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Our Goal

Goal:

Perform a precise flow-
and context- sensitive
pointer analysis that is
modular and bottom-up
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Advantages of Modular Pointer Analysis

Reuse of results: Same summary can be reused in any context

⇒ Each function only analyzed once (assuming no cycles)

Scalability: Summaries express only externally visible side
effects

⇒ Allows local reasoning

Natural parallelization: Functions that do not have
caller-callee relationship can be independently analyzed
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Unfortunately performing a
modular pointer analysis is
difficult!

⇒ particularly if we want to
perform strong updates to
memory locations!
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Motivating Example

f(int** a, int **b,

int *p, int *q)

{

*a = p;

*b = q;

**a = 3;

**b = 4;

}

Although f is conditional and
loop-free, it may have very
different effects at different call
sites

Example: After a call to f,
value of *p may be 3, 4, or
remain its initial value

. . . depending on points-to
facts at call site!
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 5 of 25



Two Main Difficulties

One difficulty: An argument a to a function f may have different
number of points-to targets at different call sites of f

a a a
...

call site 1 call site 2 call site 3

⇒ Unknown number of points-to targets at call sites
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Two Main Difficulties

Another difficulty: Different aliasing patterns between arguments
may exist at different call sites

call site 1

a b

call site 2

a b

⇒ Aliasing patterns exponential in number of locations
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Overview of Our Approach

Represent unknown points-to targets of
locations using location variables

To allow strong updates, ensure that
locations represented by two distinct
variables stand for disjoint set of locations

Enforce disjointness by symbolically
representing all possible aliasing relations on
function entry
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Location Constants vs. Variables

Distinguish between two kinds of abstract memory locations:

Location Constants: Model memory allocations, NULL,
locations of stack variables etc.

Location Variables: Range over the unknown location
constants pointed to by arguments at function entry
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 9 of 25



Location Constants vs. Variables

Distinguish between two kinds of abstract memory locations:

Location Constants: Model memory allocations, NULL,
locations of stack variables etc.

Location Variables: Range over the unknown location
constants pointed to by arguments at function entry
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Simple Example

foo(int* a) a

ν ranges over abstract
memory locations at
call sites of foo

...
foo(x)
...

x

In this context, ν
stands for location
constants loc1 and loc2
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 10 of 25



Strong Updates to Location Variables

If ν1 and ν2 are two distinct location
variables in f, we can only apply strong
updates to them in f if:

γ(ν1) ∩ γ(ν2) = ∅

in any calling context

Why?
If ν1 and ν2 may represent an overlapping set of
locations, updates to ν1 may affect updates to ν2
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Enforcing Disjointness: Naive Solution

If arguments a and b are potential aliases, analyze function in
two different initial configurations:

a b a b

Problem:

Number of alias patterns = nth Bell number
(n= # of argument-reachable locations)
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Enforcing Disjointness: Practical Solution

Encode aliasing patterns symbolically such that:

Number of location variables, n, is the
number of argument-reachable locations

Number of edges in the initial points-to
graph is bound by n2/2

Only need to analyze each function once

⇒ Since we precisely account for all aliasing patterns
in any context, it is safe to apply strong updates to
(non-summary) location variables

Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 13 of 25



Enforcing Disjointness: Practical Solution

Encode aliasing patterns symbolically such that:

Number of location variables, n, is the
number of argument-reachable locations

Number of edges in the initial points-to
graph is bound by n2/2

Only need to analyze each function once

⇒ Since we precisely account for all aliasing patterns
in any context, it is safe to apply strong updates to
(non-summary) location variables

Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 13 of 25



Enforcing Disjointness: Practical Solution

Encode aliasing patterns symbolically such that:

Number of location variables, n, is the
number of argument-reachable locations

Number of edges in the initial points-to
graph is bound by n2/2

Only need to analyze each function once

⇒ Since we precisely account for all aliasing patterns
in any context, it is safe to apply strong updates to
(non-summary) location variables
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Construction of the Initial Points-to Graph

Consider function: foo(int* a, int* b)

a

b

Observe: Construction enforces that γ(νa) ∩ γ(νb) = ∅
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νa represents points-to
targets of a in any calling
context
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Construction of the Initial Points-to Graph

Consider function: foo(int* a, int* b)

a

b

νb represents points-to
targets of b only in those
contexts where a and b do
not alias

Observe: Construction enforces that γ(νa) ∩ γ(νb) = ∅
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 14 of 25



Construction of the Initial Points-to Graph

Consider function: foo(int* a, int* b)

a

b

νa also represents
points-to targets of b in
those contexts where a

and b alias

Observe: Construction enforces that γ(νa) ∩ γ(νb) = ∅
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Construction: The General Case

Consider variables a1, . . . , an
that may alias at function
entry

Impose total order such that
a1 < a2 . . . < an

For each ai introduce νi

Each ai points to νk with
k ≤ i under constraint:∧

j<k

ai 6= aj ∧ ai = ak
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Example

f(int* a, int *b)

{

*a = 1;

*b = 2;

}
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Example

f(int* a, int *b)

{

*a = 1;

*b = 2;

}

a

b

1

Observe: *b has value 1 if a and b alias
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Example

f(int* a, int *b)

{

*a = 1;

*b = 2;

}

a

b

1

2

Observe: *a has value 1 if a and b do not alias
and value 2 otherwise
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Experiments

Analyzed 4 large open-source C and C++ applications:

OpenSSH

LiteSQL

Inkscape Widgets

DigiKam
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First Experiment

Goal: Assess importance of strong updates at call sites

Checked for various memory safety properties, such as buffer
overruns, null dereferences, accessing deleted memory, . . .

Compared false positive rates of new analysis with analysis
that only performs weak updates at call sites
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 18 of 25



First Experiment

Goal: Assess importance of strong updates at call sites

Checked for various memory safety properties, such as buffer
overruns, null dereferences, accessing deleted memory, . . .

Compared false positive rates of new analysis with analysis
that only performs weak updates at call sites
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Comparison of False Positives

Weak updates at call sites:
98.2% false positive rate

Strong updates using this
technique:
26.3% false positive rate

⇒ Modular analysis that
cannot apply strong
updates too imprecise!
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Comparison of Running Times

Weak updates at call sites:
20.0 min average running time
on single CPU

Strong updates using this
technique:
15.2 min average running time
on single CPU

⇒ More precise actually
analysis runs faster
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Analysis can be parallelized

Also ran this analysis on 8 CPUs

Functions with no caller-callee
relationship analyzed in parallel

Average speed-up over 1 CPU:
4.2× speedup
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Işıl Dillig, Thomas Dillig, Alex Aiken Mooly Sagiv 21 of 25



Analysis can be parallelized

Also ran this analysis on 8 CPUs

Functions with no caller-callee
relationship analyzed in parallel

Average speed-up over 1 CPU:
4.2× speedup
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Second Experiment

Goal: Assess scalability of summary-based analysis

Explored growth of heap summaries vs. depth of call chain

Measured summary size as the number of points-to edges
weighted according to the size of the edge constraints
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Results
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Conclusion

Presented a modular, strictly
bottom-up pointer analysis

Technique capable of performing
strong updates at call sites

Demonstrated practicality of
technique for verifying memory
safety on four applications
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