
Automated Error Diagnosis
Using Abductive Inference

Işıl Dillig, Tom Dillig Alex Aiken
College of William & Mary Stanford University

1 / 20

Motivation

Program
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm

2 / 20

Motivation

Program
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm

2 / 20

Motivation

Program
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm

2 / 20

Motivation

Program
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm

2 / 20

Motivation

Program
Verifier

If we use sound program analysis tool to verify a property,
answer is either yes or no

If answer is yes, program is error-free

If answer is no, there are two possibilities:

Either the program is indeed buggy

Or report is a false alarm

2 / 20

When Verification Fails

When verifier fails to prove
property, user must decide whether
report is real bug or false alarm.

But manually classifying error
reports is time-consuming and
error-prone.

Furthermore, user must redo all the
reasoning the tool performed just
to discover where it became stuck.

Very painful process for most users
of static analysis tools!

3 / 20

When Verification Fails

When verifier fails to prove
property, user must decide whether
report is real bug or false alarm.

But manually classifying error
reports is time-consuming and
error-prone.

Furthermore, user must redo all the
reasoning the tool performed just
to discover where it became stuck.

Very painful process for most users
of static analysis tools!

3 / 20

When Verification Fails

When verifier fails to prove
property, user must decide whether
report is real bug or false alarm.

But manually classifying error
reports is time-consuming and
error-prone.

Furthermore, user must redo all the
reasoning the tool performed just
to discover where it became stuck.

Very painful process for most users
of static analysis tools!

3 / 20

When Verification Fails

When verifier fails to prove
property, user must decide whether
report is real bug or false alarm.

But manually classifying error
reports is time-consuming and
error-prone.

Furthermore, user must redo all the
reasoning the tool performed just
to discover where it became stuck.

Very painful process for most users
of static analysis tools!

3 / 20

Our Goal

A new technique for semi-automating error report classification
when automated program verification fails

Program
Verifier

 Our
technique

 Query

 YES/NO

Allows verifier to interact with user by asking small, relevant
queries until report is classified as real bug or false positive

Queries capture only the information verifier is missing ⇒ user
contributes facts verifier could not decide on its own

Answering queries much easier than classifying error report

4 / 20

Our Goal

A new technique for semi-automating error report classification
when automated program verification fails

Program
Verifier

 Our
technique

 Query

 YES/NO

Allows verifier to interact with user by asking small, relevant
queries until report is classified as real bug or false positive

Queries capture only the information verifier is missing ⇒ user
contributes facts verifier could not decide on its own

Answering queries much easier than classifying error report

4 / 20

Our Goal

A new technique for semi-automating error report classification
when automated program verification fails

Program
Verifier

 Our
technique

 Query

 YES/NO

Allows verifier to interact with user by asking small, relevant
queries until report is classified as real bug or false positive

Queries capture only the information verifier is missing ⇒ user
contributes facts verifier could not decide on its own

Answering queries much easier than classifying error report

4 / 20

Our Goal

A new technique for semi-automating error report classification
when automated program verification fails

Program
Verifier

 Our
technique

 Query

 YES/NO

Allows verifier to interact with user by asking small, relevant
queries until report is classified as real bug or false positive

Queries capture only the information verifier is missing ⇒ user
contributes facts verifier could not decide on its own

Answering queries much easier than classifying error report
4 / 20

Key Ideas

Key Idea #1: Analysis makes explicit not only
facts it knows, but also facts it does not know

Sources of imprecision/incompleteness in static
analysis represented using abstraction variables

For example, if value of variable is unknown
after a loop, represent this unknown value using
abstraction variable

This representation allows analysis to be
“introspective” and reason about what facts it
could be missing

5 / 20

Key Ideas

Key Idea #1: Analysis makes explicit not only
facts it knows, but also facts it does not know

Sources of imprecision/incompleteness in static
analysis represented using abstraction variables

For example, if value of variable is unknown
after a loop, represent this unknown value using
abstraction variable

This representation allows analysis to be
“introspective” and reason about what facts it
could be missing

5 / 20

Key Ideas

Key Idea #1: Analysis makes explicit not only
facts it knows, but also facts it does not know

Sources of imprecision/incompleteness in static
analysis represented using abstraction variables

For example, if value of variable is unknown
after a loop, represent this unknown value using
abstraction variable

This representation allows analysis to be
“introspective” and reason about what facts it
could be missing

5 / 20

Key Ideas

Key Idea #1: Analysis makes explicit not only
facts it knows, but also facts it does not know

Sources of imprecision/incompleteness in static
analysis represented using abstraction variables

For example, if value of variable is unknown
after a loop, represent this unknown value using
abstraction variable

This representation allows analysis to be
“introspective” and reason about what facts it
could be missing

5 / 20

Key Ideas, cont.

Key Idea #2: Abductive inference

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

We use abductive inference to generate simple
explanations that either guarantee that program
is error-free or definitely buggy

These abductive explanations are presented as
queries to user

6 / 20

Key Ideas, cont.

Key Idea #2: Abductive inference

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

We use abductive inference to generate simple
explanations that either guarantee that program
is error-free or definitely buggy

These abductive explanations are presented as
queries to user

6 / 20

Key Ideas, cont.

Key Idea #2: Abductive inference

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

We use abductive inference to generate simple
explanations that either guarantee that program
is error-free or definitely buggy

These abductive explanations are presented as
queries to user

6 / 20

Key Ideas, cont.

Key Idea #2: Abductive inference

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

We use abductive inference to generate simple
explanations that either guarantee that program
is error-free or definitely buggy

These abductive explanations are presented as
queries to user

6 / 20

Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive
inference

Assertion

Invariants

 Proof
obligation
 query

7 / 20

Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive
inference

Assertion

Invariants

 Proof
obligation
 query

7 / 20

Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive
inference

Assertion

Invariants

 Proof
obligation
 query

7 / 20

Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive
inference

Assertion

Invariants

 Proof
obligation
 query

7 / 20

Proof Obligation via Abductive Inference

Input: invariants computed by verifier and
assertion to discharge

Technique computes formulas I and φ
describing invariant and assertion in terms
of abstraction variables

Use abduction to compute simple and
general explanation Γ s.t.:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Abductive explanation Γ is presented to
user as proof obligation query

If Γ is invariant, report is false alarm

Abductive
inference

Assertion

Invariants

 Proof
obligation
 query

7 / 20

Failure Witnesses

Proof obligation query used to show
report is false alarm

We generate another query, called failure
witness query, to show report is a real bug

To generate failure witness query, solve a
dual abductive inference problem:

∆ ∧ I |= ¬φ and SAT(∆ ∧ I)

If ∆ can hold in some program execution,
then report is real bug!

Abductive
inference

Assertion

Invariants

 Failure
 witness
 query

8 / 20

Failure Witnesses

Proof obligation query used to show
report is false alarm

We generate another query, called failure
witness query, to show report is a real bug

To generate failure witness query, solve a
dual abductive inference problem:

∆ ∧ I |= ¬φ and SAT(∆ ∧ I)

If ∆ can hold in some program execution,
then report is real bug!

Abductive
inference

Assertion

Invariants

 Failure
 witness
 query

8 / 20

Failure Witnesses

Proof obligation query used to show
report is false alarm

We generate another query, called failure
witness query, to show report is a real bug

To generate failure witness query, solve a
dual abductive inference problem:

∆ ∧ I |= ¬φ and SAT(∆ ∧ I)

If ∆ can hold in some program execution,
then report is real bug!

Abductive
inference

Assertion

Invariants

 Failure
 witness
 query

8 / 20

Failure Witnesses

Proof obligation query used to show
report is false alarm

We generate another query, called failure
witness query, to show report is a real bug

To generate failure witness query, solve a
dual abductive inference problem:

∆ ∧ I |= ¬φ and SAT(∆ ∧ I)

If ∆ can hold in some program execution,
then report is real bug!

Abductive
inference

Assertion

Invariants

 Failure
 witness
 query

8 / 20

Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

Query

Abductive
inference

Invariants Assertion

Previous
user
answers

 User's
answer

9 / 20

Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

 YES

Abductive
inference

Invariants Assertion

Previous
user
answers

Proof
obligation
query

9 / 20

Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

 YES

Abductive
inference

Invariants Assertion

Previous
user
answers

Failure
witness
query

9 / 20

Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

Query
NO or
DON'T
KNOW

Abductive
inference

Invariants Assertion

Previous
user
answers

9 / 20

Automated Error Diagnosis via Abductive Inference

Our technique helps user classify error
reports by generating simple queries

If query is a proof obligation and user
answers yes, report classified as false alarm

If query is a failure witness and user
answers yes, report classified as real bug

If user answers “no” or “I don’t know”,
technique computes new abductive
explanation distinct from previous ones

Interaction continues until report is
classified as real bug or false alarm

Query YES

Abductive
inference

Invariants Assertion

Previous
user
answers

9 / 20

Example

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx

10 / 20

Example

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx

10 / 20

Example

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx

10 / 20

Example

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx

10 / 20

Example

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Suppose a verification tool reports
potential error for this example

Want to classify report as false alarm
or real bug using our technique

First, perform symbolic value flow
analysis, representing each unknown
value as an abstraction variable α

Since precise values of i and j are
unknown after loop, represent their
values using αi and αj

Similarly, represent unknown value of
x as abstraction variable αx

10 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Perform symbolic value propagation to
represent z’s value in terms of α’s and
function inputs

If flag is zero, z = 1 + αi + αj

If flag is non-zero, z = αx + αi + αj

Thus, condition under which assertion
succeeds is:

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

11 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Perform symbolic value propagation to
represent z’s value in terms of α’s and
function inputs

If flag is zero, z = 1 + αi + αj

If flag is non-zero, z = αx + αi + αj

Thus, condition under which assertion
succeeds is:

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

11 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Perform symbolic value propagation to
represent z’s value in terms of α’s and
function inputs

If flag is zero, z = 1 + αi + αj

If flag is non-zero, z = αx + αi + αj

Thus, condition under which assertion
succeeds is:

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

11 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Perform symbolic value propagation to
represent z’s value in terms of α’s and
function inputs

If flag is zero, z = 1 + αi + αj

If flag is non-zero, z = αx + αi + αj

Thus, condition under which assertion
succeeds is:

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

11 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

12 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

12 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

12 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

12 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Now, we want to utilize invariants
inferred by verification tool

Suppose verifier inferred havoc returns
non-negative value: αx ≥ 0

And that i is greater than n after
loop: αi > n

Finally, since n is unsigned, n ≥ 0

Putting this all together, we know the
invariants:

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

12 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

To classify error report, we solve two
abductive inference problems.

First, find proof obligation Γ s.t:

Γ ∧ I |= φ

Solution computed by our technique is:

Γ = αj ≥ n

13 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

To classify error report, we solve two
abductive inference problems.

First, find proof obligation Γ s.t:

Γ ∧ I |= φ

Solution computed by our technique is:

Γ = αj ≥ n

13 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

To classify error report, we solve two
abductive inference problems.

First, find proof obligation Γ s.t:

Γ ∧ I |= φ

Solution computed by our technique is:

Γ = αj ≥ n

13 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

Next, solve another abductive inf.
problem to compute failure witness ∆:

∆ ∧ I |= ¬φ

Solution computed by our technique is:

∆ = ¬flag ∧ αi + αj < 0

14 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

φ =
(1 + αi + αj > 2 ∗ n ∧ ¬flag) ∨
(αx + αi + αj > 2 ∗ n ∧ flag)

I = αx ≥ 0 ∧ αi > 0 ∧ n ≥ 0

Next, solve another abductive inf.
problem to compute failure witness ∆:

∆ ∧ I |= ¬φ

Solution computed by our technique is:

∆ = ¬flag ∧ αi + αj < 0

14 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Next, we compare Γ and ∆ to decide
which one is more promising:

Γ = αj ≥ n ∆ = ¬flag ∧αi +αj < 0

Technique decides Γ more promising,
thus we query user if j >= n

In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
manually classify error report

15 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Query: Is j>=n invariant?

Next, we compare Γ and ∆ to decide
which one is more promising:

Γ = αj ≥ n ∆ = ¬flag ∧αi +αj < 0

Technique decides Γ more promising,
thus we query user if j >= n

In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
manually classify error report

15 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Query: Is j>=n invariant?

Next, we compare Γ and ∆ to decide
which one is more promising:

Γ = αj ≥ n ∆ = ¬flag ∧αi +αj < 0

Technique decides Γ more promising,
thus we query user if j >= n

In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
manually classify error report

15 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Query: Is j>=n invariant?

Next, we compare Γ and ∆ to decide
which one is more promising:

Γ = αj ≥ n ∆ = ¬flag ∧αi +αj < 0

Technique decides Γ more promising,
thus we query user if j >= n

In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
manually classify error report

15 / 20

Example, cont.

void foo(int flag,

 unsigned int n)

{
 int k = 1;

 int x = havoc();
 if(flag) k = x;

 int i=0, j=0;
 while(i<=n)

 {
 i++;

 j+=i;
 }

 int z = k+i+j;
 assert(z>2*n);
}

Query: Is j>=n invariant?

Next, we compare Γ and ∆ to decide
which one is more promising:

Γ = αj ≥ n ∆ = ¬flag ∧αi +αj < 0

Technique decides Γ more promising,
thus we query user if j >= n

In this case, easy to show j >= n is
invariant

Thus, we classify report as false alarm

Easier to answer this query than to
manually classify error report

15 / 20

Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E)

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations

16 / 20

Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E)

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations

16 / 20

Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E)

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations

16 / 20

Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E)

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations

16 / 20

Computing Abductive Explanations

Abduction is useful, but how do we compute
these explanations?

Given invariants I and desired outcome φ,
how to find explanation E s.t.:

I ∧ E |= φ ∧ SAT(I ∧ E)

Trivial solution is E = φ, but useless b/c
same as asking user to prove assertion!

Want solutions that are as simple and as
general as possible!

Abductive
inference

Assertion

Invariants

Query

Use minimum satisfying assignments and quantifier
elimination to compute simple and general explanations

16 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Experimental Evaluation

Performed user study to evaluate new technique

Hired 56 programmers through ODesk and
asked them to classify error reports

Each programmer asked to classify (randomly
selected) half of reports manually, and other half
using our technique

Manual classification: Given code and error
report, decide if bug, false alarm, or unknown

Our technique: Given code and series of queries,
asked to answer “Yes”, “No”, or “Don’t know”

Based on answers to queries, report classified
automatically

17 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

18 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

Assisted Classification

 7.3%
wrong

 89.6%
correct

18 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

Assisted Classification

 7.3%
wrong

 89.6%
correct

18 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

Assisted Classification

 7.3%
wrong

 89.6%
correct

18 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

Assisted Classification

 7.3%
wrong

 89.6%
correct

18 / 20

Results of User Study

With manual classification, programmers
classified 51.1% of reports incorrectly

With assisted classification, programmers
classified only 7.3% of reports incorrectly

Our technique dramatically improves
classification accuracy

Also dramatically reduces time needed to
classify report

Using manual classification, programmers
need 293 seconds on average

Using new technique, programmers take
55 seconds on average

Manual Classification

 wrong
 32.9%
correct

 16%
undecided

51.1%

Assisted Classification

 7.3%
wrong

 89.6%
correct

18 / 20

Summary

Program
Verifier

 Our
technique

 Query

 YES/NO

New technique to help programmers classify error reports as
real bugs or false alarms

Uses abductive inference to compute simple queries that
capture what analysis is missing

Interacts with user until report is classified as bug/false alarm

User study shows technique dramatically improves
classification speed and accuracy

19 / 20

Summary

Program
Verifier

 Our
technique

 Query

 YES/NO

New technique to help programmers classify error reports as
real bugs or false alarms

Uses abductive inference to compute simple queries that
capture what analysis is missing

Interacts with user until report is classified as bug/false alarm

User study shows technique dramatically improves
classification speed and accuracy

19 / 20

Summary

Program
Verifier

 Our
technique

 Query

 YES/NO

New technique to help programmers classify error reports as
real bugs or false alarms

Uses abductive inference to compute simple queries that
capture what analysis is missing

Interacts with user until report is classified as bug/false alarm

User study shows technique dramatically improves
classification speed and accuracy

19 / 20

Summary

Program
Verifier

 Our
technique

 Query

 YES/NO

New technique to help programmers classify error reports as
real bugs or false alarms

Uses abductive inference to compute simple queries that
capture what analysis is missing

Interacts with user until report is classified as bug/false alarm

User study shows technique dramatically improves
classification speed and accuracy

19 / 20

Related Work:

Ball, T., Naik, M., Rajamani, S.: From
Symptom to Cause: Localizing Errors in
Counterexample Traces. POPL 2003

Jose, M., Majumdar, R.: Cause Clue
Clauses: Error Localization using
Maximum Satisfiability. PLDI 2011

Groce, A.: Error Explanation with
Distance Metrics. TACAS 2004

Dillig, I., Dillig, T., McMillan, K.,
Aiken, A.: Minimum Satisfying
Assignments for SMT. CAV 2012.

20 / 20

