
Precise Reasoning for Programs Using Containers

Işıl Dillig Thomas Dillig Alex Aiken
Stanford University

Işıl Dillig Thomas Dillig Alex Aiken 1 of 33



Containers

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Examples: Array, vector, list,
map, set, stack, queue, . . .

Widely used; provided by
common programming
languages or standard
libraries

⇒ Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.

Işıl Dillig Thomas Dillig Alex Aiken 2 of 33



Containers

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Examples: Array, vector, list,
map, set, stack, queue, . . .

Widely used; provided by
common programming
languages or standard
libraries

⇒ Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.

Işıl Dillig Thomas Dillig Alex Aiken 2 of 33



Containers

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Examples: Array, vector, list,
map, set, stack, queue, . . .

Widely used; provided by
common programming
languages or standard
libraries

⇒ Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.

Işıl Dillig Thomas Dillig Alex Aiken 2 of 33



Containers

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Examples: Array, vector, list,
map, set, stack, queue, . . .

Widely used; provided by
common programming
languages or standard
libraries

⇒ Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.

Işıl Dillig Thomas Dillig Alex Aiken 2 of 33



Containers

Precise static reasoning about
containers crucial for successful
verification

Işıl Dillig Thomas Dillig Alex Aiken 3 of 33



Observation #1

Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

But functionally, there are only two kinds.

Işıl Dillig Thomas Dillig Alex Aiken 4 of 33



Observation #1

Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

But functionally, there are only two kinds.

Işıl Dillig Thomas Dillig Alex Aiken 4 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position

Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type

Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined

Işıl Dillig Thomas Dillig Alex Aiken 5 of 33



Observation #2:

Implementation

Container Client

Orders of magnitude more clients of
containers than there are container
implementations

⇒ Need fully automatic, scalable techniques
for reasoning about client-side use of
container data structures

Işıl Dillig Thomas Dillig Alex Aiken 6 of 33



Observation #2:

Implementation

Container Client

Orders of magnitude more clients of
containers than there are container
implementations

⇒ Need fully automatic, scalable techniques
for reasoning about client-side use of
container data structures

Işıl Dillig Thomas Dillig Alex Aiken 6 of 33



This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis

Işıl Dillig Thomas Dillig Alex Aiken 7 of 33



This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis

Işıl Dillig Thomas Dillig Alex Aiken 7 of 33



This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis

Işıl Dillig Thomas Dillig Alex Aiken 7 of 33



This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis

Işıl Dillig Thomas Dillig Alex Aiken 7 of 33



Integrating Container Reasoning into Heap Analysis

To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP’10 for reasoning
about arrays

Işıl Dillig Thomas Dillig Alex Aiken 8 of 33



Integrating Container Reasoning into Heap Analysis

To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP’10 for reasoning
about arrays

Işıl Dillig Thomas Dillig Alex Aiken 8 of 33



Integrating Container Reasoning into Heap Analysis

To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP’10 for reasoning
about arrays

Işıl Dillig Thomas Dillig Alex Aiken 8 of 33



Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location

Işıl Dillig Thomas Dillig Alex Aiken 9 of 33



Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location

Işıl Dillig Thomas Dillig Alex Aiken 9 of 33



Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location

Işıl Dillig Thomas Dillig Alex Aiken 9 of 33



Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location

Işıl Dillig Thomas Dillig Alex Aiken 9 of 33



Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location

Işıl Dillig Thomas Dillig Alex Aiken 9 of 33



Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.

Işıl Dillig Thomas Dillig Alex Aiken 10 of 33



Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.

Işıl Dillig Thomas Dillig Alex Aiken 10 of 33



Symbolic Points-to Relations

List B

Vector A

Points-to edges are qualified by constraints on
index variables.

Işıl Dillig Thomas Dillig Alex Aiken 10 of 33



Modeling Value-Dependent Containers

To Index

Problem

Natural representation for
position-dependent containers

But how do we represent points-to
relations for value-dependent
containers?

Solution

Introduce a level of indirection mapping
keys to abstract indices

Işıl Dillig Thomas Dillig Alex Aiken 11 of 33



Modeling Value-Dependent Containers

To Index

Problem

Natural representation for
position-dependent containers

But how do we represent points-to
relations for value-dependent
containers?

Solution

Introduce a level of indirection mapping
keys to abstract indices

Işıl Dillig Thomas Dillig Alex Aiken 11 of 33



Modeling Value-Dependent Containers

To Index

Problem

Natural representation for
position-dependent containers

But how do we represent points-to
relations for value-dependent
containers?

Solution

Introduce a level of indirection mapping
keys to abstract indices

Işıl Dillig Thomas Dillig Alex Aiken 11 of 33



Key-to-Index Mapping for Value-Dependent Containers

For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

∀k1, k2. M (k1) = M (k2) ⇒ k1 = k2

Otherwise, distinct keys may map to same index, overwriting
each other’s value

Thus, for soundness, M’s inverse is a function

Işıl Dillig Thomas Dillig Alex Aiken 12 of 33



Key-to-Index Mapping for Value-Dependent Containers

For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

∀k1, k2. M (k1) = M (k2) ⇒ k1 = k2

Otherwise, distinct keys may map to same index, overwriting
each other’s value

Thus, for soundness, M’s inverse is a function

Işıl Dillig Thomas Dillig Alex Aiken 12 of 33



Key-to-Index Mapping for Value-Dependent Containers

For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

∀k1, k2. M (k1) = M (k2) ⇒ k1 = k2

Otherwise, distinct keys may map to same index, overwriting
each other’s value

Thus, for soundness, M’s inverse is a function

Işıl Dillig Thomas Dillig Alex Aiken 12 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices

⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures

⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices

⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures

⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices
⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures

⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices
⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures

⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices
⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures
⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices
⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures
⇒ make M a function

Işıl Dillig Thomas Dillig Alex Aiken 13 of 33



Using Invertible, Uninterpreted Functions

Thus, map key to index in
abstract location using
invertible, uninterpreted
function

Işıl Dillig Thomas Dillig Alex Aiken 14 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63

Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63

Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63

Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63

Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63

Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



We have seen how to represent
containers

But how do we statically
analyze statements that
manipulate them?

Işıl Dillig Thomas Dillig Alex Aiken 16 of 33



We have seen how to represent
containers

But how do we statically
analyze statements that
manipulate them?

Işıl Dillig Thomas Dillig Alex Aiken 16 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.

i1 = pos(“bob”)

∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.

i1 = pos(“bob”)

∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.

i1 = pos(“bob”)

∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.

i1 = pos(“bob”) ∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.i1 = pos(“bob”) ∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.i1 = pos(“bob”) ∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0

Işıl Dillig Thomas Dillig Alex Aiken 17 of 33



Summary: Reading from Containers

Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

Use of invertible functions for
key-value mapping is crucial for
precisely tracking key-value
correlations

Işıl Dillig Thomas Dillig Alex Aiken 18 of 33



Summary: Reading from Containers

Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

Use of invertible functions for
key-value mapping is crucial for
precisely tracking key-value
correlations

Işıl Dillig Thomas Dillig Alex Aiken 18 of 33



Writing to Containers

How do we analyze
stores to containers?

Işıl Dillig Thomas Dillig Alex Aiken 19 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation
⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉

Işıl Dillig Thomas Dillig Alex Aiken 20 of 33



Allocations

Nested containers usually involve dynamic memory allocation

⇒ Precise reasoning about nested containers requires precise
reasoning about memory allocations

Need to distinguish between allocations in different loop
iterations or recursive calls

Işıl Dillig Thomas Dillig Alex Aiken 21 of 33



Allocations

Nested containers usually involve dynamic memory allocation

⇒ Precise reasoning about nested containers requires precise
reasoning about memory allocations

Need to distinguish between allocations in different loop
iterations or recursive calls

Işıl Dillig Thomas Dillig Alex Aiken 21 of 33



Allocations

Nested containers usually involve dynamic memory allocation

⇒ Precise reasoning about nested containers requires precise
reasoning about memory allocations

Need to distinguish between allocations in different loop
iterations or recursive calls

Işıl Dillig Thomas Dillig Alex Aiken 21 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Difficulty

Statically unknown number of
allocations

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Solution

Model allocation with indexed location

i2 differentiates allocations from
different loop iterations

i3 differentiates indices in map

Outgoing edges from 〈{α}i2〉i3
qualify both i2 and i3

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Solution

Model allocation with indexed location

i2 differentiates allocations from
different loop iterations

i3 differentiates indices in map

Outgoing edges from 〈{α}i2〉i3
qualify both i2 and i3

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Solution

Model allocation with indexed location

i2 differentiates allocations from
different loop iterations

i3 differentiates indices in map

Outgoing edges from 〈{α}i2〉i3
qualify both i2 and i3

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Solution

Model allocation with indexed location

i2 differentiates allocations from
different loop iterations

i3 differentiates indices in map

Outgoing edges from 〈{α}i2〉i3
qualify both i2 and i3

Işıl Dillig Thomas Dillig Alex Aiken 22 of 33



Implementation

Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

Analysis requires solving constraints in
combined theory of linear inequalities over
integers and uninterpreted functions and
quantifier elimination
⇒ used our Mistral SMT solver

Işıl Dillig Thomas Dillig Alex Aiken 23 of 33



Implementation

Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

Analysis requires solving constraints in
combined theory of linear inequalities over
integers and uninterpreted functions and
quantifier elimination
⇒ used our Mistral SMT solver

Işıl Dillig Thomas Dillig Alex Aiken 23 of 33



Experiments

Analyzed real open-source C++
applications using containers

LiteSQL, 16,030 LOC

Inkscape Widget Library, 37,211 LOC

DigiKam, 128,318 LOC

Işıl Dillig Thomas Dillig Alex Aiken 24 of 33



Experiments

Analyzed real open-source C++
applications using containers

LiteSQL, 16,030 LOC

Inkscape Widget Library, 37,211 LOC

DigiKam, 128,318 LOC

Işıl Dillig Thomas Dillig Alex Aiken 24 of 33



Experiments

Analyzed real open-source C++
applications using containers

LiteSQL, 16,030 LOC

Inkscape Widget Library, 37,211 LOC

DigiKam, 128,318 LOC

Işıl Dillig Thomas Dillig Alex Aiken 24 of 33



Experiments

Analyzed real open-source C++
applications using containers

LiteSQL, 16,030 LOC

Inkscape Widget Library, 37,211 LOC

DigiKam, 128,318 LOC

Işıl Dillig Thomas Dillig Alex Aiken 24 of 33



Application

Ran our Compass verification tool

Detect all possible segmentation
faults or run-time exceptions
caused by:

null dereference errors

accessing deleted memory

Also checked memory leaks

Işıl Dillig Thomas Dillig Alex Aiken 25 of 33



First Experiment

First Experiment:

Represent containers as bags of values

Existing tools that analyze programs of
this size use this abstraction

To achieve this effect, we modeled
containers using summary nodes

⇒ Cannot track index-to-value correlations,
modification to one container element
contaminates all others

Işıl Dillig Thomas Dillig Alex Aiken 26 of 33



First Experiment

First Experiment:

Represent containers as bags of values

Existing tools that analyze programs of
this size use this abstraction

To achieve this effect, we modeled
containers using summary nodes

⇒ Cannot track index-to-value correlations,
modification to one container element
contaminates all others

Işıl Dillig Thomas Dillig Alex Aiken 26 of 33



First Experiment

First Experiment:

Represent containers as bags of values

Existing tools that analyze programs of
this size use this abstraction

To achieve this effect, we modeled
containers using summary nodes

⇒ Cannot track index-to-value correlations,
modification to one container element
contaminates all others

Işıl Dillig Thomas Dillig Alex Aiken 26 of 33



First Experiment

First Experiment:

Represent containers as bags of values

Existing tools that analyze programs of
this size use this abstraction

To achieve this effect, we modeled
containers using summary nodes

⇒ Cannot track index-to-value correlations,
modification to one container element
contaminates all others

Işıl Dillig Thomas Dillig Alex Aiken 26 of 33



Containers as Bags

0

50

100

150

200

250

300

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

Conclusion

Treating containers as bags leads to unacceptable
number of false alarms.

Işıl Dillig Thomas Dillig Alex Aiken 27 of 33



Containers as Bags

0

50

100

150

200

250

300

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

Conclusion

Treating containers as bags leads to unacceptable
number of false alarms.

Işıl Dillig Thomas Dillig Alex Aiken 27 of 33



Second Experiment

Second Experiment:

Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

⇒ Able to track key-value correlations;
precise reasoning about heap objects
stored in containers

Işıl Dillig Thomas Dillig Alex Aiken 28 of 33



Second Experiment

Second Experiment:

Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

⇒ Able to track key-value correlations;
precise reasoning about heap objects
stored in containers

Işıl Dillig Thomas Dillig Alex Aiken 28 of 33



Containers Modeled as Indexed Locations

0

5

10

15

20

25

30

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

X Analysis reports very few false positives

Işıl Dillig Thomas Dillig Alex Aiken 29 of 33



Containers Modeled as Indexed Locations

0

5

10

15

20

25

30

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

X Analysis reports very few false positives

Işıl Dillig Thomas Dillig Alex Aiken 29 of 33



Containers Modeled as Indexed Locations

0

50

100

150

200

250

300

LiteSQ
L

Inkscape

D
igiKam

False Positives Summary Nodes
False Positives Symbolic Heap

X More than an order of magnitude
reduction compared to less precise analysis

Işıl Dillig Thomas Dillig Alex Aiken 30 of 33



Containers Modeled as Indexed Locations

0

50

100

150

200

250

300

LiteSQ
L

Inkscape

D
igiKam

False Positives Summary Nodes
False Positives Symbolic Heap

X More than an order of magnitude
reduction compared to less precise analysis

Işıl Dillig Thomas Dillig Alex Aiken 30 of 33



Containers Modeled as Indexed Locations

0

5

10

15

20

25

30

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

1.6m 2.3m
8.7m

X Cost of the analysis is tractable

Işıl Dillig Thomas Dillig Alex Aiken 31 of 33



Contributions

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs

Işıl Dillig Thomas Dillig Alex Aiken 32 of 33



Contributions

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs

Işıl Dillig Thomas Dillig Alex Aiken 32 of 33



Contributions

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs

Işıl Dillig Thomas Dillig Alex Aiken 32 of 33



Related Work

Dillig, I., Dillig, T., Aiken, A.:
Fluid Updates: Beyond Strong vs. Weak Updates.
In: ESOP. (2010)

Lam, P., Kuncak, V., Rinard, M.:
Hob: A Tool for Verifying Data Structure Consistency.
In: CC. 237–241

Reps, T.W., Sagiv, S., Wilhelm, R.:
Static Program Analysis via 3-Valued Logic.
In: CAV. (2004) 15–30

Deutsch, A.:
Interprocedural May-Alias Analysis for Pointers:
Beyond k-limiting.
In: PLDI. (1994) 230–241

Marron, M., Stefanovic, D., Hermenegildo, M., Kapur,
D.:
Heap Analysis in the Presence of Collection Libraries.
In: PASTE. (2007)

Işıl Dillig Thomas Dillig Alex Aiken 33 of 33


