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Containers

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Examples: Array, vector, list,
map, set, stack, queue, . . .

Widely used; provided by
common programming
languages or standard
libraries

⇒ Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.
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Containers

Precise static reasoning about
containers crucial for successful
verification
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Observation #1

Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

But functionally, there are only two kinds.
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Classification of Containers

...

1 Position-dependent Containers

Well-defined meaning of
position
Iteration in a pre-defined
order

2 Value-dependent Containers

Keys of arbitrary type
Iteration order may be
undefined
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Observation #2:

Implementation

Container Client

Orders of magnitude more clients of
containers than there are container
implementations

⇒ Need fully automatic, scalable techniques
for reasoning about client-side use of
container data structures
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This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis
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Işıl Dillig Thomas Dillig Alex Aiken 7 of 33



This Talk

Heap 
Analysis

Container 
Reasoning

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

1 tracks key-value correlations

2 can model nested containers in a
precise way

3 unifies heap and container analysis
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Integrating Container Reasoning into Heap Analysis

To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP’10 for reasoning
about arrays
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Indexed Locations

Container represented using a
single abstract location
qualified by index variable

Index variable ranges over
possible elements of container

Key advantage: Can refer to
individual elements in container
using only one abstract location
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Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.
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Symbolic Points-to Relations

List B

Vector A

Points-to edges are qualified by constraints on
index variables.
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Modeling Value-Dependent Containers

To Index

Problem

Natural representation for
position-dependent containers

But how do we represent points-to
relations for value-dependent
containers?

Solution

Introduce a level of indirection mapping
keys to abstract indices
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Key-to-Index Mapping for Value-Dependent Containers

For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

∀k1, k2. M (k1) = M (k2) ⇒ k1 = k2

Otherwise, distinct keys may map to same index, overwriting
each other’s value

Thus, for soundness, M’s inverse is a function
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Is this Mapping a Function?

Two Alternatives

1 To model multimaps, multisets directly, allow
same key can map to different abstract indices

⇒ M is not a function

2 Or model data structures that allow multiple
values as nested data structures

⇒ make M a function
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Using Invertible, Uninterpreted Functions

Thus, map key to index in
abstract location using
invertible, uninterpreted
function
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Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63
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Işıl Dillig Thomas Dillig Alex Aiken 15 of 33



Simple Example

Consider map scores mapping
student names (strings) to a
vector of their grades.

Map initially contains scores
associated with two students:
Alice and Bob

Alice’s first score is 78; Bob’s first
score is 63
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We have seen how to represent
containers

But how do we statically
analyze statements that
manipulate them?
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Simple Example: Reading from Containers

What is the value of
scores["alice"][0]?

Determine where scores points
to under i1 = pos(“alice”)

∃i1.

i1 = pos(“bob”)

∧ i1 =
pos(“alice”)

⇒ UNSAT because pos is invertible
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Simple Example: Reading from Containers

Thus, entry for “alice” points to
vector represented by
〈alice scores〉i2

Finally, determine where
〈alice scores〉i2 points to under
constraint i2 = 0
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Summary: Reading from Containers

Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

Use of invertible functions for
key-value mapping is crucial for
precisely tracking key-value
correlations
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Writing to Containers

How do we analyze
stores to containers?
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Writing to Containers

Consider storing object Y for key k in
container X :

1 Compute

φindex :

{
i = k X position-dependent
i = pos(k) X value-dependent

2 Add edge to Y under φindex

3 Preserve existing edges under ¬φindex

Need bracketing constraints 〈φmay , φmust〉 for sound negation

⇒ ¬〈φmay , φmust〉 = 〈¬φmust ,¬φmay〉
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Allocations

Nested containers usually involve dynamic memory allocation

⇒ Precise reasoning about nested containers requires precise
reasoning about memory allocations

Need to distinguish between allocations in different loop
iterations or recursive calls
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Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());
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Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Difficulty

Statically unknown number of
allocations
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Allocations

Consider the following example

for(int i=0; i<N; i++)

v.push_back(new map());

Solution

Model allocation with indexed location

i2 differentiates allocations from
different loop iterations

i3 differentiates indices in map

Outgoing edges from 〈{α}i2〉i3
qualify both i2 and i3
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Implementation

Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

Analysis requires solving constraints in
combined theory of linear inequalities over
integers and uninterpreted functions and
quantifier elimination
⇒ used our Mistral SMT solver
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Experiments

Analyzed real open-source C++
applications using containers

LiteSQL, 16,030 LOC

Inkscape Widget Library, 37,211 LOC

DigiKam, 128,318 LOC
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Application

Ran our Compass verification tool

Detect all possible segmentation
faults or run-time exceptions
caused by:

null dereference errors

accessing deleted memory

Also checked memory leaks
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First Experiment

First Experiment:

Represent containers as bags of values

Existing tools that analyze programs of
this size use this abstraction

To achieve this effect, we modeled
containers using summary nodes

⇒ Cannot track index-to-value correlations,
modification to one container element
contaminates all others
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Containers as Bags
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Conclusion

Treating containers as bags leads to unacceptable
number of false alarms.
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Second Experiment

Second Experiment:

Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

⇒ Able to track key-value correlations;
precise reasoning about heap objects
stored in containers
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Işıl Dillig Thomas Dillig Alex Aiken 30 of 33



Containers Modeled as Indexed Locations

0

5

10

15

20

25

30

LiteSQ
L

Inkscape

D
igiKam

False Positives
Errors

1.6m 2.3m
8.7m

X Cost of the analysis is tractable
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Contributions

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs
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