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Abstract

Many problems in program analysis, verification, and synthesis
require inferring specifications of unknown procedures. Motivated
by a broad range of applications, we formulate the problem of
maximal specification inference: Given a postcondition ¢ and a
program P calling a set of unknown procedures Fi, ..., F;,, what
are the most permissive specifications of procedures Fj that ensure
correctness of P? In other words, we are looking for the smallest
number of assumptions we need to make about the behaviours of
F;; in order to prove that P satisfies its postcondition.

To solve this problem, we present a novel approach that utilizes
a counterexample-guided inductive synthesis loop and reduces the
maximal specification inference problem to multi-abduction. We
formulate the novel notion of multi-abduction as a generalization
of classical logical abduction and present an algorithm for solving
multi-abduction problems. On the practical side, we evaluate our
specification inference technique on a range of benchmarks and
demonstrate its ability to synthesize specifications of kernel rou-
tines invoked by device drivers.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Specification techniques

Keywords verification; specification; synthesis

1. Introduction

In the world of program analysis, verification, and synthesis, many
problems require inferring specifications of unknown procedures.
Specifically, given a program P calling procedures F1, ..., Fy,, we
often want to answer the following question:

What is the weakest specification @; for each callee F; that
ensures correctness of program P?

In other words, what are the minimal assumptions that we can make
about the callees of P and still be able to prove P correct? Here,
we view specifications as logical relations over a procedure’s pa-
rameters and returns; therefore, weakest (maximal) relations imply
most permissive specifications. This question, which we refer to as
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the maximal specification inference problem, appears in many dif-
ferent guises. We now survey a broad spectrum of problems that
can be viewed through the lens of maximal specification inference:

e Verification of open programs: Many programs are written
against libraries whose source code is unavailable (e.g., pro-
prietary), too large and complex to be verified, or written in a
different programming language. To verify such programs, we
need to know specifications of these library methods.

In recent years, there has been a flurry of interest in automati-
cally inferring weakest specifications of library code [7, 12, 48,
54]. For instance, in the context of taint-flow analysis for An-
droid applications, Bastani et al. [12] study synthesizing taint-
flow specifications of Android library methods from their us-
age contexts. They advocate presenting these specifications to
a “human auditor for validation,” with the goal of avoiding the
prohibitively expensive analysis of the whole Android ecosys-
tem or the error-prone task of manually writing stubs.

Compositional interprocedural verification: Maximal specifi-
cation inference facilitates fop-down compositional verification
of programs. Starting from the main procedure, we can infer
weakest necessary specifications of callees, which can then be
verified recursively down the call graph in a modular fashion.

e Modular program synthesis: Maximal specification inference
can also enable modular program synthesis. For instance, given
an incomplete program sketch with holes (i.e., missing expres-
sions), we can model each hole as a call to an unknown pro-
cedure. Once we infer a maximal specification for each hole,
we can then use off-the-shelf code synthesis techniques [8, 34,
38, 51] to independently synthesize each unknown expression.
Furthermore, if the goal is to fill holes with constant param-
eters [51], maximal specification inference can logically and
succinctly characterize a large or even infinite solution space
of possible parameter combinations.

e Input-filter synthesis: Input-filter generation—a key problem
in security—involves synthesizing a procedure that rejects in-
puts that crash the program or violate certain correctness criteria
(see, e.g., [21, 26, 42]). We can cast this problem as maximal
specification inference by inserting an unknown procedure at
the beginning of the program that reads the input and accepts
it or rejects it. By synthesizing a maximal specification for the
unknown procedure, we are effectively synthesizing the most
permissive input filter—the one that accepts all good inputs and
rejects all bad ones.

e Infinite-state games and program repair: Infinite-state games
can be modeled as programs with unknown procedures repre-
senting possible player strategies (moves) [14, 15]. Maximal
specification inference allows us to determine whether there
exists a winning strategy for a player, and, if so, what that strat-
egy is. In addition, following the observations of Jobstmann et
al. [37], we can reduce program repair to a game-solving prob-
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lem, which can then be formulated as maximal specification
inference. For instance, Beyene et al. [14] and Jobstmann et
al. identify a set of “suspect statements” in a faulty program.
To find a replacement for such statements, they, essentially,
abstract them as unknown procedures and synthesize specifica-
tions of those procedures that ensure program correctness.

Motivated by such a diverse range of applications, we study the
maximal specification inference problem in a general logic-based
setting. Specifically, we propose a technique for automatically in-
ferring maximal specifications by reducing the problem to a novel
generalization of logical abduction. Given a program P containing
calls to procedures F1, ..., I}, we wish to infer a logical specifica-
tion ¢; for each F; such that the following conditions are satisfied:

e Safety: If each procedure F; satisfies its specification ¢;, then
program P is guaranteed to satisfy its desired safety property.

e Non-triviality: Our technique should not infer the trivial speci-
fication false for any procedure.

® Maximality: The specification ¢; inferred for each F; should
be a weakest such specification. That is, we cannot weaken any
i without either violating safety or making the specification
; for some other procedure F; stronger.

In our setting, the maximality criterion (Pareto optimality) is
very important because we would like to infer the weakest specifi-
cations that are needed for guaranteeing safety. Specifications that
are stronger than necessary can cause a verifier to miss real bugs
or a synthesizer to fail where it should not. For instance, synthesiz-
ing an overly restrictive specification of a library routine and then
reusing it to verify a client application might cause us to miss bugs.

The key ingredient of our specification inference algorithm is
a counterexample-guided inductive synthesis (CEGIS) loop with a
new logical inference technique called multi-abduction at its core
(Figure 1). Multi-abduction is a powerful generalization of stan-
dard abduction: Given a pair of formulas X, C' and an unknown
predicate R(x) (called an abducible), standard abduction infers an
interpretation ¢ of R such that ¢ A X [~ false and o A X = C.
Intuitively, standard abduction looks for an explanatory hypothesis
 that, together with the known facts X, is sufficient to imply the
conclusion C.

Multi-abduction generalizes standard abduction by simultane-
ously inferring multiple unknowns. Specifically, given a formula

(/n\ K Ri(xsj) /\X) = C,

multi-abduction computes a map from each unknown predicate R;
to a formula ; over variables v; such that

@@ /\i]- i[xij/vi] A X = false, and
(i1) /\i]- wilzij/vi] AX E C,

1 1+<+0

2 while (%)
3 if (p = 1)

4 1 (L)
5 if (p !=1)

6 1<+0

7 else

8 assert(l = 1)

Figure 2: Example program used to illustrate our technique

where ¢[x/v] is ¢ with all occurrences of v replaced by x. Ob-
serve that multi-abduction generalizes standard abduction in two
important ways:

(i) The input formula is allowed to contain multiple different un-
known predicates Ri, ..., R,, and

(ii) the same predicate R; can appear multiple times with different
arguments ®;1, ..., Tin,.

The problem of inferring unknown method specifications in a
bounded program fragment is naturally encoded as multi-abduction:
Each unknown specification corresponds to an unknown predicate
R;, and the same R; can appear multiple times with different argu-
ments at distinct call sites. Further, since we want to infer weakest
specifications, we are interested in maximal solutions to multi-
abduction problems.

As outlined in Figure 1, our approach is based on a CEGIS loop
that uses multi-abduction to synthesize specifications from a finite
set of bounded control-flow paths through a program P. Given a
set of candidate specifications, we then invoke a verifier to check if
the specifications ensure correctness of all of P’s execution paths.
If not, new counterexample paths are emitted by the verifier and
synthesis is restarted, taking the new program paths into account.

We implemented our approach in an LLVM-based program veri-
fier [6] and used it to synthesize maximal specifications of unknown
procedures in a variety of programs. Most interestingly, we show
how our approach can efficiently synthesize stubs for kernel rou-
tines and initialization code from Windows device drivers used in
the software verification competition (SV-COMP) [16].

This paper makes the following key contributions:

e We define the maximal specification inference problem and
present a counterexample-guided inductive synthesis algorithm
for solving it.

e We define the multi-abduction problem, a generalization of tra-
ditional logical abduction, and present an algorithm for finding
maximal solutions to multi-abduction problems.

e We show how the specification inference problem for a bounded
program fragment can be formulated as multi-abduction.

e We present an implementation of our proposed techniques and
demonstrate its applicability by synthesizing maximal specifi-
cations in a range of programs, including synthesizing stubs of
kernel routines invoked by Windows device drivers.

2. Illustrative Example

In this section, we illustrate our maximal specification inference
algorithm by applying it to a simple example.

Consider the program in Figure 2, which is a simplified version
of a small locks benchmark in the software verification competi-
tion (SV-COMP) [16]. Variable 1 takes values in {0, 1}; the proce-
dure lock, called at line 4, is unknown; the symbol * represents
non-deterministic choice; and the unassigned variable p holds an
arbitrary value. Our goal is to synthesize a maximal specification
of lock such that no program execution violates the assertion at
line 8. Since lock takes one input argument and returns one value,



we are looking for a specification lock(lin, low) that is a relation over
the argument and return of lock, denoted [, and .., respectively.

First iteration Our technique begins by setting lock(lin, low) tO
true, the weakest possible specification. It then invokes the verifier
to check if this specification is sufficient to prove the assertion.
In this case, true is too weak, and the verifier may return the
counterexample path 71 = 1,2, 3,4, 5, 8. This is a counterexample
because the specification true implies that Lock at line 3 may return
any value, including 0, which violates the assertion.

Now, our goal is to synthesize a specification of lock that
ensures that 71 is correct. To do so, we use 71 to construct the
following multi-abduction query (which, in this case, is just a
classical abduction query):

(ls =0Ap=1NAlock(ls,lena)) = lena = 1,

The left-hand side of the implication encodes the semantics of the
path 7, where [;; denotes the initial (start) value of 1, l.,s denotes
its value at the assertion, and the call to lock is encoded using
the abducible lock(ls, lena). The right-hand side of this implication
encodes the assertion (postcondition). Thus, this abduction query is
looking for an interpretation of the abducible lock that ensures the
validity of this implication, and therefore the correctness of path
with respect to the assertion. In this case, we compute the following
maximal solution for lock(lin,low) = lin = 0 = low = 1. This
formula specifies that lock must return 1 whenever its input is 0;
otherwise, lock can return an arbitrary value.

Second iteration In the second iteration, we invoke the verifier
again, this time checking whether l;, = 0 = l,, = 1 is sufficient
to prove correctness of the program. The verifier discovers that
this specification is still too weak. As a result, it might return
the counterexample 2 = 1,(2,3,4, 5, 8)2, where the superscript
indicates that we take the same path through the loop twice. This is
a counterexample because, in the second iteration of the loop, the
value of 1is 1 and our specification allows an arbitrary return value
for lock when the input is 1, thus violating the assertion.
We now create the following new multi-abduction problem:

ENCODE({71,m2}) = lena = 1,

Here, the left-hand side of the implication encodes executions of
both paths seen so far (i.e., m1 and m2), and the right-hand side is
the postcondition. Specifically, ENCODE ({71, m2}) corresponds to
the following formula:

ly=0Ap=1A lock(lﬂ, lfﬁ) A lOCk(lfn, lmd) Alena € {lfsz, lsnd}~

Observe that the left-hand side of this multi-abduction problem
has two occurrences of the unknown predicate lock over different
arguments, one for each iteration of the loop (fst and snd). A
solution to this multi-abduction problem is an interpretation of
the predicate lock that makes the implication valid. Therefore, by
finding a weakest solution to this multi-abduction problem, we find
a maximal specification for Lock that ensures correctness of the two
paths we have examined thus far. In this case, we get the solution
lock(Liny lowt) = low = 1.

Final iteration Finally, we invoke the verifier with the new spec-
ification l,,, = 1, which is sufficient to prove correctness of our
program. We thus conclude that a maximal specification for lock
is one that always returns the value 1, no matter what the input is.

Summary Our approach synthesizes maximal specifications for
loop-free program paths by solving multi-abduction problems. Fur-
thermore, even though each iteration of the algorithm considers a
finite number of control-flow paths, we can still guarantee the max-
imality and safety of the inferred specification for the whole pro-
gram. In the following sections, we formalize this process in detail,

present our solutions, and discuss the various challenges and intri-
cacies of developing multi-abduction solvers.

3. Maximal Specifications and Multi-Abduction

We now define the maximal specification inference problem and
introduce multi-abduction. Both in this section and the rest of the
paper, we assume that formulas belong to a first-order theory 7.

3.1 Maximal safe specifications

Programs A program P is a tuple (N, E,ne,ng, V, p), where
(N, E) is a directed graph with a special entry node n. and exit
node n,. The set V denotes all program variables, and p is a
first-order formula that serves as a postcondition for P, denoted
post(P). We assume that each edge e € FE is labelled with a
command e, which can be one of the following constructs:

e An assignment v <— exp, where v € V and exp is a program
expression over variables V. We assume that there is at most one
assignment to each variable (i.e., the program is in SSA form).!

e An assumption of the form assume(b), where b is a Boolean
expression over program variables V.

e A procedure call < F(y), where & and y are vectors of
variables in V' and F' is a procedure. We model side effects by
allowing procedures to return multiple values.

A procedure F'is unknown if its source code is not available; we
write unknowns(P) to denote unknown procedures called by P.
For the purposes of this paper, we will assume that all callees are
unknown, and our goal is to infer safe and permissive specifications
for each F' € unknowns(P). We say that a program P is closed if
it does not contain calls to unknown procedures; otherwise, it is
open. Given a closed program P with corresponding postcondition
p, we write P |= p if P satisfies its postcondition in all executions.
We also say that program P is safe whenever P = p.

Maximal safe specifications Given program P with unknown
procedures Fi,..., F,, we use the symbol A to denote a speci-
fication environment (or specification for short) mapping each pro-
cedure F; to a first-order formula ¢; over vectors of variables
o, (3 such that o denotes F;’s arguments and 3 denotes its out-
put. We write P[A] to denote the closed program with every proce-
dure call ¢ + F;(y) replaced by assume(p;[x/c, y/3]), where
A(F;) = ¢;. In other words, P[A] is like P but with every un-
known procedure F; behaving according to its specification A(F}).

DEFINITION 1. (Safe specification) Given a program P, with

post(P) = p, and a specification environment A, we say that
A is a safe specification for P if P[A] = p.

While safe specifications are sufficient for ensuring safety, they
may be stronger than necessary. Since we want to synthesize weak-
est safe specifications, we define a partial order on specification
environments. We use dom(A) and range(A) to denote the do-
main and range of A.

DEFINITION 2. (Partial order =) We write A = A’, and say that
A is weaker than A, if the following hold:

(i) dom(A) = dom(A),

(ii) VF € dom(A). A(F) < A'(F), and

(iiiy AF € dom(A). A(F) ¢& A'(F).

We define maximal safe specifications using this partial order:

!'For clarity of presentation, and wlog, we do not include SSA phi nodes in
the language, as they can be encoded with assumes and additional variables.



DEFINITION 3. (Maximal safe specification) Given program P
with post(P) = p and a specification environment A*, we say that
A* is a maximal safe specification for P if

(i) PIA’] = pand
(ii) for all A such that A >~ A*, we have P[A] B~ p.

In other words, A* is a maximal safe specification for P if we
cannot weaken any A*(F') while preserving the safety of P[A*].
Note that there may not be a unique maximal safe specification that
is higher than all other safe specifications in >; instead, there may
be a space of incomparable maximal safe specifications.

EXAMPLE 1. Consider the following program with postcondition
z>0A2z>10:

X < F()
y  G(x)
z4+—y+1

A maximal safe specification for this program is
AL[F(B) — 820, Gla,B) = (a>0= B> 9)].

A(F) specifies that F' should always return a positive value. A(G)
specifies that G should return a value > 9 whenever its argument
is positive; otherwise, it can return an arbitrary value.

3.2 Multi-abduction

Standard abduction We first review standard abduction, which
we henceforth refer to as simple abduction. Intuitively, simple
abduction asks the question, “What facts do we need to know, in
addition to our already-known facts X, in order to reach conclusion
C'?” The following definition formalizes this intuition.

DEFINITION 4. (Simple abduction) Given a formula R(x) ANX =
C, simple abduction finds a formula @ over variables x such that

(i) o A X [~ false, and
(ii) p AX = C.

In this definition, we refer to R(x) as an abducible. A solution
 to a simple abduction problem is an interpretation of R(x) that
strengthens the left-hand side of the implication in order to make
the implication logically valid. A maximal solution to the simple
abduction problem is one that is logically weakest. Every solvable
simple abduction problem has a unique maximal solution up to
logical equivalence.

Given a simple abduction problem R(xz) A X = C, we will
assume a procedure ABDUCE(X, C, x) that computes a maximal
solution to the corresponding simple abduction problem. For first-
order theories that admit quantifier elimination, one possible im-
plementation of ABDUCE is simply QE(VZ. X = (), where QE
represents a quantifier elimination procedure and T denotes all free
variables in X = C' except  [30].

Multi-abduction While simple abduction allows the inference of
a single unknown predicate (abducible), it is often necessary to con-
sider multiple abducibles over different vocabularies. For example,
in the context of specification inference, different unknown predi-
cates correspond to different procedures, and different occurrences
of the same unknown predicate correspond to different calls to the
same procedure. Multi-abduction generalizes simple abduction by
allowing multiple unknowns as well as different occurrences of the
same unknown:

DEFINITION 5. (Multi-abduction) Given a formula

(/n\ K RZ(LIE”) /\X) = C,

i=1j=1

function MAXSAFESPEC(P)

1

2 A < {F; — true | F; € unknowns(P)}
3 M+ ;10

4 while true do N

5 0 < VERIFY(P[A],II)

6 if 6 = () then return A

7 I+ 11ué

8 1) < ENCODE(II)

9 P < FLATTEN(v))

10 A’ + MULTIABDUCE(®, post(P))

11 if A’ = none then II « TTU 6
12 else A +— A/

Algorithm 1: Synthesizing maximal safe specifications

multi-abduction finds a mapping A from each R; to a formula ¢;
over variables x; such that

(i) /\ij ilxij/xi] A X W~ false, and
(ii) N\ij pilmij /@] AX |= C.

In this definition, we call each R;(«;;) an abducible and refer to
A as a solution to the multi-abduction problem. (For simplicity, we
overload notation and use A to denote multi-abduction solutions
as well as safe specifications.) A maximal solution to the multi-
abduction problem is one where no ; can be weakened. In other
words, A is a maximal solution to a multi-abduction problem M
if, for any ) that is logically weaker than A(R;), the mapping
A[R; — ;] is not a solution to M. Unlike simple abduction
problems, multi-abduction problems do not have unique maximal
solutions. This is illustrated by the following example:

EXAMPLE 2. Consider the multi-abduction problem
Ri(z) A Ra(y) = 2 +y >1
and two of its solutions

Ay [R1»—>w>O,R2|—>y>1}
AQ: [R1'—>.%'21,R2F—)y2 0]

In this case, both A1 and Az are maximal and incomparable. [

A special kind of multi-abduction problem is one where all ab-
ducibles have unique predicates—that is, each unknown R; appears
exactly once in the formula. Such problems, which we call linear
multi-abduction problems, have the form A, Ri(z:) A X = C.
In contrast, we refer to the general case, where the same predicate
can appear multiple times with different arguments, as non-linear
multi-abduction problems.

4. Synthesizing Maximal Safe Specifications

In this section, we present our counterexample-guided inductive
synthesis algorithm for learning maximal safe specifications.

High-level description The high-level skeleton of our technique
is shown in Algorithm 1; it takes a program P and returns a max-
imal safe specification. The algorithm initially assumes that each
F € unknowns(P) has specification ¢rue (line 2). While such a
specification A is very permissive, it is unlikely to be safe. Hence,
the algorithm goes through a refinement loop (lines 4-12) where
each specification in A is iteratively modified until P[A] is proven
safe.

Going into more detail, line 5 of Algorithm 1 attempts to ver-
ify program P (with respect to its postcondition post(P)) using
current specifications A. For this purpose, we assume a procedure
VERIFY that is capable of generating one or more counterexamples
(as program paths) if the verification task fails. VERIFY also takes
a set of paths II and ensures that the returned counterexamples are



not in I, i.e., # N 11 = 0. Since many existing verification algo-
rithms are capable of generating counterexamples [6, 10, 17, 44],
we do not describe the VERIFY procedure in detail.

Now, suppose the verification task at line 5 fails with a set 6
of counterexamples that falsify post(P). In this case, we add 6
to the set II of all counterexamples encountered so far and try to
infer a specification environment A that is sufficient to rule out all
counterexamples in I1.

To infer such a specification A, one possibility is to solve a set
of simultaneous multi-abduction problems. That is, for each coun-
terexample path m € II, we generate a multi-abduction problem
where the abducibles correspond to procedure calls in 7, and we
then solve all of these multi-abduction problems simultaneously.
Unfortunately, there are two main problems with this approach:
First, it requires us to devise a technique for solving not just one
multi-abduction problem, but a set of them simultaneously. Sec-
ond, if we represent the set of counterexamples II symbolically as
an SMT formula ), generating one multi-abduction problem per
counterexample would require us to convert 1) to DNF, a possibly
exponential operation.

Encoding counterexamples In order to side-step explicit coun-
terexample enumeration and simultaneous multi-abduction, we
present a technique that encodes a set of counterexamples into
a single multi-abduction problem. Specifically, we think of II as
a loop-free program Pr; and use a procedure called ENCODE to
represent all executions of Pr as a formula ¢ (a standard, BMC-
like encoding of loop-free programs [5, 11, 24]). Given loop-free
program Pr; with nodes N and edges F, ENCODE generates the
following formula:

Cn, N\ /\ (cui \/

ueEN e=(u,v)EE

(cv A [[ee]]))

Here, c,, is an auxiliary Boolean variable indicating that control is
at program location u. The formula ¢,,, indicates that the program
begins execution at the entry node n.. Now, if we reach node u, we
must also reach one of its successors v and execute the command
e associated with edge e = (u, v). Hence, the formula ¢, A [e]
denotes the transition from u to v, where [e¢°] is defined as follows:

[xr+e] = (z=¢€) [assume(b)] = b

[z « Fi(y)] = Ri(z,y)

Our encoding of assignments assumes that the program has been
converted to SSA form, as we do not explicitly rename variables.
Also, since we assume that all callees F; are unknown, we intro-
duce a predicate R; that represents the unknown specification of F;.

Going back to Algorithm 1, let ¥ be a formula encoding all
counterexamples II encountered so far. To ensure that each = € II
is ruled out in the next iteration, we must find an interpretation of
all predicates R; under which the formula ¢ = post(P) is logi-
cally valid. Observe that this is almost a multi-abduction problem,
but not quite, as the abducibles R; can appear under disjunctions
in ¢, whereas multi-abduction requires formula i to be of the
form A\, Ri(2i;) A X (i.e., all abducibles appear at the outermost
conjunction). Fortunately, given a formula ¢ where all unknowns
appear positively (i.e., under an even number of negations), we can
always transform 1 to the syntactic form A, ; Ri(@i;) A X using a
procedure we call flattening.

Multi-abduction problem flattening Given an arbitrary formula
o where unknown predicates appear only positively, the procedure
FLATTEN, given in Algorithm 2, shows how to convert ¢ to a multi-
abduction problem. Specifically, procedure FLATTEN takes as input
a formula ¢, where all abducibles appear only positively in ¢, and
returns a formula of the form A\, ; R;(2i;) AX, where all abducibles
have been pulled out.

function FLATTEN(yp)

1

2 ©* < ;1 < true

3 for all R(x) € abds(¢*) do

4 x; + fresh(x)

5 o o l(@ = @) /R(x)]
6 Y < A R(x;)

7 return ¢ A p*

Algorithm 2: Extracting abducibles to the outer level

The main idea behind FLATTEN is to replace every abducible
R(x) in ¢ with the formula @ = x; where @; is a fresh set
of variables. After this transformation has been applied to ¢ for
every R;(x;;), we obtain a formula ¢* that does not contain any
unknown predicates (line 5). To obtain the final flattened formula,
we then generate

o'n N

R(x)€abd(p)

R(ml)7

where x; is the fresh set of variables associated with abducible
R(x) and abd(¢) is the set of all abducibles appearing in .

EXAMPLE 3. Consider the formula ¢ : G(a,b)Va = 3VG(c,d).
Applying FLATTEN to @ yields the formula: 1) N\ ©*, where

Y G(z1,x2) A G(x3,T4)
¢*: (xl:a/\xgzb)\/a:?’V(xg:C/\ﬂM:d) O

The following theorem states the correctness of FLATTEN by
showing that it preserves non-trivial, maximal, safe solutions,
where a non-trivial solution does not set any abducible to false.

THEOREM 1 (Correctness of FLATTEN). Let ¢ be a formula con-
taining abducibles appearing only positively. Let C be an abducible-
free formula. Then,

GlA] £ O iff FLATTEN(9)[A] | C,

where A is a non-trivial assignment of abducibles to formulas.

Correctness Going back to Algorithm 1, the formula ® ob-
tained at line 9 encodes all counterexamples II in a form where
all unknowns have been pulled out and has the syntactic form
i, Ri(@ij) AX. Since & = post(P) now corresponds to a multi-
abduction problem, we can compute a maximal solution for the
unknown predicates of ® using the algorithm described in Sec-
tion 5.

Now, if the call to MULTIABDUCE at line 10 returns a solution,
we obtain a new specification environment A and continue our
refinement loop. However, if the multi-abduction problem does not
have a solution (i.e., A’ = none at line 11), this means that the
multi-abduction problem only has solutions that make every path
in II infeasible. Hence, we add the most recent counterexamples 0
to set IT; this just ensures that VERIFY does not return a path in ITin
the next iteration. II is maintained simply to ensure that we do not
synthesize a specification that makes all program paths infeasible.

The following theorem states correctness of MAXSAFESPEC.
Given the undecidability of the problem, it is not guaranteed to ter-
minate in general. However, for programs with variables over finite
domains (e.g., Boolean programs), it will eventually terminate.

THEOREM 2 (Correctness of MAXSAFESPEC). [fMAXSAFESPEC
terminates on program P, the computed specification environment
A is a safe, maximal, non-trivial specification for P.

5. Multi-abduction Algorithm

In this section, we present an algorithm for computing maximal
solutions to multi-abduction problems.



| function MULTIABDUCELINEAR(X, C, A)
2 1 < ABDUCE(X, C, vars(A))
3 if ©» = none then return none

return CARTDECOMP(X, 1, A)

o~

5 function CARTDECOMP(X, 1, A)

6 A <+ INITSOLN(X, 9, A)

7 for all R;(xz;) € Ado

8 A(R;) < ABDUCE(A;; A(R;), ¥, i)

9 return A

10 function INITSOLN(X, v, A)

11 M <« model(X A )

12 for all R;(x;) € Ado

13 A(Rz) < (wl = M(wz))
14 return A

Algorithm 3: Solving linear multi-abduction problems

5.1 Solving linear multi-abduction problems

Before we present our multi-abduction algorithm in its full gener-
ality, we will first present an algorithm for solving linear multi-
abduction problems. Recall from Section 3 that a linear multi-
abduction problem is of the form A, R;(x:) A X = C (i.e., each
unknown appears only once in the formula). While the full al-
gorithm is a natural generalization of this one, the algorithm we
present in this section is useful for gaining intuition.

Algorithm 3 summarizes our approach for solving linear multi-
abduction problems. The procedure MULTTABDUCELINEAR takes
as input formulas X and C, which correspond to the unknown-
free formulas on the left- and right-hand sides of the implication
in Definition 5, respectively. MULTIABDUCELINEAR also takes
as input a set A of abducibles of the form R;(x;) and returns a
maximal solution A to the problem. We use vars(.A) to denote the
set of all arguments of all abducibles in .A. The high-level structure
of our multi-abduction algorithm consists of two steps:

1. Simple abduction: First, we solve the simple abduction prob-
lem defined by R*(x) A X = C, where x denotes all variables
appearing in the abducibles. In other words, we combine all ab-
ducibles into one abducible R* and find a monolithic formula
that, informally speaking, contains all solutions of the multi-
abduction problem. We assume that the ABDUCE procedure re-
turns none if the simple abduction problem has no solution.

2. Cartesian decomposition: Given a solution ¢ to the simple
abduction problem from step (1), we decompose ¥ into a set
of formulas ¢1, . . ., ¢, such that

(i) each ; is only over x;,
(i) N\; pi = 9, and

(iii) the set of formulas ¢1, ..., @, is as weak as possible.

We refer to the decomposition of formula ¢/ into such a set
©1,...,%n as Cartesian decomposition—intuitively, we are
decomposing ¥ into a Cartesian product of the formulas ;.

Since we already know how to solve simple abduction problems
(Section 3.2), the key part of our multi-abduction algorithm is the
Cartesian decomposition function (CARTDECOMP) of Algorithm 3
(line 5). This procedure first finds an initial (non-maximal) solution
A : [R; — ;] (line 6) and then iteratively weakens this solution
(lines 7-8) until we obtain a maximal one.

The task of finding an initial solution A is performed by the
INITSOLN procedure. Specifically, INITSOLN finds an interpreta-
tion of each R; of the form x; = m;, where m; is a vector of
constants. Hence, our initial solution corresponds to a concrete as-
signment or point. To obtain such a solution, we simply get a model

M of the formula X A ® and assign each R; to @; = M(x;),
where M (x;) is the vector of assignments to variables @; in the
model M. Since this interpretation is consistent with X, and since
N, A(R;) = 1, we know that A is a solution to the multi-
abduction problem, albeit not necessarily a maximal one.

Now, the loop in lines 7-8 of the CARTDECOMP function itera-
tively weakens the solution returned by INITSOLN, with the goal of
making it maximal. To weaken the solution for each R;, we fix the
solution for all the other I?;’s and weaken I?; as much as possible
by solving the following simple abduction problem:

(Rz(ah) A /\ A(Rj)) = ).
i#]
In other words, we use the existing solution given by A for all other
R;’s and infer the weakest R; that still implies . This strategy
ensures that A remains a valid solution to our multi-abduction
problem in every iteration.

EXAMPLE 4. Consider the following multi-abduction problem:
Ri(z) AR2(y) Az 20= (z+y>=1Vz>=0).

The algorithm starts by solving the following simple abduction
problem:

R (z,y) Az >20=(z+y>1Vz2>0).

This problem has maximal solution R* — (z > 0=z +y > 1).
Next, using INITSOLN, we get a model of this formula that is
consistent with x > 0, say x = 0 and y = 1. Hence, the initial
solution is R1 — x = 0, R2 — y = 1. Now, we fix Rotoy = 1
and try to weaken Ry by solving the simple abduction problem:

(Rix)ANy=1Az>20)=>x+y=>1.

The answer to this problem is R1 — true; hence, our current
solution becomes R1 +— true, Ro — y = 1. Now, we try to
weaken Ry by fixing R1 and solving the simple abduction problem:

(true NRo(y) Nz 20) =z +y> 1.
Since ABDUCE yields y > 1, the final solution is
Ri — true, Ro — y > 1.

The following theorem states soundness and completeness of
our multi-abduction procedure.

THEOREM 3 (Correctness of MULTIABDUCELINEAR). [fthe multi-
abduction problem is solvable, Algorithm 3 terminates with a max-
imal solution; otherwise, it returns none.

5.2 Solving non-linear multi-abduction problems

We now consider our algorithm for solving non-linear multi-
abduction problems (see Algorithm 4). The general structure of this
algorithm is similar to Algorithm 3 in that we first solve a simple
abduction problem and then apply Cartesian decomposition. How-
ever, since we must assign the same interpretation to two different
abducibles R;(x;;) and R;(xix), the CARTDECOMP function of
Algorithm 4 is somewhat more involved.

Like in the linear case, the main procedure MULTIABDUCE
takes as input formulas X and C' and a set of abducibles A of the
form R;(x;;)—i.e., A potentially contains several occurrences of
the same unknown R;. We use preds(.A) to denote the set of unique
predicates Ry, ..., Ry, appearing in A.

Cartesian decomposition As in Algorithm 3, the CARTDECOMP
procedure first computes an initial non-maximal solution A for
each abducible R; (line 6) and then iteratively weakens A to obtain
a maximal solution (loop at line 7). The difference here is in
the way CARTDECOMP treats repeated occurrences of the same
unknown. The weakening loop at line 7 works in two steps:



1. Inline 8, we group all occurrences of each R; as one monolithic
abducible R} over the variables @;1, . . . , ®in,, and computes a
maximal solution for R}. This is done using the simple abduc-
tion query:

(B @i, @in) A N\ N\ AR e /25)) = 0.
k#i j
The computed solution ¢); at line 8 is the weakest formula over
variables @;1, . . ., Tin, that makes the above implication valid.

2. At this point, we need to decompose v; into n; formulas, one
for each occurrence of R;. These formulas also have to be
equivalent, as per definition of the multi-abduction problem.
More formally, we would like to find a weakest formula ¢; over
the fresh vector of variables @; such that: A\ i[zi; /x:] =
1;. We call this process isomorphic decomposition (line 9), as
it decomposes the formula ); into a conjunction of formulas
@il@i; /x;] that are equivalent modulo variable renaming.

Initial solution Since the main difference of Algorithm 4 from
MULTIABDUCELINEAR lies in isomorphic decomposition and ini-
tial solution inference, we now turn our attention to lines 11-27
of the algorithm. Let us first consider the INITSOLN procedure for
finding an initial non-maximal interpretation for each unknown R;.
First of all, if the multi-abduction problem is to have a solution,
then there must be some interpretation of R; of the form \/j x; =
m;;, where each m;; is a vector of constants. Note that we do not
require these 1m;;’s to be distinct; hence, even if the only interpre-
tation of R; is a single point, we can still find such a solution.

Now, to find a solution of this form, we need to find values of
m,;; under which the formula

(/\\/m” = mzk) =
ij k

is valid. Specifically, we let m;; be fresh symbolic constants and
ask for a model M of the formula shown in line 13, where A(R;)
denotes all abducibles containing unknown R; and vars(v)) is the
set of free variables in ). Then, we obtain an initial solution for
A(R;) as \/; & = M(m;). The intuition here is as follows: In
the linear case, INITSOLN initializes every abducible R; with an
assignment &; = m,;. In the non-linear case, we do the same, but
we need to make sure that if we initialize one occurrence of R;
with some assignment A, then every other occurrence should also
have that assignment. This is captured by the formula in line 12.

Isomorphic decomposition Let us now consider the ISODECOMP
procedure in line 17. Given a formula 1) and a set of abducibles
R = {Ri(xi1),. .., Ri(xin,;)}, recall that the goal of isomorphic
decomposition is to find a weakest formula ¢ such that

/\@[mij/wi] =1 M

J
is valid. To find such a formula ¢, ISODECOMP first initializes ¢ to
the current solution of R; given by A. Note that, by construction
of the initial solution and the maximality guarantee of ABDUCE,
A(R;) always satisfies Formula 1. Now, starting from this initial
solution at line 18, ISODECOMP iteratively weakens ¢ until it can
no longer be weakened (lines 19-27).

In each iteration of the while loop, we weaken our current
solution ¢ by finding a set © of assignments &; = m;; such that
(i) ©; = my; currently does not satisfy ¢, and (if) adding © to
the satisfying assignments of ¢ does not violate Formula 1. If such
an assignment does not exist, this means ¢ is already the weakest
solution that makes Formula 1 valid; hence, we return ¢ (line 22).
Otherwise, we weaken our current solution ¢ by adding models ©
(loop at line 25).

| function MULTIABDUCE(X, C, A)
2 1 < ABDUCE(X, C, vars(A))
3 if 1) = none then return none
4 return CARTDECOMP(X, v, .A)

5 function CARTDECOMP(X, 7, A)
6 A <+ INITSOLN(X, %, A)
7 for all R; € preds(A) do

8 RS ABDUCE(}@QV AN AR xr; /i), ¥, @)
Qg

9 A(R;) + 1SODECOMP(%);, A(R;), A)

10 return A

I function INITSOLN(X, %, A)

[A(R:)|
12 Yar < Vvars(1). /\ \/ T = mlk> =
Ri(z;j)€A k=1

13 M «+ model(X[mij/:cij} A ’L/J]u)

14 for all R; € preds(A) do

15 A(Rl)%\/]wZZM(m”)

16 return A

17 function ISODECOMP(¢), R, A)
18 @ < A(preds(R))
19 while true do

IR
20 s <V vars(i). ( /\ \/ xij = mzk) =

R(zi;)€R k=1

IR

21 M < model /\ —p[my;/xs] A TZ’M)
j=1

if M = () then return ¢

<+ oV V;m = M(my;)

@j < plx;; /5] for each j

for all R(x;;) € R do

¢  ABDUCE(\ s, Pk, ¥, Tij)

@ N\jejlei/oig]

D NN
WA W

[\*)
(@)}

(39
-

Algorithm 4: Solving non-linear multi-abduction problems

Lines 24-27 of the algorithm are heuristics to accelerate con-
vergence. In particular, since the ISODECOMP algorithm (as de-
scribed so far) adds a finite, and typically small, set of models in
each iteration, we try to further weaken ¢ using simple abduc-
tion. Specifically, at line 26, we ask, “How much can we weaken
R;(xs;) while fixing the other R;(x;1)’s and maintaining the va-
lidity of Formula 1?7” Hence, the formula ¢; obtained at line 27 has
the property that ¢ = ¢;[x;/x;;]. Finally, since all abducibles
R;(x;;) must have the same interpretation modulo renaming, we
obtain a new solution ¢ as /\; ¢;[x:/x4;] (line 27). Note that the
formula ¢ at line 27 is at least as weak as the version of ¢ at line 23,
although it may not be strictly weaker.

EXAMPLE 5. Consider the multi-abduction problem
Rz)ANRy) = x4y >2

in the first-order theory of linear integer arithmetic (L1A). The
algorithm calls CARTDECOMP on the formula © + y > 2, and,
regardless of what INITSOLN returns, it calls ISODECOMP with
Y = x+y > 2 and abducibles R = {R(x),R(y)}. Now,
assuming INITSOLN sets R(a) = o = 2V a = 3, we weaken the
solution ¢ by computing a new model: Suppose that o at line 23
is now assigned to « = 2V o = 3V a = 4. In the loop at
line 25, we first use simple abduction to weaken R(x), which yields
x > 0. In the next iteration, we weaken R(y) to y > 2; hence



the new @ becomes o > 2 at line 27. In the next iteration of the
while loop, we ask for a new model of x and y and obtain x = 1,
y = 1. Hence, the new ¢ at line 23 becomes o > 2V a = 1.
When we use simple abduction to weaken R(x) in line 26, we now
obtain R(x) = x > 1. Similarly, when we weaken R(y) using
R(z) =« > 1, we obtainy > 1 for R(y). Hence, the final solution
isRla)=a>1 O

Correctness and termination  The following theorem states sound-
ness of the MULTIABDUCE algorithm.

THEOREM 4 (Correctness of MULTIABDUCE). I[fMULTIABDUCE
returns solution A, then A is a maximal solution; if it returns none,
then there is no solution to the multi-abduction problem.

While the MULTIABDUCE procedure of Algorithm 4 always ter-
minates for logical theories with finite ascending chains of implica-
tions (e.g., propositional logic), it does not have termination guar-
antees otherwise. This is expected because multi-abduction prob-
lems in some theories are not guaranteed to have maximal solutions
that are finitely expressible in that theory. For example, consider
the multi-abduction problem R(z) A R(y) = y # = + 1 in lin-
ear real arithmetic. A maximal solution for R(c) is \/, o, (2k <
a < 2k + 1), which is not finitely expressible in this theory and re-
quires integral constraints. We formalize lack of maximal solutions
for non-linear multi-abduction in the following theorem.

THEOREM 5 (Maximality in FOL theories). There are first-order
theories for which there exists non-linear multi-abduction prob-
lems that have no maximal solutions.

6. Implementation and Extensions
6.1 Implementation

We implemented a prototype of our maximal specification synthe-
sis algorithm (MAXSAFESPEC) and its multi-abduction core as an
extension of UFO [6], an open-source, LLVM-based [2] verification
framework for C code. We extended UFO’s front end to enable pro-
cedure calls with multiple returns, just as in our program model
from Section 3. This model allows us to handle procedures that can
modify global state.

To compute inductive invariants, UFO unrolls a program’s CFG
into a DAG and uses DAG interpolants [4] to hypothesize an induc-
tive invariant in case all paths in the unrolling are safe. Our im-
plementation utilizes the DAG-shaped counterexamples emitted by
UFO in order to drive the specification synthesis loop. Of course,
we could instrument UFO to emit a single counterexample path at
a time—instead of a DAG of counterexamples. However, we found
that this process does not scale at all as soon as we go beyond very
simple programs, due to the large number of paths that need to be
examined in order to arrive at a maximal safe specification.

Our multi-abduction algorithm implementation uses the Z3 SMT
solver [28] for satisfiability checking and quantifier elimination.
Programs are encoded in linear integer arithmetic (QFLIA).

6.2 Optimizations

To produce an efficient implementation of our specification synthe-
sis algorithm, we identified a number of key optimizations.

Aggressive formula preprocessing Unsurprisingly, the most ex-
pensive operation in our procedure is the universal quantifier elim-
ination step needed for simple abduction. In our implementation
context, we have to apply quantifier elimination to large formu-
las over linear integer arithmetic (also known as Presburger arith-
metic). It is well known that the worst case space/time bound
for this problem is super exponential. In addition to this theoreti-
cal intractability, quantifier elimination has not received the same

attention—in terms of algorithmic and engineering advances—as
did satisfiability. To make matters even worse, we are dealing with
large formulas encoding CFG unrollings, whereas typical uses of
quantifier elimination are restricted to relatively small formulas
(e.g., encoding sets of states in some numerical abstract domain).

In our initial attempts, we implemented a simple abduction pro-
cedure that directly passes the formula to Z3’s quantifier elimina-
tion procedure [19]—a combination of Cooper’s algorithm [25] and
the Omega test [46]. This turned out to be very impractical. As
such, we devised a two-step preprocessing phase that (i) aggres-
sively simplifies the formula by identifying and removing redun-
dant subformulas and (i7) attempts to eliminate easy variables by
examining the formula syntactically. After performing these two
steps, we fall back on Z3 to eliminate the remaining variables from
the simplified formula.

First, to simplify a formula ¢ into an equivalent formula @5, we
exploit UNSAT cores. Specifically, we ask the SMT solver, “Which
literals in @ can we replace with true without weakening the
formula?” We encode this question as follows: First, we create a
formula ¢’ that is a negation normal form (NNF) version of ¢ with
every literal [; replaced by a; = [;, where a; is a fresh Boolean
assumption variable associated with literal /;. Note that if we set all
a; variables in ¢’ to true, we get a formula equivalent to ¢. Now,
we ask Z3 whether the formula

o' A=A N as
i

is unsatisfiable. This formula is unsatisfiable iff ¢ = ¢ is valid,
which is obviously the case. As a result, we can extract an UNSAT
core over the assumption variables {a; }; the UNSAT core indicates
which literals in ¢ can be replaced by true without changing its
meaning. As Z3 is not guaranteed to return a minimal UNSAT core,
we invoke it multiple times to get rid of as many literals as possible.

Second, after simplification, we examine the formula syntacti-
cally to eliminate as many variables as possible before passing the
formula on to Z3. For instance, consider the formula

Ve.x=y+ 2V g,

where x does not appear in . In this case, we know that the literal
x = y + z can be replaced by false, thus eliminating the quantified
variable x. We found that this simple heuristic eliminates a substan-
tial number of variables, simplifying quantifier elimination for Z3.

Aggressive result postprocessing In addition to preprocessing the
input to the quantifier elimination procedure, we also simplify the
output of quantifier elimination. Given the complexity of quantifier
elimination in LIA, the resulting formulas can be quite large and, in
our experience, full of redundant subformulas.

Since our goal is to compute procedure specifications, we would
like to produce simple specifications that are easy to examine by a
human and/or efficient for reuse in verification. To achieve that, we
applied the aforementioned UNSAT core simplification technique to
get rid of redundant literals. For postprocessing, we go even further
with simplification: we traverse the formula and attempt to remove
redundant subformulas using local SMT checks.

Finding initial solutions The key component of our multi-
abduction procedure is Cartesian decomposition. The maximal
solution computed by Cartesian decomposition is determined by
the initial solution (computed by INITSOLN). To compute higher
quality specifications, we attempt to compute initial solutions that
maximize the number of feasible paths. This ensures that com-
puted specifications are not only maximal, but also permit as many
program paths as possible. To do this, we implemented a greedy
MAXSMT procedure that finds a model that maximizes the number
of satisfiable disjuncts (program paths) in the formula X in Algo-
rithms 3 and 4.



Termination and non-linear multi-abduction Recall that in the
presence of repeated occurrences of the same abducible (non-linear
case), MULTIABDUCE may not terminate. For our set of bench-
marks, the heuristic abduction loop, line 26 of Algorithm 4, always
forced our algorithm to find a maximal solution. That is, we did not
encounter non-terminating multi-abduction problems in practice.

7. Evaluation

Our evaluation is designed to assess (i) the efficiency and perfor-
mance of our multi-abduction procedure and (i) the quality of the
synthesized specifications. For these purposes, we performed the
following two sets of experiments:

E1 Our first experiment is primarily designed to evaluate and study
the performance of our multi-abduction procedure. We apply
the multi-abduction procedure to problems generated by (i)
a parameterized set of microbenchmarks of growing size and
(ii) a set of standard verification benchmarks that we use in a
program repair scenario.

E2 Our second experiment evaluates the performance of our algo-
rithm and the quality of synthesized specifications. For this, we
used a collection of Windows device drivers from the software
verification competition, SV-COMP [16]. For these programs,
we eliminated kernel routine and initialization stubs, and syn-
thesized maximal specifications that maintain correctness of the
drivers. Stubs are typically manually written to abstract OS rou-
tines and avoid analysis of the whole OS kernel in the process
of analyzing a single driver. Our evaluation demonstrates the
potential of our approach at automatically synthesizing specifi-
cations of kernel routines from their usage context. One poten-
tial scenario would be that human auditors can then certify such
specifications for reuse in verification of other drivers.

To the best of our knowledge, no existing technique can syn-
thesize maximal safe specifications for the kinds of programs we
address here. For our benchmarks, synthesizing maximal specifi-
cations requires multi-abduction and cannot be performed using
simple abduction alone. Specifically, our benchmarks (i) call the
same procedure multiple times and/or (ii) call different procedures.
Section 8 provides a detailed comparison with related works.

7.1 E1l: Evaluating multi-abduction

We now discuss our evaluation of multi-abduction. We first present
our results on parameterized microbenchmarks and then on the
locks benchmarks from SV-COMP.

7.1.1 Parameterized microbenchmarks

Benchmarks description 'We created four microbenchmarks that
are parameterized by the number of calls to unknown procedures.
All four benchmarks involve linear arithmetic operations and ex-
hibit different scenarios for our tool. We evaluated our implementa-
tion on programs of increasing size. Our goal with this set of bench-
marks is to stress our multi-abduction technique and experiment
with how far it can go by increasing input sizes. We first describe
our microbenchmarks and the synthesized specifications.

Consider the accumulator benchmark in the top part of Fig-
ure 3. In every iteration of the loop, the unknown procedure fun
returns the values of x and y, which are then added to z. This bench-
mark is parameterized by the number of times, n, lines [; and [ are
repeated within the loop. The loop executes arbitrarily many times
(as denoted by the condition *). Our goal is to find a specification
for fun that ensures that z > 0 after the loop exit. For every instan-
tiation of this benchmark, our tool computes the maximal specifi-
cation 71 + r2 > 0, where 71 and 72 denote the first and second
return values of fun.

Unlike the accumulator benchmark, sum and sum-arg require
synthesizing specifications of increasing size as we increase the
parameter n. For sum, n determines the number of fun’s return
values; our tool computes the maximal specification

n

> ixri =10,

=1

where 7; denotes the ¢’th return value of fun. Hence, the inferred
specification ensures that y >= 10 throughout execution.

The benchmark sum-arg is trickier. Here, we call fun n times
with n different arguments, from 1 to n, and we want to ensure
that the sum of all return values is 0. One might be tempted to say
that a maximal specification is 7 = 0, that is, fun always returns
0. This is too strong, as we only care about the return value of fun
when its argument is between 1 and n. For each instantiation of this
benchmark, our tool computes the maximal specification

\n/arg:i = r=0,

=1

where arg denotes the input argument of fun and r represents its
return value. This specification states that fun returns 0 when its
input is between 1 and n; otherwise, it can return any value.
Finally, the benchmark pareto is similar to sum, but sets the
values of x1,...,x, by making calls to n different procedures. In
this case, there are many maximal specifications for funy, ... ,fun,
that are incomparable as per our partial order (Definition 2). Our
tool thus returns one possible maximal specification of the form

[funi = r1 > c1,. .., fun, = 71y 2 6,

where 7; is the return value of fun;, ¢; € Z, and the following
constraint is satisfied: 3, i % ¢; > 10.

Results For each of the four benchmarks, we evaluated the per-
formance of our multi-abduction procedure on the generated multi-
abduction problem. (For these benchmarks, the multi-abduction
solver is invoked once, as UFO always provides a sufficient DAG of
counterexamples.) As we increase the size of each benchmark pro-
gram, by increasing the parameter n, the size of the multi-abduction
problem increases linearly. We measure formula size as the number
of Boolean connectives in the DAG representation of the formula.
Similarly, the numbers of variables and abducibles increase linearly
with n.

The bottom part of Figure 3 represents the multi-abduction run-
time results for each benchmark as the size of the formula increases.
The time limit per benchmark is 3 minutes. Points on the top bor-
der are benchmarks that did not complete within time limit. We use
two quantifier elimination strategies: (i) eliminating one variable
at a time, by multiple calls to Z3, and (i) variable partitioning—
implemented internally in Z3 [19]. For each parameterized bench-
mark, we report results from the faster strategy.

Overall, our results indicate our multi-abduction technique’s
ability to scale to large formulas, with thousands of Boolean con-
nectives, representing encodings of unrolled CFGs. For all of the
formulas here, the number of quantified variables in the first call
to ABDUCE (line 2 of Algorithm 4) is in the 100s. For instance,
for formulas of size ~2000 from the accumulator benchmark, the
number of abducibles is ~200, and the number of quantified vari-
ables is ~400 (out of a total of ~800 variables). In sum-arg, for
formulas of size ~1500, we see ~200 abducibles and ~100 quan-
tified variables (out of a total of ~500 variables). Notice the need
for multi-abduction for these benchmarks: The same procedure fun
is called multiple times, and there are calls to different procedures
fun;. Thus, we require Cartesian and isomorphic decomposition to
compute specifications of unknown procedures.
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assert(z > 0)
200 200
L]
150 [ 150
L)
°® °
L]
£ 100 . £ 100
= ° = o
L] L]
L]
50 o® 50 e
o® o®
.... L] °
0 anase®®® 0 ananee®®®
500 1000 1500 2000 2500 200 400 600 800 1000 1200
Formula size Formula size
Figure 3: Parameterized microbenchmarks
200
®-—----->54 locks
150
L]
L]
2 100 °
= .
L]
L
50 .
L]
.
ohaod b

1000 2000 3000 4000 5000

Formula size
Figure 4: Results for locks benchmarks

7.1.2 Locks benchmarks

Benchmark description We also evaluated our approach on the
locks benchmarks of SV-COMP (from the locks group), a set of
benchmarks designed as challenge programs for automated soft-
ware verifiers [18]. These benchmarks non-deterministically ac-
quire and release a number of locks in a loop. The number of paths
in the program increases exponentially in the number of locks. For
each lock, we abstracted the code that checks whether the lock is
acquired as a unigue unknown procedure and used our tool to syn-
thesize a specification under which the program is correct. Hence,
the number of unknown procedures in these benchmarks is equal
to the number of locks. The setup here mimics a program repair
scenario: The assumption is that the code that checks whether the
lock is acquired is “suspect” [37], and we are asking, “What can we
replace this code with in order to make the program correct?”

Our tool synthesized a weaker specification for the abstracted
code, instilling more non-determinism in these benchmarks while
maintaining their correctness. Specifically, the checking code for
each lock lk; returns true if lk; is not equal to 1, and false
otherwise. Our tool returns the slightly weaker specification

k; = 1 = false,

which implies that the procedure can return true or false when
1k; # 1. At first glance, this specification looks suspiciously weak,
but a closer examination of the benchmark shows that 1k; is always
not equal to 1 when the checking code is invoked. Thus, our tool
synthesizes a specification that returns any value when 1k; is 1.

Results Figure 4 shows the amount of time (in seconds) multi-
abduction takes as we increase the number of locks. The origi-
nal benchmark suite contains programs with 5 to 15 locks; here,
we extend the suite with new programs with up to 60 locks. As
with the parameterized benchmarks, only one multi-abduction call
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and their results. Time is in seconds.

is made. The z-axis shows the size of the formula as we increase
the number of locks. Within the short time limit of 3 minutes, our
multi-abduction solver is able to scale to problems with ~5000
Boolean connectives, ~160 abducibles, and ~1500 quantified vari-
ables (generated from a program with 54 locks). Observe the need
for multi-abduction here: We need to synthesize a specification for
multiple procedures, one for each lock, and the same procedure
might appear multiple times along control-flow paths emitted by
the verifier. We would like to note that this set of benchmarks was
specially crafted as a challenge to software verification tools: they
require precise path reasoning; thus, a symbolic representation of
paths is needed. Here, we do not only verify these benchmarks, we
go one step further and synthesize maximal specifications for un-
known code.

7.1.3 Summary

Our results demonstrate our multi-abduction procedure’s ability to
scale to large formulas with thousands of Boolean connectives and
hundreds of variables. Our experience with quantifier elimination
indicates the importance of the order in which variables are elim-
inated. Going forward, we would like to investigate variable elim-
ination ordering strategies, with an emphasis on our specification
synthesis domain. Our tool is able to produce formulas in SMT-LIB
format, which we will release to drive future research in decision
procedures of quantified formulas and quantifier elimination.

7.2 E2: Specification synthesis for device drivers

Description We now turn our attention to our second set of ex-
periments, which target device drivers. In device driver verification,
stubs for OS kernel routines are typically manually written to avoid
analysis of complex kernel code. Indeed, this is the case for the
Static Driver Verifier (SDV) [39], Microsoft’s commercial product
for driver developers, which uses the bounded verifier Corral [40].

In this section, we study the applicability of our proposed tech-
nique for automatically synthesizing specifications of kernel rou-
tines and initialization code for a standard suite of Windows drivers
that are part of the software verification competition (SV-COMP).
Here, we target the preprocessed benchmarks, from ntdrivers-
simplified set, in which heap manipulation has been abstracted
for the purposes of functional verification.

For evaluation, we identified all kernel routine stubs in these
drivers: IofCallDriver, IofCompleteRequest, KeWaitForSin-
gleObject, and KeSetEvent. These routines deal with I/O manage-
ment and other core kernel issues, and are invoked by all drivers in



Multi-abduction statistics
Driver/routine Time | #Abds DAG size #Q-vars
kbfilter-sl
init 1 7 498 113-120
IofCallDriver 0.1 1 137 21-31
IofComplRequest  0.03*
KeSetEvent 0.1 1 104 21-26
KeWaitFSObject 0.1 1 123 19-32
kbfilter-s2
init 3 7 987 236-243
IofCallDriver 0.1 1 165 29-39
IofComplRequest  0.04*
KeSetEvent 0.1 1 132 29-34
KeWaitFSObject 0.1 1 151 27-40
floppy-s3
init 5 6 1757 382-388
IofCallDriver 16 9 1398 241-317
IofComplRequest 8 4 1579 330-343
KeSetEvent 1 3 1551 318-333
KeWaitFSObject 2 4 1693 316-368
floppy-s4
init 34 6 2767 628-634
IofCallDriver 27 11 2282 436-529
IofComplRequest 33 9 2535 548-576
KeSetEvent 3 3 2502 546-561
KeWaitFSObject 4 4 2644 544-596
diskperf
init 145 7 2075 432-439
IofCallDriver 15 9 1356 220-303
IofComplRequest 15 5 1548 313-329
KeSetEvent 1 6 1573 305-335
KeWaitFSObject 5 6 1876 322-397
cdaudio
init 184 6 5251 1172-1178
IofCallDriver 53 11 2972 596-696
IofComplRequest 175 17 3723 817-869
KeSetEvent 5 3 3526 795-810
KeWaitFSObject 19 8 3842 788-892

Table 1: Results for device drivers. Time is in seconds.

the ntdrivers benchmarks.? Also, all drivers contain an initializa-
tion stub, init, invoked at the start of execution, to set initial values
for global variables, flags, etc. For both the kernel routine stubs and
the initialization stubs, we applied our technique to synthesize a
maximal specification that ensures driver correctness, with respect
to properties encoded in the drivers. That is, we removed the stubs
and attempted to automatically synthesize their specifications from
the routines’ usage contexts, and we asked the following questions:
(i) How efficient is the synthesis process? (ii) Do the synthesized
specifications capture all behaviors of (i.e., over-approximate) the
manually written stubs?

Synthesizing safe initialization specifications Synthesizing the
initialization procedure of a device driver is an instance of input-
filter synthesis: We infer the set of parameters for which the device
driver behaves correctly. For each initialized global variable g in
init, we replaced ¢’s initialization code with g < gety(), where
gety is an unknown procedure. Thus, by synthesizing a maximal
specification for each gety, we know the range of values that g must
lie within in order to ensure correctness of the driver. Note that,
for init specifications, we utilize multi-abduction to synthesize a
specification per initialized variable. Simple abduction alone can
only compute a monolithic formula over all uninitialized variables.

Table 1 shows the time it took to synthesize the specifications
for all global variables for each driver in our set. The table also
shows statistics for the final multi-abduction query: the number

2See the Windows Driver Kit (WDK) for the detailed API [3].

of abducibles (#Abds), the size of the problem (DAG size), and
the number of quantified and total variables in the first call to AB-
DUCE (#Q-vars). For init, the number of abducibles (#Abds) cor-
responds to the number of initialized variables. For each driver, our
synthesized specifications for procedures get, were one of the fol-
lowing: (i) a specific value for g, equal to the one in the initializa-
tion routine; (if) a range of values for g that includes the one in the
initialization routine; or (i) the specification ¢rue, which indicates
that g does not affect the correctness of the procedure. For all the
drivers, our techniques was able to compute a maximal specifica-
tion for 6-7 procedures in a small amount of time: 1 to 184 seconds.

Synthesizing kernel routine stubs In each driver, we replaced
each kernel routine stub with an unknown procedure whose argu-
ments are the arguments of the kernel routine and the global vari-
ables read by the routine; the return values of the unknown proce-
dure are its actual return value and values for all global variables it
updates. Using our approach, we synthesized maximal safe speci-
fications for these procedures.

Table 1 shows the amount of time it took to synthesize a spec-
ification for each kernel routine. (Routine IofCompleteRequest is
not required for correctness of drivers kbfiltr-s*, i.e., its maxi-
mal specification is true; this is detected by our front-end.) Con-
sider the driver cdaudio; our technique computes a specification
for KeWaitForSingleObject within 15 seconds, having to solve the
(final) multi-abduction query containing ~3000 Boolean operators
and ~800 quantified variables. We manually inspected synthesized
specifications and in all cases found that they are equivalent to the
original stubs or allow strictly more behavior. For instance, for the
routine IofCallDriver in kbfiltr-sl, our technique synthesized
the disjunctive specification that states that IofCallDriver either
updates the global variable s to the value of global variable NP, or
returns the signal 259 and updates the value of s to that of MPR3. The
specification does not mention the global variable lowerDriverRe-
turn, which is updated in the given stub, meaning that its value is
not needed for the correctness of the driver.

Summary Our evaluation indicates our technique’s ability to syn-
thesize maximal safe specifications of unknown procedures in real-
istic programs. We have demonstrated this on a standard set of Win-
dows driver benchmarks, where, within a short amount of time, we
synthesized specifications of kernel routines that over-approximate
existing stubs. We believe that our results demonstrate the promise
of our approach, and provide strong evidence that it is indeed pos-
sible to synthesize specifications of unknown procedures.

8. Related Work

In this section, we place our specification synthesis technique in the
context of related work.

Specification inference There is a large body of work on learning
procedure specifications [7, 9, 12, 13, 20, 27, 35, 41, 45, 48, 50, 53,
54]. Many of these techniques [7, 9, 13, 45, 48, 50, 53] use either
client or library code to learn API-usage rules of libraries, which
can then be used for verifying other clients of the same library.
Here, we addressed an orthogonal problem: synthesizing logical
specifications of unknown procedures that ensure client safety.
The works of Bastani et al. [12] and Zhu et al. [54] have a similar
goal to ours, but in the context of taint-flow analysis. Bastani et al.
present a CFL-based solution for computing taint-flow and aliasing
specifications. Similarly, Zhu et al. use simple abduction to find
the smallest number of assumptions on unknown procedures. In
contrast to these works, our technique differs in two ways. First,
we present a general logic-based technique that is not tied to taint-
flow analysis or CFL-based analyses. Second, our technique ensures



a universally maximal solution, whereas maximality of prior work
is relative to an initial taint-flow analysis, which is likely imprecise.
Seghir and Kroening [49] and Cimatti et al. [23] compute a
weakest safe precondition of a program or transition system. This
problem can be modelled in our framework by inserting a single
unknown procedure call at the beginning of the program, where the
procedure call returns initial values for program parameters.

Work on angelic verification [20, 27] aims to find reason-
able environment assumptions in order to suppress “stupid” false
alarms. In the recent paper by Das et al. [27], the user is assumed
to specify a set of acceptable specifications; the job of the verifier
is to find a specification within the supplied set that suppresses
bugs while being permissive (limits dead code). Our work is sim-
ilar in that we look for specifications of unknown code that make
the program correct. However, our work differs in that we present
a general logical treatment of the problem. In particular, our multi-
abduction algorithm enables automatic computation of maximal
specifications, but without user intervention.

Abduction in analysis and verification ~Abduction made its way
into computer science through artificial intelligence, where it was
used for knowledge representation and reasoning [29, 43]. Here,
we focus on use of abduction in program analysis and verification.

In the context of separation logic for shape analysis, bi-abduction
was introduced in the seminal work of Calcagno et al. [22] as a
means for inferring procedure preconditions that ensure memory-
safe execution. Our work differs in a number of ways: First, we
target first-order theories that admit quantifier elimination. Second,
multi-abduction finds specifications of unknown procedures in ad-
dition to preconditions, whereas bi-abduction assumes that it has
access to callee specifications. We believe that our approach can
be profitably combined with bi-abduction in a bottom-up compo-
sitional reasoning fashion. For instance, the recently open-sourced
tool, Infer [1], a commercial version of Calcagno et al.’s technique,
does not perform precise reasoning over arithmetic operations, and
may return false positives in such cases. By incorporating a first-
order abduction mechanism alongside shape abduction, we can
create a more precise analysis technique.

The work of Qin et al. [47] presents a combined shape-data
abstract domain that can be used for inferring specifications of
unknown procedures using a form of abduction over the abstract
domain. In comparison, we (i) compute maximal specifications
of unknown procedures, whereas Qin et al.’s work heuristically
abduces a specification; and (ii) our abduction queries always find a
solution if one exists, as we are not restricted by an abstract domain
that loses information during forward propagation.

In program analysis, abduction appeared first in the work of Gi-
acobazzi [31] in the context of logic programming. Giacobazzi de-
fined a top-down abstract interpretation of logic programs that ab-
duces properties of modules that ensure correctness of their compo-
sition. Our work is analogous, in the sense that we also ask, “How
should callees behave in order to ensure correctness?” In compar-
ison to Giacobazzi’s work, we target imperative programs and do
not constrain our analysis to an abstract domain; instead, we en-
code program semantics as first-order formulas and utilize multi-
abduction to synthesize weakest possible procedure specifications
necessary for ensuring correctness.

Horn-clause solving Our work shares similarities with works on
solving Horn clauses [15, 32, 33]. Our technique can be viewed as
a solver for recursive Horn clauses with unconstrained predicates:
those that appear exclusively in the bodies of clauses, and not as
heads. Intuitively, unconstrained predicates represent specifications
of unknown procedures—computed by multi-abduction—and con-
strained predicates represent inductive invariants proving that the
program is safe—computed by the verifier. Existing work on solv-

ing Horn clauses does not address the question of optimality and
would allow trivial solutions that set unconstrained predicates to
false, as allowed by Horn-clause semantics. In contrast, our multi-
abduction solver ensures that we compute maximal, non-trivial so-
lutions. Picking up a recursive Horn-clause solver—Ilike HSF [32]
or GPDR [36]—and applying it in our setting does not guarantee a
useful solution. Indeed, in our experience, unconstrained predicates
in GPDR are always set to false. Thus, our contribution in the con-
text of Horn-clause solving is a recursive Horn-clause solver that
ensures non-trivial, maximal solutions to unconstrained predicates.

Beyene et al. [14] present a game solving technique that is
formalized as Horn-clause solving. The authors demonstrate their
approach for program repair and synthesis of winning strategies
in two-player games. Our approaches are closely related. For in-
stance, in Beyene et al., program repair is formalized as finding
a strengthening of a program’s transition relation. In our setting,
this is equivalent to finding a specification of an unknown proce-
dure that restricts program executions to safe ones. In comparison
with Beyene et al., our work does not require user-supplied linear-
arithmetic templates for specifications of unknown procedures; in-
stead, it synthesizes a maximal specification over a first-order the-
ory, a much more challenging problem. On the other hand, Beyene
et al. also handle temporal specifications, allowing them to stipulate
that a synthesized procedure specification ensures total correctness.

Formula decomposition Veanes et al. introduced monadic de-
composition [52], a technique that takes a formula F'(z,y) and
computes k pairs of formulas (A;(z), B;i(y)) such that \/, (A;(z)A
B;(y)) = F(z,y). Our formulation of Cartesian decomposition
is similar to 1-monadic decomposition, but it is more general: We
relax the equivalence constraint to A(z) A B(y) = ¢ and look
for maximal solutions of A and B. Also, Cartesian decomposition
does not restrict the decomposition to a pair of formulas, but al-
lows an arbitrary number of unknowns. In addition, we consider
isomorphic decomposition. It is also important to note that our
Cartesian decomposition procedure computes a 1-monadic decom-
position when it exists.

9. Conclusion

We studied the problem of synthesizing maximal safe specifications
of unknown procedures and presented a logic-based solution that
leverages multi-abduction. Our empirical evaluation demonstrates
the effectiveness of this technique at finding useful procedure spec-
ifications for realistic programs.

We believe there are many exciting and important applications
of our work; in the future, we plan to investigate the following:

® Bottom-up compositional analysis for shape-data: As dis-
cussed in Section 8, our abduction algorithms can be com-
bined with the bi-abduction-based shape analysis of Calcagno
et al. [22] to produce a combined shape-data analysis. In the
future, we plan to study such a combination with the goal of
reducing false positives in shape analysis.

Compositional top-down verification: We also plan to inves-
tigate the effectiveness of our technique for top-down ver-
ification. We can use our technique to verify callers inde-
pendently of callees and then separately check whether the
callees satisfy the inferred maximal specifications. In compari-
son with forward abstract-interpretation-based, bottom-up, and
interpolation-based analyses, this direction has received very
little attention [31, 47].
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