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Motivation

Program 
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm
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When Verification Fails

When verifier fails to prove
property, user must decide whether
report is real bug or false alarm.

But manually classifying error
reports is time-consuming and
error-prone.

Furthermore, user must redo all the
reasoning the tool performed just
to discover where it became stuck.

Very painful process for most users
of static analysis tools!
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Our Goal

A new technique for semi-automating error report classification
when automated program verification fails

Program 
Verifier

      Our 
technique

  Query 

  YES/NO 

Allows verifier to interact with user by asking small, relevant
queries until report is classified as real bug or false positive

Queries capture only the information verifier is missing ⇒ user
contributes facts verifier could not decide on its own

Answering queries much easier than classifying error report
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Key Ideas

Key Idea #1: Analysis makes explicit not only
facts it knows, but also facts it does not know

Sources of imprecision/incompleteness in static
analysis represented using abstraction variables

For example, if value of variable is unknown
after a loop, represent this unknown value using
abstraction variable

This representation allows analysis to be
“introspective” and reason about what facts it
could be missing
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Key Ideas, cont.

Key Idea #2: Abductive inference

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E )

We use abductive inference to generate simple
explanations that either guarantee that program
is error-free or definitely buggy

These abductive explanations are presented as
queries to user
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Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I )

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive 
inference

Assertion

Invariants

   Proof 
obligation 
   query
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Failure Witnesses

Proof obligation query used to show
report is false alarm

We generate another query, called failure
witness query, to show report is a real bug

To generate failure witness query, solve a
dual abductive inference problem:

∆ ∧ I |= ¬φ and SAT(∆ ∧ I )

If ∆ can hold in some program execution,
then report is real bug!

Abductive 
inference

Assertion

Invariants

    Failure
   witness 
   query
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Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

Query 

Abductive 
inference

Invariants Assertion

Previous 
user 
answers

 User's
answer 
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Example

void foo(int flag, 

         unsigned int n) 

{
  int k = 1;

  int x = havoc();
  if(flag) k = x;

 
  int i=0, j=0;
  while(i<=n)

  {
    i++;

    j+=i;
  }
  

  int z = k+i+j;
  assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx
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Example, cont.

void foo(int flag, 

         unsigned int n) 

{
  int k = 1;

  int x = havoc();
  if(flag) k = x;

 
  int i=0, j=0;
  while(i<=n)

  {
    i++;

    j+=i;
  }
  

  int z = k+i+j;
  assert(z>2*n);
}

Perform symbolic value propagation to
represent z’s value in terms of α’s and
function inputs

If flag is zero, z = 1 + αi + αj

If flag is non-zero, z = αx + αi + αj

Thus, condition under which assertion
succeeds is:

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)
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  {
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}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0
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In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
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Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E )

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive 
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations
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Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically
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Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

    16% 
undecided

51.1%
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Summary

Program 
Verifier

      Our 
technique

  Query 

  YES/NO 

New technique to help programmers classify error reports as
real bugs or false alarms

Uses abductive inference to compute simple queries that
capture what analysis is missing

Interacts with user until report is classified as bug/false alarm

User study shows technique dramatically improves
classification speed and accuracy
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