstract memory locations to

a set of concrete locations (s1, i1) . . . (sk, ik):

γ(E,S, lv) = {E(v)}
γ(E,S, allocid) = {(l, 0) | l is the result of allocation at program point id }
γ(E,S, 〈π〉i) = {(l, indexj)| (l, indexj) ∈ S ∧ (l, 0) ∈ γ(E,S, π))}
γ(E,S, ∗π) =

⋃
li∈γ(E,S,π) S(li)

Since we will concretize abstract memory locations under a certain assumption about

their index variables, we define another function γc, similar to γ but qualified by

constraint φ. The only interesting modification is for 〈π〉i:

γc(E,S, 〈π〉i, φ) = {(l, indexj)| (l, indexj) ∈ S ∧ (l, 0) ∈ γc(E,S, π, φ) ∧ SAT(φ[indexj/i])}
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As is standard in points-to graphs, we enforce that either

πmem = π′mem or γ(E, S, πmem) ∩ γ(E, S, π′mem) = ∅

.

A symbolic heap is a directed graph where nodes denote abstract locations iden-

tified by access paths and edges qualified by bracketing constraints denote points-to

relations. Since we want to uniformly encode points-to and value information, we

extend the notion of points-to relations to scalars. For example, if an integer a has

value 3, the symbolic heap representation contains a “points-to” edge from a’s loca-

tion to some location named *3, thereby encoding that the value of a is 3. Hence,

the memory graph also encodes the value of each scalar.

Formally, a symbolic heap is defined by

Γ : πmem → 2(π,φ)

mapping a source location to a set of (target location, constraint) pairs. The edge

constraint φ may constrain program variables to encode the condition under which

this points-to relation holds. More interestingly, φ may also qualify the source and

the target location’s index variables, thereby specifying which elements of the source

may (and must) point to which elements of the target.

The combination of indexed locations and edge constraints qualifying these index

variables makes the symbolic heap both expressive but also non-trivial to interpret. In

particular, if the source location is an array, we might want to determine the points-to

targets of a specific element (or some of the elements) in this array. However, the

symbolic heap does not directly provide this information since edge constraints are

parametric over the source and the target’s index variables. Consider the following

points-to relation:

Suppose we want to know which location(s) the fourth element of array 〈∗a〉i1 points

to. Intuitively, we can determine the target of the fourth element of 〈∗a〉i1 by substi-

tuting the index variable i1 by value 3 in the edge constraint 0 ≤ i1 < 5∧ i′2 = i1 + 1.
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This would yield i′2 = 4, indicating that the fourth element of 〈∗a〉i points to the

target of the fifth element of 〈∗b〉i2 .
While a simple substitution allows us to determine the target of a specific array

element as in the above example, in general, we need to determine the points-to

targets of those array elements whose indices satisfy a certain constraint. Since this

constraint may not limit the index variable to a single value, determining points-

to targets of locations using the symbolic heap requires existential quantification in

general. In the above example, we can determine the possible targets of elements of

〈∗a〉i1 whose indices are in the range [0, 3] (i.e., satisfy the constraint 0 ≤ i1 ≤ 3) by

eliminating the existentially quantified variable i1 from the following formula:

∃i1.(0 ≤ i1 ≤ 3 ∧ (0 ≤ i1 < 5 ∧ i′2 = i1 + 1))

This yields 1 ≤ i′2 ≤ 4, indicating that the target’s index must lie in the range [1, 4].

To formalize this intuition, we define an operation φ1 ↓I φ2, which yields the

result of restricting constraint φ1 to only those values of the index variables I that

are consistent with φ2.

Definition 2 (φ1 ↓I φ2) Let φ1 be a constraint qualifying a points-to edge and let

φ2 be a constraint restricting the values of index variables I. Then,

φ1 ↓I φ2 ≡ Eliminate(∃I. φ1 ∧ φ2)

where the function Eliminate performs existential quantifier elimination.

The quantifier elimination performed in this definition is exact because index

variables qualifying the source or the target never appear in uninterpreted functions

in this context; thus the elimination can be performed using [29].
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4.3 Analysis Using Fluid Updates

In this section, we give deductive rules describing the basic pointer and value analysis

using fluid updates. An invariant mapping

Σ : Var→ πmem

maps program variables to abstract locations, and the environment Γ defining the

symbolic heap abstraction maps memory access paths to a set of (access path, con-

straint) pairs (recall Section 4.2). Judgments of the form

Σ ` a : la

indicate that variable a’s location is represented using the abstract location la, and

judgments of the form

Γ `j πs : 〈πtj ,φj〉

state that 〈πtj , φj〉 ∈ Γ(πs).

We first explain some notation used in Figure 4.2. The function U(φ) replaces

the primed index variables in constraint φ with their unprimed counterparts, e.g.,

U(i′1 = 2) is (i1 = 2). This operation is necessary when traversing edges of the symbolic

heap because the target location of an incoming edge becomes the source of the

outgoing edge from this location as we traverse points-to edges. We use the notation

Γ ∧ φ as shorthand for:

Γ′(π) = {〈πl, φl ∧ φ〉 | 〈πl, φl〉 ∈ Γ(π)}

A union operation Γ = Γ′ ∪ Γ′′ on symbolic heaps is defined as:

〈π′, φ′ ∨ φ′′〉 ∈ Γ(π) ⇔ 〈π′, φ′〉 ∈ Γ′(π) ∧ 〈π′, φ′′〉 ∈ Γ′′(π).

We write I(π) to denote the set of all index variables used in π, and we say “i is index

of π” if i is the outermost index variable in π.

The basic rules of the pointer and value analysis using fluid updates are presented

in Figure 4.2. We start by explaining the Array Load rule. In this inference rule, each
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Assign

Σ ` v1 : lv1 , v2 : lv2
Γ′ = Γ[lv1 ← Γ(lv2 )]

Σ,Γ ` v1 = v2 : Γ′

Alloc

Σ ` v1 : lv1
Γ′ = Γ[lv1 ← 〈allocid〉i] ∧ i′ = 0 (i fresh)

Σ,Γ ` v1 = alloc(v2) : Γ′

Array Load

Σ ` v1 : lv1 , v2 : lv2 , v3 : lv3
Γ `j lv2 : 〈π2j , φ2j 〉 (i index of π2j

)

Γ `k lv3 : 〈∗π3k , φ3k 〉
Γ `l π2j : 〈πtjl , φtjl 〉
φ′2jk = U(φ2j [i′ − π3k/i′])
φ′tjkl

= φtjl ↓I(π2j
) φ

′
2jk

Γ′ = Γ[lv1 ← (
⋃
jkl〈πtjl , φ′tjkl

∧ φ3k 〉)]

Σ,Γ ` v1 = v2[v3] : Γ′

Array Store (Fluid Update)

Σ ` v1 : lv1 , v2 : lv2 , v3 : lv3
Γ `j lv1 : 〈π1j , φ1j 〉
Γ ` lv2 : {〈π21 , φ21 〉 . . . 〈π2n , φ2n 〉} (ik index of π2k )
Γ `l lv3 : 〈∗π3l , φ3l 〉

Γ′ =


π ← Γ(π) if π 6∈ {π21 , . . . π2n}

π ← {〈π′
k, φ

′
k ∧ ¬

∨
kl(U(φ2k [i′k − π3l/i

′
k]) ∧ φ3l )〉

| 〈π′
k, φ

′
k〉 ∈ Γ(π2k )} if π = π2k ∈ {π21 , . . . π2n}

Γ′′ =


π21 ← (

⋃
jl〈π1j ,U(φ21 [i′1 − π3l/i′1]) ∧ φ3l ∧ φ1j 〉)

. . .
π2n ← (

⋃
jl〈π1j ,U(φ2n [i′n − π3l/i′n]) ∧ φ3l ∧ φ1j 〉)

Σ,Γ ` v2[v3] = v1 : Γ′ ∪ Γ′′

Pointer Arithmetic

Σ ` v1 : lv1 , v2 : lv2 , v3 : lv3
Γ `j lv2 : 〈π2j , φ2j 〉
Γ `k lv3 : 〈∗π3k , φ3k 〉
φ′2jk = φ2j [(i′ − π3k )/i′] (i index of π2j

)

Γ′ = Γ[lv1 ← (
⋃
jk 〈π2j , φ′2jk ∧ φ3k 〉)]

Σ,Γ ` v1 = v2 ⊕ v3 : Γ′

Predop

Σ ` v1 : lv1 , v2 : lv2 , v3 : lv3
Γ `j lv2 : 〈∗π2j , φ2k 〉 (rename all index variables to fresh ~f2)

Γ `k lv3 : 〈∗π3k , φ3k 〉 (rename all index variables to fresh ~f3)

φjk = (π2j predop π3k ) ∧ φ2j ∧ φ3k
φtrue
jk = Eliminate(∃ ~f2, ~f3. φjk)

Γ′ = Γ[lv1 ← (
⋃
jk〈∗1, φtrue

jk 〉 ∪ 〈∗0,¬φ
true
jk 〉)]

Σ,Γ ` v1 = v2 predop v3 : Γ′

If Statement

Σ ` v : lv
Γ ` lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ,Γ ` S1 : Γ′

Σ,Γ ` S2 : Γ′′

ΓT = Γ′ ∧ φtrue

ΓF = Γ′′ ∧ φfalse

Σ,Γ ` if v 6= 0 then S1 else S2 : ΓT ∪ ΓF

While Loop

ΓP = Parametrize(Γ)
Σ ` v : lv
ΓP ` lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ,ΓP ` S : Γ′′ Γ′′′ = Γ′′ ∧ φtrue

∆ = Γ′′′ − ΓP ∆n = fix(∆)
∆gen = Generalize(∆n)
Γfinal = Γ ◦∆gen (Generalized Fluid Update)

Σ,Γ ` while v 6= 0 do S end : Γfinal

Figure 4.2: Rules describing the basic analysis

π2j represents one possible points-to target of v2 under constraint φ2j . Because π2j is

an array, the constraint φ2j qualifies π2j ’s index variables. Now, each π3k represents

one possible (scalar) value of v3. Since we want to access the element at offset v3 of

v2’s target, we select the element at offset v3 by substituting i′ with i′ − π3k in the

constraint φ2j , which effectively increments the value of i′ by π3k . Now, we need to
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*3

*5

*0

Figure 4.3: Here, a points to the third element of an array b of size 10. The first three
elements of b may have the value 3 or 5, and the elements in the range [3, 9] are guaranteed
to have value 0.

determine the targets of those elements of π2j whose indices are consistent with φ′2jk ;

hence, we compute φtjl ↓I(π2j ) φ
′
2jk

(recall Section 4.2) for each target πtjl of π2j . The

following example illustrates the analysis of loads from array elements.

Example 2 Consider performing the array load operation t = a[1] on the symbolic

heap shown in Figure 4.3. Here, lv2 is the memory location labeled a, the only target

π2j of lv2 is 〈∗b〉i, and the only π3k is 1. The constraint φ′2jk is U((i′ = 2)[i′/i′ − 1]),

which is i = 3. Thus, we need to determine the target(s) of the fourth element in

array 〈∗b〉i. There are three targets πtjl of 〈∗b〉i: ∗3, ∗5, ∗0; hence, we compute φ′tjkl
once for each πtjkl . The only satisfiable edge under constraint i = 3 is the edge to *0

and we compute Eliminate(∃i. 3 ≤ i < 10 ∧ i = 3), which is true. Thus, the analysis

determines that the value of t is 0 after this statement.

The Array Store rule performs a fluid update on an abstract memory location

associated with an array. In this rule, each π2k ∈ {π21 . . . π2n} represents an array

location, a subset of whose elements may be written to as a result of this store. Γ′

represents the symbolic heap after removing the points-to edges from array elements

that are written to by this store while preserving all other edges, and Γ′′ represents

all edges added by this store operation. Hence, Γ′ and Γ′′ are unioned to obtain the

symbolic heap after the store. Note that Γ′ preserves the existing targets of any access

path π 6∈ {π21 . . . π2n}. The points-to targets of those elements of π21 , . . . π2n that are

not affected by this store are also preserved in Γ′ while elements that are written to

by the store are killed in Γ′. This is because elements that are updated by the store
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*3

*5

*0

*7

Figure 4.4: Graph after processing the statements in Example 3

Figure 4.5: Colored rectangles illustrate the partitions in Example 3; equations on the left
describe the ordering between variables.

must satisfy U(φ2k [i′k−π3l/i
′
k])∧φ3l for some k, l such that the edge to π′k is effectively

killed for those elements updated by the store. On the other hand, elements that are

not affected by the store are guaranteed not to satisfy U(φ2k [i′k − π3l/i
′
k]) ∧ φ3lfor any

k, l, i.e., ¬
∨
kl(U(φ2k [i′k − π3l/i

′
k])∧φ3l) = false, and the existing edge to π′k is therefore

preserved. Note that negation is only used in the Fluid Update rule; the soundness

of negation, and therefore the correctness of fluid updates, relies on using bracketing

constraints.

Example 3 Consider the effect of the following store instructions

a[k] = 7; a[m] = 3;
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on the symbolic heap shown in Figure 4.3. Suppose k and m are symbolic, i.e., their

values are unknown. When processing the statement a[k] = 7, the only location

stored into, i.e., π2k , is 〈∗b〉i. The only π3l is k under true, and the only π1j is

∗7 under true. The elements of 〈∗b〉i updated by the store are determined from

U((i′ = 2)[i′ − k/i′]) = (i = k + 2). Thus, a new edge is added from 〈∗b〉i to ∗7

under i = k + 2 but all outgoing edges from 〈∗b〉i are preserved under the constraint

i 6= k + 2. Thus, after this statement, the edge from 〈∗b〉i to ∗3 and ∗5 are qualified

by the constraint 〈0 ≤ i < 3 ∧ i 6= k + 2, false〉, and the edge to ∗0 is qualified

by 3 ≤ i < 10 ∧ i 6= k + 2. The instruction a[m] = 3 is processed similarly; Figure

4.4 shows the resulting heap abstraction after these store instructions. Note that if

k = m, the graph correctly reflects a[k] must be 3. This is because if k = m, the

constraint on the edge from 〈∗b〉i to ∗7 is unsatisfiable. Since the only other feasible

edge under the constraint i = k + 2 is the one to ∗3, k = m implies a[k] must be 3.

As Example 3 illustrates, fluid updates do not construct explicit partitions of

the heap when different symbolic values are used to store into an array. Instead,

all “partitions” are implicitly encoded in the constraints, and while the constraint

solver may eventually need to analyze all of the cases, it will often not need to do

so because a query is more easily shown satisfiable or unsatisfiable for other reasons.

As a comparison, in Example 3, approaches that eagerly construct explicit partitions,

such as [48], may be forced to enumerate all partitions created due to stores using

symbolic indices. Figure 4.3 shows that eight different heap configurations arise after

performing the updates in Example 3. In fact, only one more store using a symbolic

index could create over 50 different heap configurations.

In the Pointer Arithmetic rule, the index variable i′ is replaced by i′ − π3k in the

index constraint φ2j , effectively incrementing the value of i′ by v3. We also discuss

the Predop rule, since some complications arise when array elements are used in

predicates. In this rule, we make use of an operation π which converts an access path

to a term in the constraint language:

πR = πR if πR ∈ {c, lv, allocid} ∗π = deref(π)

〈π〉i = select(π, i) π1 intop π2 = π1 intop π2
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In this rule, notice that index variables used in the targets of lv2 and lv3 are first re-

named to fresh variables ~f2 and ~f3 to avoid naming conflicts and are then existentially

quantified and eliminated similar to computing φ1 ↓I φ2. The renaming of index vari-

ables is necessary since naming conflicts arise when 〈∗π2j , φ2j〉 and 〈∗π3k , φ3k〉 refer

to different elements of the same array. 1

In the If Statement rule, observe that the constraint under which v 6= 0 evaluates

to true (resp. false) is conjoined with all the edge constraints in Γ′ (resp. Γ′′);

hence, the analysis is path-sensitive. We defer discussion of the While Loop rule until

Section 4.4.

4.3.1 Soundness of the Memory Abstraction

We now state the soundness theorem for our symbolic heap abstraction. For con-

venience of presentation, we use the notation S(ls, lt) = true if S(ls) = lt and

S(ls, lt) = false otherwise. Similarly, we write Γ(πs, πt) = φ to denote that the brack-

eting constraint associated with the edge from πs to πt is φ, and φ is false if there is

no edge between πs and πt. Recall that I(π) denotes the set of index variables in π,

and we write σI(π) to denote some concrete assignment to the index variables in I(π);

σ′I(π) is an assignment to I(π) with all index variables primed. The notation σ(φ)

applies substitution σ to φ. Finally, we use a function eval?(φ,E, S) for ? ∈ {+,−}
which evaluates the truth value of constraint φ for some concrete E, S. To do this,

we first define an evalt function on terms in the constraint language as follows:

evalt(c, E, S) = {c}
evalt(v,E, S) = {S(li)| li ∈ γ(E,S, v)}
evalt(select(deref(t1, t2)), E, S) = {S(s1, i1 + c) | (s1, i1) ∈ evalt(t1, E, S) ∧ (c, ·) ∈ evalt(t2, E, S)}
evalt(deref(t), E, S) = {S(li) | li ∈ evalt(t, E, S)}
evalt(t1 intop t2, E, S) = {v1i + v2j | (v1i, ·) ∈ S(li) ∧ li ∈ evalt(t1, E, S)

∧(v2j , ·) ∈ S(lj) ∧ lj ∈ evalt(t2, E, S)}

1Quantifier elimination performed here may not be exact; but since we use bracketing constraints, we compute
quantifier-free over- and underapproximations. For instance, [51] presents a technique for computing covers of exis-
tentially quantified formulas in combined theories involving uninterpreted functions. Another alternative is to allow
quantification in our constraint language.
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Since the language only allows pointers to arrays, terms involving select are guaranteed

to be followed by a deref. Thus, we give a definition for evalt(select(deref(t1, t2))), but

not for evalt(select(t1, t2)). We define val(t) for a term t as follows:

val(t, E, S) = {si + offi|(si, offi) ∈ evalt(t, E, S)}

where offi = 0 if (si, ·) ∈ evalt(t, E, S).

Finally, we define the eval? (? ∈ {+,−}) function for constraints in the following

way:

eval?(b, E, S) = b, b ∈ {true, false}

eval?(t1 predop t2, E, S) =

{ ∨
vi∈val(t1,E,S),vj∈val(t2,E,S)(vi predop vj) if ? = +∧
vi∈val(t1,E,S),vj∈val(t2,E,S)(vi predop vj) if ? = −

eval?(t mod c, E, S) =

{ ∨
vi∈val(t,E,S)(vi mod c) if ? = +∧
vi∈val(t,E,S)(vi mod c) if ? = −

eval?(¬φ,E, S) =

{
¬eval−(φ,E, S) if ? = +

¬eval+(φ,E, S) if ? = −
eval?(φ1 ∧ φ2, S) = eval?(φ1, E, S) ∧ eval?(φ2, E, S)

eval?(φ1 ∨ φ2, S) = eval?(φ1, E, S) ∨ eval?(φ2, E, S)

Definition 3 (Agreement) We say a concrete environment and concrete store (E, S)

agree with abstract environment and abstract store (Σ,Γ) (written (E, S) ∼ (Σ,Γ))

if and only if the following conditions hold:

1. E and Σ have the same domain

2. If S(ls, lt) = b and Γ(πs, πt) = 〈φ+, φ−〉, then for all substitutions σI(πs), σ
′
I(πt)

such that ls ∈ γc(E, S, πs, σI(πs)) and lt ∈ γc(E, S, πt, σ′I(πt)
), we have:

eval−(σ′(σ(φ−)), E, S)⇒ b⇒ eval+(σ′(σ(φ+)), E, S)
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Theorem 1 (Soundness) Let P be any program. If (E, S) ∼ (Σ,Γ), then

E, S ` P : S ′ ⇒ (Σ,Γ ` P : Γ′ ∧ (E, S ′) ∼ (Σ,Γ′))

We sketch the proof of soundness of the fluid update operation in Section 4.8.

4.4 Fluid Updates in Loops

In loop-free code, a store modifies one array element, but stores inside a loop often

update many elements. In this section, we describe a technique to over- and under-

approximate the set of concrete elements updated in loops. While this step requires

finding some invariants, the particular invariant generation technique is orthogonal

to fluid updates; other invariant generation techniques than the one we propose can

be used with the proposed analysis.

The main idea of our approach is to analyze the loop body and perform a fixed-

point computation parametric over an iteration counter. Once a fixed-point is reached,

we use quantifier elimination to infer elements that may and must be modified by the

loop. 2

4.4.1 Parametrizing the Abstraction

When analyzing loops, our analysis first identifies the set of scalars modified by the

loop; we call such values loop-dependent scalars. We then infer equalities relating each

loop-dependent scalar to the unique iteration counter k for that loop. The iteration

counter k is assumed to be initialized to 0 at loop entry and is incremented by one

along the back edge of the loop. We say that a loop-dependent value i is linear with

respect to the loop if i − i0 = c ∗ k for some constant c 6= 0. We compute a set

of equalities relating loop-dependent scalars to the iteration counter using standard

linear invariant generation techniques [58, 31]. At loop entry, we use these linear

equalities to modify Γ as follows:

2In this section, we assume no pointer arithmetic occurs in loops; our implementation, however, does not make
this restriction.
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Figure 4.6: The effect set after analyzing the loop body once in function send packets

• Let π be a linear loop-dependent scalar with the linear relation π = π0 + c ∗ k,

and let 〈∗πt, ct〉 ∈ Γ(π). Then, replace πt by πt + c ∗ k.

• Let π be a loop-dependent value not linear in k. Then, Γ(π)← {〈>, true〉}.

Thus, all loop-dependent scalars are expressed in terms of their value at iteration

k or >; analysis of the loop body proceeds as described in Section 4.3.

Example 4 Consider the send packets function from Section 3.2. Here, we infer the

equality j = j0 + 2k, and Γ initially contains an edge from j to ∗(j0 + 2k).

4.4.2 Fixed-Point Computation

Next, we perform a fixed-point computation (parametric on k) over the loop’s net

effect on the symbolic heap abstraction. Performing a fixed-point computation is

necessary because there may be loop carried dependencies through heap reads and

writes. We define the net effect of the loop on the symbolic heap during some iteration

k as the effect set :

Definition 4 (Effect Set ∆) Let Γ′ be a symbolic heap obtained by performing

fluid updates on Γ. Let ∆ = Γ′ − Γ be the set of edges such that if φ qualifies edge

e in Γ and φ′ qualifies e in Γ′, then ∆ includes e under constraint φ′ ∧ ¬φ (where

φ = false if e 6∈ Γ). We call ∆ the effect set of Γ′ with respect to Γ.

Example 5 Figure 4.6 shows the effect set of the loop in send packets after analyzing

its body once. (Edges with false constraints are not shown.) Note that the constraints

qualifying edges in this figure are parametric over k.
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We define Γ ◦∆ as the generalized fluid update that applies ∆ to Γ:

Definition 5 (Γ ◦∆) Let π be a location in Γ and let Sπ denote the edges in ∆

whose source is π. Let δ(Sπ) be the disjunction of constraints qualifying edges in Sπ,

and let I be the set of index variables used in the target locations in Sπ but not the

source. Let Update(π) = Eliminate(∃I.δ(Sπ)). Then, for each π ∈ Γ:

(Γ ◦∆)[π] = (Γ(π) ∧ ¬Update(π)) ∪ Sπ

The above definition is a straightforward generalization of the fluid update operation

given in the Store rule of Figure 4.2. Instead of processing a single store, it reflects the

overall effect on Γ of a set of updates defined by ∆. The fixed-point computation is

performed on ∆. We denote an edge from location πs to πt qualified by constraint φ as

〈πs, πt〉\φ. Since we compute a least fixed point, 〈πs, πt〉\〈false, true〉 ∈⊥ for all legal

combinations (i.e., obeying type restrictions) of all 〈πs, πt〉 pairs. Note that the edge

constraints in ⊥ are the inconsistent bound 〈false, true〉 representing the strongest

over- and underapproximations. We define a t and v on effect sets as follows:

〈πs, πt〉\〈(φnc1 ∨ φnc2), (φsc1 ∧ φsc2)〉 ∈ ∆1 t∆2

⇐⇒
(〈πs, πt〉\〈φnc1, φsc1〉 ∈ ∆1 ∧
〈πs, πt〉\〈φnc2, φsc2〉 ∈ ∆2)

∆1 v ∆2

⇐⇒
((φnc1 ⇒ φnc2 ∧ φsc2 ⇒ φsc1)

∀〈πs, πt〉\〈φnc1, φsc1〉 ∈ ∆1 ∧
∀〈πs, πt〉\〈φnc2, φsc2〉 ∈ ∆2)

Let Γ0 be the initial symbolic heap abstraction before the loop. We compute Γnentry

representing the symbolic heap at entry to the n’th iteration of the loop as:

Γnentry =

{
Γ0 if n = 1

Γ0 ◦ (∆n−1[k − 1/k]) if n > 1

Γnexit is obtained by analyzing the body of the loop using Γnentry at the entry point

of the loop. The substitution [k − 1/k] normalizes the effect set with respect to the

iteration counter so that values of loop-dependent scalars always remain in terms of
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their value at iteration k. We define ∆n representing the total effect of the loop in n

iterations as follows:

∆n =

{
⊥ if n = 0

(Γnexit − Γnentry) t∆n−1 if n > 0

First, observe that ∆n−1 v ∆n by construction (monotonicity). Second, observe the

analysis cannot create an infinite number of abstract locations because (i) arrays

are represented as indexed locations, (ii) pointers can be dereferenced only as many

times as their types permit, (iii) all allocations are named by their allocation site, (iv)

scalars are represented in terms of their linear relation to k. However, our constraint

domain does not have finite ascending chains, therefore we define a widening operator

on bracketing constraints (but note widening was never required in our experiments).

Let ~β denote the variables in the unshared literals between any constraint φ1 and φ2.

Then, we widen bracketing constraints as follows:

φ1 5 φ2 = 〈∃~β. (dφ1e ∨ dφ2e), ∀~β. (bφ1c ∧ bφ2c)〉

Example 6 The effect set obtained in Example 5 does not change in the second

iteration; therefore the fixed-point computation terminates after two iterations.

4.4.3 Generalization

In this section, we describe how to generalize the final effect set after a fixed-point is

reached. This last step allows the analysis to extrapolate from the elements modified

in the k’th iteration to the set of elements modified across all iterations and is based

on existential quantifier elimination.

Definition 6 (Generalizable Location) We say a location identified by π is gen-

eralizable in loop l if (i) π is an array, (ii) if πi is used as an index in a store to π, then

πi must be a linear function of the iteration counter, and (iii) if two distinct indices

πi and πj may be used to store into π, then either only πi, or only πj (or neither) is

used to index π across all iterations.
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Intuitively, if a location π is generalizable in l, then all writes to π at different

iterations of l must refer to distinct concrete elements. Clearly, if π is not an array,

different iterations of the loop cannot refer to distinct concrete elements. If an index

used to store into π is not a linear function of k, then the loop may update the same

concrete element in different iterations. Furthermore, if two values that do not have

the same relation with respect to k are used to store into π, then they may update

the same element in different iterations.

In order to generalize the effect set, we make use of a variable N unique for each

loop that represents the number of times the loop body executes. If the value of N

can be determined precisely, we use this exact value instead of introducing N . For

instance, if a loop increments i by 1 until i ≥ size, then it is easy to determine that

N = size− i0, assuming the loop executes at least once. 3 Finally, we generalize the

effect set as follows:

• If an edge qualified by φ has a generalizable source whose target does not men-

tion k, the generalized constraint is φ′ = Eliminate(∃k. (φ ∧ 0 ≤ k < N)).

• If an edge qualified by φ does not have a generalizable source, the generalized

constraint is φ′ = Eliminate〈∃k. φ ∧ 0 ≤ k < N, ∀k. 0 ≤ k < N ⇒ φ〉 4.

• If π is a loop-dependent scalar, then ∆[π]← ∆[π][N/k].

We now briefly explain these generalization rules. If the source of an edge is gener-

alizable, for each iteration of the loop, there exists a corresponding concrete element

of the array that is updated during this iteration; thus, k is existentially quantified in

both the over- and underapproximation. The constraint after the existential quantifier

elimination specifies the set of concrete elements updated by the loop. If the source

is not generalizable, it is unsafe to existentially quantify k in the underapproximation

since the same concrete element may be overwritten in future iterations. One way

3Even though it is often not possible to determine the exact value of N , our analysis utilizes the constraint
(∀k.0 ≤ k < N ⇒ ¬φterm(k)) ∧ φterm(N) stating that the termination condition φterm does not hold on iterations
before N but holds at the N ’th iteration. Our analysis takes this “background axiom” into account when determining
satisfiability and validity.

4We can eliminate a universally quantified variable k from ∀k.φ by eliminating existentially quantified k in the
formula ¬∃k.¬φ.
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to obtain an underapproximation is to universally quantify k because if the update

happens in all iterations, then the update must happen after the loop terminates.

According to the last rule, loop-dependent scalar values are assigned to their value

on termination. Once the effect set is generalized, we apply it to Γ0 to obtain the

final memory graph after the loop.

Example 7 Consider the effect set given in Figure 4.6. In the send packets function,

〈∗buf〉i is generalizable since j is linear in k and no other value is used to index

〈∗buf〉i. Furthermore, if the loop executes, it executes exactly c times; thus N = c.

To generalize the edge from 〈∗buf〉i to ∗NULL, we perform quantifier elimination on

〈∃k.i = j0 + 2k ∧ 0 ≤ j0 + 2k < 2c ∧ 0 ≤ k < c, false〉, which yields 〈j0 ≤ i ∧ i <

j0 + 2c ∧ (i − j0) mod 2 = 0, false〉. Since j0 is 0 at loop entry, after applying the

generalized effect set to Γ0 , we obtain the graph from Figure 3.2.

4.5 Implementation and Extensions

We have implemented the ideas presented in this chapter in the Compass program

verification framework for analyzing C programs. For solving constraints, Compass

utilizes a custom SMT solver called Mistral [36], which also provides support for sim-

plifying constraints. Compass does not assume type safety and handles casts soundly

using a technique based on physical subtyping [26]. Compass supports most fea-

tures of the C language, including structs, unions, multi-dimensional arrays, dynamic

memory allocation, and pointer arithmetic. To allow checking for buffer overruns,

Compass also tracks buffer and allocation sizes. For interprocedural analysis, Com-

pass performs a fully path- and context-sensitive summary-based bottom-up analysis.

All loop bodies are analyzed in isolation before the function or loop in which they are

defined; thus the techniques from Section 4.4 extend to nested loops.

While the language we consider in this chapter only allows loops with a single

exit point, techniques described in this chapter can be extended to loops with mul-

tiple break points either by transforming them to loops with a single exit point or

by introducing multiple iteration counters associated with each backedge, similar to
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the technique used in [52] for complexity analysis. Our implementation uses the

latter approach, since this approach is more precise for recovering linear invariants.

While the technique for analyzing loops described in Section 4.4 are easily extended

to tail-recursive functions, Compass performs a sound, but less precise, fixed-point

computation in the case of general recursion.

Compass allows checking arbitrary assertions using a static assert(. . .) primitive,

which can be either manually or automatically inserted (e.g., for memory safety prop-

erties). The static assert primitive also allows for checking quantified properties,

such as “all elements of arrays a and b are equal” by writing:

static_assert(buffer_size(b) == buffer_size(a));

for(i=0; i<buffer_size(a); i++) {

static_assert(a[i] == b[i]);

}

4.6 Experiments

4.6.1 Case Study on Example Benchmarks

To demonstrate the expressiveness of our technique, we evaluate it on 28 challenging

array benchmarks available at http://www.stanford.edu/~tdillig/array.tar.gz and

shown in Figure 4.7. The functions init and init noncost initialize all elements of

an array to a constant and an iteration-dependent value respectively. init partial

initializes part of the array, and init even initializes even positions. 2D array init

initializes a 2-dimensional array using a nested loop. The programs labeled buggy

exhibit subtle bugs, such as off-by-one errors. Various versions of copy copy all, some,

or odd elements of an array to another array. reverse reverses elements, while swap

(shown in Figure 4.8) swaps the contents of two arrays. double swap invokes swap

twice and checks that both arrays are back in their initial state. strcpy, strlen, and

memcpy implement the functionality of the standard C library functions and assert

their correctness. find (resp. find first nonnull) looks for a specified (resp. non-

null) element and returns its index (or -1 if element is not found). append appends
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the contents of one array to another, and merge interleave interleaves odd and even-

numbered elements of two arrays into a result array. The function alloc fixed size

initializes all elements of a double array to a freshly allocated array of fixed size,

and then checks that buffer accesses to the element arrays are safe. The function

alloc nonfixed size initializes elements of the double array a to freshly allocated

arrays of different size, encoded by the elements of another array b and checks that

accessing indices [0, b[i− 1]] of array a[i] is safe. Compass can automatically verify

the full functional correctness of all of the correct programs without any annotations

and reports all errors present in buggy programs. To check functional correctness, we

add static assertions as described in Section 4.5 and as shown in Figure 4.8.

Figure 4.7 reports for each program the total running time, memory usage (in-

cluding the constraint solver), number of queries to the SMT solver, and constraint

solving time. All experiments were performed on a 2.66 GHz Xeon workstation. We

believe these experiments demonstrate that Compass reasons precisely and efficiently

about array contents despite being fully automatic. As a comparison, while Compass

takes 0.01 seconds to verify the full correctness of copy, the approach described in

[48] reports a running time of 338.1 seconds, and the counterexample-guided abstrac-

tion refinement based approach described in [56] takes 3.65 seconds. Furthermore,

our technique is naturally able to verify the correctness of programs that manipulate

non-contiguous array elements (e.g., copy odd), as well as programs that require rea-

soning about arrays inside other arrays (e.g., alloc nonfixed size). Figure 4.7 also

shows that the analysis is memory efficient since none of the programs require more

than 2 MB. We believe this to be the case because fluid updates do not create explicit

partitions.

4.6.2 Checking Memory Safety on Unix Coreutils Applica-

tions

To evaluate the usefulness of our technique, we also check for memory safety errors on

five Unix Coreutils applications [14] that manipulate arrays and pointers in complex

ways. In particular, we verify the safety of buffer accesses and dereferences with no

annotations or false positives, except for two required annotations describing inputs
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Program Time Memory #Sat Solve
queries time

init 0.01s < 1 MB 172 0s

init nonconst 0.02s < 1 MB 184 0.01s

init partial 0.01s < 1MB 166 0.01s

init partial buggy 0.02s < 1 MB 168 0s

init even 0.04s < 1 MB 146 0.04s

init even buggy 0.04s < 1 MB 166 0.03s

2D array init 0.04s < 1 MB 311 0.04s

copy 0.01s < 1 MB 209 0.01s

copy partial 0.01s < 1 MB 220 0.01s

copy odd 0.04s < 1 MB 243 0.02s

copy odd buggy 0.05s < 1 MB 246 0.05s

reverse 0.03s < 1 MB 273 0.01s

reverse buggy 0.04s < 1 MB 281 0.02s

swap 0.12s 2 MB 590 0.11s

swap buggy 0.11s 2 MB 557 0.06s

double swap 0.16s 2 MB 601 0.1s

strcpy 0.07s < 1 MB 355 0.04s

strlen 0.02s < 1 MB 165 0.01s

strlen buggy 0.01s < 1 MB 89 0.01s

memcpy 0.04s < 1 MB 225 0.04s

find 0.02s < 1 MB 119 0.02s

find first nonnull 0.02s < 1 MB 183 0.02s

append 0.02s < 1 MB 183 0.01s

merge interleave 0.09s < 1 MB 296 0.07s

merge interleave
buggy 0.11s < 1 MB 305 0.09s

alloc fixed size 0.02s < 1 MB 176 0.02s

alloc fixed size buggy 0.02s < 1 MB 172 0.02s

alloc nonfixed size 0.03s < 1 MB 214 0.02

Figure 4.7: Case Study

to main: assume(buffer size(argv) == argc) and assume(argv! = NULL)). Compass is

even able to discharge some arbitrary assertions inserted by the original programmers.

Some of the buffer accesses that Compass can discharge rely on complex dependencies

that are difficult even for experienced programmers to track; see Section 4.7 for an

interesting example.
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void swap(int* a, int* b, int size) {

for(int i=0; i<size; i++) {

int t = a[i]; a[i] = b[i]; b[i] = t; }

}

void check_swap(int size, int* a, int* b) {

int* a_copy = malloc(sizeof(int)*size);

int* b_copy = malloc(sizeof(int)*size);

for(int i=0; i<size; i++) a_copy[i] = a[i];

for(int i=0; i<size; i++) b_copy[i] = b[i];

swap(a, b, size);

for(i=0; i<size; i++) {

static_assert(a[i] == b_copy[i]);

static_assert(b[i] == a_copy[i]);

}

free(a_copy); free(b_copy);

}

Figure 4.8: Swap Function from Figure 4.7. The static assertions check that all
elements of a and b are indeed swapped after the call to the swap function. Compass
verifies these assertions automatically in 0.12 seconds.

The chosen benchmarks are challenging for static analysis tools for multiple rea-

sons: First, these applications heavily use arrays and string buffers, making them

difficult for techniques that do not track array contents. Second, they heavily rely

on path conditions and correlations between scalars used to index buffers. Finally,

the behavior of these applications depends on environment choice, such as user input.

Our technique is powerful enough to deal with these challenges because it is capable

of reasoning about array elements, is path-sensitive, and uses bracketing constraints

to capture uncertainty. To give the reader some idea about the importance of these

components, 85.4% of the assertions fail if array contents are smashed and 98.2% fail

if path-sensitivity is disabled.

As Figure 4.9 illustrates, Compass is able to analyze all applications in under

2 seconds, and the maximum memory used both for the program verification and

constraint solving combined is less than 35 MB. We believe these running times and

memory requirements demonstrate that the current state of Compass is useful and

practical for verifying memory safety in real modest-sized C applications manipulating
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Program Lines Total Time Memory #Sat queries Solve Time

hostname 304 0.13s 5 MB 1533 0.12s

chroot 371 0.13s 3 MB 1821 0.10s

rmdir 483 1.05s 12 MB 3461 1.02s

su 1047 1.86s 32 MB 6088 1.69s

mv 1151 0.70s 21 MB 7427 0.68s

Total 3356 3.87s 73 MB 20330 3.61

Figure 4.9: Experimental results on Unix Coreutils applications

arrays, pointers, and scalars in complex ways.

4.7 Example from a Real Application

We now discuss an interesting buffer access from the Coreutils chroot application

that is quite challenging for a human to prove safe. Figure 4.10 presents a simplified

slice of the relevant segment of the chroot program. Here, our goal is to prove the

safety of two buffer accesses marked Buffer check 1 and Buffer check 2 in com-

ments. First, observe that there is no buffer access in main if getopt long does not

return -1 because usage() is an exit function, i.e., a call to usage terminates the

program. Therefore, only the return points 1, 2, and 4 in getopt long could have

been taken at points where a buffer is accessed. Second, observe that the if statement

marked Cond 1 exits if argc <= optind. Therefore, if program point (***) is reached,

only the exit point Return 4 could have been taken. This is because Return 1 is

taken if argc < 1; since optind is initialized to 0, Cond 1 would hold and (***) could

not be reached. Similarly, return point 2 could also not have been taken if (***) is

reached because return point 2 implies argc <= optind. Furthermore, observe that if

getopt long returns at return point 4, optind is at least 2. Thus, Buffer check 1 is

safe because argc is at least 3 inside the if statement marked Cond 2. It is now easy

to see why Buffer check 2 is also safe if Cond 2 holds. If Cond 2 does not hold, we

still need to prove that argv has at least one remaining element since argv is incre-

mented by optind+ 1 in the else branch. If the else branch is taken, from Cond 2, we
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have argc != optind+1, and from Cond 1, we know argc > optind. Therefore, argc

is strictly greater than optind+1, and Buffer check 2 is safe even if the else branch

is taken. Compass is able to prove these buffer accesses and many other challenging

ones safe fully automatically without any difficulty. As this example demonstrates,

the techniques presented in this chapter are not just limited to tracking contents of

arrays; they are equally powerful at reasoning about scalar and pointer values.

4.8 Soundness of the Fluid Update Operation

In this section, we present a proof by contradiction of the the fluid update rule from

Figure 4.2.

By assumption, (E, S) ∼ (Σ,Γ) before the fluid update, but suppose (E, S ′) 6∼
(Σ,Γ′) after the fluid update, i.e., there exist two concrete locations ls = (s, o) and

lt in Σ′ and two abstract locations πs and πt in Γ′ such that ls ∈ γc(E, S ′, πs, σI(πs))

and lt ∈ γc(E, S ′, πt, σ′I(πt)
) for some substitutions σ, σ′ and one of the following two

conditions holds:

1. S ′(ls, lt) = true, but eval+(σ′(σ(Γ′(πs, πt))), E, S
′) = false, or

2. S ′(ls, lt) = false, but eval−(σ′(σ(Γ′(πs, πt))), E, S
′) = true.

Since the arguments for conditions (1) and (2) are symmetric, we focus on dis-

proving (1). To disprove (1), we consider two cases:

1. Either the points-to edge from ls to lt was added due to this store instruction,

or

2. There was an edge from ls to lt before this instruction that was not killed by

the store.

We first consider (1). By assumption, (E, S) ∼ (Σ,Γ); hence, πs must correspond

to some π2k in the array store rule. Furthermore, σ must assign ik to o, otherwise

ls 6∈ γc(E, S
′, π2k , σI(π2k )). Also, πt must correspond to some π1j such that lt ∈
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γc(E, S, π1j , σ
′
I(π1j )) and eval+(σ′(φ1j), E, S) is true. Consider any π3l that represents

the value of v3 = o′ in this execution; for such a π3l , eval+(φ3l , E, S) must be true.

Thus, if an edge from ls to lt was added by the current store instruction but

eval+(σ′(σ(Γ′(πs, πt))), E, S
′) is false, then by the argument above and the fluid up-

date rule, it must be the case that:

eval+(σ′(σ((U(φ2k [i
′
k − π3l/i

′
k]) ∧ φ3l ∧ φ1j))), E, S) = false

From above, we already have eval+(σ′(φ1j), E, S) = true, and eval+(φ3l , E, S) = true.

Thus,

eval+(σ(U(φ2k [i
′
k − π3l/i

′
k])), E, S) = false (∗)

must hold for some σ such that ik : o. Consider substitution σ′′ that is the same

as σ, but all index variables are replaced by their primed counterparts. Clearly, (*)

implies:

eval+(σ′′(φ2k [i
′
k − π3l/i

′
k]), E, S) = false

Now consider an assignment that is identical to σ′′ but it assigns o− o′ to ik instead

of o. Since S ∼ Γ:

eval+(σ′′[i′k ← (o− o′)](φ2k), E, S) = true

because φ2k is the constraint under which the dereference of v2 is π2k and v3 = o′.

However, this contradicts eval+(σ′′(φ2k [i
′
k − π3l/i

′
k]), E, S) = false since π3l = o′.

We now consider (2), i.e., suppose there is an existing edge between ls and lt that

was not killed by this store, but σ′(σ(eval+(Γ(πs, πt))), E, S
′) = false. As before, πs

corresponds to some π2k of the store rule, otherwise, none of the constraints on the

outgoing edges of πs could have been weakened in the abstraction. The fluid update

weakens constraints by conjoining ¬(
∨
l,k(U(φ2k [i

′
k−π3l/i

′
k])∧φ3l)) with existing edge

constraints. For the edge between πs and πt to be killed, we must have

eval−(σ(U(φ2k [i
′
k − π3l/i

′
k]) ∧ φ3l), E, S) = true
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for some l, k. If we construct σ′′ from σ as in case (1), clearly:

eval−(σ′′(φ2k [i
′
k − π3l/i

′
k] ∧ φ3l), E, S) = true

As in the previous case, σ must assign ik to o; otherwise ls 6∈ γc(E, S ′, π2k , σI(π2k ));

hence σ′′ assigns i′k to o. Assume the concrete value of v3 is o′. If this store did not

update l2 and since S ∼ Γ before the store, eval−(σ′′[i′k ← (o−o′)](φ2k), E, S) = false.

Again, this contradicts

eval−(σ′′(φ2k [i
′
k − π3l/i

′
k] ∧ φ3l), E, S) = true

since π3l must represent the value of o′.
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int optind = 0;

int getopt_long (int argc, char **argv,...)

{

if(argc < 1)

return -1; /* Return 1 */

if(optind == 0)

optind = 1;

while( skip(argv[optind])

&& optind<argc) optind++;

if(optind>=argc)

return -1; /* Return 2 */

optind++;

if(str_prefix(options,

argv[optind-1])) {

optarg = argv[optind-1];

return 0; /* Return 3 */

}

return -1; /* Return 4 */

}

int main (int argc, char **argv) {

if (getopt_long (argc, argv, "+",

NULL, NULL) != -1) usage (EXIT_FAILURE);

if (argc <= optind) { /* Cond 1 */

error (0, 0, "missing operand");

usage (EXIT_FAILURE);

}

(***)

if (argc == optind + 1) { /* Cond 2 */

/* Buffer check 1 */

static_assert(buffer_size(argv) > 2);

argv[0] = shell; argv[1] = bad_cast ("-i");

argv[2] = NULL;

}

else argv += optind + 1;

/* Buffer check 2 */

static_assert(buffer_size(argv) > 0);

execvp (argv[0], argv);

}

Figure 4.10: A challenging buffer access from chroot



Chapter 5

Relational Symbolic Heap

In the previous chapter, we considered an analysis that allows precise reasoning about

programs that manipulate heap objects stored inside arrays. Unfortunately, while

having an accurate understanding of the contents of arrays is often necessary for

proving non-trivial properties about real programs, this information alone is also

often not sufficient to successfully verify properties of array-manipulating programs.

One coarse but accurate intuition is that while the technique proposed so far is good

at characterizing array writes, it can still lose information about array reads. To

illustrate this point, consider the following code example:

for(i = 0; i < n; i++) {

if (*)

a[i] = b[i]

else

a[i] = NULL;

}

Here we assume that the condition (*) is sufficiently complicated that whatever

static analysis we are using cannot understand it. Even in the presence of such

uncertainty, the technique described in Chapter 4 can still represent that for all i

in the domain of arrays a and b, either a[i] is equal to b[i] or a[i] is NULL on

exit from the loop. While we do not which of the two values each a[i] holds, the

45
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information about the array contents is quite precise. In fact, it is the most precise

information possible about what is written into array a given that we know nothing

about the conditional’s predicate. Now, consider the following code snippet, which

immediately follows the loop above:

x = a[k];

y = a[k];

if(x != NULL)

assert(y==b[k]);

What is needed to prove the assertion in this example? We need to know that (i) x

is either NULL or b[k], (ii) y is also either NULL or b[k], (iii) the two successive reads

from a[k] yield the same value regardless of a’s contents. The technique described

in Chapter 4 can naturally reason about (i) and (ii), but something more is needed

to reason about (iii). The difficulty is the uncertainty involving the actual value of

a[k]. If we proceed naively, the first read of a[k] can be NULL or b[k], and so x can be

either value. Similarly, the second read of a[k] can be NULL or b[k], and so y can also

be either value. Then, in reasoning about the assertion, it appears that x != NULL

can hold (since one possibility is that x is b[k]) at the same time that y == NULL also

holds (since one possibility is that y is NULL), and the assertion cannot be discharged.

We have lost the relationship between x and y, namely that in all executions x == y.

Establishing property (iii) is very important because it allows relational reasoning

in the presence of uncertainty by establishing correlations between values stored in

different heap locations (e.g., the relationship between x and y above). A standard

way to deal with this difficulty is to perform an explicit case split: Construct one

heap abstraction H where a[k]’s value is NULL and another heap abstraction H ′ where

a[k]’s value is b[k]. Since x and y both have the value NULL in heap H and both have

the value b[k] in H ′, the equality of x and y can be established and the assertion is

discharged [73, 22, 48]. Put another way, a case split on the possible values of a[k]

allows us to know that both reads of a[k] in the example return the same value.

In this chapter, we describe a relational version of the basic technique described

in Chapter 4 which avoids case splits on the heap abstraction, which we consider
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problematic for both practical and philosophical reasons:

• Case splits on the heap are generally eager operations: as illustrated above, first

the heap is split into the various possibilities and only then is the subsequent

code analyzed. Thus, we pay the full price of the case analysis up front, with-

out knowing whether the split is eventually needed to prove some property of

interest.

• Case splits can (and do) result in an exponential blow-up: Every time an ab-

stract location may point to n distinct memory locations, then n distinct copies

of the heap must be created and separately analyzed, quickly resulting in an

infeasible number of heap configurations. Even if the preceding point can be

addressed and the case analysis is somehow performed lazily, the state space

explosion problem from duplicating the abstract heaps still persists.

• The case splits are really just a form of disjunction (i.e., the disjunction of

n possible worlds). Given that disjunction is already required to represent

multiple possible contents of individual locations (e.g., a[k] may be either NULL

or b[k]), it would be conceptually simpler and presumably easier to implement

a system with only a single way of performing disjunctions.

This chapter describes a fully-relational heap analysis that does not construct

explicit case splits. More specifically, we develop a relational version of the basic

symbolic heap described in Chapter 4 that always enforces one very important and

primitive invariant that real computer memories satisfy but that is not enforced di-

rectly by standard heap abstractions: first, every memory location has at least one

value (existence) and second, every memory location has at most one value (unique-

ness).

Consider the original heap abstraction described above, where a[k] may be either

b[k] or NULL. As the informal reasoning we carried out suggests, this abstraction does

not prevent a[k] from simultaneously being equal to both b[k] and NULL. Thus, even

adjacent reads from a[k] cannot be proven to yield the same value. The case analy-

sis, in essence, enforces the existence and uniqueness invariant by creating multiple

disjoint heaps where the abstract memory location of interest has exactly one value.
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Figure 5.1: An exact symbolic heap

The key insight underlying this chapter is that we can create a single heap ab-

straction that enforces the existence and uniqueness invariants without requiring an

explicit case analysis of heap values. To be concrete, consider a heap abstraction

in which the possible points-to targets of a location a are x and y. Our technique

qualifies points-to edges from a to x with a formula φx and the edge to y with a

formula φy such that by construction, φx and φy are contradictory (guaranteeing that

a cannot simultaneously point to both x and y, enforcing uniqueness) and their dis-

junction is valid (guaranteeing that a points to at least one of x or y in every possible

world, enforcing existence). These formulas add no new mechanism, using the same

language of formulas already needed just to describe the contents of the heap. The

method is also inherently lazy; the formulas are small and all the work is deferred

until constraint solving is performed. The main advantage of this symbolic approach

is that, while a case analysis may eventually be needed in solving the constraints,

constraint solvers often avoid the full case analysis because satisfiability or validity

can often be easily established without examining the entire formula in detail, and

furthermore several disjoint heaps do not need to be separately analyzed.

Enforcing existence and uniqueness of memory contents directly leads to precise

relational reasoning. For instance, in the code example, suppose that the heap ab-

straction encodes a[k] is NULL under some constraint φ1 and b[k] under some constraint

φ2 such that φ1 and φ2 are contradictory. Then, it is easy to see that x and y are

equal to NULL under constraint φ1 and equal to b[k] under constraint φ2. Since φ1 and

φ2 are contradictory, the heap abstraction directly encodes x and y must have the

same value, allowing the assertion to be discharged.
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5.1 A Quick Overview

In this section, we give a high-level overview of our approach to relational heap

reasoning that directly builds on top of the symbolic heap abstraction described in

Chapter 4.

We say that a symbolic heap abstraction of Chapter 4 is exact if the over- and

underapproximations encoded in the bracketing constraints are identical. Observe

that if a symbolic heap is exact, it describes precisely one concrete heap such that

the abstraction already encodes the existence and uniqueness of values stored in

memory locations. This is the case because a key soundness invariant of the symbolic

heap abstraction is that the disjunction of all may conditions on edges outgoing

from an abstract location A is valid, while the pairwise conjunction of any two must

constraints on outgoing edges from A is unsatisfiable.

As an example, consider the symbolic heap shown in Figure 5.1. This symbolic

heap is exact since the may and must conditions on points-to edges are identical. In

particular, this abstract heap encodes a concrete heap where the fifth element of an

array a points to X and all other elements point to Y . Observe that this symbolic

heap encodes that no concrete element in array a can simultaneously point to both

X and Y because the may conditions on the edges to X and Y are disjoint, thereby

encoding uniqueness of the value stored in any concrete element in a. Similarly, this

symbolic heap also encodes that every element in a has some value (i.e., existence)

since the disjunction of the must conditions is true.

In practice, except for the simplest heaps, symbolic heaps are rarely exact. Con-

sider the imprecise symbolic heap in Figure 5.2. This abstraction encodes that any

element of array a in the range [0, 4] may point to X, but no element must point to

X. On the other hand, any element in the array may point to Y , but elements whose

indices are not in the range [0, 4] are guaranteed to point to Y . Such a symbolic

heap no longer encodes existence and uniqueness of concrete elements; for example,

elements in the range [0, 4] may point to X or Y or neither. More technically, we can

see that the conjunction of the may constraints is now satisfiable (allowing a memory

location to point to two different places simultaneously), and the disjunction of the
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Figure 5.2: An inexact symbolic heap

must constraints is not valid (allowing a memory location to possibly have no value

at all).

Hence, as illustrated by these examples, while an exact symbolic heap, such as the

one from Figure 5.1, encodes existence and uniqueness, the normal situation of an

imprecise symbolic heap such as the one from Figure 5.2 does not. Observe that the

use of bracketing constraints is not the source of this difficulty; any heap abstraction

that encodes only an over- or an underapproximation is imprecise and will suffer

from the same problem. In fact, bracketing constraints only improve the situation

by making it explicit whether the abstraction enforces existence and uniqueness of

memory contents.

To be able to reason about existence and uniqueness invariants in the presence

of uncertainty without performing case splits, our approach augments the symbolic

heap abstraction with a technique we call demand-driven axiomatization of memory

invariants. Specifically, whenever a bracketing constraint on a points-to edge becomes

imprecise (e.g., due to imprecise loop invariants or branches on values that are not

statically known), our technique replaces this imprecise bracketing constraint with a

special formula of the form

∆ = ∆δ ∧∆τ

such that, by construction, the introduction of these ∆ constraints enforces the exis-

tence and uniqueness of the value stored in each memory location. The demand-driven

aspect of our method is again that we only introduce these extra constraints for edges

in the points-to graph where the bracketing constraint is not exact.

Of course, we do not want to discard the information encoded by the original

bracketing constraints because they might still provide useful information despite
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being imprecise. Hence, to combine reasoning about memory invariants and heap

contents, our technique introduces a quantified axiom of the form

∀i1, . . . im. φmust ⇒ ∆δ ⇒ φmay

which preserves the partial information present in the imprecise heap. The introduc-

tion of these axioms enforces that any fact that can be proven under the original,

but imprecise heap abstraction can still be proven to hold under the modified heap

abstraction that enforces the existence and uniqueness of memory contents. Further-

more, this axiomatization strategy guarantees that the number of valid assertions

that can be proven correct is monotonic with respect to the precision of the heap ab-

straction, a property that does not hold without enforcing existence and uniqueness

of memory contents.

5.2 Proving Assertions on the Symbolic Heap

In this section, we show how to prove assertions using the information encoded by

the symbolic heap abstraction. To be able to prove assertions, we first review how

to retrieve the possible values stored in a location. To be precise, we define a read

operation on the heap abstraction, read(π, γ), which given an abstract location π and

a constraint γ on the index variables of π, yields a set of (access path, bracketing

constraint) pairs representing the possible results of the read.

Definition 7 (read(π, γ)) Let π be an abstract memory location, and let γ =

〈φmay, φmust〉 be a constraint such that φmay selects at least one concrete element

and φmust selects at most one concrete element of π. Let e be an edge from π to

πi qualified by constraint φi in the symbolic heap, and let ~I be the vector of index

variables in π. Then, let

φ′i = Eliminate(∃~I.γ ∧ φi)

where Eliminate performs existential quantifier elimination. Finally, let φ′′i be ob-

tained by renaming primed (i.e., target’s) index variables in φ′i to their unprimed
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Figure 5.3: A symbolic heap abstraction

counterparts. Then:

(πi, φ
′′
i ) ∈ read(π, γ)

Example 8 Consider the heap from Figure 5.3. Here, we have:

read(〈a〉i1 , i1 = 2) = {(∗〈b〉i2 , 〈i2 = 2 ∧ 2 < size, false〉),
(∗NULL, 〈2 < size, false〉))}

5.2.1 Proving Assertions

Now, using this read operation, we describe how to evaluate simple assertions on a

given symbolic heap configuration. We define an assertion primitive assert(S = S ′)

where S = read(π, γ) and S ′ = read(π′, γ′) for some arbitrary abstract locations π, π′

and some index constraints γ, γ′. Intuitively, such an assertion is valid if the heap

abstraction encodes that the values stored in the concrete locations identified by π, γ

and π′, γ′ must be equal.

Definition 8 (Validity of Assertion) Consider the assertion:

assert(read(π, γ) = read(π′, γ′))

Let (πi, φi) ∈ read(π, γ) and (π′j, φ
′
j) ∈ read(π′, γ′). Let ~Ii and ~I ′j be the index variables

used in each πi and π′j, let ~Fi, ~F ′j denote fresh vectors of index variables, and let

~F =
⋃
i
~Fi, ~F ′ =

⋃
j
~F ′j . The assertion is valid if:

VALID

(
∃~F , ~F ′.

∨
i,j

(
πi[~Fi/~Ii] = π′j[

~F ′j/
~I ′j]

∧ φi[~Fi/~Ii] ∧ φ′j[ ~F ′j/~I ′j]

) )



CHAPTER 5. RELATIONAL SYMBOLIC HEAP 53

Intuitively, this definition first computes the constraint under which the two sets

obtained from read(π, γ) and read(π′, γ′) are equal. As expected, this is a disjunction

of all pairwise equalities of the elements in the two sets, i.e., a case analysis of their

possible values. Now, for the assertion to be valid, this constraint must be valid.

Observe that the constraints in this definition are all bracketing constraints, and

the validity of bracketing constraints from Definition 1 uses the underapproximations

φimust , φ
′
jmust

such that

φimust ⇒ (π = πi) and φ′jmust
⇒ (π′ = π′j)

Hence, the validity of the above formula guarantees that the values of π and π′ must

be equal. Also, note that the renaming of index variables to fresh variables ~F , ~F ′ is

necessary to avoid naming collisions when πi and π′j share index variables. This can

arise, for example, when πi and π′j refer to distinct concrete elements in the same

abstract location.

We conclude this section with an example illustrating that the basic symbolic

heap described in Chapter 4 does not allow discharging a simple assertion because

it does not enforce existence and uniqueness of memory contents in the presence of

imprecision:

Example 9 Consider evaluating the following assertion on the heap from Figure 5.3:

x=a[2];

y=a[2];

assert(x==y);

The possible values V (x) and V (y) of x and y are obtained from V (x) = V (y) =

read(〈a〉i1 , i1 = 2). Hence, assuming size > 2, we have:

V (x) = V (y) =

{
(∗〈b〉i2 , 〈i2 = 2, false〉),
(∗NULL, 〈true, false〉))

}
Now, to evaluate the assertion, we query:
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VALID


∃f1, f2, f3.

((∗〈b〉f1 = ∗〈b〉f2) ∧ 〈f1 = 2, false〉∧
〈f2 = 2, false〉)∨
((∗〈b〉f3 = ∗NULL) ∧ 〈f3 = 2, false〉∧
〈true, false〉)∨
((∗NULL = ∗NULL) ∧ 〈true, false〉∧
〈true, false〉)


The result is false because the sufficient conditions (i.e., φmust) of all the bracketing

constraints are false. As this example illustrates, we cannot prove the validity of this

simple assertion using the information encoded by the heap abstraction because the

heap abstraction described so far does not enforce the memory invariant that every

concrete location must have exactly one value.

5.3 Axiomatization of Memory Invariants

The overapproximation encoded in the symbolic heap enforces that every abstract

location must have at least one target for any possible index, while the underapprox-

imation enforces that a specific concrete location cannot point to multiple concrete

elements. Thus, if the heap abstraction is exact (i.e., the over- and underapproxima-

tions are the same, as in Figure 5.1), it follows immediately that the symbolic heap

enforces the existence and uniqueness of memory contents. More formally, a key

soundness requirement for the symbolic heap abstraction can be stated as follows:

Definition 9 (Soundness Requirement) Let π be a source location in the heap

abstraction, and let

{〈φmay1
, φmust1〉, . . . 〈φmayk , φmustk〉}

be the constraints qualifying outgoing edges from π. Let Ii denote the primed index

variables used in each constraint φi. Then,

VALID(∃~I.
∨
i

φmayi)
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and

UNSAT(∃~I. φmusti ∧ φmustj) for i 6= j

However, observe that the soundness of the symbolic heap does not require the

following invariants:

UNSAT(∃~I. φmayi ∧ φmayj)

VALID(∃~I.
∨
i

φmusti)

Thus, if the heap abstraction is not exact, as is often the case, the overapproximation

does not enforce that each concrete source has at most one concrete target, and

the underapproximation does not enforce that each concrete source has at least one

concrete target. Unfortunately, as we saw in Example 9, the lack of these invariants

often prevents proving even simple assertions in the presence of imprecision.

In this section, we describe how to combine symbolic heap abstraction with

enforcing existence and uniqueness of memory contents. The key idea underlying

demand-driven axiomatization is to replace any imprecise bracketing constraint (i.e.,

φmay 6⇔ φmust) with a constraint ∆ serving two purposes: (i) it enforces that for

each concrete source location, there is exactly one target location it can point to,

and (ii) it allows us to retain all the information encoded in the original over- and

underapproximations. We first develop (i), then (ii).

5.3.1 Enforcing Existence and Uniqueness

To enforce that concrete locations have exactly one target location (i.e., (i)), these ∆

constraints must have the following properties:

1. They should enforce that the constraints on any pair of edges outgoing from the

same abstract source are disjoint (required for uniqueness) and that there is at

least one feasible abstract target location under any satisfiable index constraint

(required for existence).

2. If there is an edge from πs to πt, the ∆’s should enforce that any concrete

element in πs can point to at most one concrete target in πt (also required for
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uniqueness).

3. The introduction of ∆’s should not prevent different concrete elements in the

same abstract location from pointing to the same target.

Of these, (1) and (2) are necessary to enforce the desired existence and uniqueness

invariant, while (3) is necessary for soundness. By construction, these ∆’s are of the

form:

∆ = ∆δ ∧∆τ

where ∆δ enforces (1) and ∆τ enforces (2), both while respecting (3). We first describe

the construction of ∆δ and then ∆τ .

Given a source location πs with index variables ~Is, let πt0 , . . . , πtk be the set of

targets of all outgoing edges from πs. For the j’th edge from πs to πtj , we construct

∆j
δ as follows:

∆j
δ =


δπs(i1, . . . , im) ≤ 0 if j = 0

δπs(i1, . . . , im) = j if 0 < j < k

δπs(i1, . . . , im) ≥ k if j = k

where i1, . . . , im ∈ ~Is

(5.1)

By construction, each set of ∆δ’s for a location πs enforces that the outgoing

edge constraints are pairwise contradictory and their disjunction is valid. Here, δπs

is an uninterpreted function symbol unique to location πs. For an abstract location

containing m index variables, it is necessary to introduce an m-ary uninterpreted

function symbol in order to enforce the soundness requirement (3). Observe that, for

concrete assignments ~v, ~v′ to index variables ~Is of πs, δπs(~v) must be equal to δπs(~v
′)

only if ~v = ~v′. Hence, while the ∆δ constraints prevent the same concrete source from

having different targets, they do not force two distinct concrete locations in the same

abstract source to have the same target.

We now consider how to construct ∆τ . Recall that ∆τ must enforce that a given

concrete source location cannot have multiple concrete targets in the same abstract

target location (i.e., (2)), a property that is not enforced by the ∆δ constraints. Hence,
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to satisfy (2), we construct ∆τ as follows. Let i′j1 , . . . , i
′
jn be the index variables used

in the j’th target πtj . Then,

∆j
τ =

∧
1≤k≤n

i′jk = τk(i1, . . . , im) (5.2)

Here, τk is an uninterpreted function symbol unique to the k’th index variable of

the target. ∆j
τ stipulates that each index variable used in the target is a function

of the source’s index variables, thereby enforcing that each concrete source can have

at most one concrete target in the same abstract target location. Finally, to enforce

both requirements (1) and (2), we modify the constraint on the j’th outgoing edge

from πs to be:

∆j = ∆j
δ ∧∆j

τ

Lemma 3 Let e1, . . . ek be the set of outgoing edges from an abstract location πs. Let

∆1, . . . ,∆k be the new set of constraints constructed as above qualifying e1, . . . , ek.

Then, the symbolic heap abstraction enforces that each concrete source location must

point to exactly one concrete target location, or alternatively, that each concrete loca-

tion has exactly one value.

Proof 3 First, we argue that the same concrete source cannot point to two different

concrete targets. Let πs[~s/~i] denote a concrete source, obtained by a variable assign-

ment ~s to the index variables ~i of πs. Let πt1 [~t1/ ~it1 ] and πt2 [~t2/ ~it2 ] be two concrete

targets, obtained by variable assignments ~t1, ~t2 to index variables ~it1 , ~it2 of abstract

locations πt1 and πt2. If πt1 [~t1/ ~it1 ] and πt2 [~t2/ ~it2 ] are different, then either (i) πt1 and

πt2 are different abstract locations, or (ii) ~t1 6= ~t2. For (i), observe that this is not

possible since UNSAT(∆j
δ[~s/

~i] ∧ ∆k
δ [~s/~i] ∧ j 6= k) for two edges ej and ek. For (ii),

observe that:

∆j
τ =

(
~t1 =

(
τ1(~s)

. . .

τn(~s)

))
and ∆j

τ =

(
~t2 =

(
τ1(~s)

. . .

τn(~s)

))

contradicting ~t1 6= ~t2. Now, we argue why each concrete location πs[~s/~i] must have
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Figure 5.4: The modified version of the heap from Figure 5.3 enforcing existence and
uniqueness invariants

at least one concrete target. Let ~i′ denote the primed index variables used in the

constraints on outgoing edges from πs. Observe that the formula ∃~i′.
∨

0≤j≤k ∆j[~s/~i]

is valid; thus each concrete source must have at least one concrete target.

The following example shows that, using the modified symbolic heap, we can now

prove assertions that could not be discharged using the basic symbolic heap.

Example 10 Consider the heap from Figure 5.3. For the edge from 〈a〉i1 to ∗〈b〉i2,

we construct

∆1 = (δ(i1) ≤ 0 ∧ i′2 = τ(i1))

and for the edge from 〈a〉i1 to ∗NULL, we construct

∆2 = δ(i1) ≥ 1

This modified heap is shown in Figure 5.4. Now, consider evaluating the assertion:

x = a[2]; y = a[2]; assert(x == y);

on this modified heap as described in Section 5.2. As before, the values V (x) and

V (y) of x and y are given by read(〈a〉i1 , i1 = 2):

V (x) = V (y) =
{(∗〈b〉i2 , δ(2) ≤ 0 ∧ i2 = τ(2)),

(∗NULL, δ(2) ≥ 1))}
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Now, to evaluate the assertion, we query:

VALID


∃f1, f2, f3.

(∗〈b〉f1 = ∗〈b〉f2) ∧ δ(2) ≤ 0

∧f1 = τ(2) ∧ δ(2) ≤ 0 ∧ f2 = τ(2))∨
((∗〈b〉f3 = ∗NULL) ∧ δ(2) ≤ 0

∧f3 = τ(2) ∧ δ(2) ≥ 1)∨
((∗NULL = ∗NULL) ∧ δ(2) ≥ 1

∧δ(2) ≥ 1)


In the first disjunct, f1 = f2, hence (∗〈b〉f1 = ∗〈b〉f2) = true. Simplifying this formula,

we obtain:

∃f1, f2. ( (δ(2) ≤ 0 ∧ f1 = τ(2) ∧ f2 = τ(2)) ∨ . . . ∨ δ(2) ≥ 1)

This formula is indeed valid, and we can now prove the assertion.

5.3.2 Preserving Existing Partial Information

We now consider the second part of demand-driven axiomatization: Recall that while

replacing the imprecise edge constraints with the new ∆ constraints ensures that every

concrete source location points to exactly one concrete target, we would still like to

retain the partial information present in the original, but imprecise heap abstraction.

As an example, consider the following assertion:

if(a[2] != NULL) {

assert(a[2] == b[2]);

}

Clearly, the heap abstraction from Figure 5.3 encodes enough information to prove

this assertion, however, the modified heap from Figure 5.4 no longer retains sufficient

information to reason that a[2] must be either b[2] or NULL. In particular, the con-

straint on the edge to ∗〈b〉i2 does not stipulate that i′2 = i1; hence, we do not know

which element in ∗〈b〉i2 a[2] points to; we only know that it points to some unique

element if δ(2) ≤ 0 is satisfied.
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Hence, to preserve the information encoded by the original imprecise bracketing

constraints, we introduce axioms for each ∆j
δ that encode the additional partial in-

formation present in the original symbolic heap. Let 〈φjmay, φ
j
must〉 be an imprecise

bracketing constraint (i.e., φjmay 6⇔ φjmust) on the j’th outgoing edge from source loca-

tion πs, and let ∆j
δ be a constraint obtained as described above. As before, ~Is denotes

the index variables in πs. Let στ be a substitution replacing each target index vari-

able with its corresponding τk(i1, . . . , im) from Equation 5.2. Then, to preserve the

information present in the original heap abstraction, our technique introduces the

axioms:

∀~Is. στ (φjmust)⇒ ∆j
δ and ∀~Is. ∆j

δ ⇒ στ (φ
j
may)

First, observe that ∆j
δ, φ

j
must, and φjmay all qualify the source location’s index variables.

Since the heap abstraction states properties about any concrete location that satisfies

the index constraint on edges, the source’s index variables are all universally quantified

in these axioms. Additionally, observe that φjmay and φjmust may also constrain the

relationship between the source and the target’s index variables, e.g., i′2 = i1. Since ∆j
τ

stipulates that each index variable used in the target is a function τk(i1, . . . , im) of the

source’s index variables, we apply the substitution στ to both φjmay and φjmust. These

axioms therefore restrict which set of concrete elements may and must be selected by

each ∆j
δ as stipulated by φjmay and φjmust as well as restricting the relationship between

the source and the target’s index variables.

As the following example shows, symbolic heap abstraction with demand-driven

axiomatization allows combined reasoning about memory contents and invariants.

Example 11 Consider again the heap from Figure 5.3 and the modified heap from

Figure 5.4. Our technique now introduces the following axioms:

∀i1. δ(i1) ≤ 0 ⇒ (0 ≤ i1 < size ∧ i1 = τ(i1))

∀i1. false⇒ δ(i1) ≤ 0

∀i1. δ(i1) ≥ 1 ⇒ 0 ≤ i1 < size

∀i1. false⇒ δ(i1) ≥ 1
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Now, consider the assertion:

if(a[2]! = NULL){

assert(a[2] == b[2])

}

As before:

read(〈a〉i1 , i1 = 2) = {(∗〈b〉i2 , δ(2) ≤ 0 ∧ i2 = τ(2)),

(∗NULL, δ(2) ≥ 1))}

and

read(〈b〉i2 , i2 = 2) = {(∗〈b〉i2 , i2 = 2)}}

Since the conditional requires that a[2] is non-null, the assertion is guarded by the

predicate:

¬(δ(2) ≥ 1)

Now, we need to show the validity of the formula

∃f1, f2.
∗〈b〉f1 = ∗〈b〉f2 ∧ δ(2) ≤ 0 ∧ f1 = τ(2) ∧ f2 = 2

∨ (∗NULL = ∗〈b〉f2 ∧ δ(2) ≥ 1 ∧ f2 = 2)

under the assumption ¬(δ(2) ≥ 1). Simplifying the formula with respect to the as-

sumption ¬(δ(2) ≥ 1), we obtain:

∃f1, f2. ∗〈b〉f1 = ∗〈b〉f2 ∧ f1 = τ(2) ∧ f2 = 2

Hence, it remains to show that under our axioms, τ(2) must be equal to 2. Since one

of the axioms is

∀i1. δ(i1) ≤ 0 ⇒ (0 ≤ i1 < size ∧ i1 = τ(i1))

it follows that:

δ(2) ≤ 0 ⇒ (0 ≤ 2 < size ∧ 2 = τ(2))



CHAPTER 5. RELATIONAL SYMBOLIC HEAP 62

Since δ(2) ≤ 0 is implied by the assertion guard, we have τ(2) = 2; hence f1 = f2,

establishing the validity of the asssertion.

While deciding quantified formulas in the combined theory of uninterpreted func-

tions and linear integer arithmetic is, in general, undecidable, the axioms introduced

by our technique belong to a decidable fragment, sometimes referred to as the macro

fragment [47]. In particular, a syntactic instantiation of the axioms for each occur-

rence of the function term δ(~t) is sufficient for completeness.

5.3.3 Monotonicity of Provable Assertions

If a heap abstraction does not enforce existence and uniqueness of memory contents,

it turns out that it is possible to learn more about the contents of the heap while

being able to prove strictly fewer assertions about the program! In other words, for

such a heap abstraction, the number of provable assertions is not monotonic with

respect to the precision of the heap abstraction. For instance, in Example 9, if we use

a less precise heap abstraction that maps each element of a to an unknown location,

we can prove the assertion assert(x == y), which we cannot prove using the more

precise heap from Figure 5.3.

We now describe what it means for a symbolic heap to be more precise than

another heap abstraction of the same program, and we show that our technique never

proves fewer assertions about the program using a more precise heap abstraction. For

a heap H and a concrete location l, we use the notation αH(l) to denote the abstract

location that includes l in H. We write γ(π) to denote the set of concrete locations

that are represented by some abstract location π.

Definition 10 We say a symbolic heap H ′ splits an abstract location π in H into

locations π1, . . . , πk (where γ(π) = γ(π1)∪ . . .∪ γ(πk)) under constraints φ1, . . . , φk if

for every edge from πs to πt under constraint φ in H:

1. If πt = π, then H ′ contains an edge from πs to πj under constraint φ ∧ φj.

2. If πs = π, then H ′ contains an edge from πj to πt under constraint φ.
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3. If πs 6= π ∧ πt 6= π, then H ′ also contains an edge from πs to πt under φ.

Intuitively, ifH ′ is obtained fromH by splitting location π to more precise abstract

locations π1, . . . , πk under constraints φ1, . . . , φk, then any edge to π in H is replaced

by a set of edges to any abstract location πj under its respective constraint φj.

Definition 11 We say a heap H is at least as precise as another heap H ′ if either

of the following two conditions are satisfied:

1. For all concrete locations lc that can arise during the execution of a program,

αH(lc) = αH′(lc), and for every edge from πs to πt qualified by constraint

〈φmay, φmust〉 in H, there is an edge in H ′ from πs to πt qualified by 〈φ′may, φ
′
must〉

such that:

φmay ⇒ φ′may ∧ φ′must ⇒ φmust

2. Otherwise, there must exist a concrete location lc with αH′(lc) = π′ and αH(lc) =

π0 such that γ(π0) ⊂ γ(π′), and there exists a set of abstract locations π1, . . . πk

in H such that γ(π′) = γ(π0) ∪ γ(π1) . . . ∪ γ(πk). Furthermore, H must be at

least as precise as H ′split where H ′split splits π′ in H ′ into {π0, π1, . . . πk} under

constraints {φ1, . . . , φk} such that for every edge e to π′ under constraint φ′ in

H ′, there is an edge to πj in H under constraint φj ∧ φ′.

According to the first criterion in this definition, a heap H is at least as precise as

H ′ if the abstract locations in the two heaps are the same and the over- and underap-

proximations encoded by the constraints in H are at least as “tight” as those in H ′.

The second condition in the definition states that if H and H ′ differ in at least one

abstract location π, then H refines H ′ by replacing π with a set of abstract locations

π1, . . . , πk, each of which represent a portion of the concrete locations represented by

π.

Lemma 4 Let H and H ′ be two sound symbolic heaps obtained from the same pro-

gram such that H is at least as precise as H ′. If H and H ′ enforce existence and

uniqueness invariants, then any assertion provable under H ′ is also provable under

H.
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R R

R' R'

Figure 5.5: Heap H ′ and H from the proof.

Proof 4 (Sketch) If H is at least as precise as H ′, and for all lc, αH(lc) = αH′(lc),

this lemma is easy to show. We consider the case where there exists some lc such

that γ(αH(lc)) ⊂ γ(αH′(lc)). For simplicity, we assume that there is exactly one

abstract location π in H ′ that is now represented by two abstract locations π1 and

π2 in H (if this is not the case, we can easily construct a sequence of more precise

heaps from H ′ to H that have this property at each step). Consider an assertion of

the form assert(read(πs, γ) = read(π′s, γ
′)) that is provable in H ′. Let read(πs, φs) =

{. . . , (πi, φi), . . .} and read(π′s, φ
′
s) = {. . . , (π′i, φ′i), . . .} in heap H. Clearly, if there

does not exist some πi, π
′
i such that π = πi or π = π′i, then the assertion is also

trivially provable in H. There are two cases to consider: (i) Only one of the read

value sets contains π in H ′ or (ii) both of them contain π in H ′. The first case is

uninteresting since if π is in only one of the read sets, π does not play a role in the

validity of the assertion. Hence, we consider (ii).

In this case, heaps H and H ′ must differ in the way shown in Figure 5.5. In this

figure, R and R′ represent some set of abstract locations, and φR and φ′R represent

the disjunction of the constraints on the edges from πs (resp. π′s) to each location in

R (resp. R′). (The constraints from πs to R are the same in H and H ′ because all

existing information is preserved, i.e., these constraints must be equivalent under the

axioms from Section 5.3.2.)

To keep the proof understandable, we only consider the case where π does not

contain index variables. Since both H and H ′ enforce existence and uniqueness of

memory contents, we know:
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φR ∧ φ = false φ′R ∧ φ′ = false

φR ∨ φ = true φ′R ∨ φ′ = true

φR ∧ φ ∧ φ1 = false φ′R ∧ φ′ ∧ φ1 = false

φR ∧ φ ∧ φ2 = false φ′R ∧ φ′ ∧ φ2 = false

φ ∧ φ1 ∧ φ ∧ φ2 = false

φ′ ∧ φ1 ∧ φ′ ∧ φ2 = false

φR ∨ (φ ∧ φ1) ∨ (φ ∧ φ2) = true

φ′R ∨ (φ′ ∧ φ1) ∨ (φ′ ∧ φ2) = true

These constraints imply φ⇔ ((φ∧φ1)∨ (φ∧φ2)) and φ′ ⇔ ((φ′ ∧φ1)∨ (φ′ ∧φ2)).

Observe that this implies

φ1 ∨ φ2 = true (1)

Let Is denote the index variables used in the source locations πs and π′s. For the

assertion to be valid in H ′, we have:

VALID


∃I. γ ∧ γ′∧
(π = π ∧ φ ∧ φ′)∨
(π = R′ ∧ φ ∧ φ′R)∨
(π = R ∧ φ′ ∧ φR)∨
(R = R′ ∧ φR ∧ φ′R)


Since we know that π is not in R or R′, this formula is only valid if the following

formula is also valid:

VALID

(
∃I. γ ∧ γ′∧
(φ ∧ φ′) ∨ (R = R′ ∧ φR ∧ φ′R ∧ γ ∧ γ′)

)
(∗)

Now, the validity of the assertion in H is checked using the formula:
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Combined Content Only Mem-Inv Only Smash

Time (s) 261 788 103 115

Max memory used (MB) 208 763 144 105

# reported buffer errors 2 77 117 371

# reported null errors 3 53 71 180

# reported cast errors 0 28 11 421

Total # of errors 5 158 199 972

Total # of false positives 1 154 195 968

Figure 5.6: Experimental results obtained on a single core of a 2.66 GHz Xeon CPU

VALID



∃I. γ ∧ γ′∧
(π1 = π1 ∧ φ ∧ φ1 ∧ φ′ ∧ φ1)∨
(π2 = π2 ∧ φ ∧ φ2 ∧ φ′ ∧ φ2)∨
(π1 = π2 ∧ φ ∧ φ1 ∧ φ′ ∧ φ2)∨
(π2 = π1 ∧ φ ∧ φ2 ∧ φ′ ∧ φ1)∨
(π1 = R′ ∧ φ ∧ φ1 ∧ φ′R)∨
(π2 = R′ ∧ φ ∧ φ2 ∧ φ′R)∨
(R = π1 ∧ φR ∧ φ′ ∧ φ1)∨
(R = π2 ∧ φR ∧ φ′ ∧ φ2)∨
(R = R′ ∧ φR ∧ φ′R)


Again, since π1, π2 are not in R or R′ and π1 and π2 are distinct, this is equivalent

to checking:

VALID


∃I. γ ∧ γ′∧
(φ ∧ φ1 ∧ φ′)∨
(φ ∧ φ2 ∧ φ′)∨
(R = R′ ∧ φR ∧ φ′R)

 (∗∗)

Now, observe that (φ∧φ1∧φ′)∨ (φ∧φ2∧φ′)⇔ φ∧φ′∧ (φ1∨φ2)⇔ φ∧φ′, where

the last equivalence follows from (1). Hence, the validity of (∗) implies the validity of

(∗∗).
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Lines
Combined Content Only Mem-Inv Only Smash
FP Time FP Time FP Time FP Time

hostname 304 0 0.14s 1 0.35s 4 0.35s 6 0.31s
chroot 371 0 0.15s 2 0.61s 3 0.60s 6 0.70s
rmdir 483 0 0.98s 2 1.39s 3 0.66s 4 0.51s
su 1047 0 1.63s 5 1.99s 4 1.62s 16 1.07s
mv 1151 0 0.79s 8 1.48s 4 1.01s 13 1.31s

Figure 5.7: False Positives (abbreviated FP) when selectively disabling memory in-
variants or reasoning about array contents, reported on five Unix Coreutils with
running times. Experimental results obtained on a single core of a 2.66 GHz Xeon
CPU

5.4 Experimental Evaluation

To evaluate the precision and scalability of symbolic heap abstraction combined with

axiomatization of memory invariants, we use Compass to check for memory safety

properties (specifically, null dereferences, buffer overruns and underruns, and safety

of casts) in OpenSSH 5.3p1 [9], totaling 26,615 lines of code. We believe OpenSSH

to be a challenging and interesting target because it contains many complex array

and pointer usage patterns, is heavily optimized for performance, is believed to be

well-tested, and it is widely deployed.

The results of this experiment are presented in Figure 5.6. To quantify the relative

importance of reasoning about heap contents and reasoning about memory invariants,

we run our analysis in four different configurations: The first configuration, called

“Combined”, employs the technique described in this chapter, combining symbolic

heap abstraction with demand-driven axiomatization of memory invariants. The

second configuration, called “Content Only”, tracks contents of memory locations,

but it does not enforce existence and uniqueness of memory contents. The third

configuration is “Mem-Inv Only”, which enforces existence and uniqueness of concrete

memory locations (i.e., introduces the ∆ constraints from Section 5.3), but does not

introduce the axioms described in Section 5.3. The fourth configuration is “Smash”,

which effectively smashes array contents by neither introducing memory invariants

nor tracking the relationship between indices and contents.
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As shown in the first column of Figure 5.6, using the technique proposed in this

chapter, Compass analyzes OpenSSH in ∼ 4.4 minutes using no more than 208 MB

of memory, finding one buffer overrun, one buffer underrun (unrelated to the first

one), and three null dereference errors, one of which is a false positive. The only false

positive reported by the analysis is due to an imprecise loop invariant, where the

invariant generation aspect of our analysis cannot determine that an array element

must be updated exactly once, rather than in multiple iterations, of a loop. In these

experiments, we only annotated the relationship between argv and argc in main and

provided suitable stubs for functions we did not analyze (e.g., system calls, OpenSSL

functions called by OpenSSH). In addition, we had to annotate an invariant that

relates two fields of a global data structure. We belive the statistics shown in the

first (Combined) column of Figure 5.6 demonstrate that symbolic heap abstraction

combined with demand-driven axiomatization is precise and scalable enough to verify

memory safety properties in a real application with sufficiently useful precision.

In contrast, the analysis configuration (Content Only) that reasons about contents

of arrays but that does not enforce memory invariants reports 154 false positives. It is

interesting to observe that in addition to reporting significantly more false positives,

the analysis also takes about three times as long as the first analysis configuration

(Combined). This longer running time is explained by the fact that many constraints

can be proven unsatisfiable by only taking memory invariants into account without

needing extra information about the contents of memory locations. We believe the

striking difference in precision between the first and second analysis configurations

corroborates the hypothesis that reasoning about memory invariants is as important

as reasoning about contents of memory locations.

We next consider the analysis configuration from Figure 5.6 that only enforces

memory invariants but that does not track the relationship between indices and values.

This configuration reports 195 false positives, confirming that precise reasoning about

array contents is vital for successful verification of real-world applications. From the

154 and 195 false positives reported by the “Content Only” and “Mem-Inv Only”

configurations, 56 error reports are shared. This observation indicates that at least 56

errors require combined reasoning about array contents as well as memory invariants
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and cannot be discharged by two separate analyses. The final configuration, which

performs array smashing, reports 968 false positives, demonstrating that this level of

precision is unlikely to be useful for verification of real-world applications.

We believe the reason that our analysis can scale to a program like OpenSSH with

a few ten thousand lines of code while performing a very precise analysis of array and

heap contents is that it avoids performing explicit case analyses in two important

ways: First, by employing the axiomatization strategy described in this chapter,

our analysis can achieve precise relational reasoning without explicitly considering

different heap configurations. Second, by using the fluid update operation [38] for

array updates, our technique avoids creating explicit partitions of arrays.

To demonstrate that other C programs also require reasoning about memory in-

variants in addition to heap contents, we also applied all four analysis configurations

to five Unix Coreutils programs, ranging from 304 to 1151 lines of C code. While

symbolic heap abstraction combined with axiomatization of memory invariants is

powerful enough to prove the absence of buffer overruns, null dereferences, and cast-

ing errors with zero false positives in these programs, neither the “Content-Only” nor

the “Mem-Inv Only” setting is able to prove all accesses are safe. As shown in Fig-

ure 5.7, the relative impact of reasoning about heap contents and memory invariants

is roughly comparable, underscoring that reasoning about existence and uniqueness

invariants is crucial for successful verification of real programs.



Chapter 6

Analysis of a Language with

Containers

So far in this thesis, our discussion has focused only on the precise reasoning of

array contents. In this chapter, we extend the techniques described so far to a more

general family of data structures, known as containers, which provide functionality for

inserting, retrieving, removing, and iterating over elements. Examples of containers

include maps, lists, vectors, sets, multimaps, deques, as well as their combinations.

We classify containers as either position-dependent or value-dependent : In position-

dependent containers, each element e has a position that is used for inserting e into

or reading e from the container. Position-dependent containers include vectors and

lists, which support inserting and reading elements at a specified position, as well

as queues and stacks, which allow inserting and reading elements at the first or last

position. In contrast, value-dependent containers expose no notion of position, and

each element is added and retrieved using its value. Instances of value-dependent

containers include various kinds of maps, sets, bags, and multimaps. For instance, in

a map, elements are inserted and looked up using a key; similarly, in a set, elements

are inserted and found by the value of their elements rather than a position in the

container.

70
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Both kinds of containers are ubiquitous in modern programming, and many lan-

guages, such as C++, Java, and C#, provide a standard set of containers that pro-

grammers use as basic building blocks for the implementation of other more complex

data structures and software. For this reason, successful verification of programs

written in higher-level programming paradigms requires a fairly sophisticated under-

standing of how individual elements are modified as they flow in and out of containers.

In fact, even basic safety properties often require reasoning about individual elements

stored inside containers:

• To prove that the result of looking up a key k from a map m is non-null, we

need to know that an element with key k is present in m and that the value

associated with k is non-null.

• In languages with explicit memory management (such as C++), the safety of

sequentially deallocating elements in a list or vector depends on the absence of

aliasing pointers in the container.

As these examples illustrate, proving even simple properties may require a richer

abstraction than treating container contents as sets. In the first example, we need to

know not only which values are present in the map, but also which keys are associated

with which values. Similarly, the second example requires proving the uniqueness of

elements stored at different positions of the container. Hence, successful verification of

these properties requires a detailed, per-element understanding of container contents.

We are interested in verifying properties of container-using programs, such as the

examples above. We focus on verification of the client program, divorcing checking of

the client from the separate problem of verifying the container implementation itself.

We believe this separation is advantageous for several reasons:

1. Understanding the contents of a container does not require understanding the

container’s implementation.

For example, while a map may be implemented as a hash table or a red-black

tree, they both export the functionality of associating a key with a value. From

the client’s perspective, the difference between a hash map and a red-black tree

lies primarily in the performance trade-off between various operations.
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2. Verifying container implementations requires different techniques and degrees of

automation then verifying their clients.

Hence, separating these two tasks allows us to choose the verification tech-

niques best-suited for each purpose. While we might need heavy-weight, semi-

automatic approaches for verifying container implementations, we can still de-

velop fully automatic and more scalable techniques for verifying their clients.

3. There are orders of magnitude more clients of a container than there are con-

tainer implementations.

This fact makes it possible to annotate a handful of library interfaces in order

to analyze many programs using these containers.

In this chapter, we describe a precise and fully automatic technique for static

reasoning about container contents. By separating the internal implementation of

containers from their client-side use, our technique provides a uniform representation

and analysis methodology for any position or value-dependent container. Rather

than modeling containers as sets of values, our technique provides a per-element

understanding of containers, enabling the abstraction to distinguish properties that

hold for different elements. Our abstraction naturally models arbitrary nestings of

containers, commonly used in real programs. For example, our technique can reason

precisely about a map of lists, expressing which lists are associated with which keys,

which nested lists are shared or distinct, while also tracking the contents of the nested

lists.

6.1 An Informal Overview

To develop a unified representation for containers, we model any container as a func-

tion that converts a key to an abstract index (an integer), which is then mapped to a

value at that index. In this abstraction, a key corresponds to any term that is used

for inserting an element into or reading an element from the container. For example,

in a vector, keys are integers identifying a position in the vector; in a set, keys are

the elements that are inserted into the set. For any container, keys are converted



CHAPTER 6. ANALYSIS OF A LANGUAGE WITH CONTAINERS 73

1: vector< map<string, int>* > exam_scores;

2:

3: for(int j=0; j<NUM_EXAMS; j++)

4: {

5: map<string, int>* m = new map<string, int>();

6: exam_scores.push_back(m);

7: }

8:

9: map<string, vector<int>*>::iterator it =

10: student_scores.begin();

11: for(; it != student_scores.end(); it++)

12: {

13: string student = it->first;

14: vector<int>* scores = it->second;

15: for(int k=0; k <NUM_EXAMS; k++)

16: {

17: (*exam_scores[k])[student] = (*scores)[k];

18: }

19:}

Figure 6.1: Example illustrating key features of the technique

to abstract indices using a key-to-index mapping, but this mapping differs between

position- and value-dependent containers: For position-dependent containers (such

as a vector), the key-to-index mapping is the identity, as the key is the position in

the data structure. For value-dependent containers, we leave the function converting

keys to indices uninterpreted; clients of value-dependent containers cannot rely on

elements being stored in any particular place, just that they are stored somewhere in

the container.

A key advantage of introducing an extra level of indirection from keys to indices

is that this strategy allows us to treat position- and value-dependent containers uni-

formly, while providing the ability to differentiate between distinct elements by using

integer constraints on the indices. Specifically, we model containers using indexed

locations of the form 〈α〉i where the index variable i ranges over possible abstract

indices of the container. All elements in the container are represented by a single

abstract location 〈α〉i, but constraints on the index variable i allow distinctions to
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be made among the different elements of the container. This model generalizes the

symbolic heap abstraction that we have developed for reasoning about array contents

in Chapter 4 to both position- and value-dependent containers.

This combination of indexed locations and constraints on index variables allows

for a much more detailed understanding of containers than representing their contents

as a set. For example, if a container c’s contents are modeled by the set of values

{13, 5, 8}, this abstraction encodes that any element in c may have any of the values

13, 5, and 8, effectively mixing values associated with different elements. On the other

hand, by representing c using an indexed abstract location 〈α〉i, we can qualify each of

the values 13, 5, and 8 by constraints φ1, φ2, and φ3, restricting which indices in 〈α〉i
may have which value. The latter abstraction encodes that only those values whose

keys are consistent with the index constraint φi may have value vi, and thereby retains

the correlations between positions and values for position-dependent containers and

key-value correlations for value-dependent containers.

To illustrate important features of our technique, consider the C++ code snippet

in Figure 6.1. Here, the container student scores maps each student to a vector of

integers, indicating the score received by each student on every exam. To keep the

example simple, suppose that there are only two students, Tom and Isil, and Tom

received scores 76 and 65, and Isil received scores 87 and 72 on two exams. The

code in Figure 6.1 builds a reverse mapping exam scores where the i’th element in

exam scores is a map from each student to this student’s score on the i’th exam.

Figure 6.2 shows a graphical representation of the facts established about the

contents of exam scores after analyzing the code from Figure 6.1. In this figure,

nodes in the graph represent abstract locations, a directed edge from node A to B

qualified by constraint φ indicates that B is one of the values stored in A and φ

constrains at which index of A the value B may be stored. We highlight important

features of the abstraction based on Figure 6.2:

1. Abstract containers: Observe that the vector exam scores is qualified by

an index variable i1 and the maps nested inside exam scores are also qualified

by an index variable i3. Both of these index variables allow us to select different

elements in the container by constraining the values of i1 and i3.
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Figure 6.2: The representation of container exam scores after the analysis of code
from Figure 6.1

2. Memory allocations: A key prerequisite for precise reasoning about nested

containers is differentiating different allocations. In the figure, memory locations

arising from the allocation at line 5 are described by η{i2}, where i2 is also an

index variable. Hence, just as we use index variables to differentiate between

elements in a container, we also use them for distinguishing different memory

allocations arising from the same expression.

3. Key-to-index mapping: On the edge from 〈η{i2}〉i3 to 76, index variable

i3 is equal to pos(“tom”), where pos is an invertible, uninterpreted function

representing the mapping from key “tom” to a unique, but unspecified index.

On the other hand, since exam scores is a position-dependent container, the

key-to-index mapping is the identity function; hence, the outgoing edge from

〈exam scores〉i1 is qualified by 0 ≤ i1 < 2.

4. Nesting of data structures: On the edge from 〈exam scores〉i1 to the

nested maps modeled by 〈η{i2}〉i3 , i2 is equal to i1. This constraint indicates

that there is a unique allocation for every index of the container exam scores

because there is exactly one i2 for each i1. Furthermore, together with the

constraints on edges outgoing from 〈η{i2}〉i3 , the abstraction encodes that the

map stored at position 0 of the vector exam scores associates key tom with
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value 76, but the map stored at position 1 of the vector associates tom with

value 65.

5. Iterators: The indirection from keys to indices provides a natural way to

model iterators by accessing every element in increasing order of their abstract

indices. Since the key-to-index mapping is always an invertible function, the

abstraction encodes that every element is visited exactly once. This abstraction

is also consistent with the expected semantics that iteration order over value-

dependent containers is, in general, unspecified (since pos is uninterpreted)

while elements of position-dependent containers are visited according to their

position.

6.2 Language and Concrete Semantics

To formally describe our analysis for container-mainpulating programs, we first in-

troduce a simple statically-typed language:

Program P := e+

Expression e := v | c | nil | newρ τ | e1; e2

| letρ v : τ = e in e′

| v1.read(v2) | v1.write(v2, v3)

| foreachρ0 (vρ11 , v
ρ2
2 ) in v do e od

| if v 6= nil then e1 else e2 fi

A program consists of one or more expressions. Expressions include variables v,

non-negative integer constants c, the special constant nil, container allocations (new

τ), sequencing (e1; e2), and let expressions. A read operation v1.read(v2) reads the

value of element with key v2 from container v1, and v1.write(v2, v3) writes value v3

with key v2 to container v1. A foreach construct iterates over container v, bind-

ing the current key to v1 and the value to v2. Finally, an if expression evaluates

expression e1 or e2, depending on whether variable v is nil or not. The let, new

and foreach expressions are labeled with superscripts ρ which are globally unique
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expression identifiers. When irrelevant, we omit ρ.

Types in this language are defined by the grammar:

Type τ := Int | Nil | pos adt(τ) | val adt(τ) | maybe(τ)

Base types in this language are Int and Nil. Position-dependent containers with

elements of type τ have type pos adt(τ), and value-dependent containers with value

type τ have type val adt(τ). To simplify the technical presentation, we require keys

of value-dependent containers to be integers; Section 6.4 discusses how to extend

our technique to keys with arbitrary types and custom equality operators. We also

introduce a type maybe(τ) for elements whose type can be either Nil or τ . A subtyping

relation is defined as:

τ <: τ Nil <: maybe(τ) τ <: maybe(τ)

We write adt(τ) as shorthand for pos adt(τ) ∨ val adt(τ). Type checking rules for

this language are given in Figure 6.3.

Observe that this language allows arbitrary nestings of containers because the

element type of a container can be another container. Also, while this language does

not have explicit contains and remove operations that are commonly defined on

containers, elements can be removed by writing nil and the presence of key k can be

checked by testing whether the result of reading k is nil.

6.2.1 Operational Semantics

In the operational semantics of our language, we view memory as a two-dimensional

array where each row stores a container, and each column identifies the index of a

specific element in the container. We model scalar values (integers) as rows where

only the 0’th column is used. A concrete memory location is a pair (l, i), where l is

the base location (i.e., the row) and i is an offset (i.e, the column).

Figure 6.4 gives the operational semantics. The general structure of the rules are

of the form E, S, C ` e : l′, S ′. Here, environment E maps program variables to base
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Γ ` c : Int Γ ` nil : Nil

Γ(v) = τ

Γ ` v : τ

τ = adt(τ ′)
τ ′ 6= Nil

Γ ` new τ : τ

Γ ` v1 : adt(τ)
Γ ` v2 : Int

Γ ` v1.read(v2) : maybe(τ)

Γ ` v1 : adt(τ)
Γ ` v2 : Int
Γ ` v3 : τ3, τ3 <: maybe(τ)

Γ ` v1.write(v2, v3) : Nil

Γ ` v : adt(τ)
Γ[Int/v1, τ/v2] ` e : τe

Γ ` foreach (v1, v2) in v do e od : Nil

Γ ` e1 : τ1

Γ ` e2 : τ2

Γ ` e1; e2 : τ2

Γ ` v : τ τ <: maybe(τ ′)
Γ[τ ′/v] ` e1 : τ ′′

Γ[Nil/v] ` e2 : τ ′′

Γ ` if v 6= nil then e1 else e2 fi : τ ′′

Γ ` e : τ ′, τ ′ <: τ
Γ[τ/v] ` e′ : τ ′′

Γ ` let v : τ = e in e′ : τ ′′

Figure 6.3: Type checking rules

locations l, store S maps concrete memory locations (l, i) to an integer, identifying

another base location or a constant, and C is a vector of integers denoting the current

iteration number of each loop in scope. The judgment E, S, C ` e : l′, S ′ states that

under environment E, store S, and counter vector C, expression e evaluates to value

l′, producing a new store S ′. In Figure 6.4, we use the notation S\l to denote store

S with binding l removed. In the rules, we also assume that type environment Γ is

available to differentiate between position- and value-dependent containers.

Most of the rules in Figure 6.4 are straightforward; we only highlight important

features of the language semantics. There are two key differences between position-

and value-dependent containers that our language semantics tries to capture: First,

position-dependent containers require filled positions of the container to be contiguous

whereas value-dependent containers do not. Second, iteration over position-dependent

containers visits elements in increasing order of their position, but iteration over value-

dependent containers visits elements in arbitrary order in general.

To capture the first difference, observe that the language semantics requires position-

dependent containers to use a contiguous region of memory whereas value-dependent
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E(v) = l
S(l, 0) = l′

E,S,C ` v : l′, S E, S,C ` c : c, S E, S,C ` nil : NIL, S

ln 6∈ dom(S)
S′ = S[∀i.(ln, i)← NIL]

E,S,C ` new τ : ln, S′

E,S ` e : l, S′

E′ = E[v ← ln] (ln 6∈ dom(S′))
S′′ = S′[(ln, 0)← l]
E′, S′′, C ` e′ : l′, S′′′

E,S,C ` let v : τ = e in e′ : l′, S′′′\ln

E(v2) = l2 S(l2, 0) = key
E(v1) = l1 S(l1, 0) = l′1
S(l′1, key) = lres

E,S,C ` v1.read(v2) : lres, S

E(v2) = l2 S(l2, 0) = key
E(v3) = l3 S(l3, 0) = val
E(v1) = l1 S(l1, 0) = l′1
S′ = S[(l′1, key)← val]

E,S,C ` v1.write(v2, v3) : NIL, S′ (v1val adt)

E(v2) = l2 S(l2, 0) = pos
E(v3) = l3 S(l3, 0) = elem
E(v1) = l1 S(l1, 0) = l′1
S(l′1, pos− 1) 6= NIL if l3 6= NIL ∧ pos > 0
S(l′1, pos + 1) = NIL if l3 = NIL

S′ = S[(l′1, pos)← elem]

E,S,C ` v1.write(v2, v3) : NIL, S′ (v1pos adt)

E(v) = l S(l, 0) = l′

∆ =
[(k1, ϑ1), . . . , (kn, ϑn)] where ki < ki+1 ∧
(ki, ϑi) ∈ ∆⇔ (S(l′, ki) = ϑi ∧ ϑi 6= NIL)

∆′ =

{
∆ if v pos adt

Permutation(∆) if v val adt

E′ = E[v1 ← lk, v2 ← lv ] lk, lv 6∈ dom(S)
E′, S, (0::C) ` process((v1, v2) in ∆′) do e : S′

E,S,C ` foreach (v1, v2) in v do e od : nil, S′\{lk, lv}

i < Size(∆)
E(v1) = lk E(v2) = lv
(ki, ϑi) = i’th element of ∆
S′ = S[lk ← ki, lv ← ϑi]
E,S′, (i::C) ` e : le, S′′

E,S′′, ((i+ 1)::C) ` process((v1, v2) in ∆) do e : S′′′

E,S, (i::C) ` process ((v1, v2) in ∆) do e : S′′′

i = Size(∆)

E,S, (i::C) ` process ((v1, v2) in ∆) do e : S

E, S,C ` e1 : l1, S1

E,S1, C ` e2 : l2, S2

E,S,C ` e1; e2 : l2, S2

E(v) = l S(l, 0) = l′

E,S,C ` e1 : lr, S′ if l′ 6= NIL

E,S,C ` e2 : lr, S′ if l′ = NIL

E,S,C ` if v 6= nil then e1 else e2 fi : lr, S′

Figure 6.4: Operational Semantics
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containers may be sparse. In particular, it is legal to use any key when writing to

a value-dependent container, but for position-dependent containers, the write oper-

ation is only defined if it does not create “holes” in the container, i.e., all elements

with indices in range [0, size) are non-nil and elements with indices at least size are

nil. To capture the second difference, observe, in the foreach rule, that ∆ is an

ordered list of (key, value) pairs, but we construct an arbitrary permutation ∆′ of ∆

when iterating over value-dependent containers. Also, observe that the (key, value)

pairs are pre-computed; hence, any changes to the container during the iteration do

not affect the (key, value) pairs that are visited.

6.3 Abstract Semantics

In this section, we describe the abstract semantics that form the basis of our analysis.

We first describe our abstract domain (Section 6.3.1) and then discuss our abstract

model of containers (Section 6.3.2). In Section 6.3.3, we present the analysis, and in

Section 6.3.4, we state the soundness theorem.

6.3.1 Abstract Domain and Preliminaries

Our abstraction differentiates between two kinds of abstract memory locations : Basic

locations, β, represent a single concrete element, and indexed locations, 〈α〉i, repre-

sent containers. Recall that although a single indexed location 〈α〉i represents many

concrete elements, our abstraction can reason about individual elements stored in the

container by using constraints on the index variable i. The abstract values used in

the analysis are:

Abstract value π = NIL | c | δ
Abstract location δ = βρ | 〈α〉i
Allocation α = ηρ{~i}

Abstract values are NIL, integer constants c, basic locations βρ (where ρ indicates

the program point where the location is introduced) and indexed abstract locations

〈α〉i. Allocations α are of the form ηρ{~i}, where ρ is a label for the syntactic allocation
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expression newρτ . More interestingly, allocations are also qualified by a (potentially

empty) vector of index variables to distinguish allocations arising from the same

syntactic expression in different loop iterations. Hence, just as index variables allow us

to refer to distinct elements in a container, index variables also distinguish allocations

arising from the same program expression. Since loops may be nested, the number of

index variables in ηρ{~i} is equal to the loop nesting depth of a newρ τ expression.

Unlike the concrete store that maps each concrete location to exactly one concrete

value, the abstract store necessarily maps each abstract location to a set of possible

abstract values. An abstract value set θ is a set of abstract value (π), bracketing

constraint (φ) pairs:

Abstract value set θ := 2(π,φ)

As before, bracketing constraints φ select particular elements from indexed locations.

For example, if the abstract value set for a container 〈α〉i is {(7, i = 0), (4, i =

1), (NIL, i ≥ 2)}, the abstraction encodes that the values of elements at indices 0 and

1 are 7 and 4 respectively, but all the other elements are nil.

In the rest of this chapter, we assume that an abstract value set θ does not contain

two pairs of the form (π, φ1) and (π, φ2); instead, θ contains π only once under φ1∨φ2.

6.3.2 Abstract Model of Containers

Our abstraction models any position- or value-dependent container as a mapping from

a key to an abstract index to a value stored at this index of the container. In this

section, we detail the key-to-index and the index-to-value mappings.

Index Selection: From Keys to Indices

The most important requirement for the key-to-index mapping M for containers is

that it obeys the following axiom:

∀i1, i2. i1 = i2 ⇒ M−1(i1) = M−1(i2)
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This axiom states that if two abstract indices are equal, then the keys associated

with these indices must also be equal. This requirement is necessary for soundness;

otherwise, two keys may be mapped to the same index, causing a value associated

with key k1 to be erroneously overwritten through inserts using a different key k2.

Hence, M has the property that its inverse mapping is a function. However, the

question remains whether M is itself a function. In this regard, there are two sensible

design alternatives:

1. For some containers that allow multiple values for the same key, such as mul-

timaps, we can allow the same key to map to multiple indices such that M itself

is not a function.

2. We can require M to be a function and model containers that allow multiple

values per key using nested containers.

Without loss of generality, we choose (2) because our model can express arbitrary

nestings of containers. Since both M and M−1 are functions, the key-to-index map-

ping is always a bijection (i.e., an invertible function). However, the key-to-index

mapping for value-dependent containers differs from that of position-dependent con-

tainers: In particular, for value-dependent containers, M is an invertible uninterpreted

function, while for position-dependent containers, M is the (interpreted) identity func-

tion. The intuition behind this choice is that if we insert an element e with key j

into a position-dependent container, then e is guaranteed to be the j’th element when

iterating over the container. On the other hand, if we insert element e with key j

to a value-dependent container, we have no guarantees about where e will appear in

the iteration order. Thus, we model the key-to-index mapping of value-dependent

containers as an invertible uninterpreted function.

Formally, we define two index selection operators, ♦ and ♣, for mapping keys to

index constraints for position- and value-dependent containers respectively.

Definition 12 (Index Selection ♦ for Position-Dependent Container) Let

θkey be the set of possible abstract values associated with some key, and let i be an
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index variable. Then,

θkey♦ i =
∨

(πj ,φj)∈θkey

(i = πj ∧ φj)

Definition 13 (Index Selection ♣ for Value-Dependent Container) Let θkey

be the set of possible abstract values associated with some key, and let i be an index

variable. Then,

θkey♣ i =
∨

(πj ,φj)∈θkey

(i = pos(πj) ∧ φj)

where pos is an invertible uninterpreted function.

Given an abstract value set θkey representing a set of possible keys, the index

selectors ♦ and ♣ yield a constraint describing the possible indices associated with

θkey. In the definition of ♦, since the mapping M is the identity function, the index

variable i is set equal to each possible value πj of the key (i.e., i = πj). On the other

hand, in the definition of ♣, the index variable i is equal to an invertible uninterpreted

function pos of each key (i.e., i = pos(πj)). Since the abstract value set associated

with the key may contain more than one element, we take the disjunction of the

constraints associated with each possible value of the key.

Element Selection: From Indices to Values

We now consider the problem of determining the value associated with a given index.

More specifically, given an abstract value set θ associated with a container, we want

to determine which elements of θ are consistent with some index constraint φ.

We begin with a simple example: Suppose that the abstract value set θ for a

container 〈α〉i is {(8, i = 1), (5, i = 2), (NIL, i > 2))} and we want to determine

the possible values of the element at index 2 in the container. To do this, we can

substitute 2 for index variable i and remove all unsatisfiable elements from θ, which

yields 5 as the only possible value for this element. We formalize this concept using

an element selection operation ./:
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Definition 14 (Element Selection ./) Let I denote the set of index variables men-

tioned in constraint φ, and let QE define a quantifier elimination procedure. Then,

θ ./ φ =

{
(πj, φ

′
j)

∣∣∣∣∣ (πj, φj) ∈ θ ∧ SAT(φj ∧ φ)∧
φ′j = QE(∃I. (φj ∧ φ))

}

First, observe that the element selection operation ./ filters out elements in θ

inconsistent with φ because of the requirement SAT(φj∧φ). Second, observe that the

resulting constraint φ′j is obtained by existentially quantifying and then subsequently

eliminating all index variables used in φ from the constraint φj ∧ φ because φ′j =

QE(∃I. (φj∧φ)). Existential quantifier elimination generalizes the simple substitution

mechanism we sketched out informally in the example: Since the index constraint φ

is not always a simple equality, we may not be able to substitute concrete values for

the index variables. Hence, similar to Definition 2 from Chapter 4, we need to use

existential quantification in the general case.

Example 12 Consider the abstract value set

θ =

{
(0, 〈0 ≤ i ≤ 10, false〉), (1, 〈0 ≤ i ≤ 10, false〉),
(NIL, 〈i > 10, i > 10〉)

}

associated with container 〈α〉i. To determine the possible values of those elements

whose indices in the container are in the range [0, 2], we compute:

θ ./ (0 ≤ i ≤ 2) = {(0, 〈true, false〉), (1, 〈true, false〉)}

The resulting set encodes that the possible values of elements in the range [0, 2] are

either 0 or 1, but definitely not NIL.

6.3.3 The Analysis

We describe the analysis as deductive rules of the form:

E,S,C ` e : θ, S′
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(1)
θ = {NIL, true}

E,S,C ` nil : θ, S
(2)

θ = {c, true}
E, S,C ` c : θ, S

(3)

E(v) = β
S(β) = θ

E,S,C ` v : θ, S
(4)

E,S,C ` e1 : θ1,S1

E,S1,C ` e2 : θ2,S2

E, S,C ` e1; e2 : θ2,S2

(5)

E,S,C ` e : θ, S′
E[v ← βρ],S′[βρ ← θ],C ` e′ : θ′,S′′

E,S,C ` letρ v : τ = e in e′ : θ′, S′′\βρ

(6)

E(v) = β S(β) = θ
φnil =

∨
(πj ,φj)∈θ((πj = NIL) ∧ φj)

E,S,C ` e1 : S1 E,S,C ` e2 : S2

S′ = (S1 ∧ ¬φnil) t (S2 ∧ φnil)

E,S,C ` if v 6= nil then e1 else e2 : S′

Figure 6.5: Transformers not Directly Related to Containers

where E, S, and C are the abstract counterparts of the E, S, C environments used

in the concrete semantics. In particular, the abstract environment E maps program

variables to basic locations βρ, the abstract store S maps abstract memory locations

δ to abstract value sets θ, and, finally, the counter vector C (a vector of integers) is

used for distinguishing different loop iterations.

We present the analysis in three steps: First, we discuss the basic transformers not

directly related to containers (Figure 6.5), then we describe the abstract semantics

for reading from, writing to, and allocating containers (Figure 6.6), and, finally, we

give the abstract semantics of the foreach construct (Figure 6.7).

Most of the transformers presented in Figure 6.5 are straightforward; we only

discuss rule (6) in detail. In this rule, φnil describes under what condition v is NIL.

After independently analyzing the then and else branches, we obtain the resulting

abstract store S′ by conjoining S1 and S2 with ¬φnil and φnil respectively and then

taking their union.

In this rule, we use the notation S∧φ as shorthand for the operation that conjoins
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φ with every constraint in S:

∀δ ∈ dom(S). (S ∧ φ)(δ) = {(πj, φj ∧ φ) | (πj, φj) ∈ S(δ)}

Rule (6) also uses a join operation on abstract stores defined as:

∀δ ∈ (dom(S1) ∪ dom(S2)). (π, φ) ∈ (S1 t S2)(δ) ⇔
(π, φ1) ∈ S1(δ) ∧ (π, φ2) ∈ S2(δ) ∧ φ = φ1 ∨ φ2

In this definition, we require that every abstract value π that is present in either S1 or

S2 is also present in the other; if it is not explicitly there, we add it under constraint

false.

Abstract Semantics for Container Operations

We now consider the abstract semantics for reading from containers, presented in

Figure 6.6. In the first two rules of Figure 6.6, θ2 represents the abstract value set

for the key v2, and each of the elements 〈α〉ij in abstract value set θ1 are containers

that the read operation may be performed on. We perform the key-to-index mapping

using the ♦ operator for position-dependent containers and the ♣ operator for value-

dependent containers, as described in Section 6.3.2. In these rules, the constraints

((θ2♦ij)∧φj) and ((θ2♣ij)∧φj) describe the positions in container 〈α〉ij from which we

read the value. Finally, we perform the index-to-value mapping using the ./ operation;

the abstract value set θ describes all possible elements that may be obtained as a result

of the read.

The now consider the rules in Figure 6.6 that describe the abstract semantics

for writing to containers. The helper rule Newval computes the new abstract value

set associated with container 〈α〉i after writing θw at those indices of 〈α〉i described

by constraint φw. Since θw is written to only those locations that satisfy the index

constraint φw, we conjoin φw with each element in θw to obtain θ′w. Now, those

elements in container 〈α〉i that do not satisfy the index constraint φw are not modified

by the write; hence the existing values S(〈α〉i) are preserved under condition ¬φw.

Thus, θp represents all values in 〈α〉i that are not affected by the write. Finally, the
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Read from Position Dependent Container
E(v1) = β1 E(v2) = β2

S(β1) = θ1 S(β2) = θ2

θ = {S(〈α〉ij) ./ ((θ2♦ij) ∧ φj) | (〈α〉ij , φj) ∈ θ1)}
E,S,C ` v1.read(v2) : θ, S

Read from Value Dependent Container
E(v1) = β1 E(v2) = β2

S(β1) = θ1 S(β2) = θ2

θ = {S(〈α〉ij) ./ ((θ2♣ij) ∧ φj) | (〈α〉ij , φj) ∈ θ1)}
E,S,C ` v1.read(v2) : θ, S

Newval
θ′w = {(πj, φw ∧ φj) | (πj, φj) ∈ θw}
θp = {(πk,¬φw ∧ φk) | (πk, φk) ∈ S(〈α〉i)}

S ` newval(〈α〉i, θw, φw) : θ′w ∪ θp

Update
θc = {(〈α〉i1 , φ1), . . . , (〈α〉ik , φk)}
S ` newval(〈α〉i1 , θval, (θkey ⊗ i1) ∧ φ1) : θ1

. . .
S ` newval(〈α〉ik , θval, (θkey ⊗ ik) ∧ φk) : θk
S′ = S[〈α〉i1 ← θ1, . . . , 〈α〉ik ← θk]

S ` update(θc, θkey, θval) with ⊗ : S′
(⊗ ∈ {♦,♣})

Write to Value Dependent Container
E(v1) = β1 E(v2) = β2 E(v3) = β3

S(β1) = θ1 S(β2) = θ2 S(β3) = θ3

S ` update(θ1, θ2, θ3) with ♣ : S′

E, S,C ` v1.write(v2, v3) : {(NIL, true)},S′

Write to Position Dependent Container
E(v1) = β1 E(v2) = β2 E(v3) = β3

S(β1) = θ1 S(β2) = θ2 S(β3) = θ3

S ` update(θ1, θ2, θ3) with ♦ : S′

E, S,C ` v1.write(v2, v3) : {(NIL, true)},S′

Container Allocation

α = ηρ{~iρ}, ~iρ = [iρ1, . . . , i
ρ
n] where n = |C|

S ` newval(〈α〉iρ0 , {(NIL, true)}, ~iρ = C) : θ

E, S,C ` newρ τ : {(〈α〉iρ0 , ~i
ρ = C)},S[〈α〉iρ0 ← θ]

Figure 6.6: Abstract Semantics for Container Operations
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set of new values stored in container 〈α〉i is obtained by taking the union of θ′w (i.e.,the

new value for the updated indices) and θp (i.e., values stored at all other indices).

The second helper rule, Update, uses Newval to compute the new abstract store

after a write. In this rule, each element 〈α〉ij in θc represents a container that may be

written to. The value set θval describes the possible values that may be written, and

the constraint ((θkey ⊗ ij) ∧ φj) (where ⊗ is either ♣ or ♦) describes those indices of

〈α〉ij that are modified. For each container 〈α〉ij in θc, the Newval rule is invoked to

compute the new value set θj after the write, and a new store S′ is obtained by binding

each 〈α〉ij to its new value set θj. The write rules for position- and value-dependent

containers use the Update rule to compute the new abstract store after the write. As

expected, the rule for position-dependent containers uses the ♦ operator while the

rule for value-dependent containters uses ♣. 1

The last rule in Figure 6.6 describes the abstract semantics for container alloca-

tions. The abstract location arising from the allocation is labeled with the expression

identifier ρ to differentiate allocation sites, and the vector of index variables ~iρ dif-

ferentiates allocations arising from the same syntactic expression in different loop

iterations. Since the counter vector C has as many entries as the loop nesting depth

of the allocation expression, the number of variables in ~iρ is equal to the number of

entries in C. Observe that, in this rule, the constraint ~iρ = C stipulates that each

index variable in ~iρ is equal to the appropriate counter describing the iteration num-

ber of a loop. Finally, recall that the concrete semantics initializes the entries in a

freshly allocated container to NIL, hence, the Newval rule is invoked to compute the

new value set associated with container 〈α〉iρ0 after initializing its elements to NIL.

Example 13 Consider the simple program:

1: leta v: val adt(Int) = newb val adt(Int) in

2: v.write(4, 87),

3: let x = v.read(4) in

1Recall that the operational semantics are undefined if position-dependent containers are not used
contiguously. Since checking this correct usage condition is an orthogonal problem to reasoning about
container contents, the abstract semantics reason only about programs for which the operational
semantics do not get “stuck”.
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4: let y = v.read(3) in nil

Assume E(v) = βa. The abstract store after line 1 is given by:

S : [βa → {〈ηb〉i, true)}, 〈ηb〉i → {(NIL, true)}]

Here, ηb does not have any index variables because the allocation expression is not in

a loop; the index variable i in 〈ηb〉i ranges over indices of the container. After the

write at line 2, we have:

S :

[
βa → {〈ηb〉i, true)},
〈ηb〉i → {(87, i = pos(4)), (NIL, i 6= pos(4))}

]

At line 3, the abstract value set for x is:

S(〈ηb〉i) ./ (i♣4) = S(〈ηb〉i) ./ (i = pos(4))

= {(87, true)}

Similarly, at line 4 the abstract value set for y is:

S(〈ηb〉i) ./ (i♣3) = {(NIL, true)}

Abstract Semantics for Iteration

The main idea behind the abstract semantics for iterating over containers is that the

j’th iteration of the loop accesses the key and value pairs stored at the j’th index of

the container. It is easy to see that this strategy is correct for position-dependent

containers because (i) the concrete semantics requires an element with key j to be

accessed during the j’th iteration and (ii) in our abstraction, the key-to-index map-

ping for position-dependent containers is the identity function. For value-dependent

containers, recall that the operational semantics stipulates an arbitrary iteration or-

der. Now, although the abstraction models iteration by visiting the element at the

j’th index during the j’th iteration, it does not impose any restrictions on which

key may be visited during the j’th iteration because the key-to-index mapping is an
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uninterpreted function (the constraint j = pos(k) is satisfiable for any value of j and

any key k). Furthermore, since pos is an invertible function, the abstraction encodes

that for each different value of j, there is a different key k, indicating that no key

may be visited multiple times.

Figure 6.7 gives the abstract semantics of the foreach construct. The first two

rules compute the set of (key, value) pairs that may be visited during an arbitrary k’th

iteration of the loop for position- and value-dependent containers respectively. Since

the abstract semantics models iteration as visiting the k’th index during the k’th

iteration, we retrieve the values stored in container 〈α〉ij under the index constraint

ij = k. Therefore, in the first two rules, the abstract value set θv describes the values

that may be stored at index k. For position-dependent containers, the key during the

k’th iteration of the loop is bound to k, as required by the operational semantics. In

the first rule, we construct the set of possible key, value pairs for the k’th iteration

as the set of all (k, πv) such that πv is non-nil and in θv. Observe that the (key,

value) pairs in θk×v respect the relationship between keys (i.e., positions) and values,

as illustrated by the following example:

Example 14 Consider a position-dependent container 〈α〉i such that S(〈α〉i) = {(44, i =

0), (3, i = 1), (NIL, i ≥ 2)}. We compute the set of (key, value) pairs during the k’th

iteration as:

θk×v = {((k, 44), k = 0), ((k, 3), k = 1)}

Observe that the abstraction respects the relationship between positions and values;

for example, the pair (1, 44) is infeasible.

The second rule in Figure 6.7 computes the (key, value) pairs during the k’th

iteration for value-dependent containers. In this rule, the key during the k’th iteration

is bound to all integers πk such that k = pos(πk), as stipulated by constraint φk.
2 As

in the position-dependent case, the relationship between keys and values are preserved

because the rule filters out infeasible (key, value) pairs by checking the satisfiability

of φkv. Finally, observe that the pos function is renamed to posρ because elements

2Observe that the set of all possible πk’s is finite for any given program in our language; hence
candidates for πk are drawn from a finite set.
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Key, value pair at kth Iteration for pos adt

E(v) = β S(β) = θc
θv = {S(〈α〉ij) ./ (ij = k ∧ φj) | (〈α〉ij , φj) ∈ θc}
θk×v =

{
((k, πv), φv)

∣∣ (πv, φv) ∈ θv ∧ πv 6= NIL)
}

` elemρ(v)@k : θk×v

Key, value pair at kth Iteration for val adt

E(v) = β S(β) = θc
θv = {S(〈α〉ij) ./ (ij = k ∧ φj) | (〈α〉ij , φj) ∈ θc}

θk×v =

((πk, πv), φkv)

∣∣∣∣∣∣∣∣
(πv, φv) ∈ θv ∧ πv 6= NIL
∧ φk = ((pos(πk) = k)
∧ (φkv = (φk ∧ φv)[posρ/pos])
∧ SAT(φkv)


` elemρ(v)@k : θk×v

Foreach

` elemρ0(v)@kρ0 : θkv

θkey = {(πkey, φ) | ((πkey, πval), φ) ∈ θkv}
θval = {(πval, φ) | ((πkey, πval), φ) ∈ θkv}
E′ = E[v1 ← βρ1 , v2 ← βρ2 ] S′ = S[βρ1 ← θkey, β

ρ2
2 ← θval]

E′,S′, (0::C) ` fix (e, kρ) : S′′ θ = {(NIL, true)}
E,S,C ` foreachρ0(vρ11 , v

ρ1
2 ) in v do e od : θ, S′′\{βρ1 , βρ2}

Fix
E,S[c/k], (c::C) ` e : θ, S′, S′ v S∗
E,S∗, ((c+ 1)::C) ` fix (e, k) : S∗

E,S, (c::C) ` fix (e, k) : S∗

Figure 6.7: Abstract Semantics for Iterating over Containers
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may be visited in a different order in each loop.

The foreach rule first invokes the appropriate helper elem rule for computing

the set of (key, value) pairs during an arbitrary kρ0 ’th iteration. (The variable k is

superscripted with the expression identifier ρ0 for this loop in order to avoid naming

conflicts.) The set θkv therefore describes the set of possible (key, value) pairs during

an arbitrary iteration. The abstract value sets θkey and θval are obtained by selecting

the keys and the values from θkv respectively. The abstract environment E′ binds

variables v1, v2 to fresh locations βρ1 and βρ2 , and the abstract store S′ binds βρ1 and

βρ2 to θkey and θval, since the operational semantics requires the (key, value) pairs to

be computed before executing the body of the foreach construct. The foreach rule

uses the helper fix rule to obtain the final store S′′.
In the fix (e, k) rule, c represents the current iteration number of the loop. Since

the bindings for v1 and v2 are parametric on variable k, the rule replaces occurrences

of k in S with concrete value c when evaluating the loop body e. In this rule, S∗ is a

sound store describing the cumulative effect of the loop, as S∗ overapproximates the

store after any loop iteration. Here, an abstract store S′ overapproximates another

abstract store S, written S v S′ according to Definition 16:

Definition 15 (Domain Extension S7→S′) An abstract store S ′′ = S7→S′ is a domain

extention of S with respect to S′ if the following condition holds: Let δ be any binding

in S′ and let (πi, φi) be any element of S′(δ).

1. If δ ∈ S ∧ (πi, φ
′
i) ∈ S(δ), then δ ∈ S7→S′ ∧ (πi, φ

′
i) ∈ S7→S′(δ)

2. Otherwise, δ ∈ S7→S′ ∧ (πi, false) ∈ S7→S′(δ)

Definition 16 (Abstract Store Overapproximation S v S′) Let S1 be the do-

main extension S7→S′, and let S2 be the domain extension S′7→S . Then, S v S′ if for

all δ ∈ S1 and for all πi such that (πi, 〈ϕmay, ϕmust〉) ∈ S1(δ) and (πi, 〈ϕ′may, ϕ
′
must〉) ∈

S2(δ):

ϕmay ⇒ ϕ′may ∧ ϕ′must ⇒ ϕmust

According to this definition, a store S′ overapproximates another abstract store S
if, when they are extended to the same domain, any may constraint in S implies the
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corresponding may constraint in S′, and any must constraint in S is implied by the

corresponding must constraint in S′. In other words, the overapproximation encoded

in S′ through the may constraints is more permissive than S, and the underapproxi-

mation encoded by S′ through the must constraints is less permissive than S.

In the fix rule, it is easy to see that a trivial invariant store S∗ always exists since

the analysis creates a finite number of abstract locations for any given program, and

an abstract store Striv with constraint 〈true, false〉 mapping each possible abstract

location to any other abstract location has the property ∀S. S v Striv. To find a

more useful invariant store than the trivial Striv, it is necessary to infer numeric

invariants relating index variables associated with different containers or allocation

sites. Since the focus of this chapter is not invariant generation, we do not go into the

details of how to find a “good” invariant store; various techniques based on abstract

interpretation [31, 58] and quantifier elimination [38, 59] can be used for finding

invariants. In particular, Section 4.4 from Chapter 4 presents an algorithmic way of

finding such invariants in this domain.

An Example Illustrating Key Features of the Analysis

In this section, we consider a small, but realistic, example illustrating some important

features of the analysis. Consider the following program fragment:

1: leta paper scores: val adt(pos adt(Int)) =

2: newb val adt(pos adt(Int)) in

3: foreachc (pos, cur paper) in papers

4: do

5: letd scores: pos adt(Int) = newe pos adt(Int) in

6: paper scores.write(cur paper, scores)

7: od;

8: letf reviewed paper = paper scores.read(45) in

9: if(reviewed paper != nil)

10: then reviewed paper.write(0, 5) else nil
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In this program fragment, papers is a position-dependent container whose ele-

ments are identifiers for all submitted papers to a conference. The code above creates

a new value-dependent container paper scores that maintains a mapping from each

paper identifier to a list of scores associated with this paper. The code iterates over

papers and, for each paper, allocates a new position-dependent container, scores,

and inserts the (key, value) pair, (cur paper, scores) into the map.

For simplicity, let us assume this particular conference was unpopular this year

and had only 3 submissions with identifiers 21, 45, and 32, which are placed in papers

in this order. Let us also assume that E(papers) is βp and S(βp) = {(〈ηp〉i1 , true)}.
After the allocation at line 5 during some arbitrary k’th iteration of the loop, the

abstract environment and stores are:

E(papers) = βp E(paper scores) = βa

E(scores) = βd E(cur paper) = βc

S(βp) = {(〈ηp〉i1 , true)}
S(βa) = {(〈ηb〉i2 , true)}
S(〈ηp〉i1) = {(21, i1 = 0), (45, i1 = 1),

(32, i1 = 2), (NIL, i1 ≥ 3)}
S(βc) = {(21, k = 0), (45, k = 1), (32, k = 2)}
S(〈ηb〉i2) = {(NIL, true)}
S(βd) = {(〈ηe{i3}〉i4 , i3 = k)}
S(〈ηe{i3}〉i4) = {(NIL, i3 = k)}

Consider the write at line 6, which uses cur paper as the key and the freshly

allocated container scores as the value. Here, the possible values of cur paper

during the k’th loop iteration are given by S(βc) above, which encodes that the value

of cur paper is 21 during the first iteration (k = 0), 45 during the second iteration

(k = 1), and 32 during the third iteration (k = 2). The abstract value set for the

value scores is given by S(βd) = {(〈ηe{i3}〉i4 , i3 = k)}. Here, the freshly allocated

container is represented by 〈ηe{i3}〉i4 , which has two index variables i3 and i4, where

i3 distinguishes allocations from different loop iterations and i4 differentiates elements

stored in the container. The constraint i3 = k in S(βd) encodes that we are considering
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the allocation that happened during the k’th iteration. Hence, the set of all possible

(key, value) pairs that are written at line 6 in any k’th iteration are:
((21, 〈ηe{i3}〉i4), i3 = k ∧ k = 0),

((45, 〈ηe{i3}〉i4), i3 = k ∧ k = 1),

((32, 〈ηe{i3}〉i4), i3 = k ∧ k = 2)


Now, if we eliminate the dependence on a particular iteration k, we obtain the set

of all possible (key, value) pairs that may be written during any iteration of the loop:

W =


((21, 〈ηe{i3}〉i4), i3 = 0),

((45, 〈ηe{i3}〉i4), i3 = 1),

((32, 〈ηe{i3}〉i4), i3 = 2)


Observe that, while all the allocations at line 5 are represented by a single abstract

container 〈ηe{i3}〉i4 , the index constraints stipulate that the allocations associated

with each key are distinct from each other, since the values of i3 are different for

the keys 21, 45, and 32. Now, to process the write at line 6, we use the update rule

from Figure 6.6 for each entry in W with θc = {(〈ηb〉i2 , true)} (the location associated

with container paper scores), the key, value sets θkey, θval given by each entry in W

(θkey = {(21, true)}, θval = {(〈ηe{i3}〉i4), i3 = 0)} etc.), and using the index selector

♣ since paper scores is value-dependent. This yields:

S(〈ηb〉i2) =



(〈ηe{i3}〉i4 , ((i3 = 0 ∧ i2 = pos(21))∨
(i3 = 1 ∧ i2 = pos(45))∨
(i3 = 2 ∧ i2 = pos(32))),

(NIL, i2 6= pos(21)∧
i2 6= pos(45) ∧ i2 6= pos(32))


The new abstract value set S(〈ηb〉i2) expresses that all containers stored in paper scores

are unique because the value of i3 is different for each key. Now, let us consider lines

8-10 in the program fragment. To determine the result of the read at line 8, we

compute:
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(〈ηe{i3}〉i4 , ((i3 = 0 ∧ i2 = pos(21))∨
(i3 = 1 ∧ i2 = pos(45))∨
(i3 = 2 ∧ i2 = pos(32))),

(NIL, i2 6= pos(21)∧
i2 6= pos(45) ∧ i2 6= pos(32))


./ (i2 = pos(45))

which, when simplified, yields {(〈ηe{i3}〉i4 , i3 = 1)}. Hence, if S(reviewed paper) =

βf , then:

S(βf ) = {(〈ηe{i3}〉i4 , i3 = 1)}

For the if expression at line 9, only the then branch is satisfiable since 〈ηe{i3}〉i4 is

not NIL. Finally, after the write at line 11, the values for the nested containers are

given by:

S(〈ηe{i3}〉i4) = {(5, i4 = 0 ∧ i3 = 1), (NIL, i4 6= 0 ∨ i3 6= 1)}

Hence, this abstract store encodes that only the score at position 0 of the scores list

associated with key 45 in paper scores has been changed to 5, but the score lists

associated with all other keys are unchanged.

6.3.4 Soundness of the Abstraction

In order to state the soundness theorem, we first need to define an abstraction function

from concrete to abstract memory locations. Observe that if ~i denotes a vector of

index variables used in some abstract location δ and σ is a concrete assignment to

each of the index variables in ~i, then the pair (δ, σ) represents one concrete memory

location. Therefore, the abstraction function is a mapping from concrete locations

to a pair consisting of an abstract memory location δ and a full assignment σ to all

index variables used in δ:

Abstraction function α = Concrete loc (l, i)→ (δ, σ)
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To make this abstraction function precise, it is necessary to augment the opera-

tional semantics with some additional bookkeeping machinery that was omitted from

Figure 6.4 to avoid complicating the language semantics. First, for each concrete

location (l, i) in store S, we need to determine the program point ρ that results in

the binding of (l, i) in S; we write id(l, i) to denote the program point ρ associated

with the introduction of (l, i). Second, to be able to give a full assignment to the

index variables in an abstract location, we need to determine the counter vector C

when a concrete location was introduced. Hence, we assume an environment A maps

each concrete location (l, i) to the counter vector C present when (l, i) was introduced

in concrete store S. Since it is trivial to extend the operational semantics from Fig-

ure 6.4 to track id(l, i) and A(l, i), we assume this additional bookkeeping information

is available. We can now define the abstraction function as follows:

Definition 17 (Abstraction Function) Let (l, k) be a concrete memory location,

and let id(l, k) = ρ such that ρ labels expression eρ, and A(l, k) = C. Then, the

abstraction of (l, k), written α(l, k), is:

1. (〈ηρ{~iρ}〉iρ0 , ~iρ = C ∧ iρ0 = k) if eρ = newρ pos adt τ

2. (〈ηρ{~iρ}〉iρ0 , ~iρ = C ∧ iρ0 = pos(k)) if eρ = newρ val adt τ

3. (βρ, true) otherwise

We extend this abstraction function from all concrete values v to all abstract

values π in the following obvious way:

α(v) =


(NIL, true) if v = NIL

(c, true) if v is integer constant c

α(l, k) if v is a memory location(l, k)

We write σ(φ) to denote the result of substituting each of the variables in φ with

their concrete assignment specified by σ. In addition, we assume the substitution

σ(φ) gives an interpretation to all function symbols posρ in φ by replacing posρ with

the particular permutation it stands for in a given execution. Since it is trivial to

extend the operational semantics to track which permutation was used for which loop,
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we assume this information is available.

Definition 18 (Value Agreement) Let v be a concrete value with α(v) = (π, σ),

and let θ be an abstract value set. We say concrete value v agrees with abstract value

set θ, written v ∼ θ, if:

1. (π, 〈ϕmay, ϕmust〉) ∈ θ ∧ VALID(σ(ϕmay))

2. ∀(π′, 〈ϕ′may, ϕ
′
must〉) ∈ θ. UNSAT(σ(ϕ′must)) (π′ 6= π)

In this definition, the first condition states the correctness of the overapproxima-

tion encoded by θ, and the second condition states the correctness of the underapprox-

imation. If the abstract representation of v is (π, σ), then, for the overapproximation

to be correct, π must be in θ under some constraint 〈ϕmay, ϕmust〉 and the may con-

straint ϕmay must evaluate to true under the index assignment σ. (Recall that since

the language from Section 6.2 has no inputs, the only variables in constraints are

index variables; thus, ϕmay always evaluates to a constant under σ.) The second con-

dition of value agreement states the correctness of the underapproximation, requiring

at most the abstract representation of v to be in θ, i.e., all other elements in θ should

be infeasible under index assignment σ.

Definition 19 (State Agreement) Let (v, E, S, C) be a concrete state, consisting

of a concrete value v, concrete environment E, concrete store S and counter vector C,

and let (θ,E,S,C) be an abstract state with abstract value set θ and abstract environ-

ment and store E,S and counter vector C. We say concrete state (v, E, S, C) agrees

with abstract state (θ,E,S,C), written (v, E, S, C) ∼ (θ,E,S,C), if the following

conditions hold:

1. v ∼ θ (according to Definition 18)

2. ∀v ∈ dom(E). (v ∈ dom(E) ∧ E(v) = α(E(v), 0))

3. ∀(l, k) ∈ dom(S). S(l, k) = l′ ⇒
(α(l, k) = (δ, σ) ∧ l′ ∼ (S(δ) ./ σ))

4. C = C
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Theorem 2 (Soundness) Let P be any program. If (E, S, C) ∼ (E,S,C), then

E, S, C ` P : l, S ′

⇒
E, S,C ` P : θ, S′ ∧ (l, E, S ′, C) ∼ (θ,E,S′,C)

The proof is given in Section 6.7.

6.4 Extensions

The language we have used for the formal development requires keys of value-dependent

containers to be integers, but, in real languages, keys may have arbitrary types. The

techniques we have described so far are directly applicable when pointer values are

used as keys because pointer equality is a form of integer equality. However, it is com-

mon to define custom equality predicates on some types, and determining whether

two keys are equal may be more involved than simple integer equality. Consider the

following C++ code snippet:

class Point {

int x; int y; color c;

Point(int x, int y, color c){

this->x=x; this->y=y; this->c=c;

};

bool operator==(const Point & other) {

return x == other.x && y == other.y;

}

}

unordered_set<Point> points;

Point p1 = Point(5, 34, RED); points.insert(p1);

Point p2 = Point(5, 34, BLUE); points.insert(p2);

Here, the type Point defines a custom equality operator that only checks the x

and y coordinates for a point but disregards its color. In the above program, after the



CHAPTER 6. ANALYSIS OF A LANGUAGE WITH CONTAINERS 100

last insertion operation, there is only one element in the set even though two points

with different colors are inserted. If we treat p1 and p2 as variables in the constraint

language, our technique would conclude that the size of the set is 2 under constraint

p2 6= p1 and 1 under p2 = p1. To be more precise in the presence of custom equality

predicates, we infer axioms characterizing when two objects are equal. Specifically, by

analyzing the implementations of the custom equality predicates, we infer necessary

and sufficient conditions 〈ϕ=
may, ϕ=

must〉 characterizing when two objects o1 and o2 may

and must be equal. (Observe that treating p1 and p2 as variables in the constraint

language as above is equivalent to the trivial and always sound equality condition

〈true, false〉). Now, in order to take into account what we know about the custom

equality predicate, we add the axioms ∀o1, o2. o1 = o2 ⇒ ϕ=
may and ∀o1, o2. ϕ

=
must ⇒

o1 = o2 to the constraint solver. For instance, for the simple equality predicate for

Point, we could utilize the axiom ∀p1, p2. p1 = p2 ⇔ (p1.x = p2.x ∧ p1.y = p2.y),

allowing the technique to conclude that the size of the set after the second insertion

is 1.

In the technical development, we also assumed that the iteration order over value-

dependent containers is arbitrary. While this is true in most cases, some value-

dependent containers (such as a red-black-tree based map) may visit keys in a certain

order during an iteration. We can encode such restrictions in the iteration order by

analyzing the custom less than operators and inferring appropriate axioms about the

pos function in a similar way as above.

6.5 Implementation

We have implemented the ideas presented in this chapter in our Compass program

verification framework for analyzing C and C++ programs. Compass utilizes a gcc

and g++ based front-end called SAIL [37] which translates C and C++ code to a low-

level representation, similar to 3-address code. Compass uses the Mistral SMT solver

[36, 39] for solving and simplifying constraints generated during the analysis. Compass

supports most features of C++, including classes, arrays, dynamic memory allocation,

pointer arithmetic, references, single and multiple inheritance, and virtual method
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calls. Compass performs path-sensitive analysis and achieves context-sensitivity by

computing polymorphic summaries of functions (and loops) and instantiates them in

calling contexts [40].

6.6 Experimental Evaluation

To demonstrate the usefulness of the ideas presented in this chapter, we evaluate the

proposed technique in two different ways: In a first set of experiments, we perform

a case study and prove the functional correctness of a set of small, but challenging

programs manipulating containers. In a second set of experiments, we use this tech-

nique to prove memory safety properties of real C++ applications that heavily use

containers, and we show that a precise understanding of data structure contents is

beneficial in improving analysis results. For both sets of experiments, we annotated

the containers provided by the C++ standard template library [1], either directly as

position- or value-dependent containers or by nesting them inside already annotated

STL containers.

6.6.1 Case Study

In our case study, we analyze fifteen small, but challenging, example programs totaling

close to 1000 lines of code. All benchmarks are available at:

http://www.stanford.edu/~tdillig/cont.txt.

The results of the case study are presented in Figure 6.8; we briefly discuss each of

the programs from this table. The first two programs copy the contents of a vector and

a map into another container of the same type and assert their element-wise equality.

Program 3 builds the reverse map r of map m by inserting each (k, v) pair in m as

the key-value pair (v, k) of r. Program 4 is modeled after the example in Figure 6.1

and asserts the correctness of the entries in exam scores. Program 5 inserts all

the keys in a map m into a set s and asserts that s contains exactly the keys in m.

Programs 6-8 illustrate nested containers by asserting properties about the composed

data structures. Program 9 inserts numbers [0, size) into a stack and a queue and
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Program Time Memory

1 Vector copy 0.22s <2 MB

2 Map copy 0.33s <2 MB

3 Reverse mapping 0.14s <2 MB

4 Example from Introduction 0.22s <4 MB

5 Set containing map keys 0.62s <2 MB

6 Map of lists 0.21s <2 MB

7 Vector of sets 0.11s <2 MB

8 Multimap 0.33s <2 MB

9 Stack-queue relationship 0.19s <2 MB

10 Singleton pattern correctness 0.23s <5 MB

11 Prove map values non-null 0.30s <2 MB

12 Prove non-aliasing between vector elements 0.31s <2 MB

13 List containing key,value pairs of a map 1.14s <2 MB

14 Set containing map keys with non-null values 0.44s <2 MB

15 Relationship between keys and values in map 0.31s <2 MB

Figure 6.8: Experimental Results of the Case Study

asserts that the top of the stack is the last element in the queue. Program 10 emulates

the singleton pattern through a get shared method that uniquifies objects that are

the same according to their custom equality predicate by using a set, and asserts the

correctness of get shared. Program 11 asserts that the values in a map are non-

null, and Program 12 asserts that there is no aliasing between elements in a vector.

Program 13 builds a list containing (key, value) pairs in a map and asserts that the list

contains exactly the key, value pairs in the map. Program 14 builds a set containing

all map keys with non-null values and asserts that the set contains exactly the keys

with non-null values. Program 15 asserts various properties about the relationship

between keys and values in a map. Compass is able to fully automatically verify all

of these examples, while reporting errors in slightly modified, buggy versions of these

programs. As shown in Figure 6.8, the running times for most of these examples are

under a second and maximum memory consumption is consistently below 4 MB. We

believe these examples illustrate that Compass can automatically verify interesting

properties about the functional correctness of client programs using containers and

their nestings.
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6.6.2 Proving Memory Safety Properties

In a second set of experiments, we investigate the added benefits of precise reasoning

about container contents when checking for memory safety properties in real C++

applications. Using Compass, we analyzed three applications ranging from 16,030

to 128,318 lines of C++ code: The first application is LiteSQL [7], which integrates

C++ objects tightly with a database. The second application we analyzed is the

widget library of the vector graphics program, Inkscape (which was used for the

drawings in this submission) [6]. We chose this component of Inkscape because it

illustrates how more complex abstract data types are implemented using standard

containers as building blocks. The third application is Digikam, a stand-alone, fairly

large, open-source photo management program [3].

Both LiteSQL and the Inkscape widget library use the C++ standard template

library (STL), while Digikam uses container libraries of the QT framework [10]. For-

tunately, since the containers in QT are interface-compatible with the ones in the

STL, we were able to use the same set of container interface annotations for all three

applications. As typical of many programs written in an object-oriented style, all

of these applications make heavy use of containers, such as vectors, lists, maps, and

their combinations.

To demonstrate the importance of precise, per-element reasoning about containers

when checking for memory safety properties, we analyzed these applications in two

different configurations: In the first configuration, we use the technique described

in this chapter, while in the second configuration, we track which set of elements a

container may store, but we do not reason about the relationship between positions

and values for position-dependent containers, and we do not track the key-value

relationships for value-dependent containers (i.e., we “smash” containers into a set of

values).

Figure 6.9 summarizes the results of our experiments. For each of the three appli-

cations, we check the following memory safety properties: Null pointer dereferences,

memory leaks (i.e., lack of unreachable memory), and accessing deleted memory. All

of our experiments were performend on an 8-core 2.66 GHz Xeon workstation with

24GB of memory. In Figure 6.9, we provide the running times of the analyses both on
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LiteSQL 0.3.8
Number of lines 16,030

Our technique Containers as sets
Running time 1 CPU 4.5 min 5.8 min
Running time 8 CPUs 1.6 min 1.6 min
Maximum Memory 1.3 GB 1.5 GB
Null Dereference Errors
Actual errors 2 2
False positives 2 68
Memory Leak Errors
Actual errors 3 3
False positives 0 7
Access to Deleted Memory
Actual errors 0 0
False positives 0 4

Total FP to error ratio 0.75 15.8

Inkscape 0.47 Widget Library
Number of lines 37,211

Our technique Containers as sets
Running time 1 CPU 7.2 min 6.1 min
Running time 8 CPUs 2.3 min 2.1 min
Maximum Memory 1.9 GB 1.8 GB
Null Dereference Errors
Actual errors 1 1
False positives 0 24
Memory Leak Errors
Actual errors 1 1
False positives 1 18
Access to Deleted Memory
Actual errors 2 2
False positives 2 22

Total FP to error ratio 0.75 16

Digikam 1.2.0
Number of lines 128,318

Our technique Containers as sets
Running time 1 CPU 45.1 min 44.3 min
Running time 8 CPUs 8.7 min 10.3 min
Maximum Memory 12.0 GB 10.6 GB
Null Dereference Errors
Actual errors 17 17
False positives 8 220
Memory Leak Errors
Actual errors 8 8
False positives 1 45
Access to Deleted Memory
Actual errors 3 3
False positives 0 6

Total FP to error ratio 0.32 9.68

Figure 6.9: Proving memory safety properties



CHAPTER 6. ANALYSIS OF A LANGUAGE WITH CONTAINERS 105

a single core as well as on all eight cores. Since the analysis is summary-based, many

functions can be analyzed in parallel to yield much better running times, ranging

from 1.6 to 8.7 minutes on eight cores.

In Figure 6.9, observe that the technique presented in this chapter improves the

precision of the analysis over the second configuration which treats the container’s

contents as a set, in many cases by an order of magnitude. For example, the total false

positive to error ratio for Digikam is 0.32 if the technique presented in this chapter

is used for the analysis, while this ratio increases to 9.68 with the second analysis

configuration. This statistic means that there are roughly three actual error reports

per false positive using our technique, while there is less than one actual error per

nine false positives using the second, less precise configuration. We believe that this

dramatic reduction in false positives illustrates the usefulness of our technique for

analyzing real-world C++ applications.

Also, observe in Figure 6.9 that there are no significant differences in running time

and memory consumption between the two analysis configurations. We believe that

the statistics provided in Figure 6.9 illustrate that our technique adds useful precision

without incurring significant extra computational resources.

6.7 Proof of Soundness

In this section, we sketch the proof of soundness of the key rules from Section 6.3.3.

The proof is a standard induction on the inference rules from Figures 6.5, 6.6, and 6.7.

We only focus on the rules that involve containers.

6.7.1 Preliminaries

We first introduce some notation that is convenient to use in the proofs and state

some assumptions.

Definition 20 (σ(θ)) Let θ be an abstract value set, and let σ be an assignment to



CHAPTER 6. ANALYSIS OF A LANGUAGE WITH CONTAINERS 106

(at least) the index variables in θ. Then:

σ(θ) = {(πj, σ(φj) | (πj, φj) ∈ θ ∧ SAT(σ(φj)}

Definition 21 (dφe, bφc) Let φ be the bracketing constraint 〈ϕmay, ϕmust〉. Then,

dφe = ϕmay and bφc = ϕmust.

Throughout the proof, we assume that every abstract value π that can arise for a

given program is present in every abstract value set θ; for values that have not been

explicitly added to θ, we assume (π, false) ∈ θ.

6.7.2 Proof of Key Rules

We first consider the read rule for position-dependent containers:

Let (lc, k) denote the concrete location that the read is performed on (i.e, the

result is obtained from S(lc, k)). Let α(lc, k) = (δ, σc), and let α(S(lc, k)) = (π, σπ).

In the rule, suppose:

θ1 = {. . . , (〈α〉ij , φj), . . .}
θ2 = {. . . , (πk, φk), . . .}
S(〈α〉ij) = {. . . , (πlj , φlj), . . .}

By the assumption that the abstraction is correct before the read (i.e., E, S, C ∼
E,S,C), we have:

(〈α〉ij = δ) ⇒ σc(dφje) = true

(〈α〉ij 6= δ) ⇒ σc(bφjc) = false

πk = k ⇒ dφke = true

πk 6= k ⇒ bφkc = false

πlj = π ⇒ σπ(σc(dφlje)) = true

πlj 6= π ⇒ σπ(σc(bφljc)) = false

(∗)
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The resulting abstract value set θ is computed by the rule as:

θ = S(〈α〉ij) ./ (
∨

((ij = πk) ∧ φk) ∧ φj)

Now, assume, for contradiction, that S(lc, k) 6∼ θ. Then, either (i) (π, 〈true, ∗〉) 6∈
σπ(θ), or (ii) ∃π′ 6= π. (π′, 〈∗, true〉) ∈ σπ(θ).

Assume (i). By (*), for δ = 〈α〉ij and πk = k, we have σc(dφje) = true and

dφke = true; thus,

θ = S(〈α〉ij) ./ 〈(ij = k ∧ φj), ∗〉

By correctness of the abstraction before the read, we have:

(π, 〈ϕmay, ϕmust〉) ∈ S(〈α〉ij)

Furthermore since σπ(σc(ϕmay)) = true by (*) and since σc must assign ij to k and

σc(φj) = true,

σπ(σc(ϕmay ∧ (ij = k) ∧ φj)) = true

Hence, assumption (i) is not possible.

Now, assume (ii). First, observe that if 〈α〉ij = δ and πk = k, then, from the last

identity in (*), it follows that (ii) cannot hold. Now, if 〈α〉ij 6= δ, then σc(bφjc) = false,

and ∀(π′, φ′). ∈ σc(S(〈α〉ij) ./ (
∨

((ij = πk) ∧ φk) ∧ φj)), we have bφ′c = false. Now,

if πk 6= k, we know from (*) that bφkc = false, hence (ii) is again not possible.

An almost identical argument also applies to value-dependent containers; the only

difference is that σc now assigns ij to pos(k) and θ is computed as:

θ = S(〈α〉ij) ./ (
∨

((ij = pos(πk) ∧ φk) ∧ φj)

Now, we consider a write v1.write(v2, v3) to position-dependent container v1. Let

(l, k) denote the concrete memory location that is modified, and let v denote the
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concrete value that is written. From the operational semantics, we have:

S ′(l, i) =

{
v if i = k

S(l, i) otherwise
(1)

Let:
α(l, i) = (δ, σi)

α(k) = (k, true)

α(v) = (π∗v , σ
∗
v)

α(S(l, i)) = (πei , σei)

In the write rule from Figure 6.6, let:

θ1 = {. . . , (〈α〉ij , φj), . . .}
θ2 = {. . . , (πk, φk), . . .}
θ3 = {. . . , (πv, φv), . . .}
S(〈α〉ij) = {. . . , (πlj , φlj), . . .}

By the assumption that the abstraction is correct before the write (i.e., E, S, C ∼
E,S,C), we know:

(πk = k) ⇒ dφke = true

(πk 6= k) ⇒ bφkc = false

(πv = π∗v) ⇒ σ∗v(dφve) = true

(πv 6= π∗v) ⇒ σ∗v(bφvc) = false

(δ = 〈α〉ij) ⇒ σi(dφje) = true

(δ 6= 〈α〉ij) ⇒ σi(bφjc) = false

πlj = πei ⇒ σei(σi(dφlje)) = true

πlj 6= πei ⇒ σei(σi(bφljc)) = false

(∗)

In the write rule, for each 〈α〉ij , the new entry in new abstract store S′ is computed

as:
S′(〈α〉ij) = S[〈α〉ij ← (θ3 ∧ (θ2♦ij) ∧ φj) ∪

S(〈α〉ij) ∧ (¬(θ2♦ij) ∨ ¬φj)]
(∗∗)

where θ ∧ φ is shorthand for conjoining φ with every constraint in θ, as described in
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Section 6.3.3.

Assume that the write rule is not sound. Then, using (1), either:

(i) v 6∼ (S′(δ) ./ σi[k/i]) or

(ii) S(l, i) 6∼ (S′(δ) ./ σi) for i 6= k

We first consider (i). Suppose v 6∼ (S′(δ) ./ σi[k/i]). Then, there are two possibil-

ities:
1a. (π∗v , 〈true, ∗〉) 6∈ σ∗v(S′(δ) ./ σi[k/i])
1b. ∃π′v 6= π∗v . (π′v, 〈∗, true〉) ∈ σ∗v(S′(δ) ./ σi[k/i])

Now, assume 1a and consider evaluating σ∗v(S′(δ) ./ σi[k/i]). Under σ∗v , we know

from (*) that in (**), σ∗v(θ2) contains the pair (π∗v , 〈true, ∗〉). Observe that σi[k/i]

must assign ij to k. Hence, by using (*), we know that the constraint

θ2♦ij =
∨

((ij = πk) ∧ φk) (∗ ∗ ∗)

evaluates to 〈true, ∗〉 under assignment σi[k/i]. Furthermore, under assignment σi[k/i],

(*) implies that dφje is true; hence it follows that (π∗v , 〈true, ∗〉) ∈ σ∗v(S′(δ) ./ σi[k/i]),
contradicting assumption 1a.

Now assume 1b. Under assignment σ∗v , we know from (*) that for any (π′v, φ
′
v) ∈ θ2

such that π′v 6= π∗v , bφ′vc is false. Since conjoining additional constraints cannot

weaken false, it follows that ∀π′v 6= π∗v . (π′v, 〈∗, false〉) ∈ σ∗v(S′(δ) ./ σi[k/i]), contra-

dicting assumption 1b.

We know consider (ii), i.e., S(l, i) 6∼ (S′(δ) ./ σi) for some i such that i 6= k.

This corresponds to the case where the abstract semantics for write overwrites the

existing value of the wrong key. Again, there are two possibilities:

2a. (πei , 〈true, ∗〉) 6∈ σei(S′(δ) ./ σi)
2b. ∃πe′i 6= πei . (πei , 〈∗, true〉) ∈ σei(S′(δ) ./ σi)

Now, assume 2a. From (*), we know that under assignment σei , (πei , 〈true, ∗〉).
Now, by (**), we need to show that conjoining the constraint (¬(θ2♦ij)∨¬φj) cannot
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strengthen true. Observe that σi assigns ij to i where i 6= k, and observe that

πk 6= i ⇒ σi(bφkc) = false; hence the sufficient condition for θ2♦ij is false. Thus,

d¬(θ2♦ij)e = true, which implies (πei , 〈true, ∗〉) ∈ σei(S′(δ) ./ σi), contradicting 2a.

Finally, assume 2b. Under assignment σei , we know from (*) that for any (πlj , φlj) ∈
S(〈α〉ij) such that πlj 6= πei , bφljc is false. Since conjoining additional constraints

cannot weaken false, assumption 2b is also infeasible.

The proof for value-dependent containers is almost identical. The only differences

are that σi now assigns ij to pos(i) according to the definition of the abstraction

function, and S′ is computed as:

S′(〈α〉ij) = S[〈α〉ij ← (θ3 ∧ (θ2♣ij) ∧ φj) ∪
S(〈α〉ij) ∧ (¬(θ2♣ij) ∨ ¬φj)]

We now consider the foreach rule. Since the fix rule stipulates that S∗ is a

correct invariant without giving a constructive algorithm, we only argue about the

loop initialization, i.e., (key, value) pairs bound in the foreach rule of the abstract

semantics correctly model the concrete execution. We focus on value-dependent con-

tainers. Let keyk be the concrete key visited during the k’th loop iteration such that

α(keyk) = (keyk, σk) where σk gives interpretation to function symbols posρ. In the

abstract semantics, the value set θkey during the k’th iteration is given by

θkey = {. . . , (πk, k = posρ(πk)), . . .}

Suppose keyk 6∼ θkey. Then, either (keyk, 〈true, ∗〉) 6∈ σk(θkey) or ∃πk 6= keyk. (πk, 〈∗, true〉) ∈
σk(θkey)

But, under interpretation σk, we have:

πk = keyk ⇒ σk(posρ) = k

πk 6= keyk ⇒ σk(posρ) 6= k

Hence, keyk ∼ θkey.



Chapter 7

Previous Work on Data Structure

Analysis

In this chapter, we survey existing techniques for reasoning about various aspects of

heap data structures and arrays.

7.1 Shape Analysis

Reasoning about unbounded data structures has a long history. Jones et al. first

propose summary nodes to finitely represent lists in LISP [57], and [27] extends this

work to languages with updates and introduces strong and weak updates. Represen-

tation of access paths qualified by indices is first introduced in Deutsch [35], which

uses a combination of symbolic access paths and numeric abstract domains to repre-

sent may-alias pairs for recursive data structures, such as lists. Symbolic access paths

proposed by Deutsch are similar to the indexed locations used in this thesis in that

they both employ a symbolic index to differentiate between elements in data struc-

tures. However, Deutsch’s technique is mainly limited to may-alias relations between

list elements and can only perform strong updates in a limited number of situations,

as this technique does not make use of underapproximations.

Most of the existing work on data structure analysis, most notably three-valued

logic analysis [73, 22] and techniques based on separation logic [41, 74, 81], focus on the

111
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inference of so-called shape invariants, which address questions such as “Is this data

structure a singly-linked list, a doubly linked-list, a tree, a DAG, etc.?”. Unlike such

shape analyses, the techniques we consider in this thesis are not meant for verifying

the implementations of data structures, but rather for analyzing the contents and

client-side uses of these data structures. We believe the techniques addressed in this

thesis are both orthogonal and complementary to shape analysis. For example, while

we can use shape analysis to verify the implementation of a map as a red-black tree,

we can use our techniques to precisely reason about a client program using this map

library.

7.2 Array Analysis

The most basic technique for reasoning about array contents is array smashing, which

represents all array elements with one summary node and only allows weak updates

[20]. As a result, techniques that employ array smashing are imprecise and cannot

reason about position-value correlations.

Gopan et al. propose a three-valued logic based framework to discover relation-

ships among values of array elements [48]. This technique isolates individual elements

to perform strong updates and places elements that share a common property into

a partition, which is commonly a contiguous range, and a heuristic is used to auto-

matically infer relevant partitions. In contrast, our approach to array analysis does

not need to distinguish between strong and weak updates or concretize individual

elements. Furthermore, our approach obviates the need for explicit partitioning and

therefore does not suffer from the same state space explosion problem. It can also

naturally express invariants about non-contiguous array elements.

Jhala and McMillan propose a technique for reasoning about arrays based on

counterexample-guided abstraction refinement [56]. This technique discovers proper-

ties similar to those in [48], but does so in a demand-driven way using interpolation.

This approach also only reasons about contiguous ranges and also constructs explicit

partitions. Furthermore, the predicates used in the abstraction belong to a finite

language to guarantee convergence.
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Many techniques have been proposed for inferring complex invariants, such as

sortedness, about array elements [54, 59, 16, 50, 76, 45]. While the techniques we

have described do not attempt to reason about such invariants, our approach goes be-

yond scalar arrays and, unlike the afore-mentioned techniques, is capable of precisely

reasoning about heap objects that are manipulated through arrays and containers.

7.3 Client-Side Use of Heap Data Structures

Similar to the container analysis techniques we have presented in this thesis, the Hob

verification framework also separates the verification of data structure implementa-

tions from the verification of their client-side use [63, 62, 61]. Hob’s main focus is

to verify that the implementation of a data structure obeys its specification; on the

client-side, Hob can be used to check that custom data structure invariants are obeyed

by the client, such as the requirement that the data structure has no content before a

certain method is called. While Hob addresses a more general class of abstract data

structures than containers, the client-side abstraction of Hob is a set abstraction of

data structures, which is less precise than the abstraction we consider. For instance,

Hob’s client-side reasoning about a map does not track the relationship between keys

and values in a map or between positions and elements in a vector [61]. In contrast,

we only consider the client-side use of a special, yet fundamental, class of data struc-

tures, and our focus is a fully automatic technique to improve analysis precision when

analyzing real C++ programs that use containers.

Another work that addresses the client-side use of data structures is [72], which

focuses on verifying that the client of a software component obeys the requirements

of that component, such as the requirement that a data structure d is not modified

during an iteration over d. Another work with a similar focus is [19], which uses

predicate abstraction to verify that clients of the C++ standard template library

(STL) obey the requirements for correct use of this library. Yet another work that

is focused on usage of STL data structures is [49], which is an unsound bug finding

tool for discovering incorrect usage of STL primitives. None of these efforts consider

properties which require reasoning about the contents of containers, which is our
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focus.

The work described in [44] addresses the typestate verification problem for real-

world Java programs, which make heavy use of containers. This work also reports on

the challenge of achieving sufficient precision as objects flow in and out of contain-

ers; they utilize techniques such as focus and blur, developed by the shape analysis

community based on 3-valued logic [73]. In contrast, our approach never performs

explicit case splits on abstract containers and instead uses constraints to both spec-

ify different elements in the container as well as to perform updates on individual

elements.

7.4 Relational Analysis of Data Structures

While analyses based on three-valued logic [73, 22] can in principle be fully rela-

tional, heuristics necessary to ensure termination and scalability often lead to a heap

abstraction that does not enforce existence and uniqueness of memory invariants,

for example, after a blur operation is performed. To mitigate the state-space explo-

sion that arises from analyzing the set of all possible heaps in the TVLA framework,

Manevitch [68] proposes an interesting technique called partial isomorphic heap ab-

straction, which merges two abstract heaps if they are universe congruent. While

this technique considerably speeds up analysis on many benchmarks, it may lose in-

formation and is not as precise as analyzing all abstract heaps separately. Unlike

heap analysis techniques based on three-valued logic, our technique reasons about

only one abstract heap per program point, and achieves the same level of precision

as creating multiple heaps by enforcing existence and uniqueness through constraints

on points-to edges. This strategy effectively delays any disjunctive reasoning until

constraint solving, and since a constraint solver often does not need to analyze all

cases to prove a constraint satisfiable or unsatisfiable, our approach appears to be

more scalable without losing precision due to heuristic merging of abstract heaps.

Unlike the graph-based heap abstraction we consider in this thesis, some ap-

proaches for heap analysis represent the heap purely as logical formulas by making

use of combinations of various logics, such as the theory of arrays [66, 23, 79, 53] and
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pointer logic [60] to generate one large verification condition encoding all writes to

and reads from the heap. Since these approaches encode the entire history of heap

writes and reads in one formula (i.e., the verification condition), these techniques are

able to establish relations and correlations between variables without requiring any

extra machinery. In contrast, approaches based on per program-point heap represen-

tations such as [48, 38, 73], track the contents of the heap only at a given point in the

program, and as a result, do not record a “history” of how this heap was established.

For this reason, the latter approaches need extra tools to achieve precise relational

reasoning but tend to be more scalable because they only encode the current state of

the heap. The relational heap analysis technique we have presented combines aspects

of both approaches by allowing relational reasoning in a practical and scalable way

without requiring the history of updates to the heap. Effectively, our approach sep-

arates the task of reasoning about heap contents from answering queries about the

heap, and we believe this separation is key to scaling our approach to a program as

large as OpenSSH.



Chapter 8

Cuts-from-Proofs

All the techniques we have described so far in this thesis effectively reduce much of the

difficulty of reasoning about container- and heap-manipulating programs to solving

boolean combinations of linear inequalities over integers. Since modern DPLL(T )-

based solvers for deciding the satisfiability of boolean combinations of linear integer

inequalities employ a decision procedure for deciding conjunctions of linear integer

inequalities, a practical technique for solving conjunctive linear integer inequalities is

of paramount importance. However, as described in Section 8.1, existing techniques

for solving linear integer inequalities do not perform well for many systems that arise

in practice. In this chapter, we present a new algorithm called Cuts-from-Proofs that

substantially outperforms existing approaches.

8.1 Introduction

A quantifier-free system of linear inequalities over integers is defined by A~x ≤ ~b where

A is an m× n matrix with only integer entries, and ~b is a vector in Zn. This system

has a solution if and only if there exists a vector ~x∗ ∈ Zn that satisfies A~x∗ ≤ ~b.

Determining the satisfiability of such a system of inequalities is a recurring theme in

program analysis and verification. This problem arises not only in the symbolic heap

analysis described in the previous chapters, but also in many other contexts such

as array dependence analysis, buffer overrun analysis, and integer overflow checking
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[31, 71] as well as in RTL datapath and symbolic timing verification [24, 17]. For this

reason, many modern SMT solvers incorporate a dedicated linear arithmetic module

for solving this important subclass of constraints [43, 34, 18, 25, 21].

While practical algorithms, such as Simplex, exist for solving linear inequalities

over the reals [33], solving linear inequalities over integers is known to be an NP-

complete problem, and existing algorithms do not scale well in practice. There are

three main approaches for solving linear inequalities over integers. One approach

first solves the LP-relaxation of the problem to obtain a rational solution and adds

additional constraints until either an integer solution is found or the LP-relaxation

becomes infeasible. The second approach is based on the Omega Test, an extension

of the Fourier-Motzkin variable elimination for integers [71]. Yet a third class of

algorithms utilize finite-automata theory [80, 46].

The algorithm presented in this chapter falls into the first class of techniques de-

scribed above. Existing algorithms in this class include branch-and-bound, Gomory’s

cutting planes method, or a combination of both, known as branch-and-cut [75].

Branch-and-bound searches for an integer solution by solving the two subproblems

A~x ≤ ~b ∪ {xi ≤ bfic} and A~x ≤ ~b ∪ {xi ≥ dfie} when the LP-relaxation yields a

solution with fractional component fi. The original problem has a solution if at least

one of the subproblems has an integer solution. Even though upper and lower bounds

can be computed for each variable to guarantee termination, this technique is often

intractably slow on its own. Gomory’s cutting planes method computes valid inequal-

ities that exclude the current fractional solution without excluding feasible integer

points from the solution space. Unfortunately, this technique has also proven to be

impractical on its own and is often only used in conjunction with branch-and-bound

[69].

All of these techniques suffer from a common weakness: While they exclude the

current fractional assignment from the solution space, they make no systematic effort

to exclude the cause of this fractional assignment. In particular, if the solution of

the LP-relaxation lies at the intersection of n planes defined by the initial set of

inequalities, and k ≤ n of these planes have an intersection that contains no integer

points, then it is desirable to exclude at least this entire n− k dimensional subspace.
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Figure 8.1: (a) The projection of Equation 8.1 onto the xy plane. (b) The green lines
indicate the closest lines parallel to the proof of unsatisfiability; the red point marks
the solution of the LP-relaxation. (c) Branch-and-bound first adds the planes x = 0
and x = 1, then the planes y = 0 and y = 1, and continues to add planes parallel to
the coordinate axes.

The key insight underlying our approach is to systematically discover and exclude

exactly this n− k dimensional subspace rather than individual points that lie on this

space. To be concrete, consider the following system with no integer solutions:

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

(8.1)

The projection of this system onto the xy plane is shown in Figure 8.1a. Suppose

the LP-relaxation of the problem yields the fractional assignment (x, y, z) = (1
3
, 0, 0).

The planes

z = 0

−3x+ 3y + z = −1
(8.2)

are the defining constraints of this vertex because the point (1
3
, 0, 0) lies at the inter-

section I of these planes. Since I contains no integer points, we would like to exclude

exactly I from the solution space. Our technique discovers such intersections with no

integer points by computing proofs of unsatisfiability for the defining constraints. A
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proof of unsatisfiability is a single equality that (i) has no integer solutions and (ii)

is implied by the defining constraints. In our example, a proof of unsatisfiability for

I is −3x + 3y + 3z = −1 since it has no integer solutions and is implied by Equa-

tion 8.2. Such proofs can be obtained from the Hermite normal form of the matrix

representing the defining constraints.

Once we discover a proof of unsatisfiability, our algorithm proceeds as a semantic

generalization of branch-and-bound. In particular, instead of branching on a frac-

tional component of the solution, our technique branches around the proof of unsatisfi-

ability, if one exists. In our example, once we discover the equation−3x+3y+3z = −1

as a proof of unsatisfiability, we construct two new subproblems:

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

−x+ y + z ≤ −1

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

−x+ y + z ≥ 0

where−x+y+z = −1 and−x+y+z = 0 are the closest planes parallel to and on either

side of−3x+3y+3z = −1 containing integer points. As Figure 8.1b illustrates, neither

of these systems have a real-valued solution, and we immediately determine the initial

system to be unsatisfiable. In contrast, as shown Figure 8.1c, branch-and-bound only

adds planes parallel to the coordinate axes, repeatedly yielding points that lie on

either 3x − 3y = 1 or 3x − 3y = 2, neither of which contains integer points. On the

other hand, Gomory’s cutting planes technique first derives the valid inequality y ≥ 1

before eventually adding a cut that makes the LP-relaxation infeasible. Unfortunately,

this technique becomes much less effective in identifying the cause of unsatisfiability

in higher-dimensions.
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Figure 8.2: A convex polyhedron of dimension 2

8.2 Technical Background

8.2.1 Polyhedra, Faces, and Facets

In this section, we review a few standard definitions from polyhedral theory. The

interested reader can refer to [69] for an in-depth discussion.

Definition 1 (Convex Polyhedron) The set of (real-valued) solutions satisfying

A~x ≤ ~b describes a convex polyhedron P . The dimension dim(P ) of P is one less

than the maximal number of affinely independent points in P .

Definition 2 (Valid Inequality) An inequality π~x ≤ π0 defined by some row vector

π and a constant π0 is a valid inequality for a polyhedron P if it is satisfied by all

points in P .

Definition 3 (Faces and Facets) F is a face of polyhedron P if F = {~x ∈ P : π~x =

π0} for some valid inequality π~x ≤ π0. A facet is a face of dimension dim(P )− 1.

In Figure 8.2, polyhedron P has dimension 2 because there exist exactly 3 affinely

independent points in P . The equation ax + by ≤ c is a valid inequality since all

points in P satisfy this inequality. The point F is a face with dimension 0 since it is

the intersection of P with the valid inequality represented by the dashed line. The

line segment G is a facet of P since it is a face of dimension 1.
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8.2.2 Linear Diophantine Equations

Definition 4 (Linear Diophantine Equation) A linear equation of the form
∑
aixi =

c is diophantine if all coefficients ai are integers and c is an integer.

We state the following well-known result [69]:

Lemma 5 A linear diophantine equation
∑
aixi = c has a solution if and only if c

is an integral multiple of the greatest common divisor gcd(a1, . . . , an).

Example 15 The equation 3x+6y = 1 has no integer solutions since 1 is not evenly

divisible by 3 = gcd(3, 6). However, 3x+ 6y = 9 has integer solutions.

Corollary 1 Let E be a plane defined by
∑
aixi = c with no integer solutions and

let g = gcd(a1, . . . , an). Then, the two closest planes parallel to and on either side of

E containing integer points are bEc and dEe, given by
∑

ai
g
xi = bc/gc and

∑
ai
g
xi =

dc/ge respectively.

This corollary follows immediately from Lemma 5 and implies that there are no integer

points between E and bEc as well as between E and dEe.

8.2.3 Proofs of Unsatisfiability and the Hermite Normal Form

Given a system A~x = ~b of linear diophantine equations, we can determine in poly-

nomial time whether this system has any integer solutions using the Hermite normal

form of A. 1 Below we briefly review key properties of the Hermite normal form; the

interested reader is referred to [69] for a more in-depth discussion.

Definition 5 (Hermite Normal Form) An m×m integer matrix H is said to be

in Hermite normal form (HNF) if (i) H is lower triangular, (ii) hii > 0 for 0 ≤ i < m,

and (iii) hij ≤ 0 and |hij| < hii for i > j.2

1While it is possible to determine the satisfiability of a system of linear diophantine equalities
in polynomial time, determining the satisfiability of a system of linear integer inequalities is NP-
complete.

2There is no agreement in the literature on the exact definition of the Hermite Normal Form.
The one given here follows the definition in [69].
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Definition 6 (Unimodular Matrix) An n × n matrix U is unimodular if it has

only integer entries and |det(U)| is 1.

We review the following well-known lemmas:

Lemma 6 For any m × n matrix A with rank(A) = m, there exists an n × n uni-

modular matrix U such that

AU =
[
H | ~0

]
and the matrix H is the unique Hermite normal form of A.

While we do not describe the algorithm for computing the Hermite normal form

of A, we remark that there exists an efficient polynomial time for computing the

Hermite normal form of any matrix A (see [42]). Finally, we also recall the following

two well-known results [69]:

Lemma 7 If H is the Hermite normal form of A, then H−1A contains only integer

entries.

Lemma 8 (Proof of Unsatisfiability) The system A~x = ~b has an integer solution

if and only if H−1~b ∈ Zm. If A~x = ~b has no integer solutions, there exists a row

vector ~ri of the matrix H−1A such that the corresponding entry ni
di

of H−1b is not an

integer. We call the linear diophantine equation di~ri~x = ni with no integer solutions

a proof of unsatisfiability of A~x = ~b.

If the equation di~ri~x = ni is a proof of unsatisfiability of A~x = ~b, then it is implied

by the original system and does not have integer solutions.

Example 16 Consider the defining constraints from the example in Section 8.1:

z = 0

−3x+ 3y + z = −1
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Here, we have:

A =

[
0 0 1

−3 3 1

]
~b =

[
0

−1

]
H =

[
1 0

−2 3

]

H−1A =

[
0 0 1

−1 1 1

]
H−1~b =

[
0

−1
3

]

This system does not have an integer solution because H−1~b contains a fractional

component, and the equation −3x+ 3y+ 3z = −1 is a proof of unsatisfiability for this

system.

8.3 The Cuts-from-Proofs Algorithm

In this section, we present our algorithm for determining the satisfiability of the

system A~x ≤ ~b over integers. In the presentation of the algorithm, we assume that

there is a procedure lp solve that determines the satisfiability of A~x ≤ ~b over the

reals, and if satisfiable returns a vertex v at an extreme point of the polyhedron

induced by A~x ≤ ~b. This assumption is fulfilled by standard exterior-point algorithms

for linear programming, such as Simplex [33].

Definition 7 (Defining Constraint) An inequality π~x ≤ π0 is a defining constraint

of vertex ~v of the polyhedron induced by A~x ≤ ~b if ~v satisfies the equality π~v = π0

where π is a row of A and π0 is the corresponding entry in ~b.

With slight abuse of terminology, we call π~x = π0 a defining constraint whenever

π~x ≤ π0 is a defining constraint.

8.3.1 Algorithm

Let A be the initial m × n matrix and let amax be the entry with the maximum

absolute value in A. Then, choose any α such that α ≥ n · |amax|.
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1. Invoke lp solve. If the result is unsatisfiable, return unsatisfiable. Otherwise,

if vertex v returned by lp solve is integral, return v.

2. Identify the defining constraints A′~x′ ≤ ~b′ of v.

3. Determine if the system A′~x′ = ~b′ has any integer solutions, and, if not, obtain

a proof of unsatisfiability as described in Section 8.2.3. 3

4. There are two cases:

Case 1: (Conventional branch-and-bound) If a proof of unsatisfiability

does not exist (i.e., A′~x′ = ~b′ has integer solutions) or if the proof of unsatis-

fiability contains a coefficient greater than α · gcd(a1, . . . , an), pick a fractional

component fi of v and solve the two subproblems:

A~x ≤ ~b

vi ≤ bfic
A~x ≤ ~b

−vi ≤ −dfie

Case 2: (Branch around proof of unsatisfiability) Otherwise, consider the

proof of unsatisfiability Σaixi = c of A′~x′ = ~b′ and let g be gcd(a1, . . . , an). The

system A~x ≤ ~b has a solution if either of the two subproblems has a solution:

[
A

a1
g
. . . an

g

]
~x ≤

[
~b

b c
g
c

] [
A

−a1
g
. . .− an

g

]
~x ≤

[
~b

−d c
g
e

]

8.3.2 Discussion of the Algorithm

In the above algorithm, if lp solve yields a fractional assignment, then either

(i) the intersection of the defining constraints does not have an integer solution or

(ii) the defining constraints do have an integer solution but lp solve did not pick

an integer assignment

3Recall that Lemma 6 defines the Hermite normal form of an m× n matrix A′ when A′ has full
rank. If A′ does not have full rank, observe that we can still compute a proof of unsatisfiability of
A′~x′ = ~b′ by dropping redundant rows of the system.
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In the latter case (i.e., (ii)), we simply perform conventional branch-and-bound

around any fractional component of the assignment to find an integer point on this

intersection. Observe that while the current intersection A′~x′ = ~b′ is guaranteed to

contain an integer point, this integer point may or may not lie inside the polyhedron

defined by A~x ≤ ~b. Thus, the existence of an integer solution to the system A′~x′ = ~b′

in case (1) of the algorithm does not guarantee the existence of an integer solution to

the original system A~x ≤ ~b.
On the other hand (i.e., (i)), if the defining constraints do not admit an integer so-

lution, the algorithm obtains a proof of unsatisfiability with maximum coefficient less

than α, if one exists, and constructs two subproblems that exclude this intersection

without missing any integer points in the solution space. The constant α ensures that

case 2 in step 4 of the algorithm is invoked a finite number of times and guarantees

that there is a minimum bound on the volume excluded from the polyhedron at each

step of the algorithm. (See Section 8.3.3 for the relevance of α for termination.)

Branching around the two planes in case 2 of the algorithm guarantees that the

intersection A′~x′ = ~b′ of the defining constraints is no longer in the polyhedra defined

by the two new subproblems. However, there may still exist a strict subset of these

defining constraints (i.e., a higher-dimensional subspace) whose intersection contains

no integer points but is not excluded from the solution space of the new subproblems.

The following example illustrates such a situation.

Example 17 Consider the defining constraints x + y ≤ 1 and 2x − 2y ≤ 1. Using

Hermite normal forms to compute a proof of unsatisfiability for the system

x+ y = 1

2x− 2y = 1

yields 4x = 3. While 4x = 3 is a proof of unsatisfiability for the intersection of

x+ y = 1 and 2x− 2y = 1, the strict subset 2x− 2y = 1 has a proof of unsatisfiability

on its own (namely itself), and it is not implied by 4x = 3.

As this example illustrates, the proof of unsatisfiability of a set of constraints does

not necessarily imply the proof of unsatisfiability of any subset of these constraints.
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At first glance, this seems problematic because if the intersection of any subset of

the defining constraints contains no integer solutions, we would prefer excluding this

larger subspace represented by the smaller set of constraints. Fortunately, as stated

by Lemma 11, the algorithm will discover and exclude this higher-dimensional inter-

section in a finite number of steps. We first prove the following helper lemmas:

Lemma 9 Let C =

[
A

B

]
be an m × n matrix composed of A and B, and let

HNF(C) =

[
HA 0

X Y

]
. Then, HNF(A) = HA.

Proof 5 Our proof uses the HNF construction outlined in [69]. Let i be a row that the

algorithm is currently working on and let i′ be another row such that i′ < i. Then, by

construction, any entry ci′j where j > i′ is 0. Since any column operation performed

while processing row i adds a multiple of column k ≥ i to another column, entry ci′k

must be 0. Thus, any column operation is idempotent on row i′.

Using blockwise inversion to invert HNF(C), it can be easily shown that:

HNF(C)−1 =

[
H−1
A 0

−Y −1XH−1
A Y −1

]

Thus, it is easy to see that HNF(C)−1C = HNF(C)−1~b′ implies HNF(A)−1A =

HNF(A)−1~b if ~b′ is obtained by adding entries to the bottom of ~b. This is the case

because both HNF(C)−1 and HNF(A)−1 are lower triangular matrices. Intuitively,

this result states that if A~x = ~b has a proof of unsatisfiability, we cannot “lose” this

proof by adding extra rows at the bottom of A.
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Example 18 Consider the constraints from Example 16. Suppose we add the addi-

tional constraint x = 1 at the bottom of matrix A. Then, we obtain:

A =


0 0 1

−3 3 1

1 0 0

 ~b =


0

−1

1

 H =


1 0 0

−2 3 0

0 0 1



H−1A =


0 0 1

−1 1 1

1 0 0

 H−1~b =


0

−1
3

1


Clearly, −3x + 3y + 3z = −1 is still obtained as a proof of unsatisfiability from the

second row of H−1A = H−1b.

Lemma 10 Consider any proof of unsatisfiability Σaixi = c of any subset of the

initial system A~x ≤ ~b. Then, ∀i.|ai| ≤ α · gcd(a1, . . . , an).

Proof 6 The coefficients ai are obtained from the matrix H−1A′ where A′ is a ma-

trix whose rows are a subset of those of A. Recall from basic linear algebra H−1 =
1

det(H)
adj(H) where adj(H) is the classical adjoint of H. Let the notation ||A|| denote

maxij|aij|. It is shown in [78] that:

||adj(H)|| ≤ det(H)

for any matrix H in Hermite normal form. Hence any coefficient c in H−1 satisfies

|c| ≤ 1, and the entries in H−1A′ are therefore bound by α = n · |amax|. Since

the proof of unsatisfiability is some row of H−1A′ multiplied by some di > 1, di ≤
gcd(a1, . . . , an) as di is a divisor of each ai. Thus, any coefficient in the proof of

unsatisfiability is bound by α · gcd(a1, . . . , an).

Using the above lemmas, we can now show the following result:



CHAPTER 8. CUTS-FROM-PROOFS 128

Lemma 11 Let F be a k-dimensional face without integer points of the initial poly-

hedron P with dim(P ) = d. Suppose lp solve repeatedly returns vertices that lie on

this face. The algorithm will exclude F from P in a finite number of steps.

Proof 7 Every time lp solve yields a vertex that lies on F , the algorithm excludes

from the search space the intersection of the current defining constraints; thus, the

next time lp solve yields a vertex, one of these constraints will no longer be defining.

At some point, when lp solve returns a vertex on F , its defining constraints will be

exactly the d − k of the original constraints defining F , along with new constraints

that were added to the bottom of the matrix. By Lemma 9, the additional constraints

preserve the proof of unsatisfiability of the original d − k constraints. Furthermore,

by Lemma 10, this proof of unsatisfiability will have coefficients with absolute value of

at most α · gcd(a1, . . . , an). Thus, the algorithm will obtain a proof of unsatisfiability

for F and exclude all of F from the solution space.

As Lemma 11 elucidates, the Cuts-from-Proofs algorithm discovers any relevant

face without integer points on a demand-driven basis without explicitly considering

all possible subsets of the initial set of inequalities. This allows the algorithm to add

exactly the relevant cuts while staying computationally tractable in practice.

8.3.3 Soundness and Completeness

It is easy to see that the algorithm given above is correct because it never excludes

integer points in the solution space. For arguing termination, we can assume, as

standard, that the polyhedron P is finite; if it is not, one can compute maximum and

minimum bounds on each variable without affecting the satisfiability of the original

problem (see, for example [75, 69]). The key observation is that the volume we cut off

the polyhedron cannot become infinitesimally small over time as we add more cuts.

To see this, observe that there is a finite set of normal vectors N for the planes added

by the Cuts-from-Proofs algorithm. Clearly, this holds for planes added by case 1 of

step 4 since all such planes are parallel to one of the coordinate planes. This fact also

holds for planes added in case 2 of step 4 since the coefficients of the normal vectors
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must be less than or equal to α. Since the set N of normal vectors is finite, the

algorithm will either terminate or, at some point, it will have to add planes parallel

to already existing ones. The following lemma states that these parallel planes are at

least some minimal distance ε apart:

Lemma 12 (Progress) Let E be a plane added by the Cuts-from-Proofs algorithm

and let E ′ be another plane parallel to E, also added by the algorithm. Then, E and

E ′ are at least some minimum distance ε > 0 apart.

Proof 8 Let E be defined by ~n · ~x = c1 and E ′ be defined by ~n · ~x = c2. Since c1 and

c2 are integers and c1 6= c2, E and E ′ are a minimum d = 1/
√
n2

1 + . . .+ n2
k apart.

Since there are a finite number of non-parallel planes added by the algorithm, choose

ε to be the minimum such d.

Let ~n ∈ N be any normal vector along which the algorithm must eventually cut.

Because P is finite, there is a finite distance δ we can move along ~n through P . Since

the distance we move along ~n is at least ε, the algorithm can cut perpendicular to ~n

at most δ/ε times. Hence, the algorithm must terminate.

8.4 Implementation

In Section 8.4.1, we first discuss improvements over the basic algorithm presented in

Section 8.3; then, in Section 8.4.2, we discuss the details of our implementation.

8.4.1 Improvements and Empirical Observations

An improvement over the basic algorithm described in Section 8.3 can be achieved

by selectively choosing the proofs of unsatisfiability that the algorithm branches on.

In particular, recall from Lemma 11 that if lp solve repeatedly returns vertices on

the same face with no integer points, the algorithm will also repeatedly obtain the

same proof of unsatisfiability. Thus, in practice, it is beneficial to delay branching on

a proof until the same proof is obtained at least twice. This can be achieved by using

case 1 in step 4 of the algorithm instead of case 2 each time a new proof is discovered.
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Since few of these proofs appear repeatedly, this easy modification often allows the

algorithm to exclude only the highest-dimensional intersection with no integer points

without having to branch around additional intermediate proofs. In our experience,

this optimization can improve running time up to a factor of 3 on some examples.

An important empirical observation about the algorithm is that the overwhelming

majority (> 99%) of the proofs of unsatisfiability do not result in true branching. In

practice, one of the planes parallel to the proof of unsatisfiability often turns out to

be a valid inequality, while the other parallel plane lies outside the feasible region,

making its LP-relaxation immediately unsatisfiable. Thus, in practice, the algorithm

only branches around fractional components of an assignment.

8.4.2 Implementation Details

Our implementation of the Cuts-from-Proofs algorithm is written in C++ and con-

sists of approximately 5000 lines of code, including modules to perform various matrix

operations as well as support for infinite precision arithmetic. The Cuts-from-Proofs

algorithm is a key component of the Mistral constraint solver, which implements the

decision procedure for the combined theory of integer linear arithmetic and uninter-

preted functions. Mistral is used in the Compass program analysis system mentioned

in earlier chapters for the purpose of solving real-world constraints that arise from

modeling contents of container data structures.

Our Simplex implementation, used as the lp solve procedure in the Cuts-from-

Proofs algorithm, uses Bland’s rule for pivot selection [75]. Mistral utilizes a custom-

built infinite precision arithmetic library based on the GNU MP Bignum Library

(GMP) [5]. Our library performs computation natively on 64-bit values until an

overflow is detected, and then switches to GNU bignums. If no overflow is detected,

our implementation results in less than 25% slow down over native word-level arith-

metic. We also found the selective use of hand-coded SIMD instructions to improve

performance of Simplex by approximately a factor of 2.

Our implementation for Hermite normal form conversion is based on the algorithm

given in [28]. This algorithm uses the modulo reduction technique of [42] to control
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the number of required bits in any intermediate computation. In practice, the Hermite

normal form conversion takes less than 5% of the overall running time and is not a

bottleneck.

The implementation of the core Cuts-from-Proofs algorithm takes only about 250

lines of C++ code and does not require any features beyond what is discussed in

this chapter. In our implementation, α was chosen to be 10n · |amax|, and we have

not observed the coefficients in the computed proofs of unsatisfiability to exceed this

limit. In practice, the coefficients stay reasonably small.

8.5 Experimental Results

To evaluate the effectiveness of the Cuts-from-Proofs algorithm, we compared Mistral

with the four leading competitors (by score) in the QF-LIA category of SMT-COMP

’08, namely Yices 1.0.16, Z3.2, MathSAT 4.2, and CVC3 1.5 obtained from [11]. We

did not compare Mistral against (mixed) integer linear programming tools specialized

for optimization problems. Existing tools such as GLPK [4], lp-solve [8], and CPLEX

[2] all use floating point numbers instead of infinite precision arithmetic and yield

unsound results for determining satisfiability even on small systems due to rounding

errors. Furthermore, we did not use the QF-LIA benchmarks from SMT-COMP

because they contain arbitrary boolean combinations of linear integer inequalities and

equalities, making them unsuitable for comparing different algorithms to solve integer

linear programs. The full set of test inputs and running times for each tool is available

from http://www.stanford.edu/~isil/benchmarks.tar.gz. All experiments were

performed on an 8 core 2.66 GHz Xeon workstation with 24 GB of memory. (All

the tools, including Mistral, are single-threaded applications.) Each tool was given

a maximum running time of 1200 seconds as well as 4 GB of memory. Any run

exceeding the time or memory limit was aborted and marked as failure. If a run was

aborted, its running time was assumed to be 1200 seconds for computing average

running times.

In the experiments, presented in Figure 8.3, we randomly generated more than 500

systems of linear inequalities, containing between 10 and 45 variables and between
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Figure 8.3: Experimental Results (fixed coefficient)

15 and 50 inequalities per system with a fixed maximum coefficient size of 5. Figure

8.3a plots the number of variables against the average running time over all sizes

of constraints, ranging from 15 to 50. As is evident from this figure, the Cuts-

from-Proofs algorithm results in a dramatic improvement over all existing tools. For

instance, for 25 variables, Yices, Mistral’s closest competitor, takes on average 347

seconds while Mistral takes only 3.45 seconds. This trend is even more pronounced

in Figure 8.3b, which plots number of variables against the percentage of successful

runs. For example, for 35 variables, Yices has a success rate of 36% while Mistral
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successfully completes 100% of its runs, taking an average of only 28.11 seconds.

Figures 8.3c and 8.3d plot the number of inequalities per system against average

running time on a logarithmic scale for 20 and 25 variables, respectively. We chose not

to present detailed breakouts for larger numbers of variables since such systems trigger

time-out rates over 50% for all tools other than Mistral. These graphs demonstrate

that the Cuts-from-Proofs algorithm reliably performs significantly, and usually at

least an order of magnitude, better than any of the other tools, regardless of the

number of inequalities per system.

To evaluate the sensitivity of different algorithms to maximum coefficient size, we

also compared the running time of different tools for coefficients ranging from 10 to

100 for systems with 10 variables and 20 inequalities. As shown in Figure 8.4, Mistral

is less sensitive to coefficient size than the other tools. For example, for maximum

coefficient 50, Mistral’s closest competitor, MathSAT, takes an average of 482 seconds

with a success rate of 60% while Mistral takes an average of 1.6 seconds with a 100%

success rate.

Among the tools we compared, Yices and Z3 use a Simplex-based branch-and-cut

approach, while CVC3 implements the Omega test. MathSAT mainly uses a Simplex-

based algorithm augmented with the Omega test as a fallback mechanism. In our

experience, one of the main differences between Simplex-based and Omega test based

algorithms is that the former run out of time, while the latter run out of memory.

On average, Simplex-based tools seem to perform better than tools using the Omega

test.

We believe these experimental results demonstrate that the Cuts-from-Proofs al-

gorithm outperforms leading implementations of existing techniques by orders of mag-

nitude and significantly increases the size and complexity of integer linear programs

that can be solved. Furthermore, our algorithm is easy to implement and does not re-

quire extensive tuning to make it perform well. We believe that the Cuts-from-Proofs

algorithm can be profitably incorporated into existing SMT solvers that integrate the

theory of linear integer arithmetic.
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Figure 8.4: Experimental Results (fixed dimensions)

8.6 Related Work

As discussed in Section 8.1, there are three major approaches for solving linear in-

equalities over integers. LP-based approaches include branch-and-bound, Gomory’s

cutting planes method, and various combinations of the two [69, 75]. The cutting
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planes method derives valid inequalities from the final Simplex tableau. More ab-

stractly, a Gomory cut can be viewed as the proof of unsatisfiability of a single in-

equality obtained from a linear combination of the original set of inequalities. This is

in contrast with our Cuts-from-Proofs algorithm which obtains a proof from the set of

defining constraints, rather than from a single inequality in the final Simplex tableau.

Unfortunately, the number of cuts added by Gomory’s cutting planes technique is

usually very large, and few of these cuts ultimately prove helpful in obtaining an in-

teger solution [75]. Branch-and-cut techniques that combine branch-and-bound and

variations on cutting planes techniques have proven more successful and are used by

many state-of-the-art SMT solvers [43, 34, 25]. However, the algorithm proposed in

this chapter significantly outperforms leading implementations of the branch-and-cut

technique.

Another technique for solving linear integer inequalities is the Omega test, an

extension of the Fourier-Motzkin variable elimination for integers [71]. A drawback

of this approach is that it can consume gigabytes of memory even on moderately sized

inputs, causing it to perform worse in practice than Simplex-based techniques.

A third approach for solving linear arithmetic over integers is based on finite

automata theory [46]. Unfortunately, while complete, automata-based approaches

perform significantly worse than all of the aforementioned techniques. The authors

are not aware of any tools based on this approach that are currently under active

development.

Another proposal [77] for solving linear arithmetic over integers is to translate

the formula into an equisatisfiable boolean formula, whose satisfiability can then be

checked using a standard boolean SAT solver. This technique is mainly targeted for

special classes of ILP problems that arise frequently in verification where most of

the constraints are difference constraints and each of the remaining non-difference

constraints contains few variables.

Hermite normal forms are a well-studied topic in number theory, and efficient

polynomial-time algorithms exist for computing Hermite normal forms [28, 78]. Their
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application to solving systems of linear diophantine equations is discussed, for exam-

ple, in [69, 75]. Jain et al. study the application of Hermite normal forms to comput-

ing interpolants of systems of linear diophantine equalities and disequalities [55]. We

adopt the term “proof of unsatisfiability” from the literature on Craig interpolation

[32, 67].



Chapter 9

Conclusion

In this thesis, we have presented static analysis techniques for precise and fully-

automatic reasoning about the contents of an important class of data structures as

well as a new constraint solving algorithm that makes such analyses practical.

The static analysis techniques we have described integrate reasoning about arrays

and containers directly into a heap analysis, allowing much more precise points-to

information for programs that manipulate heap objects through these data structures.

Since most programs written in modern languages heavily make use of such abstract

data structures, we believe the techniques presented in this thesis substantially extend

the class of programs that can be automatically verified in a practical way.

The static analyses we have proposed leverage constraint solving algorithms by

reducing some of the difficulty of analyzing container-manipulating programs to a

combination of standard logic operations and integer constraints. Thus, our static

analyses benefit directly from advances in constraint solving techniques. Towards

this, we have also described a new algorithm called Cuts-from-Proofs for solving

linear inequalities over integers that greatly improves the practicality of the proposed

symbolic heap analysis techniques.
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