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Abstract
Component-based approaches to program synthesis assemble pro-
grams from a database of existing components, such as methods
provided by an API. In this paper, we present a novel type-directed
algorithm for component-based synthesis. The key novelty of our
approach is the use of a compact Petri-net representation to model
relationships between methods in an API. Given a target method
signature S, our approach performs reachability analysis on the un-
derlying Petri-net model to identify sequences of method calls that
could be used to synthesize an implementation of S. The programs
synthesized by our algorithm are guaranteed to type check and pass
all test cases provided by the user.

We have implemented this approach in a tool called SYPET,
and used it to successfully synthesize real-world programming
tasks extracted from on-line forums and existing code repositories.
We also compare SYPET with two state-of-the-art synthesis tools,
namely INSYNTH and CODEHINT, and demonstrate that SYPET
can synthesize more programs in less time. Finally, we compare
our approach with an alternative solution based on hypergraphs and
demonstrate its advantages.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program Synthesis

Keywords Type-directed, Petri-net, Component-based, Program
Synthesis

1. Introduction
The goal of component-based synthesis is to automatically generate
loop-free programs from a collection of base components, such as
methods provided by an API [15, 26]. Considering the explosion of
software libraries over the last few decades, component-based syn-
thesis promises to simplify programming by automatically com-
posing the building blocks needed to achieve some implementation
task. Hence, instead of spending precious time in learning how to
use existing libraries, programmers can focus on challenging algo-
rithmic tasks.

Despite significant advances in component-based synthesis over
the last several years [15, 16, 26, 38], existing algorithms have two
key shortcomings: First, they can only handle a small number of
components, typically in the range of 5-20 methods; but real-world
APIs typically involve thousands of procedures. Second, most ex-
isting tools require logical specifications for the underlying compo-
nents; however, few APIs contain methods that are formally spec-
ified. As a result, the applicability of component-based synthesis
remains limited to domain-specific applications, such as bit-vector,
string, or data-structure manipulations [9, 26, 43].

In this paper, we propose a new algorithm for component-based
synthesis that overcomes both of these difficulties. Similar to re-
cent work on type-directed API-completion [19, 20, 30, 35], our
algorithm uses types as a coarse proxy for logical specifications
and can handle APIs with thousands of procedures. However, un-
like API completion tools, our algorithm does not require a par-
tial implementation, and can synthesize complete programs from
method signatures and test cases. The programs synthesized by our
approach are always guaranteed to type-check and pass all user-
provided tests. Furthermore, our approach is oblivious to the under-
lying components, and can be used to synthesize Java code using
any combination of APIs.

The workflow of our synthesis algorithm is illustrated in Fig-
ure 1. At a technical level, a key idea underlying our approach is
to represent relationships between API components using a certain
kind of Petri net where places (nodes) correspond to types, transi-
tions represent methods, and tokens denote the number of program
variables of a given type. For example, Figure 6 shows a Petri net
that describes the relationships between a subset of the functions
in the java.awt.geometry API. Given such a Petri net N and
a target configuration defined by the method signature, our algo-
rithm performs reachability analysis on N to identify a sequence
of transitions (i.e., method calls) that “produce” the output type by
“consuming” the input types.

In our approach, a reachable path in the Petri-net model corre-
sponds to a program sketch rather than a complete executable pro-
gram. In particular, to keep the underlying Petri net representation
compact, our algorithm deliberately decomposes the synthesis task
into two separate sketch-generation and sketch-completion phases.
Hence, after we perform reachability analysis on the Petri net, we
must still complete the sketch by determining what arguments to
provide for each procedure. Toward this goal, our algorithm gener-
ates constraints that encode various syntactic and semantic require-
ments on the synthesized program, and uses a SAT solver to find
a model. The satisfying assignment produced by the solver is then
used to generate a candidate implementation that can be tested. If
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Figure 1. Workflow of the SYPET tool

the synthesized program fails any test case, our algorithm back-
tracks and generates a different implementation, either by finding
another model of the SAT formula or by exploring a different reach-
able path in the Petri net.

At a very high level, our algorithm can be viewed as a gen-
eralization of techniques that use graph-reachability analysis for
API completion. For example, standard graph reachability has been
used to synthesize jungloids, which are sequences of single ar-
gument methods [30]. However, because our goal is to develop a
general solver for component-based synthesis, we require a more
expressive graph representation that can faithfully model relation-
ships between multi-argument functions. In this work, we choose
to use Petri nets as the underlying formalism because they have
several advantages compared to other generalized graph represen-
tations, such as hypergraphs. As we show later in the paper, Petri
nets allow us to synthesize a larger class of imperative programs, in-
cluding those that call the same procedure multiple times or where
components can have side effects.

Contributions. This paper makes the following contributions:

• We propose a novel type-directed algorithm for component-
based program synthesis. Our algorithm can be instantiated
with any set of APIs and only requires the user to specify a
method signature and a few test cases.
• We show how Petri nets can be used for automatically gener-

ating program sketches from signatures of API components.
We also propose a customized symbolic Petri-net-reachability
solver that takes advantage of certain properties of the Petri nets
constructed by our approach.
• We describe an implementation of our approach in a tool called

SYPET and instantiate it with different Java APIs. We show that
SYPET can successfully synthesize non-trivial programming
tasks collected from online forums and Github projects.
• We compare SYPET against other state-of-the-art synthesis sys-

tems as well as variants of SYPET that use hypergraphs instead
of Petri nets. The results demonstrate that our algorithm com-
pares favorably with other tools and alternative solutions.

The rest of this paper is organized as follows: First, we start
by presenting an example to motivate our approach (Section 2) and
provide some necessary background on Petri nets (Section 3). After
presenting an outline of the main synthesis algorithm in Section 4,
we then elaborate on the core technical pieces in Sections 5, 6 and
7. In Sections 8 and 9, we describe implementation details and
present our main experimental results. In Section 10, we compare
our approach against an alternative solution based on hypergraphs
and survey related work in Section 11.

public void test1() {
Area a1 = new Area(new Rectangle(0, 0, 10, 2));
Area a2 = new Area(new Rectangle(-2, 0, 2, 10));
Point2D p = new Point2D.Double(0, 0);
assertTrue(a2.equals(rotate(a1, p, Math.PI/2)));

}

Figure 2. Example test case for the rotate method

2. Motivating Example
Consider a programmer, Bob, who wants to implement functional-
ity for rotating a 2-dimensional geometric object. Specifically, Bob
has the following signature in mind:

Area rotate(Area obj, Point2D pt, double angle)

Here, the rotate method should take a 2-dimensional object called
obj and return a new object that is the same as obj except that it
has been rotated by the specified angle around the specified point
pt. The types Area and Point2D are defined in the java.awt.geom

library. Bob thinks that there is probably a way of implementing
this functionality using the java.awt.geom package, but he cannot
figure out how.

SYPET can help a programmer like Bob by automatically syn-
thesizing the desired rotate method. To use SYPET, Bob only
needs to provide (a) the method signature above, and (b) write one
or more test cases. In this case, suppose Bob has written the unit
test shown in Figure 2. This test creates a rectangle a1 and its vari-
ant a2 that has been rotated by 90◦; it then asserts that invoking
rotate on a1 yields an object that is identical to a2.

Given this test case and method signature, SYPET automat-
ically synthesizes the implementation of rotate shown in Fig-
ure 3 in 2.01 seconds. Observe that writing this code is non-trivial
for a programmer like Bob for several reasons: First, Bob must
know about the existence of a class called AffineTransform in
the java.awt.geom library. Second, he must know about (and
correctly use) the setToRotation method, which sets up a ma-
trix representing the desired transformation. Finally, the call to
createTransformedArea creates a new Area object that contains
the same geometry as obj, but transformed by the specified trans-
formation at. Hence, from the user’s perspective, SYPET can sig-
nificantly boost programmer productivity by automatically finding
the relevant API methods and invoking them in the right manner.

From the synthesizer’s perspective, automatically generating
an implementation of rotate offers several challenges: First, the
java.awt.geom library, which we use to synthesize this code, con-
tains 725 methods. Hence, even though the implementation consists
of just 6 lines of code, the number of components is quite large.



Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 3. Implementation synthesized by SYPET

Second, even when we restrict ourselves to code snippets of length
3 (measured in terms of the number of API calls), there are already
over 3.1 million implementations of rotate that type check. Be-
cause the search space is so large, finding the right implementation
of rotate is akin to finding a needle in the proverbial hay stack.

3. Primer on Petri Nets
Because the remainder of this paper relies on basic knowledge
about Petri nets, we first provide some background on this topic.

3.1 Petri Net Definition
A Petri net is a bipartite graph with two types of nodes: places,
which are drawn as circles, and transitions, represented as solid
bars (see Figure 4). Each place in a Petri net can contain a num-
ber of tokens, which are drawn as dots and typically represent re-
sources. A marking (or configuration) of a Petri net is a mapping
from each place p to the number of tokens at p. Transitions in the
Petri net correspond to events that change the marking. In particu-
lar, incoming edges of a transition t represent necessary conditions
for t to fire, and outgoing edges represent the outcome. For exam-
ple, consider transition T1 from Figure 4. A necessary condition
for T1 to fire is that there must be at least one token present at P1,
because the incoming edge to T1 has weight 1. Because the pre-
condition of this transition is met, we say that T1 is enabled. If we
fire transition T1, we consume one token from place P1 and pro-
duce one token at place P2, because the outgoing edge of T1 is also
labeled with 1. Figure 5 shows the result of firing T1 at the config-
uration shown in Figure 4. Observe that transition T2 is disabled in
both Figure 4 and Figure 5 because there are fewer than two tokens
at place P2.

Definition 1. (Petri net) A Petri netN is a 5-tuple (P, T,E,W,M0)
where P is a set of places, T is a set of transitions, and E ⊆
(P × T ) ∪ (T × P ) is the set of edges (arcs). Finally, W is a
mapping from each edge e ∈ E to a weight, and M0 is the initial
marking ofN .

Example 1. Consider the Petri net shown in Figure 4. Here, we
have P = {P1, P2, P3} and T = {T1, T2, T3}. Let e∗ be the edge
P2 → T2. We have W (e∗) = 2, and W (e) = 1 for all other edges
e in E (e.g., P1 → T1). The initial marking M0 assigns P1 to 2,
and all other places to 0.

A run (or trace) of a Petri netN is a sequence of transitions that
are fired. For instance, some feasible runs of the Petri net shown
in Figure 4 include T1, T1, T2 and T1, T1, T2, T3. However, T1, T2

and T1, T2, T3 are not feasible.

3.2 Reachability and k-safety in Petri Nets
A key decision problem about Petri nets is reachability: Given
Petri net N with initial marking M0 and target marking M∗, is
it possible to reach M∗ by starting at M0 and firing a sequence
of transitions? For instance, consider Figure 4 and target marking

P1 P2 P3T1

T2

T3

1 1

2
1
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Figure 4. A simple Petri net
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Figure 5. Result of firing T1 in Figure 4

M∗ = [P1 7→ 0, P2 7→ 0, P3 7→ 1]. This marking is reachable
because we can get to marking M∗ by firing the sequence of
transitions T1, T1, T2. The reachable state space of a Petri net N ,
denoted R(N ), is the set of all markings that are reachable from
the initial state. Given Petri netN and target marking M∗, a run of
N is accepting if it ends in M∗.

Another important concept about Petri nets is k-safety: A Petri
net N is said to be k-safe if no place contains more than k tokens
for any marking in R(N ). For example, the Petri net of Figure 4
is 2-safe, because no place can contain more than 2 tokens in any
configuration. However, if we modify this Petri net by adding a
back edge from T1 to P1 (with an arc weight of 1), then the
resulting Petri net is not k-safe for any k. As we will see later,
the notion of k-safety plays an important role in the reachability
analysis of Petri nets because the reachable state space R(N ) is
bounded iffN is k-safe.

4. Algorithm Overview
We now give an overview of SYPET’s synthesis algorithm and il-
lustrate how it works on the example from Section 2. As shown in
Algorithm 1, the SYNTHESIZE procedure takes a method signature
S, a set of components Λ, and test cases E . Its output is either ⊥,
meaning that the specification cannot be synthesized using compo-
nents Λ, or a well-typed program that passes all test cases E .

Petri-net construction. The first step of our synthesis algorithm
is to construct a Petri net using signatures of components in Λ.
In particular, the procedure CONSTRUCTPETRI in Algorithm 1
constructs a Petri net N where each transition is a component
f ∈ Λ and each place correspond to a type. If there is an edge
in the Petri net from τ to f with weight w, component f takes w
arguments of type τ . Similarly, an edge from f to τ ′ indicates that
f ’s return value has type τ ′.

Example 2. Figure 6 shows (a small part of) the Petri net gen-
erated by CONSTRUCTPETRI for the example from Section 2. The
transition labeled getX has one incoming edge of weight 1 from
Point2D because it takes a single argument of this type. There is
also an edge from getX to double because getX’s return value is
double. As another example, the weight of the edge from double to
setToRotation is 3 because this method requires three arguments
of type double. Note that Figure 6 also contains special clone tran-
sitions labeled κ: Intuitively, these κ transitions allow us to dupli-
cate tokens. As we will see in Section 5, the clone transitions allow
us to reuse program variables in the synthesis context.
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Figure 6. Petri net for motivating example

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, Λ, E)

2: Input: Signature S of method to synthesize,
3: components Λ, and tests E
4: Output: Synthesized program or ⊥ for failure

5: (N ,M∗) := CONSTRUCTPETRI(S,Λ)

6: while true do
7: π := GETNEXTPATH(N ,M∗)
8: (Σ, φ) := SKETCHGEN(π)

9: for all σ ∈ MODELS(φ) do
10: if RUNTESTS(Σ[σ], E) then
11: return Σ[σ]

12: return ⊥

The initial and final markings on the Petri net are determined
by the signature S provided by the user. For instance, the tokens on
the Petri netN from Figure 6 indicate the initial markingM0 ofN .
In particular, because the desired rotate method takes arguments
of type Area, Point2D, and double, the initial marking assigns one
token to each of these types. In addition, M0 also assigns a single
token to the special type void. In contrast, M0[Shape] = 0 because
rotate does not take any arguments of type Shape.

The target marking M∗ of the Petri net is determined by the
return type of S. In our example,M∗[Area] = 1 because the return
value of rotate is of type Area. However, for all other types τ
(except for void), we require M∗[τ ] to be 0, because this value
effectively enforces that the synthesized implementation should not
generate unused values. For instance, the target marking for the
rotate example assigns Point2D to 0, thereby enforcing that the
implementation uses argument pt and does not generate any other
unused variables of type Point2D.

Reachability analysis. After constructing a Petri netN that mod-
els the relationships between components in Λ, we next perform
reachability analysis to lazily findN ’s accepting runs (line 7 in Al-
gorithm 1). For instance, an accepting run r for Figure 6 consists
of the following sequence of transitions:

κD, getX, getY, new AffineTransform,
κT , setToRotation, createTransformedArea

Another accepting run r′ can be obtained by replacing the transition
createTransformedArea by invert. Observe that κD , getX, getY
is not an accepting run because the marking obtained after this run
assigns 3 tokens to double.

Sketch generation. Each accepting run of the Petri net N corre-
sponds to a possible sequence of method calls with unknown ar-
guments. Hence, the SKETCHGEN procedure used in line 8 of Al-
gorithm 1 converts each reachable path π to a program sketch Σ
which is then used to resolve unknown arguments. For example,
consider the accepting run r of N that we considered earlier. This
run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program
sketch Σ by ignoring the κ transitions and passing unknown argu-
ments (denoted as #i) to each component. Furthermore, our con-
struction guarantees that it is always possible to complete sketch
Σ in a way that type-checks and satisfies certain well-formedness
requirements. However, there may be multiple ways to instantiate
the holes in Σ. For instance, we must assign #1 and #2 to pt, but we
can assign #4 to either angle, x, or y, because the only requirement
is that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques
(e.g., [45]), our technique uses a SAT solver to find possible
completions of the generated program sketch. For this purpose,
the SKETCHGEN procedure generates a propositional formula φ
that encodes various semantic requirements on the generated pro-
gram, including being well-typed, not containing unused variables,
and having all holes filled. Specifically, our encoding introduces
Boolean variables of the form h#i

v , which encode that hole #i is
filled with program variable v. For example, for hole #4, our en-
coding generates the following constraint:

h#4
angle + h#4

x + h#4
y = 1.

This formula stipulates that hole #4 must be filled with exactly one
of angle, x, or y because those are the only program variables of
type double. In addition, our encoding stipulates that each program
variable must be used at least once. For instance, for variable



angle, we generate the following constraint:

h#4
angle + h#5

angle + h#6
angle ≥ 1.

This formula expresses that at least one of the holes #4, #5 and #6

must be instantiated with angle, because those are the only holes
of type double.

After generating such a pseudo-boolean formula, we transform
these constraints to CNF and use a SAT solver to find an assign-
ment to each variable. For our running example, the following as-
signment σ is a model:

h#1
pt ∧ h#2

pt ∧ h#3
t ∧ h#4

angle ∧ ¬h
#4
x ∧ ¬h#4

y ∧ ¬h#5
angle ∧ h#5

x ∧
¬h#5

y ∧ ¬h#6
angle ∧ ¬h

#6
x ∧ h#6

y ∧ h#7
obj ∧ h#8

t ∧ ¬h#9
obj ∧ h#9

a

Observe that σ corresponds to instantiating holes #1-#9 in our code
sketch with variables pt, pt, t, angle, x, y, obj, t, and a,
respectively.

Validation and backtracking. Once we generate a complete pro-
gram P , we then compile it and run P on the test cases provided by
the user (line 10 in Algorithm 1). If all tests pass, we return P as a
solution to the synthesis problem. If at least one test case fails, our
algorithm backtracks and finds another satisfying assignment σ′ to
φ (if one exists) and generates a different completion of sketch Σ.
If we have already considered all possible ways to fill the holes in
Σ, our algorithm backtracks by finding a different accepting run of
the Petri netN and generating a different sketch.

Discussion of design choices. A key design decision underlying
our algorithm is to decompose the synthesis algorithm into two
phases, namely sketch generation and sketch completion. In par-
ticular, an accepting run of the Petri net corresponds to a sequence
of method calls, but there are, in general, multiple possible ways
of choosing which variables to pass as arguments. We believe this
decomposition between sketch generation and completion is ben-
eficial because it allows us to perform reachability analysis on a
more compact graph representation. We have considered an alter-
native Petri-net representation in which nodes represent parameters
and return values instead of types. Under this representation, an ac-
cepting run of the Petri net can be directly translated into a code
snippet rather than a sketch. However, because the corresponding
Petri net is much larger, we found that the reachability problem
becomes much harder, thereby making the algorithm less scalable.

5. Petri-Net Construction
We now explain in more detail how our algorithm constructs a

Petri net N from type signatures of components. In the remainder
of this paper, we assume a first-order language of type signatures
with classes and built-in primitive types (string, int, etc.).1 Given
library components Λ and a desired method signature S, the algo-
rithm constructs N = (P, T,E,W,M0) and a target marking M∗

as follows:

• Places P correspond to types used in Λ.
• Transitions T represent methods in Λ. In addition, for every

type τ ∈ P , there is a special transition called κτ .
• Arc (τ, f) is in E and W [(τ, f)] = k if component f ∈ Λ

takes k inputs of type τ .
• Arc (f, τ) is in E and W [(f, τ)] = 1 if f ’s return type is τ for

some component f ∈ Λ.
• Arcs (τ, κτ ) and (κτ , τ) are both inE. Furthermore,W [(τ, κτ )]

= 1 and W [(κτ , τ)] = 2.

1 As described in Section 8, our approach also handles polymorphism, but
using monomorphic instantiation.

• M0[void ] = 1 and M0[τ ] = k if S has k inputs of type τ .
• If the return type of S is τ , then M∗[τ ] = 1, M∗[void] ≥ 0

and M∗[τ ′] = 0 for all other types τ ′.2

At a high level, the Petri-net construction outlined above views
types as resources. In particular, a transition associated with com-
ponent f ∈ Λ “consumes” its input types and produces a to-
ken at its output type. Hence, if the desired signature S has type
(τ1 × . . .× τn) → τ , our goal is to produce a token at place τ by
consuming the incoming tokens at places τ1, . . . , τn.

While this resource analogy fits very well with linear types, con-
ventional types do not exactly behave as resources: In particular,
invoking a component f ∈ Λ on input x does not actually “con-
sume” x; indeed, in a Java program, x can be used again. For this
reason, the Petri-net construction outlined above introduces special
transitions κτ (called clone transitions) that effectively allow us
to “duplicate” objects of type τ . Intuitively, the number of clone
transitions taken in a given run indicates the total number of times
variables will be reused in the synthesized program.3

To illustrate the necessity of clone transitions, consider our mo-
tivating example from Section 2. Here, to synthesize the implemen-
tation of rotate, we must retrieve the x and y coordinates of point
pt. However, because we initially only have one token at Point2D,
we can only call getX or getY, but not both. By invoking the clone
transition κD , we can generate two resources of type Point2D, al-
lowing us to invoke both getX and getY on parameter pt.

Another interesting aspect of our construction is the choice of
target marking M∗. First, observe that M∗ assigns 0 tokens to all
places other than void and the return type of S. Intuitively, this re-
quirement dictates that the synthesized method should use all of its
inputs as well as any intermediate values that are produced. This
property is desirable because a method implementation that takes x
as an input but does not use x is unlikely to be correct. Furthermore,
a method that produces unused variables necessarily performs re-
dundant work and can be replaced by a simpler implementation.4

6. Sketch Synthesis via Petri-Net Reachability
Given a Petri net N with target marking M∗, we need to answer
the following questions to generate a suitable code sketch:

(1) Is M∗ ∈ R(N )? If the answer to this question is negative, we
know that it is not possible to synthesize well-typed code using
the components we have available.

(2) If M∗ ∈ R(N ), to synthesize candidate program sketches, we
must identify exactly those runs ofN that end in M∗.

To answer these questions, we must overcome two difficulties:
First, because our Petri nets are not k-safe, the state spaceR(N ) is
unbounded. While there are existing methods for answering ques-
tion (1) for unsafe Petri nets [11, 28], they cannot be used for
answering question (2). Second, because the number of available
components may be very large, we must develop effective heuris-
tics for pruning the search space. In the rest of this section, we
describe a practical algorithm for finding reachable paths for the
class of Petri nets described in Section 5.

2 If the return type of S is void, then M∗[void] ≥ 0.
3 Our use of clone transitions is somewhat related to the use of read arcs in
the Petri-net literature [51]. A read arc is a transition that does not consume
tokens when fired. An alternative to having clone transitions is to use read
arcs; however, this design choice would require us to use a different target
marking that does not enforce the property that all inputs must be used.
4 There are some methods, such as the add method of collections, that return
a Boolean value that is often ignored. For such functions, we also consider
a variant of the method that returns void.



Algorithm 2 Algorithm to construct reachability graph

1: procedure REACHGRAPH(N , τ )

2: Input: Petri netN , desired output type τ
3: Output: Reachability graphR∗

4: assume N = (P, T,E,W,M0)
5: R∗ := ({M0}, ∅,M0) . Initialize
6: Φ := {M0} . Initialize worklist Φ

7: while Φ 6= ∅ do
8: choose M ∈ Φ . Process next in Φ

9: Φ := Φ− {M}
10: for all T ∈ enabled(M ) do
11: (M ′, p) := fire(M,T ) . Add successors
12: if ∀e ∈ out(p). M ′[p] > W [e] + 1 then
13: continue
14: if ¬ PathExists(p, τ, α(N )) then
15: continue
16: if M ′ 6∈ Nodes(R∗) then
17: Nodes(R∗).insert(M ′)
18: Φ := Φ ∪ {M ′}
19: Edges(R∗).insert(〈M,T,M ′〉)
20: returnR∗

At a high level, there are three key insights underlying our
reachability algorithm. The first insight is that we can bound the
search space without losing completeness in our context. That is,
even though R(N ) is unbounded, exploring a subset R∗(N ) of
R(N ) is sufficient for identifying all accepting runs ofN (see Sec-
tion 6.2). The second key insight is to use an over-approximation
α(N ) of N to avoid exploring states that are irrelevant for reach-
ing the target configuration M∗ (see Section 6.3). Finally, rather
than explicitly constructing R∗(N ), we encode it symbolically
and lazily enumerate the “most-promising” accepting runs of N
by solving an optimization problem (see Section 6.4).

6.1 Basic Reachability Algorithm
Our algorithm for constructing the reachability graph R∗(N ) is

presented as pseudo-code in Algorithm 2. We first consider a basic
version of the algorithm without lines 12–15, which is roughly
equivalent to the standard algorithm for constructing R(N ). The
additional lines 12–15 correspond to our customization, and allow
us to constructR∗(N ) instead ofR(N ).

The procedure REACHGRAPH shown in Algorithm 2 takes as
input a Petri netN with initial markingM0 and the return type τ of
the method we would like to synthesize, and returns a reachability
graph R∗. The nodes of R∗ correspond to markings of N , and a
(directed) edge 〈M,T,M ′〉 indicates that we can reach marking
M ′ from M by firing transition T of N . We denote nodes of R∗
using labels of the form 〈k1, . . . , kn〉, which indicates that there
are ki tokens at place Pi. For example, the marking of the Petri net
from Figure 4 corresponds to the node label 〈2, 0, 0〉, whereas the
marking from Figure 5 is given by 〈1, 1, 0〉.

The loop in lines 7–19 of Algorithm 2 iteratively constructs
R∗ starting from initial marking M0. In particular, the worklist Φ
contains all reachable markings that have not yet been processed.
Initially, the only reachable marking is M0; hence we initialize Φ
to the singleton set {M0} at line 6. In each iteration of the loop,
we compute the successor states of some marking M in Φ by
firing its enabled transitions. Specifically, the procedure fire used
at line 11 takes a marking M and a transition T and returns the
resulting marking M ′, as well as the output place p of transition

T1 T1 T2 T3

Figure 7. Reachability graph for Petri net from Figure 4

T .5 Now, ignoring lines 12–15, we add the edge 〈M,T,M ′〉 to our
reachability graph R∗ and insert M ′ into the worklist if it has not
already been processed.

Example 3. Figure 7 shows the reachability graph for the Petri
net from Figure 4. Observe that feasible runs of N correspond to
paths starting with M0 in the reachability graph. Hence, using the
reachability graph, we immediately see that T1, T1, T2 is a feasible
run, but T1, T2, T3 is not.

6.2 Ensuring Termination
As mentioned earlier, the construction outlined in Section 5 results
in Petri nets that are not k-safe for any k. In particular, while the
clone transitions κτ are necessary for synthesizing code that reuses
the same variable multiple times, they also cause us to accumulate
arbitrarily many tokens at a given place. For example, we can obtain
an unbounded number of tokens at place Point2D of Figure 6 by
taking the clone transition κD as many times as we want. As a
result, the size of the reachability graph is unbounded, meaning that
the basic reachability algorithm from Section 6.1 will not terminate.

Fortunately, it turns out that we can bound the size of the
reachable state space without losing completeness. In particular,
when constructing the reachability graph for Petri net N , we can
safely ignore markings that assign more than k + 1 tokens to a
place p, where k denotes the maximum weight of any outgoing
edge of p.6 To see why we can ignore such markings, observe that
no transition in N can be disabled due to p as long as we have at
least k tokens at p. Furthermore, no matter what transition we take
from the current marking, p will have at least 1 remaining token.
Because our Petri nets contain clone transitions for every place, we
can always produce k tokens at p by taking the clone transition
sufficiently many times, as long as we have at least 1 token at p.

To formalize this intuition, let “paths[M0,M∗]
(G)” denote the

set of transition sequences in some reachability graph G that start
at initial marking M0, end at target M∗, and ignore all clone
transitions. We can now state the following theorem:7

Theorem 1. Let R(N ) be the reachability graph constructed by
the basic algorithm of Section 6.1, and let R∗(N ) be the reacha-
bility graph constructed by employing lines 12–15 of Algorithm 2.
If p ∈ paths[M0,M∗]

(R(N )), then p ∈ paths[M0,M∗]
(R∗(N )).

Effectively, this theorem states we do not “lose” any valid code
sketches by considering the paths of R∗(N ) instead of R(N ).
Furthermore, because the size of R∗(N ) is bounded by nk+1

where n is the number of places and k is the maximum edge
weight in N , Algorithm 2 is guaranteed to terminate. However,
because places inN correspond to classes defined by a library, the
reachability graph can still be very large. In the next subsection,
we describe a pruning strategy to further reduce the size of the
reachability graph.

5 In our context, each transition has exactly one outgoing edge because
every component has exactly one return type.
6 For simplicity, we assume that the number of initial tokens at place p is
less than or equal to k + 1. If this assumption is violated, the upper bound
is given by the maximum of k + 1 and the number of initial tokens.
7 Proofs of all theorems are given in the extended version of the paper [8].



6.3 Pruning using Graph Reachability
Another key idea of our algorithm is to use standard graph reacha-
bility to overapproximate Petri-net reachability. In particular, con-
sider a place τ ′ in the Petri net that is not backwards reachable
from our target type τ . Because there is no path from τ ′ to τ inN ,
it is unnecessary to consider markings where τ ′ contains a non-zero
number of tokens. Line 14 in Algorithm 2 exploits this observation
to prune redundant nodes ofR(N ).

To make this discussion more precise, let us define α(N ) to be
the graph induced by Petri netN as follows:

Definition 2. (Induced graph) Let N = (P, T,E,W,M0) be a
Petri net. The graph induced by N , denoted α(N ), is a directed
graph (V,E′) where V = P and (P, P ′) ∈ E′ iff there is a
transition f ∈ T such that (P, f) ∈ E and (f, P ′) ∈ E.

In other words, α(N ) includes an edge between two places
P, P ′ if it is possible to reach P ′ from P by firing a single tran-
sition.

Example 4. The graph induced by the Petri net of Figure 4 is
shown below:

P1 P2 P3

Theorem 2. Let N be a Petri net with no path from τ ′ to τ in
α(N ). Let M∗ be the target marking that assigns one token to
target type τ , and let M be a marking such that M(τ ′) > 0. Then,
there is no path from M to M∗ inR(N ).

According to this theorem, if a marking M assigns a non-zero
value to any place τ ′ that is not backwards-reachable from τ in
α(N ), then there is no path from M to M∗ in R(N ). Hence, we
can prune such a marking M without affecting completeness. Line
14 in Algorithm 2 takes advantage of this fact by only adding M ′

toR∗(N ) if p is backwards reachable from τ .

6.4 Symbolic Encoding using ILP
So far, our algorithm explicitly constructs R∗(N ) and enumerates
all paths ofR∗(N ). However, becauseR∗(N ) can have many ac-
cepting paths, this strategy is suboptimal. Instead, a better alter-
native is to encode this problem symbolically and lazily generate
accepting runs of N in order of increasing cost. Toward this goal,
we formulate the problem of finding an accepting run ofN as a 0-1
Integer Linear Programming (ILP) problem and obtain the “most-
promising” path by minimizing a heuristic objective function.

Our lazy symbolic path-enumeration algorithm is presented in
Algorithm 3. We consider accepting runs of N in increasing order
of length, starting from the minimum bound k (line 6). In particular,
if τi is one of the input types and τ is the desired output type, then
any accepting run ofN must contain at least as many transitions as
the shortest path between τi and τ in α(N ); hence, we do not need
to look for accepting runs below this threshold.

Now, given a target length k, we symbolically encode the k-
reachability problem of N as a propositional formula φ. In partic-
ular, formula φ from line 8 is satisfiable if and only if there exists
an accepting run of N of length k. Our symbolic encoding is sim-
ilar to previous SAT-based encodings of Petri nets [22, 31, 34], but
we make use of the observations from Sections 6.2 and 6.3. While
a full discussion of our symbolic encoding is beyond the scope of
this paper, we refer the interested reader to the extended version of
the paper [8].

Algorithm 3 Lazy symbolic path enumeration

1: procedure LAZYPATHGEN(N , τ1, . . . , τn, τ )

2: Input: Petri netN , input types τ1, . . . , τn,
3: output type τ
4: Output: An accepting run t ofN if one exists
5: πi := ShortestPath(α(N ), τi, τ ) . Lower bound
6: k := max(length(π1), . . ., length(πn))
7: while true do
8: φ := ENCODE(N , k) . Unfolding of length k
9: ψ := true

10: while true do
11: σ := MINIMIZE(Σicixi, φ ∧ ψ)
12: if σ = ⊥ then
13: break
14: if CHECK(σ) then
15: return Trace(σ)
16: ψ := ψ∧ BLOCK(σ)
17: k := k + 1

18: return ⊥

The inner loop in lines 10–16 of Algorithm 3 lazily enumerates
paths of length k in order of increasing cost, where the cost is
determined by some heuristic evaluation function. To generate the
“most-promising” path, we solve an ILP problem with objective
function Σicixi (line 11). Here, xi is a variable that is assigned
to 1 by our encoding if and only if component Ti is used in the
accepting run and to 0 otherwise. The costs ci used in the objective
function reflect the likelihood of component Ti being used in the
synthesized code—i.e., the smaller the ci, the more likely it is that
component Ti is useful. While there are many possible heuristics
for assigning costs to components, our current implementation uses
a similarity metric between the name of the desired method and the
documentation and name of each library component.8 Going back
to our running example from Section 2, this methodology assigns a
lower cost to a component called setToRotate compared to another
component called invert because the former component is likely
to be more “similar” to the desired rotate method.

Once we obtain a satisfying assignment σ of φ that minimizes
our heuristic objective function, we ask an “oracle” to confirm or
refute it (lines 14–15). In this context, the oracle completes the
code sketch given by σ (see Section 7) and runs the test cases. If
σ does not correspond to a satisfactory code sketch, we need to
“block” this assignment in future iterations by adding a blocking
clause ψ. In the simplest case, a blocking clause can be obtained
as the negation of σ; however, our algorithm generates a stronger
blocking clause by performing a particular form of partial-order
reduction [3, 36] on the current path p. In particular, if p contains
two consecutive calls to methods f and g that cannot be called with
the same arguments, then our algorithm also blocks variants of this
path where calls to f and g have been re-ordered.

7. Code Synthesis from Paths
Given an accepting run r of the Petri net described in Sections 5
and 6, to synthesize a suitable program from r, we still need to
perform the following tasks:

(a) Use the transitions in r to create a code sketch Σ

(b) Fill the holes in Σ with program variables

8 We refer the interested reader to the extended version of the paper [8] for
a more detailed discussion of our similarity metrics.



Each transition in r corresponds to either an invocation of a
method foo from an API or a special κ transition. When synthesiz-
ing code, we ignore clone transitions and only consider API calls.
In particular, if some API method foo used in r has n input param-
eters, the code sketch for foo’s invocation looks like the following:

// if m is a virtual method
T_o out = #1.foo(#2, #3, #4, ..., #n+1)

// if m is a static method or constructor
T_o out = foo(#1, #2, #3, ..., #n)

In general, if trace r is of length l and contains k clone transi-
tions, the corresponding synthesized program contains l − k + 1
lines, where the first l−k lines correspond to API calls and the last
line is a return statement of the form return #m (when the program
does not return void).

Now, given sketch Σ, we need to instantiate each hole with a
program variable. To achieve this goal, we generate a propositional
formula φ that encodes well-formedness requirements. In partic-
ular, our encoding introduces Boolean variables h#i

v that are true
when program variable v is used to fill hole #i. To ensure type
compatibility, we only introduce Boolean variable h#i

v if the type
of program variable v matches the type of hole #i. Furthermore,
because a program variable cannot be used before it is defined, we
only introduce h#i

v if v is a parameter or the result of an invocation
that appears before hole #i.

While our construction of the Boolean variables guarantees that
the holes will be filled in a type-compatible way, we still have to
ensure that no hole remains empty and that all variables are used.
Let V be the set of all program variables and H the set of all holes
in Σ. Let getV be a function that receives V and a hole h and
returns V ′ ⊆ V , where V ′ corresponds to all program variables
that can be placed in hole h. Similarly, let getH be a function that
receives H and a variable v ∈ V and returns H ′ ⊆ H , where
H ′ corresponds to all holes where v can be placed. Using these
definitions, we generate a formula φ as follows:

(1) Each hole is filled with one program variable:

∀#i∈H∀v∈getV (V,#i)

∑
h#i
v = 1

(2) Each program variable is used at least once:

∀v∈V∀#i∈getH(H,v)

∑
h#i
v ≥ 1

Example 5. Consider the code sketch in Section 4. From require-
ment (1), we generate the following constraints:

h#1
pt = 1 ; h#2

pt = 1 ; h#3
t = 1 ; h#4

angle + h#4
x + h#4

y = 1

h#5
angle + h#5

x + h#5
y = 1 ; h#6

angle + h#6
x + h#6

y = 1

h#7
obj = 1;h#8

t = 1 ; h#9
obj + h#9

a = 1

Similarly, from requirement (2), we generate the constraints:

h#1
pt ≥ 1 ; h#2

pt ≥ 1 ; h#3
t ≥ 1

h#4
angle + h#5

angle + h#6
angle ≥ 1 ; h#4

x + h#5
x + h#6

x ≥ 1

h#4
y + h#5

y + h#6
y ≥ 1 ; h#7

obj + h#9
obj ≥ 1 ; h#9

a ≥ 1

Because each satisfying assignment σ to φ corresponds to a
well-typed completion of sketch Σ, we can now run the user-
provided test cases on Σ[σ]. If any test fails, we then obtain a
different instantiation of the sketch by obtaining a model of φ∧¬σ
in the next iteration.

8. Implementation
We have implemented our synthesis algorithm as a new tool called
SYPET, which consists of approximately 10,000 lines of Java code.
SYPET uses the Sat4j [5] tool for solving SAT problem, and can
be instantiated with any Java API (or combinations of APIs) to
synthesize straight-line Java code. Soot [50] is used to parse the
.jar files of the libraries and extract the signatures of classes and
methods, which will be converted to places and transitions in the
Petri-net, respectively.

Because many Java libraries use parametric polymorphism, our
implementation also supports generic types. Our handling of poly-
morphism is similar to template instantiation in C++. For instance,
given a polymorphic type of the form Foo<? extends A> and sub-
classes B, C of A, we generate three different copies of type Foo,
namely FooA, FooB, and FooC, each of which corresponds to a dif-
ferent place in the Petri net. We also handle polymorphic methods
in a similar way and create different transitions for each instantia-
tion of a polymorphic API component.

As mentioned in Section 6, SYPET uses a symbolic encoding of
the Petri-net-reachability problem, but our implementation differs
from Algorithm 3 in one small way. Given a Petri net N , recall
that Algorithm 3 explores all reachable paths of length k before
moving on to paths of length k+ 1. While this approach simplifies
our presentation, it is not a very good implementation strategy:
Because there can be many paths of length k , we have found that a
better strategy is to explore different path lengths in a round-robin
fashion. In particular, our search strategy is parametrized by two
integers n,m: Given a starting path length k, we first explore m
paths of size k, and then move on to paths of length k + 1. After
exploring m paths each of length k, . . . , k + n, we go back to
exploring paths of length k. In our current implementation, we use
the values 2 and 100 for n and m, respectively.

9. Evaluation
To evaluate SYPET, we performed experiments that were designed
to answer the following questions:

1. How well does SYPET perform on component-based synthesis
tasks that involve Java APIs?

2. How many test cases does the user typically need to supply for
SYPET to succeed?

3. How complex are the programs synthesized by SYPET?

4. How does SYPET’s success rate compare with other tools for
component-based synthesis?

To answer these questions, we collected six widely-used Java
APIs: a math library (apache.commons.math), a geometry library
(java.awt.geom), a time/date library (joda-time), and text and
XML-related libraries (jsoup, w3c.dom and javax.xml). In addition
to being widely used, these libraries are reasonably large, contain-
ing 50–1215 classes and 751–9578 methods. The average number
of classes and components in each library is 528 and 4721, respec-
tively.

For each of these APIs, we collected a set of programming
tasks that require non-trivial interaction between different classes.
Our programming tasks come from two sources—namely, online
forums like stackoverflow and existing Github repositories. For
the former category, we manually curated common questions that
programmers typically ask about the relevant API. For the latter
category, we wrote a script to crawl over Github projects and filter
straight-line methods that use one of the aforementioned APIs. A
brief summary of each programming task is provided under the
“Description” column in Figure 8.



Lib ID Description Synthesis
Time (s) #Paths #Progs #Tests #Comps #Holes

ap
ac

he
m

at
h

1 Compute the pseudo-inverse of a matrix 6.78 255 509 1 3 4
2 Compute the inner product between two vectors 0.25 1 1 1 3 5
3 Determine the roots of a polynomial equation 0.64 7 13 1 3 5
4 Compute the singular value decomposition of a matrix 0.16 1 1 1 3 4
5 Invert a square matrix 0.63 16 31 1 3 4
6 Solve a system of linear equations 28.25 790 1,605 1 6 8
7 Compute the outer product between two vectors 2.12 14 48 1 4 6
8 Predict a value from a sample by linear regression 2.56 25 51 2 5 5
9 Compute the ith eigenvalue of a matrix 164.60 3,197 7,636 2 6 8

ge
om

et
ry

10 Scale a rectangle by a given ratio 1.37 78 271 1 4 7
11 Shear a rectangle and get its tight rectangular bounds 1.76 79 280 1 4 7

12 Rotate a rectangle about the origin by the specified num-
ber of quadrants 0.32 9 21 1 4 6

13 Rotate two dimensional geometry object by the specified
angle about a point 2.01 67 226 2 5 8

14 Perform a translation on a given rectangle 0.72 41 150 1 4 7

15 Compute the intersection of a rectangle and the rectangu-
lar bounds of an ellipse 0.08 1 1 1 3 5

jo
da

16 Compute number of days since the specified date 4.55 78 156 2 3 4

17 Compute the number of days between two dates consid-
ering timezone 174.16 774 4,736 3 4 6

18 Determine if a given year is a leap year 35.32 306 613 3 4 5
19 Return the day of a date string 0.74 1 1 2 3 5
20 Find the number of days of a month in a date string 35.23 175 531 2 4 6
21 Find the day of the week of a date string 47.27 126 376 2 4 6
22 Compute age given date of birth 7.90 142 288 3 3 4

js
ou

p,
do

m
,t

ex
t

23 Compute the offset for a specified line in a document 0.31 3 5 1 3 5
24 Get a paragraph element given its offset in the a document 1.14 33 65 1 4 6
25 Obtain the title of a webpage specified by a URL 10.29 277 553 1 3 4
26 Return doctype of XML document generated by string 0.87 9 17 1 6 7
27 Generate an XML element from a string 0.89 26 51 1 6 7
28 Read XML document from a file 0.11 1 1 1 3 4
29 Generate an XML from file and query it using XPath 16.33 20 44 1 7 10

30 Read XML document from a file and get the value of root
attribute specified by a string 0.29 3 5 1 5 7

Figure 8. Summary of experimental results

9.1 SYPET Performance
Setup. To evaluate SYPET on these programming tasks, we pro-
vided a signature of the desired method as well as one or more test
cases. We also specify which libraries are used for each program-
ming task, e.g., joda.time, apache.commons.math, etc. However,
it is easy to configure the tool to use any set of libraries. For the
benchmarks taken from Github, we used the existing method sig-
nature (and test cases if available). For most stackoverflow bench-
marks, method signature and test cases were not available in the
forum discussion, so we wrote them ourselves. For all benchmarks,
we initially provided a single test case and used SYPET to synthe-
size an implementation that works on that test case. We then man-
ually inspected the synthesized code and provided an additional
test case if the synthesized code did not perform the desired func-
tionality. We then repeated this process until the code produced by
SYPET met our expectations.

The results of our evaluation are summarized in Figure 8 (For
more detailed results, please refer to the extended version of the
paper [8]). All experiments are conducted using Oracle HotSpot
JVM 1.7.0 75 on an Intel Xeon(R) computer with an E5-2640 v3
CPU and 32G of memory, running Ubuntu 14.04.

Performance and statistics. As shown in the “Synthesis Time”
column of Figure 8, SYPET can successfully synthesize all bench-

marks in an average of 2.33 seconds.9 Note that the synthesis time
neither includes compilation time nor the overhead of parsing the
.jar files with Soot. Compilation has an average overhead of 53% on
the running time and Soot takes an average of 7.00 seconds to parse
the Java libraries. The “#Paths” column indicates the total number
of code sketches generated by our tool. Note that this number is
equivalent to the number of explored paths (accepting runs) of the
Petri net. On average, SYPET explores 29 different code sketches
before it identifies the correct sequence of method calls. Further-
more, each iteration of the tool is quite fast; SYPET finds an ac-
cepting run of the Petri net in 0.08 seconds on average. The col-
umn labeled “#Progs” indicates the total number of programs gen-
erated by SYPET before finding the correct program. On average,
SYPET explores 61 programs before generating an implementation
that performs the desired functionality.

While SYPET synthesizes 73% of the benchmarks in < 10
seconds and 93% in < 60 seconds, a few benchmarks (e.g., 9
and 17) take longer. We have manually inspected these outliers
and found that the user-provided signatures for these examples
match the signature of many API components. Hence, SYPET ends

9 If there are multiple rounds of user interaction to create additional test
cases, we report statistics for the last one. We calculate averages using
geometric mean.
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Figure 9. Comparison with other tools

up exploring hundreds of code sketches before it synthesizes the
intended one.

Usability. In addition to successfully synthesizing the desired
code in a reasonable amount of time, we also see that SYPET does
not require many test cases from the user. In particular, as shown
under the “#Tests” column in Figure 8, SYPET requires 1 test case
on average, with the maximum number of test cases being 3.

Synthesized programs. The “#Comps” and “#Holes” columns
in Figure 8 provide information about the synthesized programs. In
particular, “#Comps” reports the number of components in the code
sketch (in terms of the length of the accepting run), and “#Holes”
indicates the number of holes. The average synthesized program
contains 4 components and 6 holes. These statistics reinforce our
earlier claim that SYPET combines the practicality of API comple-
tion tools with the power of synthesis tools: While programs syn-
thesized by SYPET are moderately sized, straight-line code frag-
ments, SYPET can handle two orders of magnitude more compo-
nents than previous synthesis tools [15, 16, 26, 38]. On the other
hand, while API-completion tools [12, 19, 20, 30] can handle thou-
sands of components, they can typically only suggest very small
(single-line) code snippets.10

9.2 Comparison with Other Tools
To validate our claim that SYPET compares favorably with existing
synthesis tools that do not require logical specifications, we also
compare SYPET with CODEHINT and INSYNTH. CODEHINT is a
state-of-the-art type-based synthesis tool, and, similar to SYPET,
it takes as input a method signature and test case. In contrast, IN-
SYNTH is a type-directed API-completion tool that can synthesize
expressions of a given type.

The results of our comparison are provided in Figure 8, which
shows how many benchmarks were synthesized by each tool within
a 30-minute time limit. For both CODEHINT and INSYNTH, we
consider the synthesis task to be successful if the correct implemen-
tation is among any of the suggested code snippets. While SYPET
is able to synthesize all 30 benchmarks, CODEHINT synthesizes 13
benchmarks and INSYNTH can synthesize just one of them.

Because INSYNTH is mainly intended to be used as a single-
line code-completion tool, we also performed a second (simpler)
experiment using INSYNTH. Specifically, given the full implemen-
tation of each benchmark except a single line of code, we tried to
use INSYNTH to complete the right-hand-side of each assignment
one at a time. We considered INSYNTH to be successful if it was
able to complete the right-hand-side of all assignments used in the

10 For instance, 94% of the benchmarks used in evaluating InSynth [19, 20]
(a state-of-the-art completion tool) involve a single API call.
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Figure 10. Hypergraph examples

implementation. However, even for this easier task, InSynth was
only able to solve 14 out of the 30 benchmarks.

10. Design Choices and Comparison with
Hypergraph-Based Solutions

As mentioned in Section 1, the synthesis algorithm underlying
SYPET can be seen as a generalization of the algorithm used in
PROSPECTOR, which employs standard graph-reachability analysis
to perform API completion [30]. Specifically, given a source type
τin and a target type τout, PROSPECTOR constructs a graph in which
nodes represent types and an edge labeled f from τ to τ ′ indicates
that f is a unary function of type τ → τ ′. Hence, a path from τin to
τout corresponds to a sequence of method calls that can be used to
solve the synthesis problem defined by (τin, τout).

SYPET solves a more general synthesis problem than PROSPEC-
TOR because the underlying components do not have to be unary
functions. Moreover, to tackle the complexities that arise from this
generalization, SYPET uses a more powerful graph representation,
namely Petri nets. However, because Petri-net-reachability analy-
sis is a hard problem (PSPACE complete), the reader may wonder
whether Petri nets are overkill and whether some other internal rep-
resentation might be more suitable. While it should be clear that
standard graphs are not sufficient for faithfully representing multi-
argument functions, one obvious alternative is to use directed hy-
pergraphs instead of Petri nets. We have carefully considered this
alternative, and, in this section, we explain why we believe Petri
nets are a better match for this problem than hypergraphs, both in
terms of expressiveness as well as overall scalability of synthesis.

Background on hypergraphs. Hypergraphs generalize graphs by
allowing edges that can connect any number of vertices. Specifi-
cally, a directed hypergraph G is a pair (V,E) where V is a set of
vertices, andE is a set of hyperedges. A hyperedge is a pair (T,H)
where tail T and head H are subsets of V . A B-hyperedge is a spe-
cial kind of edge where the headH is a singleton. Hypergraphs that
only contain B-hyperedges are called B-hypergraphs.

Example 6. Figure 10 shows two B-hypergraphs. In Figure 10(a),
e3 is a hyperedge with tail {B,C} and head {D}. Intuitively, to
reach node D, nodes B and C must both be reachable.

Definition 3. (Simple path) A simple path v0  vn is a sequence
v0, e1, v1 . . . en, vn such that vi ∈ head(ei), vi ∈ tail(ei+1) and
each hyperedge ei is distinct.

For example, in Figure 10(a), A, e1, B, e3, D is a simple path.

Definition 4. (B-path) Given B-hypergraph G, a B-path P from
node s to node t is a minimal subgraph (VP , EP ) such that s, t ∈
VP and ∀v ∈ VP − {s}, there exists a simple path s v in P .

In this definition, if an edge e is chosen to be in EP , then
head(e) and tail(e) must also be part of VP .

Example 7. The graph in Figure 10(a) is a B-path. In contrast,
Figure 10(b) is not a B-path for two reasons: First, there is no
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Figure 11. Hypergraph for Example 8

simple path from A to B. However, even if we add an edge e with
tail A and head B, this graph would still not be a B-path because
it is not minimal (there is an extra edge from B to E).

10.1 Using Hypergraphs for Synthesis
In this section, we describe an alternative solution based on hyper-
graphs for solving the component-based synthesis problem.

The key idea is to construct aB-hypergraph where nodes repre-
sent parameters and return values, and B-edges represent function
calls (or assignments). Specifically, each function f corresponds to
aB-hyperedge, where the tail includes f ’s parameters and the head
is the singleton representing f ’s return value. In addition, there is
an edge from every return node of type τ to all parameter nodes of
type τ . The latter class of edges allow us to express that the return
value of one procedure may feed as input to another procedure.

Example 8. To illustrate this construction, let us consider the
following very simple API with classes Point and CPoint:

class Point { int getX(); int getY(); }
class CPoint { CPoint(int x, int y, Color c); }

Figure 11 shows the hypergraph we construct for this synthesis
problem (for now, ignore the red nodes labeled S and T , and
the initial argument nodes a1 and a2). Here, the constructor for
CPoint corresponds to a hyperedge whose tail has three elements,
namely v3, v4 and v5, representing its arguments. The dashed
edges represent possible flows from return values of one function to
the arguments of another. For example, there is an edge from r1 to
v3 and v4 because the return value of getX has the same type as
the first two argument of the CPoint constructor.

Now, given such a hypergraph G and the signature for target
function f , we obtain a final graphG′ by adding two special source
and target nodes, namely S and T , to G. Additionally, for each
argument of type τ in f , we create a node that corresponds to that
argument and add an edge from that node to all parameter nodes
of type τ (as well as parameters of type void). Similarly, if f has
return value τ ′, we then add an edge from all other return nodes
of type τ ′ to T . Finally, to solve the synthesis problem defined by
hypergraph G′, we find a B-path from S to T and translate this
path into a sequence of method calls.

Example 9. Suppose that we want to synthesize a function makeC-
Point, which takes an argument of type Point and another ar-
gument of type Color. Figure 11 shows the corresponding hyper-
graph for this synthesis problem. Note that this graph contains aB-
path from S to T , which we can obtain by deleting the red dashed
edges (between r1, v4 and r2, v3).

10.2 Problems with the Hypergraph Approach
At first glance, the strategy outlined in Section 10.1 may seem
appealing for multiple reasons: First, there exist polynomial algo-
rithms for finding aB-path in a hypergraph [13, 29, 33]; hence, it is
tempting to conclude that the hypergraph approach is more scalable
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Figure 12. Hypergraph for Example 10

compared to our Petri-net-based algorithm. Second, the hypergraph
solution does not require two separate sketch generation and com-
pletion phases; thus, the algorithm seems conceptually simpler. De-
spite these apparent advantages of hypergraphs, we now point out
some serious drawbacks of this approach.

Advantages of Petri nets in theory. First, it turns out that the
strategy discussed in Section 10.1 is significantly less expressive
compared to the algorithm based on Petri nets. In particular, there
are many programs that can be synthesized by our approach, but
not using the hypergraph-based algorithm.

Example 10. Consider a Point API, which has an empty construc-
tor, as well as two setter methods, setX and setY. Suppose that we
want to implement a method called makePoint, which takes two
integers, x and y, and returns a Point. Clearly, we can implement
this method using this API as follows:

Point makePoint(int x, int y) {
Point p = new Point();
p.setX(x); p.setY(y);
return p; }

However, this simple program cannot be synthesized using the ap-
proach described in Section 10.1. To understand why, consider the
hypergraph from Figure 12, which shows the hypergraph associ-
ated with this synthesis problem. Note that there is no B-path from
S to T that involves the setX and setY methods.

As this example illustrates, the hypergraph approach outlined
in Section 10.1 does not work well when the underlying compo-
nents have side effects. The reader may be tempted to work around
this problem by pretending that setter methods return the receiver
object. Unfortunately, this work-around solution creates additional
difficulties: First, one would need to statically analyze the underly-
ing components to determine which parameters are modified. How-
ever, since the implementation of the API may be quite complex,
we believe this strategy is unrealistic. Second, even if this kind of
information was available, the hypergraph representation would no
longer be a B-hypergraph (since functions can now have multiple
“return values”). As a result, the corresponding reachability prob-
lem would now become much harder.

In addition to facing difficulties in the presence of impure com-
ponents, the hypergraph-based solution also has other limitations.
For example, the solution outlined in Section 10.1 can also not be
used to synthesize methods that call the same procedure twice.

Example 11. Consider an API with a Point constructor, which
takes two integers, and a distance method, which computes the
distance between two points. The following implementation of
computeDist cannot be synthesized by the hypergraph approach,
because it requires calling the Point constructor twice:



int computeDist(int x1, int y1, int x2, int y2) {
Point p1 = new Point(x1, y1);
Point p2 = new Point(x2, y2);
return p1.distance(p2);

}

Finally, in addition to not being able to generate many valid
programs, the hypergraph approach also generates many redundant
programs that have little chance of being correct. Because the
hypergraph approach does not enforce that all inputs are used,
many redundant programs must be compiled and checked against
the provided test cases. 11

Advantages of Petri nets in practice. So far, we argued that the
Petri-net approach has significant advantages over the hypergraph
approach in theory. Naturally, the reader may wonder if these lim-
itations actually matter in practice. To answer this question, we
also implemented the hypergraph-based algorithm, and provide an
empirical comparison between the two algorithms on the bench-
marks from Section 9. For our hypergraph-based implementation,
we use the halp package [4], which can be used to enumerate k
shortest hyperpaths. Specifically, the halp package implements a
polynomial-time algorithm [33] for finding the k shortest B-paths
in a hypergraph G. The complexity of this algorithm is known to
be O(kn(m log n+ size(G))).12

Figure 13 compares the number of benchmarks that can be
solved within 30 minutes by the hypergraph approach with those
that can be solved within the same time limit by SYPET. As shown
in Figure 13, SYPET can synthesize all 30 benchmarks, while the
hypergraph approach can only synthesize 8 benchmarks. Further-
more, even when we restrict ourselves to the 8 benchmarks that
can be solved by both approaches, SYPET’s average synthesis time
is 2.1 seconds, while the algorithm based on hypergraphs requires
355.9 seconds.

Further discussion. The reader may have noticed the discrep-
ancy between our Petri-net representation, where nodes correspond
to types, and the hypergraph formalism, where nodes represent
parameters and return values. A natural question to consider is
whether it is possible to consider a more compact hypergraph rep-
resentation where nodes represent types. While this is possible,
the alternate, more compact representation would be a kind of
“hyper-multigraph” where we have multiple edges between a pair
of nodes. For example consider a function f that takes two integers
and returns a string. In this case, we would have a hyperedge whose
tail is the multi-set { int, int }. Furthermore, if there is another
function g with the same signature as f , then there would be mul-
tiple hyperedges between the node int and string. We chose to
present the representation from Section 10 because we believe it is
simpler and easier to understand. Nevertheless, the more compact
hyper-multigraph representation still suffers from the same issues
that we discussed in Section 10.2 in addition to new challenges
(e.g., a path in this representation no longer corresponds to a unique
sketch, but a set of possible sketches because a path does not nec-
essarily impose a total order on the sequence of calls).

11 There is a way to enforce this property on the hypergraph representation,
but the problem then reduces to solving the Subtree Constrained Hyperpath
problem, which is known to be NP-hard [33].
12 k is the number of B-paths; n and m are the number of vertices and
hyperedges in H , respectively; and size(G) is the size of G given by the
sum of the cardinalities of its hyperedges.
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11. Related Work
SYPET is related to a long line of work on program synthesis and
API completion. Here, we survey approaches that are most closely
related to ours.

Component-based synthesis. Component-based synthesis typi-
cally refers to the generation of loop-free code from a database
of available “components.” Such techniques have been used in a
variety of applications, including bit-vector algorithms [15], deob-
fuscators [26], geometry constructions [16], and string and data-
structure transformations [9, 38]. Most of these approaches require
logical specifications of the underlying components, which are of-
ten not available for real-world Java APIs. While some of these
systems (e.g., DBS [38]) can synthesize more complex programs
than SYPET, our approach has the advantage of being able to han-
dle orders of magnitude more components.

Among synthesis tools, SYPET is most closely related to CODE-
HINT [12]. Similar to SYPET, CODEHINT can also handle real-
world Java APIs and utilizes user-provided test cases. However,
unlike SYPET and most other synthesis tools, CODEHINT synthe-
sizes and evaluates code at run time and uses a probabilistic model
to guide the search towards expressions that are more often used
in practice. Because of CODEHINT’s similarity to SYPET in terms
of its user-facing interface, we were able to empirically compare
CODEHINT with SYPET. Our evaluation in Section 9 shows that
SYPET can synthesize a larger set of programs than CODEHINT.

API completion. Code completion refers to the generation of
small code snippets involving API calls [18–20, 24, 30, 37, 39, 41,
49, 53]. While the line between component-based synthesis and
API completion is rather blurry, code-completion tools typically
expect a partial program and provide a ranked list of (single-line)
completions. Hence, code snippets generated by API completion
tools are typically much simpler compared to synthesis tools.

INSYNTH is a recent API-completion tool that uses theorem
proving to compute type inhabitants [19, 20]. While INSYNTH
handles higher-order functions and polymorphism quite elegantly,
it cannot synthesize multi-statement code snippets that involve
impure functions. As discussed in Section 9, INSYNTH can only
synthesize one example out of the 30 benchmarks used in our
evaluation.

Another recent code-completion tool is SLANG [39] which pre-
dicts probabilities of API calls using statistical methods. Because
SLANG is based on machine learning, it requires training data and
is therefore only applicable when the target API has a significant
number of clients. However, we believe that the SLANG approach
is complementary to ours. In particular, we could use a SLANG-like
approach to prioritize some reachable paths in the Petri net over
others.



Our approach is also related to type-directed completion, in
which users issue queries using partial expressions [37]. An ex-
ample of such a partial expression is ?(img, size), which queries
for API components that are likely to use variables img and size.
While extremely useful in IDEs, this approach can only synthesize
single-line code snippets rather than entire methods.

Another tool that is related to automated API completion is
MATCHMAKER, which synthesizes “glue code” to allow frame-
work classes to interact with each other [53]. Unlike SYPET where
the query is a method signature, MATCHMAKER queries are of the
form “How can I get type A and type B to interact with each other?”
Because MATCHMAKER uses dynamic traces, the techniques un-
derlying this tool are very different from SYPET.

Programming by Example. Similar to many programming-by-
example (PBE) approaches, SYPET requires users to provide partial
specifications as input-output examples [2, 9, 14, 17, 21, 35, 44].
While most PBE approaches target end-users who cannot program,
SYPET is intended for programmers. In contrast to most PBE ap-
proaches that target a specific domain (like string or list manipula-
tions), SYPET can be used for any API, although it can only syn-
thesize straight-line programs. Similar to SYPET, the DBS tool [38]
is domain-agnostic and can be viewed as a meta-synthesis tool for
generating example-guided synthesizers. While DBS can synthesize
more complex programs with loops and conditionals, its scalability
depends on a small set of components chosen by a domain expert.

Program Sketching. In sketch-based synthesis [25, 45–48], the
programmer writes a draft program containing missing expres-
sions. The pioneer of this approach is the SKETCH system [45],
which uses counterexample-guided inductive synthesis (CEGIS) to
complete the holes. Unlike SKETCH, which expects the program-
mer to write the program sketch, SYPET automatically generates
sketches. However, the program sketches generated by SYPET are
always straight-line programs, where the holes are unknown func-
tion arguments. Furthermore, while the holes in SKETCH always
correspond to constants, unknown expressions in SYPET are vari-
ables.

Graph reachability for synthesis. The main novelty of our ap-
proach is the use of Petri nets in the context of type-directed synthe-
sis. Petri nets are a widely-used modeling tool in the context of con-
current and distributed systems, and much existing work focuses on
their properties and analysis [32]. To the best of our knowledge, the
only previous application of Petri nets in program synthesis is for
deadlock avoidance in concurrent C programs [52].

SYPET is closely related to the PROSPECTOR tool for synthe-
sizing “jungloid code snippets” [30]. A jungloid is a composition of
API calls, where each method takes a single argument and returns a
non-void value. Similar to our technique, PROSPECTOR constructs
a graph from method signatures and looks for a reachable path be-
tween the source and target. As mentioned earlier, our Petri-net for-
mulation can be viewed as a generalization of the jungloid graph.

The DENALI tool for super-optimization performs graph reach-
ability analysis to generate more efficient, but semantically equiv-
alent code [27]. DENALI uses E-graphs to represent all possible
ways of computing a term and uses a SAT solver to find the most
efficient execution strategy. Similar to DENALI, SYPET also uses a
SAT-based approach to solve the graph-reachability problem. How-
ever, both the application domains as well as the underlying graph
representations are different.

Reinking et al. [40] have recently proposed an approach that
uses graph reachability for API synthesis and repair. Similar to
INSYNTH, this approach cannot synthesize multi-statement code
snippets involving impure methods. While we tried to empirically
compare SYPET against the implementation of Reinking et al., we
were not able to synthesize any of our benchmarks using their tool.

12. Conclusion
We have proposed a new type-directed approach to component-
based program synthesis. Our approach constructs a Petri net from
the signatures of API components and generates a code sketch
by identifying accepting runs of the resulting Petri net. The code
sketches are then completed using SAT-based reasoning and tested
on the user-provided examples.

We evaluated SYPET on a collection of programming tasks
involving six widely-used APIs. Our evaluation shows that SYPET
can synthesize the desired program in a practical manner using few
test cases. Our tool is publicly available [1] and can be easily used
by programmers to synthesize complex APIs from test cases.
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Appendix A: Proofs of Theorems
Proof of Theorem 1.

Proof. Let M ′ be a configuration (marking) such that M ′(p) >
k + 1 for some place p, and suppose that t′ = T1, T2, . . . , Tn
is a sequence of transitions that can be fired starting from M ′.
Now, let M be another configuration such that M(p) = k + 1
and for all other p′, M ′(p) = M(p). We will show that trace
t = T1, κ

c1 , T2, . . . , κ
cn , Tn can be fired from M , where each ci

is the number of p tokens consumed by Ti and κ denotes a generic
clone transition. Because we consider these two paths t, t′ to be
equivalent, this property implies any trace that can be generated
from M ′ can also be generated from M .

We will prove this claim using induction, using the follow-
ing (strengthened) inductive hypothesis. If T1, . . . , Ti is reachable
from M ′ then (i) T1, κ

c1 , . . . , Ti, κ
ci is reachable from M and (ii)

Mi(p) = k + 1 and Mi(p
′) = M ′i(p

′) for all p′ 6= p. (Here, we
use Mi to denote the marking right before transition Ti+1.)

For the base case, we have i = 1. Because T1 is reachable from
M ′ in one step, we can fire T1 in M ′. Now let p1, . . . , pm be the
predecessors of T1 with edge weightsw1, . . . , wm. For any pi 6= p,
M has the same number of tokens as M ′. Furthermore, if pi = p,
then wi ≤ k. Hence, T1 is also enabled at M . Furthermore, we
have at least 1 token left at p after taking transition T1, so the clone
transition remains enabled after T1. Because the clone transition
does not decrease the number of tokens, it remains enabled, so we
can execute it as many times as we want. Hence if T1 is reachable
from M ′, then T1, κ

c1 is reachable from M .
Now, we’ll prove property (ii) for the base case. Suppose tran-

sition t consumed c1 number of p tokens. Right before T2, we still
have k + 1 tokens at p because we fired c1 clone transitions. Fur-
thermore, for all other places p′, the number of tokens remains the
same because they were the same in M,M ′ and we took the same
transition T1 in both traces.

For the inductive step, we show the property for i+ 1. Suppose
we take transition Ti+1 in t′. By the inductive hypothesis, we know:

1. T1, κ
c1 , . . . , Ti, κ

ci is a prefix of t and
2. M ′i(p

′) = Mi(p
′) for p′ 6= p and Mi(p) = k + 1

Observe that if Ti+1 is enabled at M ′i , then it must also be
enabled atMi using (2) and the same reasoning as in the base case.
Furthermore, we will have at least one p token left after executing
Ti+1, so the clone transition is again enabled. Now, we execute as
many clones as Ti+1 consumed p tokens, so Mi+1(p) will remain
k + 1. For all other places p′, we still have Mi+1(p′) = M ′i+1(p′)
because they were initially the same, and Ti+1 consumed an equal
number of tokens.

Proof of Theorem 2.

Proof. Let p be any path that starts at markingM and ends atM ′ in
R(N ). We will prove that M ′(τ∗) > 0 for some place τ∗ 6= void

that is reachable from τ ′ in α(R(N )). Because τ∗ is reachable
from τ ′ in α(R(N )), we have τ ′ 6= τ . Furthermore, because M∗

must assign 0 to τ∗, this property implies that no path starting at
M can end in M∗.

The proof is by induction on the length of path p. For the base
case, we have length(p) = 0 (i.e., M ′ = M ). Because M(τ ′) > 0
and because τ ′ is reachable from itself, the property holds in the
base case.

For the inductive step, let us consider a path p of length k + 1
that ends in M ′′, and let p′ be the prefix of p of length k. By the
inductive hypothesis, p′ ends in a marking such that M ′(τ∗) > 0
for some place τ∗ reachable from τ ′ in α(R(N )). There are two
possibilities: We either fire a transition f that (i) has τ∗ as its

predecessor or (ii) does not have τ∗ as its predecessor. In the latter
case, M ′′(τ ′) > 0 because we did not consume any tokens of τ∗,
so the property holds. For case (i), f consumes at least one token
of τ∗ but produces at least one token at some other place τ ′′, so
we have M ′(τ ′′) > 0. Because τ ′′ is reachable from τ∗, it is also
reachable from τ ′ in α(R(N )). Furthermore, τ ′′ cannot be void;
otherwise, this would imply that τ is reachable from τ ′ in α(N )
because every type is reachable from void. Because we have shown
that M ′(τ ′′) > 0 for some τ ′′ 6= void, the property also holds in
the inductive step.

Appendix B: Symbolic Encoding of Petri Net
Given a Petri net N , there are several ways to encode the reacha-
bility problem as a propositional formula [6, 22, 31, 34]. One ap-
proach is to view the reachability problem as a planning problem [7,
23]. A planning problem using the standard STRIPS propositional
formalism [10] is defined as a four-tuple (A,O, I,G) where A is a
set of atoms, O is a set of operators or actions, and I and G corre-
spond to the initial and goal states, respectively. An operator o ∈ O
is defined as triple o = (pre, del, add) where pre is the set of pre-
conditions for an action o to be fired, del are the negative effects
of firing o and add are the positive effects of firing o. A state of
the planning problem is an element of 2A. If o can be fired, then
this will lead to a new state o(s) = (s \ del) ∪ add. A solution of
length n to a planning problem corresponds to finding a sequence
of actions o1, . . . , on such that I enables o1, oi enables oi+1 with
1 ≤ i < n and on enables G.

The reachability problem of a Petri net N = (P, T,E,
W, M0) can be seen as finding a plan of the STRIPS instance
(P, T,M0,M

∗). Given a predefined plan length of l, our goal is
to build a 0-1 ILP formula φ that encodes all possible plans of that
length. As Boolean variables, we consider the state of each place
{wstp | p ∈ P} and each transition {stf | f ∈ T} for each time step
t ∈ L, where L is the set of all time steps between 0 and l. For each
place p, we also consider the possible number of tokens w that can
be in p at each time step t. Note that by Theorem 1, the number of
tokens in each place p is bounded by the maximum weight of the
outgoing edges from p. Let max(p) denote the maximum number
of tokens at place p.

For x ∈ {P ∪ T}, let •x = {y ∈ P ∪ T | (y, x) ∈ E}
be the preset of x and x• = {y ∈ P ∪ T | (x, y) ∈ E} the
postset of x. A transition f ∈ T is defined as f = (pre, del, add),
where pre corresponds to the preconditions on the markings of p ∈
•f at time step t to fire f , del corresponds to the decrease of the
markings of p ∈ •f , and add corresponds to the increase of the
marking of p ∈ f• at time step t + 1 after firing f . A function
m : P × L → N denotes the marking of a place p ∈ P at time
step t ∈ L. This notion can be extended to consider the marking
of p after firing a transition f . A function m′ : P × T × L → N
defined asm′(p, f, t) = m(p, t)−|{p} ∩ •f |+ |{p}∩f•| denotes
the marking of a place p at time step t after firing a transition f .

For a transition f to be fired at time step t, we need to know
which places p ∈ •f have enough resources. This set is given by a
function e : T × L→ P defined as e(f, t) =

∧
p∈•f

m(p)stp.
Using the previous definitions, we can now present the con-

straints that encode the reachability problem as a propositional for-
mula φ:
(1) Exactly one transition f is fired at each time step t:

∀l−1

t=0

∑
f∈T

stf = 1



(2) If a transition f is fired at time step t then it implies that all
places p ∈ f• will have their markings increased at time step t+1:

∀l−1

t=0∀f∈T (stf ∧ e(f, t)) =⇒ ∀p∈f•
m′(p,f,t)st+1

p

(3) If a transition f is fired at time step t then it implies that all
places p ∈ •f will have their markings decreased at time step t+1:

∀l−1

t=0∀f∈T (stf ∧ e(f, t)) =⇒ ∀p∈•f
m′(p,f,t)st+1

p

(4) If all outgoing transitions f from a given place p are not fired
at time step t then the marking in p does not change between time
step t and t+ 1:

∀l−1

t=0∀p∈P (
∧
f∈•p

¬stf ) =⇒ ∀max(p)

w=0 (wstp =⇒ wst+1
p )

(5) The initial state is defined by imposing the initial markings in
M0 at time step t = 0 as follows:∧

p∈M0

m(p,0)s0
p,

∧
p∈P\M0

¬(m(p,0)s0
p)

(6) Similarly, the goal state is defined by imposing the final marking
in M∗ at time step t = l as follows:∧

p∈M∗

m(p,l)slp,
∧

p∈P\M∗
¬(m(p,l)slp)

The above constraints can be encoded as pseudo-Boolean con-
straints and given to a 0-1 ILP solver. A satisfying assignment σ
to φ will assign one transition f to true at each time step. The se-
quence of transitions between time steps 0 and l − 1 will give a
trace r that can be converted to a program sketch Σ by ignoring the
clone transitions.

A Petri net N may have many feasible paths, and enumerating
all paths until the correct program sketch is found may take a
large number of iterations. We extend our 0-1 ILP encoding to
generate “most-promising” paths first by incorporating an objective
function

∑
f cfxf . Here, xf is a variable that is assigned to 1 by

our encoding iff transition f is used in the accepting run and to
0 otherwise. The relationship between the xf variables and the
state variables stf that describe the transitions is encoded by the
following additional constraints:
(7) If xf occurs then transition f must occur at some time step:

∀f∈T xf =⇒
l−1∨
t=0

stf

(8) If transition f occurs at some time step then xf must be as-
signed to 1:

∀l−1

t=0 s
t
f =⇒ xf

The costs cf used in the objective function express the likeli-
hood of a transition f being used in the synthesized code. While
there are many heuristics for assigning costs to transitions, our cur-
rent implementation uses a similarity metric between the name of
the desired method and the documentation of each library compo-
nent. For further details on how these costs are computed, we refer
the interested reader to Appendix C.

Appendix C: Similarity Metrics
In this appendix, we describe how to compute a similarity metric
between the desired method and each component in the library.
These similarity metrics are used to generate a relevance score for
each component, which in turn corresponds to a coefficient of the
objective function associated with the ILP encoding of the Petri net
(recall Section 6.4).

Suppose that the desired method is represented as a pair Q =
(M,D), where M denotes the name literal, and D denotes a se-
quence of words that are extracted from the method name. For in-
stance, for a method called computeAverage, we have M =compu-

teAverage, and D = { compute, average }. Similarly, we also
represent each component Pi in the library using a pair (mi, ci)
where mi denotes the component name, and ci denotes its corre-
sponding Javadoc.

Given a method Q and a component Pi, the similarity between
Q and Pi, denoted δ(Q,Pi), is a real-valued number in the range
[0, 1]. Intuitively, the larger the value of δ(Q,Pi), the more rele-
vant component Pi is to the desired method Q. SYPET prioritizes
components that are most relevant to Q according to our similarity
metric δ. Specifically, given a desired method Q = (M,D) and a
component Pi = (mi, ci) we define δ(Q,Pi) as follows:

δ(Q,Pi) = w1 · δm(M,mi) + w2 · δd(D, ci)

In other words, δ(Q,Pi) is a weighted average of two different
similarity metrics, taking into account Pi’s name and Javadoc,
respectively. Each weight wi is a real number in the range [0, 1]
satisfying the constraint w1 + w2 = 1.

The first similarity metric δm for names is straightforward and
defined as follows:

δm(M,mi) = 1− edit(M,mi)

len(M) + len(mi)

In this definition, the numerator edit(M,mi) is the standard edit
distance between the names M and mi, and the denominator is a
normalizer to ensure that δ(M,mi) is a real number in the range
[0, 1].

To compute the second similarity metric δd, we represent both
D and ci as text documents and measures their similarity using the
vector-space model. More specifically, our approach first represents
both the word-sequence partD of the desired method as well as the
Javadoc ci of component Pi as a set of words {W1, . . . ,Wn}.
When converting D and ci to its constituent words, our method
filters stopwords in the English language and performs standard
token-normalization tricks, such as removing plurals and verb
tenses.

Now, let ΣQ and ΣP represent the set of words extracted from
D and ci respectively, and let Σ = ΣQ ∪ ΣP be an ordered set,
referred to as the dictionary. The next step towards defining our
distance metric δd is to represent both D and ci as vectors in a
|Σ|-dimensional space. We view D and ci as text documents and
convert them to vectors using tf-idf weighting [42]. Specifically,
given text T , let α(T ) denote a vector ~v such that the i’th element
vi of ~v is assigned as follows:

vi = count(Σi, T ) · log
N

nΣi

Here, the term count(Σi, T ) represents the number of occurrences
of the i’th dictionary word Σi in text T . In contrast, N denotes the
total number of components in the library, and nΣi is the number
of components in which word Σi appears. Intuitively, vi represents
the frequency of word Σi in text T weighted by its importance.

Using this machinery, we now define δd as the standard cosine
distance between vectors α(D) and α(ci):

δd(D, ci) = cos(α(D), α(ci))

Finally, by scaling δ(Q,Pi) with a factor −100 and rounding
to the nearest integer, we convert the similarity to an integer-valued
cost in the range [−100, 0].



Lib ID Description SYPET
Time(s)

No
Pruning

No
Obj

Only
ILP

ap
ac

he
m

at
h

1 Compute the pseudo-inverse of a matrix 5 6.17 4.72 3.47
2 Compute the inner product between two vectors 0.45 0.7 0.95 0.61
3 Determine the roots of a polynomial equation 0.12 0.2 0.1 0.23
4 Compute the singular value decomposition of a matrix 0.2 0.31 0.21 0.28
5 Invert a square matrix 0.7 5.37 1.42 5.45
6 Solve a system of linear equations 33.75 42.49 T/O T/O
7 Compute the outer product between two vectors 2.48 118.29 6.41 705.97
8 Predict a value from a sample by linear regression 2.79 0.68 397.88 18.41
9 Compute the ith eigenvalue of a matrix 155.56 247.23 196.49 T/O

ge
om

et
ry

10 Scale a rectangle by a given ratio 0.74 1.55 0.56 1.34
11 Shear a rectangle and get its tight rectangular bounds 1.61 2.93 0.54 1.24

12 Rotate a rectangle about the origin by the specified num-
ber of quadrants 0.38 1.22 0.27 1.18

13 Rotate a two dimensional geometry object by the specified
angle about a point 2.29 4.16 3.75 5.77

14 Perform a translation on a given rectangle 0.77 1.52 0.53 1.28

15 Compute the intersection of a rectangle and the rectangu-
lar bounds of an ellipse 0.09 0.13 0.12 0.12

jo
da

16 Compute number of days since the specified date 4.11 5.85 225.99 48.07

17 Compute the number of days between two dates consid-
ering timezone 152.13 111.94 T/O 87.31

18 Determine if a given year is a leap year 19.06 75.02 58.82 T/O
19 Return the day of a date string 0.88 7.42 1.12 11.29
20 Find the number of days of a month in a date string 51.61 272.54 367.06 T/O
21 Find the day of the week of a date string 52.41 267.33 141.13 486.11
22 Compute age given date of birth 7.14 18.51 121.04 13.09

js
ou

p,
do

m
,t

ex
t

23 Compute the offset for a specified line in a document 0.27 0.43 0.4 0.69
24 Get a paragraph element given its offset in the document 1.42 5.6 1.08 3.91
25 Obtain the title of a webpage specified by a URL 9.34 15.53 3.91 11.78

26 Return the doctype of an XML document generated by a
string 1.06 1.36 0.7 1.42

27 Generate an XML element from a string 0.89 1.52 1.48 1.45
28 Read XML document from a file 0.16 0.14 0.12 0.13
29 Generate an XML from file and query it using XPath 1.07 5.12 1.12 204.34

30 Read XML document from a file and get the value of root
attribute specified by a string 0.37 0.42 0.3 0.49

Table 1. Summary of extended experimental results

Appendix D: Extended Results
The extended results of our evaluation are summarized in Table 1,
where we compare SYPET with its three different variants. In this
experiment, we set a timeout of 30 minutes.

The first column labeled “SYPET Times” shows the total run-
ning time of the SYPET tool, while the next three columns show the
running time of its three variants. In particular, the column labeled
“No pruning” shows synthesis time when we do not employ the
pruning optimization described in Section 6.3. As we can see from
Table 1, synthesis time with pruning is on average two times faster
than without pruning. This difference in time is closely related to
the size of the ILP encoding of the Petri net because without prun-
ing the ILP encoding can become much larger. For instance, while
benchmark 7 can be synthesized in 2.48 seconds by SYPET, it takes
118.29 seconds when we do not use pruning.

The column labeled “No Obj” shows synthesis time when we
have a symbolic encoding of the Petri net, but we do not use an ob-
jective function to optimize (i.e., all paths of length k are deemed

equally desirable). The results in Table 1 demonstrate that using a
heuristic cost function to guide the search has a significant posi-
tive impact on overall synthesis time: For example, while SYPET
can synthesize 93% of the benchmarks in under 60 seconds, the
“No Obj” variant of the tool can only synthesize 73% of the bench-
marks in under 60 seconds and reports a timeout on 2 out of 30
benchmarks.

The last column, labeled “Only ILP”, shows the synthesis time
when we do not employ any of the afore mentioned optimizations.
That is, we still symbolically encode the Petri net as an ILP prob-
lem, but without an objective function to optimize. Furthermore,
we also do not use the pruning optimization based on graph reach-
ability. As expected, the “Only ILP” variant performs significantly
worse on average and reports a timeout on 4 out of 30 benchmarks.
For instance, while benchmark 29 can be synthesized in 1.07 sec-
onds by SYPET, it takes 204.34 seconds when we do not use any
of the optimizations.
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