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Abstract
We present a new, precise technique for fully path- and context-
sensitive program analysis. Our technique exploits two observa-
tions: First, using quantified, recursive formulas, path- and context-
sensitive conditions for many program properties can be expressed
exactly. To compute a closed form solution to such recursivecon-
straints, we differentiate betweenobservableand unobservable
variables, the latter of which are existentially quantifiedin our ap-
proach. Using the insight that unobservable variables can be elimi-
nated outside a certain scope, our technique computes satisfiability-
and validity-preserving closed-form solutions to the original recur-
sive constraints. We prove the solution is as precise as the original
system for answering may and must queries as well as being small
in practice, allowing our technique to scale to the entire Linux
kernel, a program with over 6 million lines of code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Languages, Reliability, Verification, Experimen-
tation

Keywords Static analysis, path- and context-sensitive analysis,
strongest necessary/weakest sufficient conditions

1. Introduction
Path-sensitivity is an important element of many program analy-
sis applications, but existing approaches exhibit one or both of two
difficulties. First, so far as we know, there are no prior scalable
techniques that are also sound and complete for a language with re-
cursion. Second, even in implementations of incomplete methods,
interprocedural path-sensitive conditions can become unwieldy and
expensive to compute. Existing approaches deal with these prob-
lems by some combination of heuristics, accepting limited scala-
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bility, and possible non-termination of the analysis (see Section 2
for discussion of related work).

In this paper, we give a new approach that addresses both is-
sues. Our method is sound and complete; for the class of program
properties we address, we can decide all path- and context-sensitive
queries. We also demonstrate the performance and scalability of our
approach with experiments on the entire Linux kernel, a program
with over 6MLOC. Two ideas underpin our technique:

• We can write constraints capturing the exact path- and context-
sensitive condition under which a program property holds. Un-
fortunately, we do not know how to solve these constraints.

• However, to answermay(might a property hold?) ormust(must
a property hold?) queries, it is equivalent to decide the question
for a particular necessary or sufficient condition extracted from
the exact constraints. While non-trivial, the constraintsfor these
necessary/sufficient conditions can be solved, and furthermore,
the necessary/sufficient conditions are typically much smaller
than the original constraints, improving scalability. Since these
necessary and sufficient conditions are satisfiability and validity
preserving respectively, they involve no loss of precisionfor
answering may and must queries about program properties.

In practice, program analysis systems ask may or must queries
about program properties. Our approach effectively takes advan-
tage of which kind of query is to be asked (may or must) to special-
ize a general representation of the exact path- and context-sensitive
condition to a form where the query can be decided. The complete-
ness of our approach is only guaranteed if the base domain of ab-
stract values is finite; for infinite domains our method is still sound,
but not necessarily complete. Thus, for example, our approach can
be used for sound and complete context- and path-sensitive type
state, type qualifier, or dataflow properties, but not, for example,
arbitrary shape properties.

Our approach is best illustrated using an example. Considerthe
following function:

bool queryUser(bool featureEnabled) {
if(!featureEnabled) return false;
char userInput = getUserInput();
if(userInput == ’y’) return true;
if(userInput==’n’) return false;
printf("Input must be y or n! Please try again");
return queryUser(featureEnabled);

}

Under what condition doesqueryUser returntrue? Informally,
the argumentfeatureEnabled must betrue, and the user input
on some recursive call must be′y′. Our system formalizes this in-
tuition by computing a constraintΠα,true characterizing the condi-
tion under whichqueryUser, given argumentα, returnstrue:

Πα,true = ∃β.(α = true)∧(β = ′y′∨(¬(β = ′n′)∧Πα,true[true/α])) (∗)



This constraint is recursive, which is not surprising giventhat
queryUser is a recursive function. The formula under the exis-
tential quantifier encodes the conditions under which the function
body evaluates totrue:

1. featureEnabled must betrue (clause:α = true),
2. the user input is′y′ (clause:β = ′y′),
3. or the user input is not′n′ (clause:¬(β = ′n′) ) and the

recursive call returnstrue (clause:Πα,true[true/α]). Because
the function argument must betrue if the recursive call is
reached, the argument to the recursive call is alsotrue, which
is expressed by the substitution[true/α].

The equation above illustrates the main features of our constraint
language. Primitive constraints include comparing variables repre-
senting program values with constants (α = true), and compound
constraints can be built with the usual boolean connectives∧, ∨,
and¬. The translation between actual and formal arguments in a
function call is represented, as usual, by a substitution ([true/α]),
but note the substitution is part of the constraint. The mostunusual
feature is existential quantification. The quantified variableβ intu-
itively captures the unknown user input: we do not know statically
the value ofβ, just that it has some value—i.e., it exists. The quan-
tifier also captures the scope of the user input, namely that each
input is used for one recursive call. We refer to the existentially
bound variables asunobservable variables. The values of unob-
servable variables cannot be expressed in terms of the inputs to a
function; hence unobservable variables are not visible outside of
the procedure invocation in which they are used.

One division between program analysis approaches is between
those that arewhole-program(requiring the entire program to per-
form analysis) and those that aremodular (can analyze parts of a
program in isolation). A standard approach to modular analysis is
to use formulas to represent program states, with free variables in
the formulas capturing the unknown state of the partial program’s
environment. Our motivation for distinguishing unobservable vari-
ables is that that they commonly arise in modular program analysis
systems. For example, the results of unknown functions (functions
unavailable for analysis) are unobservable; some system state may
be hidden (e.g., the garbage collector’s free list, operating system’s
process queue, etc.) that can be modeled by unobservable variables,
or a static analysis may itself introduce unobservables to represent
imprecision in the analysis (e.g., selecting an unknown element of
an array). Unobservable variables are useful within their natural
scope, for example, tests on unobservables can possibly be proven
mutually exclusive (e.g., testing whether the result of amalloc call
is null, and then testing whether it is non-null). A key observation
is that outside of that scope unobservables provide no additional
information, at least for answering may or must queries, andcan be
eliminated. By distinguishing unobservable values, we help sepa-
rate what is essential to path-sensitive analysis from inherent, but
orthogonal, sources of imprecision for any analysis. Thus,the dis-
tinction between observables and unobservables is what enables us
to prove both soundness and completeness for our constraintreso-
lution algorithm.

The combination of existential quantification and recursion is
more expressive than it may first appear. In particular, in the pre-
vious example, it captures that the user input may be different on
different recursive calls. To see this, consider the constraint written
with the recursion fully (infinitely) unfolded:

Πα,true = ∃β.(α = true) ∧ (β = ′y′ ∨ ¬(β = ′n′)∧
∃β′.(true = true) ∧ (β′ = ′y′ ∨ ¬(β′ = ′n′)∧
∃β′′.(true = true) ∧ (β′′ = ′y′ ∨ ¬(β′′ = ′n′)∧
. . .

For clarity, we have performed the substitution[true/α] on the un-
folded constraints. More interestingly, the quantified variables are
renamed to emphasize each recursive call has an independentuser
input. Thus, the original recursive constraint captures the full in-
terprocedural, path-sensitive condition under which the result of a
call togetUserInput istrue. The first part of our work, which in-
cludes the predicate language, inference algorithm for constraints,
and the class of program properties for which we can compute
sound and complete path- and context-sensitive conditions, is dis-
cussed in Section 3.

In a standard constraint-based program analysis algorithm, hav-
ing defined the constraints of interest, the next step would be to give
an algorithm for solving them. However, we know of no algorithm
for solving equations such as(∗). The difficulty is illustrated by
the unfolding of(∗) given above; because the recursive constraint
introduces the equivalent of an unbounded number of quantified
variables, it is not obvious how to come up with an equivalentbut
finite and non-recursive representation that makes explicit all pos-
sible solutions.

However, there is a way to side-step this problem entirely. As
mentioned above, in practice, clients of a program analysisneed to
answer either amayanalysis query (e.g., MayqueryUser return
true?) or a must analysis query (e.g., MustqueryUser return
true?). While we do not solve the constraints in general, there isa
sound and complete algorithm for deciding may/must queries.

Consider the may analysis query: Is it possible forqueryUser
to returntrue, in other words, is constraint(∗) satisfiable? Our
algorithm decides this question as follows. First, for a constraint
C, we compute a modified constraint⌈C⌉ that is a necessary
condition for C. By definition, ⌈C⌉ is a necessary condition for
C if C ⇒ ⌈C⌉. Thus, if ⌈C⌉ is not identicallyfalse, then
the property may hold; if⌈C⌉ is false, thenC is nevertrue.
Now, any choice of necessary condition is sound (if the necessary
condition is unsatisfiable then so is the original constraint), but to
guarantee completeness (if the necessary condition is satisfiable
then so is the original constraint) and termination of our algorithm
the necessary condition must satisfy two additional properties:

• For completeness, the necessary condition must be the best
possible. Thestrongestnecessary condition is implied by every
other necessary condition.

• For termination, the necessary condition should be only over the
observable variables. Eliminating the unobservable variables is
what makes solving the constraints possible; it turns out that
the strongest necessary condition on observable variablesis still
sufficient for completeness.

Consider constraint(∗) again. The strongest observable neces-
sary condition forqueryUser to returntrue is α = true; i.e., if
the input toqueryUser istrue, then it may returntrue, otherwise
it cannot returntrue. The computation of necessary conditions for
answering may queries, and dually sufficient conditions foranswer-
ing must queries, is discussed in Sections 5 and 6.

We have implemented our algorithm and experimented with
several large open source C applications (see Section 8). Weshow
that for these applications we can answer all may and must queries
for two significant applications: computing the path- and context-
sensitive condition under which every pointer dereferenceoccurs,
and finding null dereference errors. For the former, perhapsour
most interesting result is that the observable necessary and suffi-
cient conditions we compute do not grow with program size, show-
ing that our approach should scale to even larger programs. For the
latter, we show that the interprocedurally path-sensitiveanalysis re-
duces false positives by almost an order of magnitude compared
to the intraprocedurally path-sensitive, but interprocedurally path-



insensitive analysis. To summarize, this paper makes the following
contributions:

• We distinguish observable and unobservable variables in path-
and context-sensitive conditions, and it is this distinction that
ultimately allows us to give a sound and complete algorithm.

• We show how to obtain strongest necessary and weakest suffi-
cient observable conditions by eliminating unobservable vari-
ables and solving the resulting recursive system of constraints
over observable variables.

• We give the first scalable, sound, and complete algorithm for
computing a large class of precise path- and context-sensitive
program properties.

2. Related Work
In this section we survey previous approaches to path- and context-
sensitive analysis. The earliest path-sensitive techniques were de-
veloped for explicit state model-checking, where essentially every
path through the program is symbolically executed and checked for
correctness one at a time. In practice, this approach is usedto verify
relatively small finite state systems, such as hardware protocols [9].

More recent software model-checking techniques address sound
and complete path- and context-sensitive analysis [5, 3, 13]. Build-
ing on techniques proposed for context-sensitivity [20, 22], Ball
et al. propose Bebop, a whole-program model checking tool for
boolean programs [5, 3]. Bebop is similar to our approach in that
it exploits the scope of local variables through implicit existen-
tial quantification and also deals with recursion through context-
free reachability. However, Bebop combines these two steps, while
our approach separates them: we first explicitly construct formulas
with existentially quantified unobservable variables and then sub-
sequently perform a reachability analysis as a fixed point compu-
tation. This design allows us to insert a new step in between that
manipulates the existentially quantified formulas, in particular to
convert them to (normally) much smaller formulas that preserve
may or must queries prior to performing the global reachability
computation. This extra step is, we believe, the reason thatwe are
able to scale our approach to programs much larger than have been
previously reported for systems using model checking of boolean
programs [5, 3, 13]. Another advantage of this approach is that we
can use unobservable variables to model fixed, but unknown, parts
of the environment (see discussion in Section 1). Our methodis
also modular, in contrast to most software model checking systems
that require the entire program.

Current state-of-the-art software model-checking tools are
based oncounter-example driven predicate abstraction[4, 16].
Predicate abstraction techniques iteratively refine an initial coarse
abstraction until a property of interest is either verified or refuted.
Refinement-based approaches may not terminate, as the sequence
of progressively more precise abstractions is not guaranteed to
converge. Our results show that for a large class of properties the
exact path- and context-sensitive conditions can be computed di-
rectly without refinement and for much larger programs (millions
of lines) than the largest programs to which iterative refinement
approaches have been applied (about one hundred thousand lines).
We believe our techniques could be profitably incorporated into
software model checking systems.

An obstacle to scalability in early predicate abstraction tech-
niques was the number of irrelevant predicates along a path.Craig
interpolation [16] allows discovery of locally useful predicates and,
furthermore, these predicates only involve predicates in scope at
a particular program point. Our approach addresses similarissues
in a different way: our technique also explicitly accounts for vari-
able scope, and extracting necessary/sufficient conditions elimi-
nates many predicates irrelevant to the queries we want to de-

cide. Unlike interpolants, our technique does not require counter-
example traces, and thus does not require the additional machinery
of theorem provers and successive refinement steps.

Some of the most scalable techniques for path- and context-
sensitive analysis are either unsound or incomplete. For exam-
ple, ESP is a light-weight and scalable path-sensitive analysis that
tracks branch correlations using the idea that conditionaltests re-
sulting in different analysis states should be tracked separately,
while branches leading to the same analysis state should be merged
[11]. ESP’s technique is a heuristic and sometimes fails to com-
pute the best path-sensitive condition. Another example ofan in-
complete system is F-Soft [17]. F-Soft unrolls recursive functions a
fixed number of times, resulting in a loss of precision beyondsome
predetermined recursion depth of k. In contrast, our approach does
not impose any limit on the recursion depth and therefore does not
lose completeness for programs with recursion. A final example
of an incomplete system is Saturn [1]. While Saturn analysesare
generally fully path-sensitive within a single procedure,Saturn has
no general mechanism for interprocedural path-sensitivity and pub-
lished Saturn analyses are either interprocedurally path-insensitive
or use heuristics to determine which predicates are important to
track across function boundaries [23, 12, 8, 14]. We implement the
ideas proposed in this paper in Saturn.

Our technique of computing necessary and sufficient conditions
is related to the familiar notion of over- and under-approximations
used both in abstract interpretation and model checking. For
example, Schmidt [21] proposes the idea of over and under-
approximating states in abstract interpretation and presents a proof
of soundness and completeness for a class of path-insensitive anal-
ysis problems. Many model-checking approaches also incorporate
the idea of over- and under-approximating reachable statesto ob-
tain a more efficient fixed point computation [6, 10]. Our contri-
bution is to show how to compute precise necessary and sufficient
conditions while combining context-sensitivity, path-sensitivity,
and recursion.

The idea of computing strongest necessary and weakest suffi-
cient conditions for propositional formulae dates back to Boole’s
technique of eliminating the middle term [7]. Lin presents efficient
algorithms for strongest necessary and weakest sufficient condi-
tions for fragments of first-order logic, but does not explore com-
puting strongest necessary and weakest sufficient conditions for the
solution of recursive constraints [18].

In our system, the analysis of a functionf may be different
for different call-sites even withinf ’s definition, which gives it
the expressiveness of context-free reachability (in the language of
dataflow analysis) or polymorphic recursion (in the language of
type theory). Most polymorphic recursive type inference systems
are based oninstantiation constraints[15]. Our formalization is
closer to Mycroft’s original work on polymorphic recursion, which
represents instantiations directly as substitutions [19].

3. Constraints
We use a small functional language to present our techniques:

ProgramP ::= F+

FunctionF ::= definef(x) = e
ExpressionE ::= true | false| ci | x | f(e)

| if e1 thene2 elsee3 | let x = e1 in e2
| e1 = e2 | e1 ∧ e2 | e1 ∨ e2 | ¬e

Expressions aretrue, false, abstract valuesci, function argu-
mentsx, functional calls, conditional expressions, let bindingsand
comparisons between two expressions. Boolean-valued expres-
sions can be composed using the standard boolean connectives,
∧, ∨, and¬. We model unobservable behavior in the language by
references to unbound variables, which are by convention taken



to have a non-deterministic value chosen on function invocation.
Thus, any free variables occurring in a function body are unob-
servable. All other sources of unobservable behavior discussed in
Section 1 can be modeled using references to undefined variables.

For simplicity of presentation, we assume that boolean-valued
expressions are used only in conditionals, that equality compar-
isonse1 = e2 are always between expressions that evaluate to ab-
stract values, and that functions return one of the abstractvalues
ci. This small language includes two essential features needed to
motivate and illustrate our techniques. First, there is an expressive
language of predicates used in conditionals, so that path-sensitivity
is a non-trivial problem. Second, functions can return any one of a
set of valuesci, but this set is finite. Intuitively, theci’s stand for
possible abstract values we are interested in assigning to aprogram.

The goal of our technique is to assign each function constraints
of the following form:

DEFINITION 1 (Constraints).

EquationE ::= [ ~Πi] = ∃β1, . . . , βm.[ ~Fi]
ConstraintF ::= (τ1 = τ2) | Π[Ci/α]

| F1 ∧ F2 | F1 ∨ F2 | ¬F
Typeτ ::= α | Ci

Constraints are equations betweentypes(type variables and ab-
stract values), constraint variables with a substitution,or boolean
combinations of constraints. Constraints express the condition un-
der which a functionf with input α returns a particular abstract
value c; we usually index the corresponding constraint variable
Πf,α,C for clarity, though we omit the function name if it is clear
from context. So, for example, if there are two abstract valuesc1
andc2, the equation

[Πf,α,C1
, Πf,α,C2

] = [true, false]

describes the functionf that always returnsc1, and

[Πf,α,C1
, Πf,α,C2

] = [α = C2, α = C1]

describes the functionf that returnsc1 if its input is c2 and vice
versa. As a final example, the function

define f(x) = if(y = c2) then c1 else c2

wherey is free is modeled by the equation:

[Πf,α,C1
, Πf,α,C2

] = ∃β.[β = C2, β = C1]

The existentially quantified variableβ models the unknown result
of referencingy. Note thatβ is shared by the two constraints; in
particular, in any solutionβ must be eitherC1 orC2, capturing that
a function call returns only one value.

Figure 1 presents most of the constraint inference rules forthe
small language given above. The remaining rules are omittedfor
lack of space but are all straightforward analogs of the rules shown.
Rules 1-5 prove judgmentsA ⊢true,false e : F , describing the
constraintsF under which an expressione evaluates totrueor false
in environmentA. Rules 6-11 prove judgmentsA ⊢ci

e : F that
give the constraint under which expressione evaluates to abstract
value ci. Finally, rule 12 constructs systems of equations, giving
the (possibly) mutually recursive conditions under which afunction
returns each abstract value.

We briefly explain a subset of the rules. In Rule 3, two expres-
sionse1 ande2 are equal whenever both evaluate to the same value.
Rule 8 says that if under environmentA, variablex has typeα, then
x evaluates toci only if α = Ci. Rule 11 presents the rule for func-
tion calls: If the input to functionf is the abstract valueck, and the
constraint under whichf returnsci is Πf,α,Ci

, thenf(e) has type
Ci under the constraintFk ∧ Πf,α,Ci

[Ck/α].

EXAMPLE 1. Suppose we analyze the following function:

define f(x) = if((x = c1) ∨ (y = c2)) then c1 else f(c1)

(1)
A ⊢true true : true

(2)
A ⊢true false: false

(3)

A ⊢ci
e1 : F1,i

A ⊢ci
e2 : F2,i

A ⊢true (e1 = e2) :
W

i
(F1,i ∧ F2,i)

(4)
A ⊢true e : F

A ⊢false e : ¬F

(5)

A ⊢true e1 : F1

A ⊢true e2 : F2

⊗ ∈ {∧,∨}

A ⊢true e1 ⊗ e2 : F1 ⊗F2

(6)
A ⊢ci

ci : true

(7)
i 6= j

A ⊢ci
cj : false

(8)
A(x) = α

A ⊢ci
x : (α = Ci)

(9)

A ⊢true e1 : F1

A ⊢ci
e2 : F2

A ⊢ci
e3 : F3

A ⊢ci
if e1 thene2 elsee3 : (F1 ∧ F2) ∨ (¬F1 ∧ F3)

(10)

A ⊢cj
e1 : F1j

A,x : α ⊢ci
e2 : F2i (α fresh)

A ⊢ci
let x = e1 in e2 :

W

j
(F1j ∧ F2i ∧ (α = Cj))

(11)
A ⊢ck

e : Fk

A ⊢ci
f(e) :

W

k
(Fk ∧ Πf,α,ci

[Ck/α])

(12)

α 6∈ {β1, . . . , βm}
x : α, y1 : β1, . . . , yn : βm ⊢ci

e : Fi 1 ≤ i ≤ n

⊢ define f(x) = e: [~Πf,α,ci
] = ∃β1, . . . , βm. [ ~Fi]

Figure 1. Inference Rules

wherey is undefined and the only abstract values arec1 andc2.
Then
"

Πf,α,C1

. . .

#

= ∃β.

"

(α = C1 ∨ β = C2)∨
¬(α = C1 ∨ β = C2) ∧ Πf,α,C1

[C1/α]
. . .

#

is the equation computed by the inference rules (see Figure 2).
Note that the substitution[C1/α] in the formula expresses that the
argument of the recursive call tof is c1.

Due to space constraints we can only sketch the semantics
of constraints. Constraints are interpreted over the standard four
point lattice with⊥≤ true, false,⊤ and⊥, true, false≤ ⊤, where
∧ is meet,∨ is join, and¬⊥=⊥, ¬⊤ = ⊤, ¬true = false,
and ¬false = true. Given an assignmentθ for the existential
variables, the meaning of a system of equationsE is a standard
limit of a series of approximationsθ(E0), θ(E1), . . . generated
by repeatedly unfoldingE. We are interested in both the least
fixed point (where the first approximation of allΠ variables is
⊥) and greatest fixed point (where the first approximation is⊤)



A(x) = α

A ⊢true x = c1 : (α = C1)

A(y) = β

A ⊢true y = c2 : (β = C2)

A ⊢true (x = c1) ∨ (y = c2) : (α = C1 ∨ β = C2) A ⊢c1
c1 : true

A ⊢c1
c1 : true

A ⊢c2
c1 : false

A ⊢c1
f(c1) : (true∧ Πf,α,C1

[c1/α]) ∨ false∧ . . .

x : α, y : β = A ⊢c1
if((x = c1) ∨ (y = c2)) then c1 else f(c1) : ((α = C1 ∨ β = C2) ∧ true) ∨ (¬(α = C1 ∨ β = C2) ∧ Πf,α,C1

[c1/α])

Figure 2. Type derivation for the body of function f in Example 1

semantics. The value⊥ in the least fixed point semantics (resp.
⊤ in the greatest fixed point) represents non-termination of the
analyzed program. We do not attempt to reason about termination,
and our results are generally qualified by an assumption thatthe
program terminates. By construction, the inference rules in Figure 1
guarantee thatΠf,α,Ci

∧ Πf,α,Cj
≤ false in the least fixed point

semantics ifi 6= j, and
W

i
Πf,α,Ci

≥ true in the greatest fixed
point semantics; we rely on this property in Section 6.2.

4. Boolean Constraints
Our main technical result is a sound and complete method for
answering satisfiability (may) and validity (must) queriesfor the
constraints of Definition 1. The algorithm has four major steps:

• eliminate the existentially bound (unobservable) variables by
extracting necessary/sufficient conditions from the equations;

• rewrite the equations to be monotonic in theΠ variables;
• eliminate recursion by a fixed point computation;
• finally, apply a decision procedure to the closed-form equations.

Our target decision procedure for the last step is SAT, and soat
some point we must translate our type constraints into equivalent
boolean constraints. We perform this translation first, before per-
forming any of the steps above.

For every type variable (observable or unobservable)σi, we in-
troduce boolean variablesσi1, ..., σin such thatσij is true if and
only if σi = Cj . We refer to boolean variablesαij asobservable
variablesand βij as unobservable variables. We map the equa-
tion variablesΠf,α,Ci

to boolean variables of the same name. A
variableΠf,α,Ci

represents the condition under whichf returnsci,
hence we refer toΠf,α,Ci

’s asreturn variables. We also translate
eachτ1 = τ2 occurring in a type constraint:

Ci = Ci ⇔ true
Ci = Cj ⇔ false i 6= j
vi = Cj ⇔ vij

Note that subexpressions of the formvi = vj never appear in
the constraints generated by the system of Figure 1. We replace
every substitution[Cj/αi] by the boolean substitution[true/αij ]
and[false/αik] for j 6= k.

EXAMPLE 2. The first row of Example 1 results in the following
boolean constraints (here boolean variableα1 represents the equa-
tionα = C1 andβ2 representsβ = C2):

Πf,α,C1
= ∃β2.(α1 ∨ β2) ∨ (¬(α1 ∨ β2) ∧ Πf,α,C1

[true/α1])

The existentially quantified variableβ1 and substitution[false/α2]
are omitted because neitherβ1 norα2 occurs in the formula.

In the general case, the original type constraints result ina recursive
system of boolean constraints of the following form:

EQUATION 1.

E =

2

6

4

[~Πf1,α,Ci
] = ∃~β1.[~φ1i(~α1, ~β1, ~Π[~b1/~α])]

...
...

[~Πfk,α,Ci
] = ∃~βk.[~φki(~αk, ~βk, ~Π[~bk/~α])]

3

7

5

where~Π = 〈Πf1,α,C1
, ...,Πfk,α,Cn〉 andbi ∈ {true, false} and

theφ’s are quantifier-free formulas over~β, ~α, and~Π. The substi-
tutions of the form~Π[~b/~α] result from translation of constraints
produced by Rule 11 of Figure 1.

4.1 Satisfiability, Validity, and Monotonicity

In this subsection we give a few definitions and technical lemmas
used in Section 6 to prove our main result. As it stands the boolean
constraints do not quite preserve solutions of the type constraints.
We add additional constraints guaranteeing that a solutionof the
boolean translation of a type constraint guarantees every type vari-
able is assigned some abstract value (existence) and that no type
variable is assigned multiple abstract values (uniqueness):

1. Uniqueness: ψunique = (
V

j 6=k ¬(vij ∧ vik))
2. Existence: ψexist = (

W

j
vij)

wherevij is any boolean variable. We can now formulate defini-
tions of satisfiability and validity for our system,SAT∗ andVALID∗:

DEFINITION 2. SAT∗(φ) ≡ SAT(φ ∧ ψexist∧ ψunique)

In other words, any satisfying assignment must observe the exis-
tence and uniqueness assumptions for all boolean variablesvij .

DEFINITION 3. VALID∗(φ) ≡ ({ψexist} ∪ {ψunique} |= φ)

UsingVALID∗, we can conclude, for example, thatα11 ∨ α12 is a
tautology in a language with two abstract valuesc1 andc2.

DEFINITION 4. Let φ be a quantifier-free formula overαij , βij ,
andΠij . LetM(φ) beφ converted to negation normal form (nega-
tions driven in and¬¬x replaced byx) and replacing any negative
literal¬vij by

W

k 6=j
vik. ThenM(φ) is monotonic invij .

LEMMA 1. SAT∗(φ) ⇔ SAT(M(φ) ∧ ψunique)

PROOF. Consider any satisfying assignmentv̄ to M(φ) ∧ ψunique.
Suppose that̄v assigns allvij to falsesuch thatψexist is violated.
But sinceM(φ) does not contain any negations, setting onevij

to true satisfiesM(φ), ψexist, andψunique, implying SAT∗(φ). The
other direction is also easy and omitted.

LEMMA 2. VALID∗(φ) ⇔ ({ψexist} |= M(φ))

PROOF. Dual to the proof of Lemma 1.

The original constraints have four possible meanings (c.f., Sec-
tion 3) while the boolean constraints have only two. We claimwith-
out proof that the translation is correct in that whenever the mean-
ing of the original constraints is eithertrueor false(i.e., the original
program terminates), the translation has the same meaning.

5. Necessary and Sufficient Conditions
As discussed in previous sections, a key step in our algorithm is
extracting necessary/sufficient conditions from a system of con-
straintsC. The necessary (resp. sufficient) conditions should be sat-
isfiable (resp. valid) if and only ifC is satisfiable (resp. valid). This
section makes precise exactly what necessary/sufficient conditions
we need; in particular, there are two technical requirements:



• The necessary (resp. sufficient) conditions should be asstrong
(resp.weak) as possible.

• The necessary/sufficient conditions should be only over observ-
able variables.

In the following, we useV−(φ) (resp.V+(φ)) to denote the set of
unobservable (resp. observable) variablesβij (resp.αij ) used inφ.

DEFINITION 5. Letφ be a quantifier-free formula. We say⌈φ⌉ is
thestrongest observable necessary conditionfor φ if:

(1) φ⇒ ⌈φ⌉
(2) ∀φ′.((φ⇒ φ′) ⇒ (⌈φ⌉ ⇒ φ′))

whereV−(φ′) = ∅ ∧ V+(φ′) = V+(φ)

The first condition says⌈φ⌉ is necessary forφ, and the second con-
dition ensures⌈φ⌉ is stronger than any other necessary condition
with respect toφ’s observable variablesV+(φ). The additional re-
strictionV−(⌈φ⌉) = ∅ enforces that the strongest necessary condi-
tion for a formulaφ has no unobservable variables.

DEFINITION 6. Letφ be a quantifier-free formula. We say⌊φ⌋ is
theweakest observable sufficient conditionfor φ if:

(1) ⌊φ⌋ ⇒ φ
(2) ∀φ′.((φ′ ⇒ φ) ⇒ (φ′ ⇒ ⌊φ⌋))

whereV−(φ′) = ∅ ∧ V+(φ′) = V+(φ)

We include the following variant of well-known results.

LEMMA 3. Observable strongest necessary and weakest sufficient
conditions for any formulaφ exist and are unique up to logical
equivalence.

Strongest necessary and weakest sufficient conditions are im-
mediately useful in program analysis for answering queriesabout
program properties. For example, letφ be the condition under
which a given program propertyP holds. It follows immediately
from the definition of necessary and sufficient conditions that:

• If SAT(⌈φ⌉), thenP MAY hold.
• If VALID(⌊φ⌋), thenP MUSThold.

Furthermore, for the strongest and weakest such conditions, we
have the following additional guarantees:

• If UNSAT(⌈φ⌉), thenP MUST NOThold.
• If INVALID(⌊φ⌋), thenP MAY NOThold.

In this sense, strongest necessary and weakest sufficient condi-
tions ofφ define a tight observable bound onφ. If φ has only ob-
servable variables, then the strongest necessary and weakest suffi-
cient conditions ofφ are equivalent toφ. If φ has only unobserv-
able variables, then the best possible bounds are⌈φ⌉ = true and
⌊φ⌋ = false. Intuitively, the “difference” between strongest nec-
essary and weakest sufficient conditions of a formula define the
amount of uncertainty present in the original formula.

EXAMPLE 3. Suppose we are interested in determining the con-
ditions under which a pointer is dereferenced in a function call.
Consider the implementations off andg given in Figure 3.

Scanning the implementations off and g, we see thatp is
dereferenced under the following constraint:

p!=NULL ∧ flag!=0 ∧ buf!=NULL ∧ ∗buf ==′ i′

Since the return value ofmalloc (i.e., buf) and the user input
(i.e.,∗buf) are unobservable outside off, the strongest observable
necessary condition forf to dereferencep is given by the simpler
condition:

p!=NULL ∧ flag!=0

1. int g(int* p) {
2. if(p==NULL) return -1;
3. return 1;
4. }
5. void f(int* p, int flag) {
6. if(g(p)<0 || !flag) return;
7. char* buf = malloc(sizeof(char));
8. if(!buf) return;
9. *buf = getUserInput();
10. if(*buf==’i’)
11. *p = 1;
12. }

Figure 3. Example code.

On the other hand, nothing in a calling context off guarantees that
p is dereferenced whenf is called; hence, the weakest observable
sufficient condition for the dereference isfalse.

6. Solving the Constraints
In this section, we give an algorithm for computing observable
strongest necessary and weakest sufficient conditions for the equa-
tions given in Section 4. Our algorithm first eliminates existentially
quantified variables from every formula (Section 6.1). We then
transform the equations to both bemonotonicin the return variables
and preserve strongest necessary (weakest sufficient) conditions
under substitution (Section 6.2). Finally, we solve the equations to
eliminate recursive constraints (Section 6.3), yielding asystem of
(non-recursive) formulas over observable variables. Eachstep pre-
serves the satisfiability/validity of the original equations, and thus
the original may/must query can be decided using a standard SAT
solver on the final formulas.

6.1 Eliminating Unobservable Variables

The first step of our algorithm is to eliminate each existentially
quantified unobservable variableβij . We use the following result:

LEMMA 4.

1. The strongest necessary condition ofφ not containingv is:

SNC(φ, v) ≡ φ[true/v] ∨ φ[false/v]

2. The weakest sufficient condition ofφ not containingv is:

WSC(φ, v) ≡ φ[true/v] ∧ φ[false/v]

Proofs of these results were first given by Boole [7]. This technique
for computing strongest necessary and weakest sufficient condi-
tions for formulas not containing a given variablevi is sometimes
referred to aseliminating the middle termor forgettinga variable.

Recall from Section 4.1 that any satisfiable formula must also
satisfy existence and uniqueness constraints, while any formula en-
tailed byψexist andψunique is a tautology. For example, the strongest
necessary condition forβ11 ∧ β12 not containingβ’s is falsein our
system, even though applying the technique from Lemma 4 yields
true. Similar problems arise for weakest sufficient conditions.To
compute strongest necessary and weakest sufficient conditions that
obey the additional existence and uniqueness conditions ofour sys-
tem, we defineSNC∗ andWSC∗ as follows:

DEFINITION 7.

1. The strongest necessary conditionSNC∗ of φ withoutv is:

SNC∗(φ, v) ≡ (φ ∧ ψexist∧ ψunique)[true/v]∨
(φ ∧ ψexist∧ ψunique)[false/v]



2. The weakest sufficient conditionWSC∗ of φ withoutv is:

WSC∗(φ, v) ≡ (φ ∨ ¬ψexist∨ ¬ψunique)[true/v]∧
(φ ∨ ¬ψexist∨ ¬ψunique)[false/v]

That these are in fact the strongest necessary/weakest sufficient
observable conditions follows from Lemma 4 and Definitions 2and
3. We compute necessary (resp. sufficient conditions) by replacing
all expressions∃v.φ by SNC∗(φ, v) (resp.WSC∗(φ, v)). Thus, this
step yields two distinct sets of equations, one for necessary and one
for sufficient conditions.

Note that, in the general case of Lemma 4, the strongest neces-
sary and weakest sufficient conditions of any formula may double
the size of the original formula. However, it is easy to see that if a
literal v occurs only positively inφ, the strongest necessary condi-
tion can be computed asφ[v/true], and ifv occurs only negatively,
the strongest necessary condition is given byφ[v/false]. Analogous
optimizations apply to weakest sufficient conditions. Furthermore,
it is not always necessary to add the existence and uniqueness con-
straints for any unobservable variable as suggested by Definition 7.
For example, if a formula containsβij , but noβik, it is unnecessary
to add the explicit uniqueness constraint¬(βij ∧ βik).

EXAMPLE 4. Consider the function given in Example 1, for which
boolean constraints are given in Example 2. We compute the
strongest necessary condition forΠf,α,C1

:

⌈Πf,α,C1
⌉ = (α1 ∨ true) ∨

(¬(α1 ∨ true) ∧ ⌈Πf,α,C1
⌉[true/α1])

∨ (α1 ∨ false) ∨
(¬(α1 ∨ false) ∧ ⌈Πf,α,C1

⌉[true/α1])
= true

The reader can verify that the weakest sufficient condition for
Πf,α,C1

is also true. In the above derivation, the existence and
uniqueness constraints are omitted since they are redundant.

After eliminating unobservable variables from formulasφij of
Equation 1, we obtain two systems of constraintsENC andESC,
giving the strongest necessary and weakest sufficient observable
conditions, respectively:

EQUATION 2.

ENC =

2

6

6

4

⌈Πf1,α,C1
⌉ = φ′

11( ~α1, ~⌈Π⌉[~b1/~α])
...

⌈Πfk,α,Cn⌉ = φ′
kn(~αk, ~⌈Π⌉[~bk/~α])

3

7

7

5

ESC is analogous toENC.

6.2 Preservation Under Substitution

Our goal is to solve the recursive system given in Equation 2 by
an iterative, fixed point computation. However, there is a problem:
as it stands, Equation 2 may not preserve strongest necessary and
weakest sufficient conditions under substitution, a serious problem
if we are to compute fixed points by repeated substitution.

EXAMPLE 5.
define g(x) = if(x = c1 ∧ z = c2) then c1 else c2
define f(x) = let y = g(c1) in

if(¬(y = c1)) then c1 else c2

Suppose we want the strongest necessary condition forf returning
c1. Using the machinery presented so far, we compute:

⌈Πf,α,C1
⌉ = ¬(⌈Πg,α,C1

⌉[true/α1][false/α2])
⌈Πg,α,C1

⌉ = α1

whereα1 represents the constraintα = C1, andα2 represents
α = C2. When we replaceα1 for the occurrence of⌈Πg,α,C1

⌉
in the first equation, we obtainfalse as the strongest necessary

condition forf to returnc1. This result is wrong, sincef returnsc1
if the variablez in functiong is c1. Thus, the strongest necessary
condition forf returningc1 is true.

This example illustrates that Equation 2 does not preserve
strongest necessary conditions under substitution; in fact, the re-
sult we obtained is not even a necessary condition. The problem
arises because⌈¬φ⌉ 6= ¬⌈φ⌉. To ensure that strongest necessary
and weakest sufficient conditions are preserved under substitution,
the return variables may only occur monotonically in a formula.

Note that replacing¬Πf,α,Ci
by

W

j 6=i
Πf,α,Cj

is not sufficient
to solve the problem, because the satisfiability of a formulain
our system also requires that the formula obey the uniqueness
constraint¬(

V

i6=j
¬(Πf,α,Ci

∧ Πf,α,Cj
)) which also contains

negations on return variables. Similar problems arise for weakest
sufficient conditions because the existence constraint

W

j
Πf,α,Cj

appears anti-monotonically in the definition of validity.1

Fortunately, we can transformENC andESC into monotonic
system of equationsT (ENC) andT (ESC) such that:

1. The latter equations contain no negations on return variables.
2. SAT∗(ENC) ⇔ SAT(T (ENC))

3. VALID∗(ESC) ⇔ VALID(T (ESC))

The first property is necessary to guarantee that strongest necessary
and weakest sufficient conditions are preserved under substitution,
while conditions 2 and 3 are required to ensure that strongest nec-
essary and weakest sufficient conditions obtained by our algorithm
are satisfiability and validity preserving respectively.

Lemma 5 below states thatT (ENC) has properties 1 and 2 listed
above, and the proof of the lemma presents an outline of this trans-
formation. Lemma 6 states thatT (ENC) preserves strongest neces-
sary conditions under syntactic substitution such that thestrongest
necessary conditions computed by our technique are satisfiability
preserving. Lemmas 7 and 8 state dual results for weakest suffi-
cient conditions and validity preservation.

LEMMA 5. For a system of equationsENC, there exists a system
T (ENC) in which all return variables occur only monotonically and
for φ ∈ ENC andφ′ ∈ T (ENC), SAT∗(φ) ⇔ SAT(φ′).

PROOF. From Lemma 1, we haveSAT∗(φ) ⇔ SAT(M(φ) ∧
ψunique). Hence it suffices to show there exists aφ′ such that:

SAT(φ′) ⇔ SAT(M(φ) ∧ ψunique)

To obtainφ′, we convertM(φ) to disjunctive normal form:

φ′ = DNF(M(φ)) =
(p11... ∧ ...p1n) ∨ ...(pi1 ∧ ...pij ... ∧ pin)
∨...(pm1... ∧ ...pmn)

We enforce uniqueness by dropping contradictions from every dis-
junct of the form(pi1 ∧ ...pij ...∧pin), i.e., if any disjunct contains
bothΠf,α,Ci

andΠf,α,Cj
for i 6= j, we replace the clause byfalse.

The final formulaφ′ is equi-satisfiable toM(φ) ∧ ψunique.

Now we can show thatT (ENC) preserves strongest necessary con-
ditions under substitution. This result is what ultimatelyguarantees
our algorithm computes the strongest necessary condition for the
original recursive system given in Equation 1.

1 The uniqueness and existence constraints of the form
¬(

V

i6=j ¬(Πf,α,Ci
∧ Πf,α,Cj

)) and
W

j Πf,α,Cj
only apply to Π

variables arising from the same call site. While we do not explicitly label Π
variables with their respective instantiation sites, fromhere on, we assume
that the uniqueness and existence constraints only apply toreturn variables
arising from the same call site. We rely on this assumption inthe proof of
Lemmas 5 and 7.



LEMMA 6. Letφ ∈ T (ENC) be a formula containing literals~α and
~Π. LetF be the strongest necessary condition for a return variable
Πα,Ci

only containing observable variables. Then the strongest
necessary condition forφ not containingΠα,Ci

is given by:

⌈φ⌉ = φ[F/Πα,Ci
]

PROOF. We first show thatφ[F/Πα,Ci
] is a necessary condi-

tion for φ. If φ = Πα,Ci
, then φ[F/Πα,Ci

] = F . So, φ ⇒
φ[F/Πα,Ci

] sinceΠα,Ci
⇒ F . If φ = v wherev 6= Πα,Ci

, then
φ ⇒ φ[F/Πα,Ci

] sinceφ[F/Πα,Ci
] = φ. Note that we do not

need to consider the caseφ = ¬Πα,Ci
sinceΠα,Ci

’s occur only
monotonically. The first of two cases for the inductive step is (1)
φ = φ1 ∧ φ2. Supposeφ1 ∧ φ2 6⇒ (φ1 ∧ φ2)[F/Πα,Ci

] such that
φ1 ∧ φ2 6⇒ (φ1[F/Πα,Ci

]) ∧ (φ2[F/Πα,Ci
]) (∗)

Then, there is a truth assignmentv̄ satisfyingφ1 ∧ φ2, but not
(φ1[F/Πα,Ci

])) ∧ (φ2[F/Πα,Ci
]). By induction,

φ1 ⇒ φ1[F/Πα,Ci
] ∧ φ2 ⇒ φ2[F/Πα,Ci

]

Hence ifφ1 andφ2 aretrue then(φ1[F/Πα,Ci
]))∧(φ2[F/Πα,Ci

])
must also betrue, yielding a contradiction with(∗). Case (2)
φ = φ1 ∨ φ2 is similar to case (1).

We now showφ[F/Πα,Ci
] is the strongest necessary condi-

tion for φ, i.e., φ[F/Πα,Ci
] ⇒ φ[F ′′/Πα,Ci

] for any neces-
sary conditionF ′′. Consider the case whereφ = Πα,Ci

. Let
φ[F ′′/Πα,Ci

] be another necessary condition forφ. SinceF is the
strongest necessary condition forΠα,Ci

, we haveF ⇒ F ′′ and
henceφ[F/Πα,Ci

] ⇒ φ[F ′′/Πα,Ci
]. The case whereφ = v and

v 6= Πα,Ci
is also trivially true.

There are two inductive cases. The first is (1)φ = φ1 ∧ φ2. Let
φ[F ′′/Πα,Ci

] be another necessary condition forφ such that

φ[F/Πα,Ci
] 6⇒ φ[F ′′/Πα,Ci

]

Then, there must exist a truth assignmentv̄ satisfyingφ[F/Πα,Ci
],

but notφ[F ′′/Πα,Ci
]. By induction:

φ1[F/Πα,Ci
] ⇒ φ1[F

′′/Πα,Ci
] ∧

φ2[F/Πα,Ci
] ⇒ φ2[F

′′/Πα,Ci
]

Hence,

(φ1[F/Πα,Ci
]∧φ2[F/Πα,Ci

]) ⇒ (φ1[F
′′/Πα,Ci

]∧φ2[F
′′/Πα,Ci

])

thus v̄ must also satisfyφ[F ′′/Πα,Ci
], a contradiction. Case (2)

φ = φ1 ∨ φ2 is again symmetric to case (1).

The dual of this result holds for weakest sufficient conditions.

LEMMA 7. For every system of equationsESC, there exists another
system of equationsT (ESC) in which all return predicates occur
only monotonically and for everyφ ∈ ESC andφ′ ∈ T (ESC) such
thatVALID∗(φ) ⇔ VALID(φ′).

PROOF. From Lemma 2, we haveVALID∗(φ) ⇔ {ψexist |=
M(φ)}. Hence it suffices to show there exists aφ′ such that
({ψexist} |= φ) ⇔ ({} |= φ′). We obtain such aφ′ by convert-
ingM(φ) to conjunctive normal form:

φ′ = CNF(φ) =
(p11... ∨ ...p1n) ∧ ...(pi1 ∨ ...pij ... ∨ pin)
∧...(pm1... ∨ ...pmn)

We then eliminate all tautologies by replacing every clausethat
containsΠα,Ci

for all i, 1 ≤ i ≤ n, with true. It is easy to see
that({ψexist} |= φ) ⇔ ({} |= φ′).

The following lemma states thatT (ESC) is validity-preserving
under substitution:

LEMMA 8. Letφ ∈ T (ESC) be a formula containing literals~α and
~Π. Let F be the weakest sufficient condition forΠα,Ci

. Then the

weakest sufficient condition forφ not containingΠα,Ci
is:

⌊φ⌋ = φ[F/Πα,Ci
]

PROOF. The proof is similar to the proof of Lemma 6.

6.3 Eliminating Recursion

After eliminating unobservable variables and transforming the con-
straints into monotonic satisfiability and validity-preserving sys-
tems respectively, we obtain the following systems of equations:

EQUATION 3.

T (ENC) =

2

6

4

T (⌈Πf1,α,C1
⌉) = φ11(~α1, T (⌈~Π⌉)[~b1/~αi])

...
T (⌈Πfk,α,Cn⌉) = φkn(~αk, T (⌈~Π⌉)[~bk/~αi])

3

7

5

The systemT (ESC) is analogous.

Consider vectors of boolean formulas~γ over theαij ’s appearing
in the constraints; these formulas have no unobservable or return
variables. We define a latticeL with the following ordering:

⊥NC =
−−→
falsen·m ⊥SC =

−−→truen·m

⊤NC =
−−→truen·m ⊤SC =

−−→
falsen·m

~γ1 ⊔NC ~γ2 = 〈..., γ1i ∨ γ2i, ...〉 ~γ1 ⊔SC~γ2 = 〈..., γ1i ∧ γ2i, ...〉

The latticeL is finite (up to logical equivalence) since there are only
a finite number of variablesαij and hence only a finite number of
logically distinct formulas. We define two functions fromL toL

FNC(~γNC) = 〈. . . , φij [~γNC/T (⌈~Π⌉)], . . .〉

FSC(~γSC) = 〈. . . , φij [~γSC/T (⌊~Π⌋)], . . .〉

substituting boolean formulas~γ for return variablesT (~Πα,Ci
).

We compute a least fixed point solution forENC asfix(FNC(⊥NC))
and forESC asfix(FSC(⊥SC)). The fixed points exist because both
systems are monotonic inT (⌈~Π⌉) andT (⌊~Π⌋) respectively.

EXAMPLE 6. Recall that in Example 4 we computed⌊Πf,α,C1
⌋

for the functionf defined in Example 1 as:

⌊Πf,α,C1
⌋ = α1 ∨ (¬α1 ∧ ⌊Πf,α,C1

⌋[true/α1])

Note that this formula is already monotonic in⌊Πf,α,C1
⌋ and

does not contain any contradictions or tautologies. To find the
weakest sufficient condition forΠf,α,C1

, we first substitutetrue
for ⌊Πf,α,C1

⌋. This yields the formulaα1 ∨ ¬α1, a tautology.
As a result, our algorithm finds the fixed point solutiontrue for
the weakest sufficient condition ofΠf,α,C1

. Since f is always
guaranteed to returnc1, the weakest sufficient condition computed
using our algorithm is the most precise solution possible.

7. Implementation
We have implemented our method in Saturn, a summary-based,
context, and intraprocedurally path-sensitive analysis framework
[1]. Our implementation extends the existing Saturn infrastructure
to allow client analyses to query fully interprocedural strongest
necessary and weakest sufficient conditions for the intraprocedural
constraints computed by Saturn, where function return values and
side effects are represented as unconstrained variables.2 For exam-
ple, given an intraprocedural constraint computed by Saturn, such
asx = 1 ∧ queryUser(y) = true for the queryUser function
from Section 1, our analysis yields the interprocedural constraints

2 Saturn treats loops as tail-recursive functions; hence, wealso compute
strongest necessary and weakest sufficient conditions for side effects of
loops.



x = 1 ∧ y = true as the strongest necessary condition andfalse
as the weakest sufficient condition.

While it is important in our technique that the set of possible
values can be exhaustively enumerated (i.e., so that the comple-
ment of¬Πα,Ci

is expressible as a finite disjunction, recall Sec-
tion 6.2), it is not necessary that the set be finite, but only finitary,
that is, finite for a given program. Furthermore, while it is clear that
the technique can be applied to finite state properties or enumerated
types, it can also be extended to any property where a finite number
of equivalence classes can be derived to describe the possible out-
comes. Our implementation goes beyond finite state properties; it
first collects the set of all predicates corresponding to comparisons
between function return values (and side effects) and constants. For
instance, if a condition such asif(foo(a) == 3) is used at some
call site offoo, then we compute strongest necessary and weakest
sufficient conditions forΠfoo,a,3 and its negation. This technique al-
lows us to finitize the interesting set of return values associated with
a function and makes it possible to use the algorithms described so
far with minor modifications. Note that any finitization strategy en-
tails a loss of precision in some situations. For example, ifthe return
values of two arbitrary functionsf andg are compared with each
other, the strategy we use may not allow us to determine the exact
necessary and sufficient condition under whichf andg return the
same value.

The algorithm of Section 6.3 computes a least fixed point. How-
ever, the underlying Saturn infrastructure can fail by exceeding re-
source limits (e.g., time-outs); if any iteration of the fixed point
computation failed to complete we would be left with unsoundap-
proximations. Thus, our implementation computes a greatest fixed
point, as we can halt at any iteration and still have sound results.
The greatest fixed point is less precise than the least fixed point
in some cases, such as for non-terminating computation paths. For
instance, for the simple everywhere non-terminating function:

define f(x) = if(f(x) = c1) then c1 else c2

the greatest fixed point computation yieldstrue for the strongest
necessary condition forf returningc1 while the least fixed point
computation yieldsfalse.

The toy language used in the technical part of the paper assumes
that each function has exactly one output (i.e., functions do not
have side effects). This restriction makes it safe to eliminate all
unobservable variables while still guaranteeing completeness for
finite domains. When functions have multiple outputs, however,
there may also be correlations between different outputs, where
the correlation is established through the use of an unobservable
variable. The example below illustrates such a correlation:

int foo(int** p) {
int* x = malloc(sizeof(int));
if(!x) return -1;
*p = x;
return 1;

}

Note that the predicatefoo(p) == 1 implies that∗p is initialized
to a non-null value; however, we cannot reason about this correla-
tion if we eliminate the unobservable variable corresponding to the
return value ofmalloc. In such cases, our implementation intro-
duces additional variables describing output state to capture exter-
nally visible dependencies between different outputs.

8. Experimental Results
We conducted two sets of experiments to evaluate our technique on
OpenSSH, Samba, and the Linux kernel. In the first set of experi-
ments we compute necessary and sufficient conditions for pointer
dereferences. Pointer dereferences are ubiquitous in C programs
and computing the necessary and sufficient conditions for each and
every syntactic pointer dereference to execute is a good stress test
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Figure 4. Frequency of necessary and sufficient condition sizes
(in terms of the number of boolean connectives) at sinks for
Linux

Linux Samba OpenSSH
2.6.17.1 3.0.23b 4.3p2

Average original guard size 3.00 4.45 3.02
Average NC size (sink) 0.75 1.02 0.75
Average SC size (sink) 0.48 0.67 0.50
Average NC size (source) 2.39 2.82 1.39
Average SC size (source) 0.45 0.49 0.67
Average call chain depth 5.98 4.67 2.03
Lines of code 6,275,017 515,689 155,660

Figure 5. Necessary and sufficient condition sizes (in terms
of number of boolean connectives in the formula) for pointer
dereferences.

for our approach. As a second experiment, we incorporate ourtech-
nique into a null dereference analysis and demonstrate thatour
technique reduces the number of false positives by close to an order
of magnitude without resorting to ad-hoc heuristics or compromis-
ing soundness.

In our first set of experiments, we measure the size of neces-
sary and sufficient conditions for pointer dereferences both atsinks,
where pointers are dereferenced, and atsources, where pointers
are first allocated or read from the heap. In Figure 3, consider the
pointer dereference (sink) at line 11. For the sink experiments, we
would, for example, compute the necessary and sufficient condi-
tions for p’s dereference asp! = NULL ∧ flag! = 0 andfalse
respectively. To illustrate the source experiment, consider the fol-
lowing call sites of functionf from Figure 3:

void foo() {
int* p = malloc(sizeof(int)); /*source*/
...
bar(p, flag, x);

}

void bar(int* p, int flag, int x) {
if(x > MAX) *p = -1;
else f(p, flag);

}

The line marked/*source*/ is the source of pointerp;the neces-
sary condition atp’s source forp to be ultimately dereferenced is
x > MAX∨(x <= MAX∧p! = NULL∧flag! = 0) and the sufficient
condition isx > MAX.

The results of the sink experiments for Linux are presented in
Figure 4, and the results of source experiments are given in Figure
6. The table in Figure 5 presents a summary of the results of both
the source and sink experiments for OpenSSH, Samba, and Linux.



Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Figure 7. Results of null dereference experiments for the interprocedurally path-sensitive (first three columns) and intraprocedurally
path-sensitive, but interprocedurally path-insensitive(last three columns) analyses
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Figure 6. Necessary and sufficient condition sizes at sources vs.
call chain length in Linux

The histogram in Figure 4 plots the size of necessary (resp. suffi-
cient) conditions against the number of guards that have a necessary
(resp. sufficient) condition of the given size. In this figure, red bars
indicate necessary conditions, green bars indicate sufficient con-
ditions, and note that the y-axis is drawn on a log-scale. Observe
that 95% of all necessary and sufficient conditions have fewer than
five subclauses, and 99% have fewer than ten subclauses, showing
that necessary and sufficient conditions are small in practice. Fig-
ure 5 presents average necessary and sufficient condition sizes at
sinks (rows 2 and 3) for all three applications we analyzed, con-
firming that average necessary and sufficient condition sizes are
consistently small across all of our benchmarks. Further, the av-
erage size of necessary and sufficient conditions are considerably
smaller than the average size of the original guards (which contain
unobservable variables as well as the place-holder return variables
representing unsolved constraints, denoted byΠ in our formalism).

Figure 6 plots the maximal length of call chain from a source
to any feasible sink against the size of necessary and sufficient

condition sizes at sources for Linux. In this figure, the points mark
average sizes, while the error bars indicate one standard deviation.
First, observe that the size of necessary and sufficient conditions is
small and does not grow with the length of the call chain. Second,
note that the necessary condition sizes are typically larger than
sufficient condition sizes; the difference is especially pronounced
as the call chain length grows. Figure 5 also corroborates this trend
for the other benchmark applications; average size of necessary
conditions (row 4) is larger than that of sufficient conditions (row
5) at sources.

Our second experiment applies these techniques to finding null
dereference errors. We chose null dereferences as an application
because checking for null dereference errors with sufficient preci-
sion often requires tracking complex path conditions. To identify
null dereference errors, we query the strongest necessary condi-
tion g1 for the constraint under which a pointerp is null and the
strongest necessary conditiong2 of the constraint under whichp
is dereferenced. A null pointer error is feasible ifSAT(g1 ∧ g2).
Our implementation performs a bottom-up analysis and reports er-
rors in the first method where a feasible path from a null valueto a
dereference is determined.

The first three columns of Figure 7 give the results of our fully
(interprocedurally) path-sensitive null dereference experiments,
and the last three columns of the same figure present the results
of the intraprocedurally path-sensitive, but interprocedurally path-
insensitive null dereference experiments. One important caveat is
that the numbers reported here exclude error reports arising from
array elements and recursive fields of data structures. Saturn does
not have a sophisticated shape analysis; hence, the overwhelming
majority (> 95%) of errors reported for elements of unbounded
data structures are false positives. However, shape analysis is an
orthogonal problem; we leave incorporating shape analysisas fu-
ture work. (To give the reader a rough idea of number of reports
involving arrays and unbounded data structures, the numberof
total reports is 50 and 170 with and without full path-sensitivity
respectively for OpenSSH.)

A comparison of the results of the intraprocedurally and inter-
procedurally path-sensitive analyses shows that our technique re-
duces the number of false positives by close to an order of magni-
tude without resorting to heuristics or compromising soundness in
order to eliminate errors arising from interprocedurally correlated
branches. Note that the existence of false positives for thefully
path-sensitive experiments does not contradict our previous claim
that our technique is complete. First, even for finite domains, our
technique can only providerelative completeness; false positives
can still arise from orthogonal sources of imprecision in the analy-
sis (e.g., imprecise function pointer targets, inline assembly, imple-
mentation bugs, time-outs). Second, while our results are complete
for finite domains, we cannot guarantee completeness for arbitrary
domains. For example, when arbitrary arithmetic is involved in path
constraints, our technique may fail to compute the strongest neces-
sary and weakest sufficient conditions.



The null dereference experiments were performed on a shared
cluster, making it difficult to give precise running times. Atypical
run with approximately 10-30 cores took around tens of minutes
on SSH, a few hours on Samba, and up to more than ten hours
on Linux. The running times (as well as time-out rates) of the
fully path-sensitive and the intraprocedurally path-sensitive analy-
sis were comparable for OpenSSH and Samba, but the less precise
analysis took substantially longer for Linux because the fully path-
sensitive analysis rules out many more interprocedurally infeasible
paths, substantially reducing summary sizes.

The results of Figure 7 show that interprocedurally path-
sensitive analysis is important for practical verificationof software.
For example, according to Figure 7, finding a single correct er-
ror report in Samba requires inspecting approximately 22.3error
reports for the interprocedurally path-insensitive analysis, while
it takes 2.8 inspections to find a correct bug report with the fully
path-sensitive analysis, presumably reducing user effortby a factor
of 8.

9. Conclusions
We have given a method for computing the precise necessary and
sufficient conditions for program properties that are fullycontext-
and path-sensitive, including in the presence of recursivefunc-
tions. We have demonstrated the practicality of our system,con-
firming that the approach scales to problems as computationally
intensive as computing the necessary and sufficient condition for
each pointer dereference in multi-million line C programs,as well
as checking for null dereference errors in the largest existing open-
source applications.
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