
Probabilistic Inference for Datalog with Correlated Inputs

JINGBO WANG, Purdue University, USA
SHASHIN HALALINGAIAH, University of Texas at Austin, USA
WEIYI CHEN, Purdue University, USA
CHAO WANG, University of Southern California, USA
IŞIL DILLIG, University of Texas at Austin, USA

Probabilistic extensions of logic programming languages, such as ProbLog, integrate logical reasoning with
probabilistic inference to evaluate probabilities of output relations; however, prior work does not account
for potential statistical correlations among input facts. This paper introduces Praline, a new extension to
Datalog designed for precise probabilistic inference in the presence of (partially known) input correlations.
We formulate the inference task as a constrained optimization problem, where the solution yields sound and
precise probability bounds for output facts. However, due to the complexity of the resulting optimization
problem, this approach alone often does not scale to large programs. To address scalability, we propose a
more efficient 𝛿-exact inference algorithm that leverages constraint solving, static analysis, and iterative
refinement. Our empirical evaluation on challenging real-world benchmarks, including side-channel analysis,
demonstrates that our method not only scales effectively but also delivers tight probability bounds.

CCS Concepts: • Mathematics of computing → Probabilistic inference problems; Mathematical

optimization; • Theory of computation→ Constraint and logic programming.

Additional Key Words and Phrases: probabilistic logic programming, constrained optimization, type inference

ACM Reference Format:

Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig. 2025. Probabilistic Inference for
Datalog with Correlated Inputs. Proc. ACM Program. Lang. 9, OOPSLA2, Article 280 (October 2025), 56 pages.
https://doi.org/10.1145/3763058

1 Introduction

Logic programming languages are powerful tools for modeling and reasoning about complex sys-
tems using well-defined rules, and they are also widely used in graph analysis, bioinformatics, and
program analysis tasks [45, 64] such as detecting race conditions [41, 63] and side channels [58, 59].
However, real-world scenarios often involve uncertainty and incomplete information that tradi-
tional logic programming cannot handle effectively. Probabilistic extensions to logic programming
languages, such as ProbLog [16, 17] and PPDL [5], enhance traditional logic programming by incor-
porating probabilistic reasoning. For example, in medical diagnosis, symptom-disease associations
are inherently probabilistic, and quantifying disease likelihood based on symptoms can enhance
diagnostic accuracy. Such probabilistic reasoning is also useful for applications of logic program-
ming in program analysis tasks [44]: in the context of side channel detection, understanding the
probability of information leakage can significantly enhance security assessments.

Authors’ Contact Information: Jingbo Wang, Purdue University, West Lafayette, USA, wang6203@purdue.edu; Shashin
Halalingaiah, University of Texas at Austin, Austin, USA, shashin@cs.utexas.edu; Weiyi Chen, Purdue University, West
Lafayette, USA, chen5332@purdue.edu; ChaoWang, University of Southern California, Los Angeles, USA, wang626@usc.edu;
Işıl Dillig, University of Texas at Austin, Austin, USA, isil@cs.utexas.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART280
https://doi.org/10.1145/3763058

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

https://orcid.org/0000-0001-5877-2677
https://orcid.org/0000-0002-1268-4345
https://orcid.org/0009-0009-6276-3525
https://orcid.org/0009-0003-4684-3943
https://orcid.org/0000-0001-8006-1230
https://doi.org/10.1145/3763058
https://orcid.org/0000-0001-5877-2677
https://orcid.org/0000-0002-1268-4345
https://orcid.org/0000-0002-1268-4345
https://orcid.org/0009-0009-6276-3525
https://orcid.org/0009-0003-4684-3943
https://orcid.org/0000-0001-8006-1230
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763058

280:2 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

However, these probabilistic extensions to logic programming languages typically assume the
independence of input facts to simplify inference [5, 16, 38]. In many real-world scenarios, this
assumption does not hold: for example, in medical diagnostics, certain symptoms are often corre-
lated, and treating them as independent can lead to incorrect diagnoses. Similarly, in side-channel
analysis, input facts such as memory accesses and branch outcomes are frequently correlated, and
ignoring these correlations can produce unsound assessments.

This work aims to develop a novel probabilistic Datalog framework that can accommodate arbi-
trary statistical correlations between inputs. However, the removal of the independence assumption
introduces several challenges: First, it significantly increases the complexity of probabilistic infer-
ence, requiring consideration of joint probabilities of inputs rather than treating them in isolation.
Second, since the exact conditional dependencies between input facts may not be known a priori,
there can be implicit dependencies that are not explicitly specified by users. Finally, due to partial

knowledge about input dependencies, it may not always be possible to compute the exact probabil-
ity of an output fact, necessitating the computation of lower and upper probability bounds. Our
proposed framework addresses these challenges, providing an effective approach for accurate and
reliable probabilistic reasoning in complex scenarios that involve correlated inputs.

￼1

Infer correlation types

Approximate probability bounds

Iteratively refine bounds C
on

st
ra

in
t s

ol
vi

ng

Fig. 1. Overview of our approach

At the core of our approach is a formulation of probabilistic
inference as a constrained optimization problem over joint
probability variables, which capture the joint probability distri-
bution of correlated input facts. Probabilities specified in the
Datalog program are translated into a system of constraints,
and the probability of each output relation is expressed sym-
bolically in terms of these variables. Our method then solves
a constrained optimization problem to compute upper and
lower bounds on the probability of the desired output fact. However, a key challenge with this
approach is that the generated constrained optimization problems can be very challenging to solve,
particularly due to the non-linear nature of the objective function. To address this difficulty, we also
present a more scalable 𝛿-exact algorithm [23] that uses the optimization approach in a targeted
way to solve simpler sub-problems. Our proposed method first computes approximate probability
bounds and then iteratively refines them until they are within a user-specified distance 𝛿 of the
true probability bounds. As illustrated in Figure 1, our technique comprises of three steps. First, it
performs a combination of static analysis and constraint solving to infer whether a pair of facts
are positively or negatively correlated, or independent. In the second step, it leverages the results
of this “correlation type analysis” to compute approximate bounds on the probabilities of each
predicate. Finally, it iteratively refines these approximate bounds to a user-specified tightness 𝛿 —
i.e., upon termination, the computed lower and upper bounds on the probabilities are guaranteed
to be within 𝛿 of the ground truth.

We have implemented the proposed idea in a new Datalog variant called Praline1 and evaluate
it on two domains, namely side channel vulnerability detection and inference for discrete Bayesian
networks. Our experiments show that Praline can successfully infer accurate probability bounds
for output facts, including for large benchmarks with hundreds of thousands of facts. We also
conduct ablation studies to evaluate the impact of the three key ideas illustrated in Figure 1 and
show that they have a significant impact on the scalability and precision of our approach.

To summarize, this paper makes the following key contributions:
• We introduce the first probabilistic Datalog framework that allows the user to specify arbitrary
statistical dependencies between input facts.

1Stands for PRobAbilistic Logical InfereNce Engine

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:3

1 % Input facts.

2 % Known input facts about patient

3 1.00 :: chest_pain.

4 % Unknown input facts about patient

5 % Probabilities estimated from average population.

6 0.03 :: abnormal_ecg.

7 0.02 :: troponin_high.

8 ...

9 % Input correlations based on the literature

10 0.90 :: abnormal_ecg | chest_pain, troponin_high.

11 ...

12 % Inference rules for heart disease assessment

13 0.85 :: heart_disease :− abnormal_ecg, troponin_high,

chest_pain.

14 0.60 :: heart_disease :− abnormal_ecg, high_bnp,

chest_pain, \+troponin_high.

15 % Query

16 query(heart_disease).

1 % Input Facts about input program from Fig. 3

2 1.0 :: rand(r3). % r3 is a random variable

3 % XOR operation highlighted in Fig. 3

4 1.0 :: xor(n5, n7, n8).

5 ...

6 0.7 :: share(n5, n8). % register sharing

7 0.8 :: dep(n5, r3). % data dependency

8 0.8 :: dep(n8, r3).

9 ...

10 % Input correlations

11 0.9 :: share(n5,n8) | xor(n5,n7,n8), dep(n5,r3).

12 ...

13 % Rules for inferring leaks

14 0.7 :: t(V1,V2) :− dep(V1, R),rand(R),dep(V2, R).

15 0.8 :: leak(V1, V2) :− share(V1, V2), t(V1,V2).

16 ...

17 % Query

18 query(leak(_,_)).

Fig. 2. Two simple Praline programs. Statistical correlations between inputs (in green) are specified using

the syntax 𝑝 :: 𝐼 | 𝐼1, 𝐼2, indicating that probability of 𝐼 given 𝐼1, 𝐼2 is 𝑝 , and \+I indicates the negation of I.

• We propose a constrained optimization approach to compute exact probability bounds for outputs.
• We present a 𝛿-exact algorithm that combines our basic constrained optimization formulation
with static analysis, approximation, and iterative refinement to improve scalability.
• We perform an empirical evaluation on 30 real-world probabilistic Datalog programs consisting
of large-scale program analysis tasks and Bayesian inference benchmarks. Our results show that
Praline can produce precise probability bounds, while scaling to large benchmarks.

2 Motivating Examples

In this section, we provide two simple examples to motivate the probabilistic inference capabilities
of Praline, highlighting scenarios where input facts are correlated but the full joint probability
distribution is unknown.

Medical diagnosis. The left side of Figure 2 illustrates how a Praline program can perform
probabilistic inference for medical diagnosis. Specifically, it models the probability of a patient
having heart disease based on observed symptoms (e.g., chest pain) and test results (e.g., ECG, blood
biomarkers). Lines 12–14 of the Praline program encode how heart disease can be inferred from
various diagnostic factors based on well-established medical literature. These factors include an ab-
normal ECG (abnormal_ecg), elevated cardiac biomarkers such as troponin and B-type Natriuretic
Peptide (BNP) (troponin_high, high_bnp), and the presence of chest pain (chest_pain).

For example, the rule at line 13 states that the presence of heart_disease (an output fact) can be
deduced based on the input facts abnormal_ecg (test result), troponin_high (blood work result)
and chest_pain (symptom). The input fact in line 3 represents the patient’s known symptom
(chest pain, with probability 1.0), while lines 6-7 encode test results that are currently unknown
because the patient has not yet undergone an ECG or blood work. In clinical settings, when test
results are unavailable, probabilities for these factors (e.g., abnormal_ecg) are estimated based on
population statistics. However, chest pain is often correlated with other markers of heart disease,
such as abnormal ECG findings and elevated troponin levels. This dependence is captured in
line 10, where the probability of an abnormal ECG increases to 0.9 given chest pain and high
troponin levels. However, the full joint probability distribution of these input facts (e.g., symptoms
and test results) is typically unknown, as it depends on numerous latent factors, such as medical
history or environmental exposures. The probabilistic reasoning capabilities of Praline enable
accurate estimation of heart disease risk even under such partially-known information. For example,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:4 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

assuming independence of input facts would lead us to estimate the probability of heart disease
given chest pain as 0.07% whereas the true probability is in the range 1.5 − 2.1%.2

1 bool mChi(bool i1 ... i3,
bool r1 ... r3) {

2 bool b1, b2, b3... ;

3 b1 = i1 ⊕ r1; b2 = i2 ⊕ r2;

4 b3 = i3 ⊕ r3; n8 = r3 ∧ r2;

5 n7 = r3 ∨ b2;

6 n5 = n7 ⊕ n8;

7 ...}

Fig. 3. Masked 𝜒 function

from MAC-Keccak [18]

Quantitative program analysis. Another motivating scenario for Pra-
line is quantitative Datalog-based program analysis, which has emerged
as a powerful approach for static reasoning about program behav-
ior [41, 44, 58, 59, 63]. In this example, we consider a (drastically) sim-
plified version of the Datalog-based side channel detection method
described in [59]. The Praline program shown on the right side of
Figure 2 encodes an analysis for detecting information leaks caused
by power side channels. In particular, the rules in lines 14-15 define
how leakage is inferred based on data dependencies in the input pro-
gram (dep(X,Y)), randomness (rand(X)), and register sharing between
variables (share(X,Y)).

The input facts in lines 1–5 of Figure 2 (right) correspond to properties of the analyzed program
(see Figure 3). Some of these facts, such as those in lines 2 and 4, have probability 1.0 because they
correspond to known characteristics of the program. For instance, r3 is annotated by the user to be
a random variable, and the xor operation in line 4 corresponds to a specific highlighted statement
in the source program from Figure 3. However, not all input facts are deterministic. Whether two
variables share a register, for example, depends on hardware constraints and register allocation
policies, which introduce uncertainty. This uncertainty is reflected in line 6, where the probability
of register sharing is estimated using empirical data from profiling a code corpus. Similarly, the
input facts in lines 7-8 are probabilistic because they result from a pre-analysis [59, 62] that infers
semantic data dependencies from syntactic ones. The probability associated with such dependencies
is derived from prior empirical studies that measure how often syntactic dependencies lead to
actual data dependencies in compiled programs [59].
Since register allocation and data dependencies are influenced by compiler optimizations and

architectural constraints, certain input facts are naturally correlated. For example, as shown in
line 11, the likelihood of two variables sharing a register is not independent of how frequently the
compiler assigns dependent variables (within the same instruction) to the same register across
different executions [3]. However, as in the medical diagnosis example, assuming access to the
full joint probability distribution is impractical, as it would require exhaustively modeling all
interactions between hardware configurations, compiler optimizations, etc. Instead, by combining
Datalog inference with partially known probabilities (e.g., derived from empirical measurements
and power consumption models), we enable quantitative static analysis that estimates the severity
of an information leak rather than merely providing a binary vulnerability classification.

3 Overview

Before formalizing our technique in detail, we illustrate how Praline performs probabilistic
inference using the synthetic example in Figure 4 that is crafted to give an overview of our
approach without being overly complicated. The first six lines declare input facts, specifying graph
edges, with associated probabilities (e.g., line 1 states that an edge between nodes 5 and 7 exists
with probability 0.7). Lines 10-11 are rules that define the notion of paths in the graph. Line 7 states
that edge(1,4), edge(2,5), and edge(2,6) are statistically correlated, while lines 8-9 specify the
known conditional dependencies. For instance, line 8 states that, given edge(1,4), edge(2,5)

2These probabilities are computed based on the simple Praline program and do not reflect actual probability of heart
disease given chest pain.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:5

1 0.7::edge(5,7).

2 0.6::edge(1,2).

3 0.8::edge(6,7).

4 0.6::edge(2,5).

5 0.6::edge(1,4).

6 0.6::edge(2,6).

7 corr(edge(1,4),edge(2,5),edge(2,6)).

8 0.80::edge(2,5) | edge(1,4).

9 0.83::edge(2,6) | edge(1,4).

10 path(X,Y) :− edge(X,Y).

11 path(X,Y) :− path(X,Z), edge(Z,Y).

12 query(path(1,7)).

path(1,7)

path(1,5)edge(5,7)

𝑒1

path(1,6) edge(6,7)

𝑒2

path(1,2)edge(2,5)

𝑒3

edge(1,2)

𝑒4

edge(1,4)

edge(2,6)

𝑒5

𝑒6
0.8

𝑒7
0.830.6

0.6 0.6

0.7 0.8[0.36, 0.36] [0.36, 0.36]

[0.34, 0.42]

Fig. 4. A Praline program Fig. 5. Derivation graph

exists with probability 0.8. Finally, line 12 queries the probability of path(1,7). We refer to the
input facts that are correlated (as declared on line 7) as a correlation class.
This example exhibits a salient feature we wish to highlight: Given the information specified

by the user, the probability of the predicate path(1,7) cannot be determined exactly; instead,
we can only derive upper and lower bounds. In particular, to compute this probability exactly,
the user would need to give the full conditional probability table [14] between the predicates
edge(1,4),edge(2,5), and edge(2,6); but, in the absence of such information, the only sound
conclusion that can be reached is that the probability of path(1,7) being true is in the range
[0.34, 0.42]. To the best of our knowledge, there is no existing technique that can perform precise
and accurate probabilistic inference for this type of scenario. In the rest of this section, we illustrate
how our proposed inference technique addresses this challenge.

3.1 Basic Approach: Inference via Constrained Optimization

Our starting point is a formulation of this probabilistic inference task as a constrained optimization
problem. To formulate this optimization problem, our approach introduces a set of joint probability
variables, each representing the unknown value of an entry in the conditional probability table for a
given correlation class. In our example, the predicates edge(2,5), edge(1,4), and edge(2,6) form
a correlation class, while edge(5,7), edge(6,7), and edge(1,2) are mutually independent. For
the singleton correlation class containing edge(5,7), we introduce two joint probability variables,
𝑉1 [1] and 𝑉1 [0], representing the probabilities of the predicate edge(5,7) being true and false,
respectively. Since its probability is given as 0.7, the first constraint in Figure 6 sets 𝑉1 [1] = 0.7
and, by the SumToOne constraint, sets 𝑉1 [0] = 0.3. The constraints for the correlation class with
predicates edge(2,5), edge(1,4), and edge(2,6) are more involved. Since this class contains 3
predicates, it requires 8 joint probability variables, representing all boolean combinations of these
predicates. For example, the variable 𝑉4 [100] in Figure 6 represents the probability of edge(2,5)
being true and edge(1,4) and edge(2,6) being false. Line 4 of Figure 4 enforces the constraint
𝑉4 [100]+𝑉4 [101]+𝑉4 [110]+𝑉4 [111] = 0.6, ensuring that the sum of joint probability variables where
edge(2,5) holds is 0.6. Similarly, the conditional probability from line 8 induces the constraint
𝑉4 [110] + 𝑉4 [111] = 0.48, capturing 𝑃 (edge(2,5) ∧ edge(1,4)) = 𝑃 (edge(2,5)|edge(1,4)) ×
𝑃 (edge(1,4)). Figure 6 presents all such constraints for the example in Figure 4.

In addition to generating these constraints, our method also expresses the unknown probability of
output facts in terms of the joint probability variables using the logical derivation graph of the input
program. In particular, Figure 5 shows the logical derivation of the output predicate path(1,7) as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:6 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Constraints
edge(5,7) = 0.7 ↦→ 𝑉1 [1] = 0.7
edge(1,2) = 0.6 ↦→ 𝑉2 [1] = 0.6
edge(6,7) = 0.8 ↦→ 𝑉3 [1] = 0.8
edge(2,5) = 0.6 ↦→ 𝑉4 [100] +𝑉4 [101] +𝑉4 [110] +𝑉4 [111] = 0.6
edge(1,4) = 0.6 ↦→ 𝑉4 [010] +𝑉4 [011] +𝑉4 [110] +𝑉4 [111] = 0.6
edge(2,6) = 0.6 ↦→ 𝑉4 [001] +𝑉4 [011] +𝑉4 [101] +𝑉4 [111] = 0.6
0.80 :: edge(2,5) | edge(1,4). ↦→ 𝑉4 [110] +𝑉4 [111] = 0.8 ∗ 0.6
0.83 :: edge(2,6) | edge(1,4). ↦→ 𝑉4 [011] +𝑉4 [111] = 0.83 ∗ 0.6
SumToOne ↦→ ∑

𝑏∈B𝑉1 [𝑏] = 1
∑
𝑏∈B𝑉2 [𝑏] = 1

∑
𝑏∈B𝑉3 [𝑏] = 1

∑
𝑏∈B3 𝑉4 [𝑏] = 1

Input ↦→ ∀𝑏 ∈ B,𝑉1 [𝑏] ∈ [0, 1], 𝑉2 [𝑏] ∈ [0, 1], 𝑉3 [𝑏] ∈ [0, 1], ∀𝑏 ∈ B3,𝑉4 [𝑏] ∈ [0, 1]
Objective
path(1,7) ↦→ 𝑉1 [1]𝑉2 [1]𝑉3 [1] (𝑉4 [111] +𝑉4 [101]) +𝑉1 [1]𝑉2 [1]𝑉3 [0] (𝑉4 [110] +𝑉4 [100])+

𝑉1 [1]𝑉2 [1]𝑉3 [1] (𝑉4 [110] +𝑉4 [100]) +𝑉1 [1]𝑉2 [1]𝑉3 [0] (𝑉4 [111] +𝑉4 [101])+
𝑉1 [0]𝑉2 [1]𝑉3 [1] (𝑉4 [011] +𝑉4 [001]) +𝑉1 [0]𝑉2 [1]𝑉3 [1] (𝑉4 [101] +𝑉4 [111])+
𝑉1 [1]𝑉2 [1]𝑉3 [1] (𝑉4 [011] +𝑉4 [001])

Fig. 6. Optimization problem for running example

a graph where nodes correspond to predicates and edges correspond to Datalog rule applications.
For instance, according to Figure 5, there are two ways to derive the predicate path(1,7): one
using edge(5,7) and path(1,5) and another using path(1,6) and edge(6,7). As shown in
Figure 6 under Objective, our method uses this information to express the probability of predicate
path(1,7) being true in terms of the joint probability variables. Finally, our method computes
the probability bounds for path(1,7) being true by minimizing and maximizing the objective
function subject to the constraints shown in Figure 6. The bold annotations on the derivation graph
in Figure 5 show the probability bounds obtained for each relation using our method. It is worth
re-iterating that these probabilities are ranges rather than absolute values not because of some
imprecision in this solution but rather because of unknown conditional dependencies between
some of the input facts. The details of this optimization approach are presented in Section 6.

3.2 Scalable 𝛿-exact Inference

SATUNSAT UNSAT

l* u*l u

Increase ￼ until SAT l

l1 l2 ln ln+1 un+1 un u1u2

Decrease ￼ until SAT u

…
Lower and upper bounds on ￼l* Lower and upper bounds on ￼u*

…
Fig. 7. Iterative strengthening. 𝑙∗, 𝑢∗ are the exact prob-
ability bounds; 𝑙, 𝑢 are approximate bounds from Step

2, and 𝑙𝑛, 𝑢𝑛 are bounds computed by our method.

The approach introduced above guarantees pre-
cise lower and upper bounds, but it can be quite
expensive due to the complexity of the result-
ing constrained optimization problem. Thus, to
scale our approach to large Datalog programs
with complex statistical correlations, we pro-
pose a 𝛿-exact algorithm that first computes
(loose) approximate probabilities for each out-
put fact and then iteratively tightens these probabilities until they are within 𝛿 of the true lower
and upper bounds. Our novel 𝛿-exact algorithm can be reduced to three steps, described next.
Step 1: Correlation type inference. Starting with tighter initial approximations accelerates the
overall refinement process, and just knowing the polarity of the statistical correlation between
predicates can help us compute more precise approximations. For example, if two predicates are pos-
itively correlated (i.e., one is more likely true if the other is), we can derive tighter bounds than if the
correlation type were unknown. Thus, our method first infers correlation types between predicates,
classifying them as positive, negative, independent, or unknown. To do so, we adapt a simpler version
of our constrained optimization method to deduce how input facts are correlated. For instance, in our
example, while the program specifies that edge(2,5), edge(2,6), and edge(1,4) are correlated, it
does not specify how. Using our analysis, we first deduce that edge(2,5), edge(2,6) are positively

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:7

correlated, which helps establish that path(1,5), path(1,6) are also positively correlated. We
present the details of our correlation analysis method in Section 7.1.
Step 2: Deriving approximate probability bounds. Next, our algorithm uses the correlation
analysis results to compute sound but approximate bounds on output probabilities. This involves
bottom-up propagation of probabilities from the leaves to the roots of the derivation graph, ap-
plying pre-defined approximation rules at each internal node. In our example, to approximate
the probability of path(1,7), the algorithm first computes that path(1,5) and path(1,6) each
have a probability of 0.36 as they consist of two independent events, each with a probability of
0.6. It then moves to path(1,7), which is true if either path(1,5) ∧ edge(5,7) (event 𝑒1) or
path(1,6) ∧ edge(6,7) (event 𝑒2) is true. To compute the exact probability of path(1,7), the
conditional probabilities 𝑃 (𝑒1 |𝑒2) and 𝑃 (𝑒2 |𝑒1) are needed, but are not provided. In the absence
of such information, the Fréchet inequality [46] gives the upper bound 𝑃 (𝑒1 ∨ 𝑒2) = min(1, 0.54).
However, by utilizing the information that path(1,5) and path(1,6) are positively correlated,
we can compute a tighter upper bound of 0.467. Details of this method are in Section 7.2.
Step 3: Iterative refinement. While sound, the probability bounds from the previous step may be
far from the true values. Hence, our method iteratively tightens the bounds until they are within a
user-specified distance 𝛿 of the true bounds. The intuition is to gradually adjust the bounds while
checking whether the resultant bound is consistent with the constraint system induced by the
program.

As an illustration, consider the output fact path(1,7) in our example. Starting from the bounds
[𝑙, 𝑢] = [0.288, 0.467] computed by the previous step, the iterative refinement step repeatedly
attempts to increase 𝑙 and decrease 𝑢 by some amount 𝜖 until the constraint system becomes
satisfiable, as shown in Figure 7. When this step terminates, we know that the the true lower
(resp. upper) bound is between 𝑙𝑛 and 𝑙𝑛+1 (resp. between 𝑢𝑛 and 𝑢𝑛+1) in Figure 7. In a second
tightening step, the algorithm performs binary search between 𝑙𝑛 and 𝑙𝑛+1 (and between𝑢𝑛 and𝑢𝑛+1)
until the two values are within distance 𝛿 of each other. Thus, upon termination, it can guarantee
that the computed lower and upper bounds are always within 𝛿 of the ground truth. Assuming
a user-specified 𝛿 = 0.05 in our running example, this approach refines the initial approximate
bounds for path(1,7) from [0.288, 0.467] to [0.338, 0.417], ensuring they lie within 𝛿 of the true
bounds [0.34, 0.42]. The details of our iterative refinement procedure are provided in Section 7.3.

4 Preliminaries

A Datalog program consists of a set of rules 𝑅, where each rule is a Horn clause of the form
𝑅(®𝑥) :− ⊙𝑅1 (®𝑦1), . . . , ⊙𝑅𝑛 (®𝑦1) where ⊙ denotes an optional negation operator. We refer to 𝑅(®𝑥)
as the head of the rule and the right hand side as its body. Given a rule 𝑟 , we write Body+ to denote
all predicates without a negation symbol in the front and Body

− to denote all predicates that are
negated. Finally, we refer to rules without a body as input facts. As standard, we can obtain a
solution to a Datalog program by first grounding all predicates over the Herbrand universe and
then applying the ground rules to a fixed-point. In the rest of this paper, we represent the solution to
a Datalog program in terms of a derivation graph, which shows how each ground output predicate
can be derived using ground input predicates.

Definition 1 (Derivation graph). A derivation graph for a Datalog program is a hypergraph (𝑉 , 𝐸)
where 𝑉 is a set of nodes representing ground predicates, and 𝐸 is a set of directed hyperedges
(ℎ, 𝐵+, 𝐵−, 𝑟) representing a ground rule 𝑟 with head ℎ, body 𝐵+ = Body

+ (𝑟) and 𝐵− = Body
− (𝑟).

The source vertex set of this hyper-edge is {ℎ} and the target vertices are 𝐵+ ∪ 𝐵− . Given a node 𝑛,
we write Pred(𝑛) to denote the ground predicate represented by 𝑛.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:8 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Example 1. In the derivation graph of Figure 5, the edge 𝑒3 has source node path(1,5) and target
nodes edge(2,5) and path(1,2). The quadruple (path(1,5), {edge(2,5), path(1,2)}, ∅, 𝑟2) is
used to represent 𝑒3, where 𝑟2 denotes the rule 1 :: path(1,5) :− path(1,2), edge(2,5).

Note that different ways of deriving the same ground predicate correspond tomultiple hyperedges
that share the same source. Given a Datalog program 𝐷 , we write G(𝐷) to denote its derivation
graph. Intuitively, the derivation graph encodes all possible ways of deriving a ground predicate
given the input facts. In the rest of the paper, we assume that the derivation graph is acyclic, as it
corresponds to the result of the solver’s internal fixed-point computation.3

We also define a flattened version of the derivation graph that represents each hyperedge with a
set of regular edges. As we will see later, this flattened representation is useful for understanding
basic relationships between output and input predicates.

Definition 2 (Flattened derivation graph). Given a derivation graph 𝐺 = (𝑉 , 𝐸), Flatten(𝐺)
yields a graph 𝐺 ′ = (𝑉 ′, 𝐸′) where 𝑉 ′ = 𝑉 and there exists an edge (𝑣, 𝑣 ′, 𝜎) ∈ 𝐸′ iff there exists a
hyperedge (𝑣, 𝐵+, 𝐵−, 𝑟) ∈ 𝐸 where 𝑣 ′ ∈ 𝐵+ ∪ 𝐵− and 𝜎 = 1 if 𝑣 ′ ∈ 𝐵+ and 𝜎 = −1 otherwise.

Example 2. Consider hyperedge 𝑒3 from Figure 5. This corresponds to two separate edges 𝑒13 and
𝑒23 in the flattened derivation graph, where 𝑒13 is from path(1,5) to edge(2,5) and 𝑒23 is from
path(1,5) to path(1,2). Since there are no negated predicates, both edges have a 𝜎 value 1.

The flattened derivation graph is useful for determining whether some output facts depend
only positively or negatively on an input fact. Given a path 𝜋 = (𝑣, 𝑣1, 𝜎1), . . . , (𝑣𝑛, 𝑣 ′, 𝜎𝑛) from
node 𝑣 to 𝑣 ′ in the flattened derivation graph, we define the polarity of the path as Π𝑛

𝑖=1𝜎𝑖 , denoted
Polarity(𝜋). We can then classify dependencies between different output and input facts as follows:
Definition 3 (Dependence). Given a Datalog program 𝐷 with flattened derivation graph 𝐺 , we
say that an output predicate 𝑂 depends on input predicate 𝐼 , denoted 𝐼 ▷ 𝑂 if there exists a path
from 𝑂 to 𝐼 in 𝐺 . We say that 𝑂 depends positively (resp. negatively) on 𝐼 iff there exists a path
from 𝑂 to 𝐼 with a positive (resp. negative) polarity. We write 𝐼 ▷+ 𝑂 to denote (logical) positive
dependence and 𝐼 ▷− 𝑂 for (logical) negative dependence.

The notion of dependence defined above refers to logical rather than statistical dependence, and
it is possible for an output relation to depend both positively and negatively on an input fact.

5 PRALINE: Probabilistic Datalog with Correlated Inputs

In this section, we introduce the syntax of Praline, our probabilistic Datalog variant that allows
correlated input facts. A pair of input facts 𝐼1, 𝐼2 are correlated iff 𝑃 (𝐼1 |𝐼2) ≠ 𝑃 (𝐼1), and a correlation
class represents a set of input facts that may be correlated with each other.
Definition 4. (Praline program) A Praline program is a tuple (C, 𝑅, 𝑃𝑅, 𝑃𝐼) where C is a set of
correlation classes, 𝑅 is a set of rules whose heads are output relations, 𝑃𝑅 is a mapping from rules
in 𝑅 to their probabilities, and 𝑃𝐼 is a set of (conditional) probabilities about input facts.

Syntax. Borrowing notation from prior work [17, 44], we express rule probabilities in Praline
using the notation 𝑝 :: 𝑅𝑖 meaning that the probability of rule 𝑅𝑖 ∈ 𝑅 is 𝑝 , and we assume that rules
are statistically independent of each other. However, unlike rules, input facts can be statistically
dependent. We express such conditional dependencies using the notation 𝑝 :: 𝐼 | 𝑆 , meaning that
the probability of input fact 𝐼 given input fact set 𝑆 is 𝑝 . When 𝑆 is the empty set, such a rule
simply declares the probability of an input fact. Finally, we use the notation Class(𝐼) to denote the
3The derivation graph may contain auxiliary relations that are used for breaking cycles. We refer the interested reader to
prior work for details on this semantics-preserving transformation [20].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:9

Algorithm 1 Solve(𝐷)

Input: Datalog program 𝐷 = (C, 𝑅, 𝑃𝑅, 𝑃𝐼)
Output: Mapping𝑀 from output relations to their probability intervals
1: 𝑆𝑜 ,𝐺 ← SolveStandard(𝐷) ⊲ SolveStandard produces output relations 𝑆𝑜 and derivation graph𝐺
2: 𝑉 ← JointProbabilityVars(𝐷) ⊲ Introduce joint probability variables, as discussed in Section 6.1
3: 𝜉 ← GenExprTemplate(𝑉) ⊲ Generate probability expression templates as discussed in Section 6.2
4: 𝜙 ← GenConstraint(𝑉 ,𝐷, 𝜉) ⊲ Generate constraints 𝜙 as discussed in Section 6.3
5: for 𝑅𝑜 ∈ 𝑆𝑜 do

6: Φ ← GenObjective(𝑅𝑜 ,𝑉 ,𝐺, 𝜉) ⊲ Generate objective Φ as discussed in Section 6.4
7: 𝑀 [𝑅𝑜] ← Optimize(Φ, 𝜙) ⊲ Use MIP solver to minimize/maximize Φ subject to 𝜙
8: return𝑀

correlation class 𝐶𝑖 ∈ C that input fact 𝐼 belongs to, and we assume that each input fact 𝐼 ∈ 𝐶𝑖 has
an index, denoted Index(𝐼 ,𝐶𝑖) ∈ [1, |𝐶𝑖 |], that can be used to uniquely identify 𝐼 within 𝐶𝑖 .

Semantics. We define the semantics of Praline as an extension of the least-fixed-point semantics
of Datalog, incorporating probabilities through a possible-worlds interpretation. In particular, each
Herbrand model of a Praline program represents a deterministic instantiation of probabilistic
rules and facts, forming a possible world 𝜔 . Given a Praline program 𝐷 , we define an interpretation
of 𝐷 as a pair (𝜔, 𝜇) where 𝜔 is a possible world and 𝜇 is a full joint probability distribution over
instantiated rules and input facts in 𝐷 . We say that (𝜔, 𝜇) is a model of 𝐷 , denoted (𝜔, 𝜇) |= 𝐷 if 𝜔
is a possible world of 𝐷 (under the standard Datalog semantics) and 𝜇 is consistent with both 𝜔

and the probabilities in 𝐷 . Then, given such a 𝜇, each possible world 𝜔 has an exact probability
associated with it, denoted as 𝑃𝜇 (𝜔). Given an output fact 𝑂 , we can now define 𝑃𝜇 (𝑂) as follows:

𝑃𝜇 (𝑂) =
∑︁
𝜔∈Ω

𝑃𝜇 (𝜔) where Ω = {𝜔 | (𝜔, 𝜇) |= 𝐷,𝜔 |= 𝑂}

Finally, given an output fact 𝑂 , the set of possible probabilities of 𝑂 is given by:

𝑃 (𝑂) = {𝑃𝜇 (𝑂) | ∃𝜔.(𝜔, 𝜇) |= 𝐷}
We refer interested readers to Appendix A.3 in the Supplementary Material for a more formal

treatment of the semantics.
Problem definition. We conclude this section by defining the probabilistic inference problem

addressed in the remainder of this paper.

Definition 5. (Exact probabilistic inference) Given a Praline program 𝐷 = (C, 𝑅, 𝑃𝑅, 𝑃𝐼), the
goal of exact probabilistic inference is to produce a mapping from each derived output fact 𝑂 to a
probability interval [𝑙, 𝑢] such that 𝑃 (𝑂) = {𝑥 | 𝑙 ≤ 𝑥 ≤ 𝑢}.

In Section 6, we provide a method for solving the exact probabilistic inference problem defined
above. However, since exact inference is often computationally intractable, we also introduce the
notion of 𝛿-exact inference, which we address in Section 7:

Definition 6. (𝛿-exact probabilistic inference) Given a Praline program 𝐷 = (C, 𝑅, 𝑃𝑅, 𝑃𝐼), the
goal of 𝛿-exact probabilistic inference is to produce a mapping from each derived output fact 𝑂 to
a probability interval [𝑙, 𝑢] such that 𝑙 ≥ 𝑙∗ − 𝛿 and 𝑢 ≤ 𝑢∗ + 𝛿 where 𝑃 (𝑂) = {𝑥 | 𝑙∗ ≤ 𝑥 ≤ 𝑢∗}.

6 Exact Probabilistic Inference via Constrained Optimization

In this section, we address the exact probabilistic inference problem using constrained optimization.
As summarized in Algorithm 1, our method consists of five steps. First, for each correlation class
𝐶𝑖 , it introduces a set of variables that express the joint probabilities of input facts in that class 𝐶𝑖

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:10 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

(line 2). Second, at line 3, it generates a probability expression template 𝜉 over these joint probability
variables — the key idea is to express the probabilities of all relations symbolically as instantiations
of the same shared template. Then, at line 4, it invokes GenConstraint to express requirements
on the joint probability variables based on the facts in the Datalog program. Finally, for each fact
𝑅𝑜 , the algorithm first invokes GenObjective (line 6) to express the probability of 𝑅𝑜 symbolically
as an instantiation Φ of 𝜉 and then optimizes Φ (line 7) subject to the constraints generated earlier.

6.1 Joint Probability Variables

The variables in our encoding represent joint probabilities over input facts; hence, we refer to
them as joint probability variables. For each correlation class 𝐶 , we introduce a map 𝑉𝐶 of joint
probability variables, denoted Rep(𝐶) (for “representative”). Given a correlation class 𝐶 of size 𝑛,
𝑉𝐶 contains 2𝑛 variables, one for each possible boolean assignment to input facts in 𝐶 . We use
bitvectors to represent boolean assignments and write 𝑉𝐶 [𝑏] to denote the corresponding joint
probability variable. For example, for 𝐶 = {𝐼1, 𝐼2, 𝐼3}, 𝑉𝐶 [001] denotes the joint probability of 𝐼1, 𝐼2
being false and 𝐼3 being true. We also write B𝑛 to denote the set of all bitvectors of size 𝑛. Given an
input predicate 𝐼 and a joint probability variable 𝑣 , 𝑣 |= 𝐼 (resp. 𝑣 ̸ |= 𝐼) indicates that 𝑣 represents an
event in which 𝐼 is true (resp. false). In our example, we have 𝑉𝐶 [001] |= 𝐼3 and 𝑉𝐶 [001] ̸|= 𝐼1.

6.2 Probability Expressions and Templates

As explained earlier, a key idea underlying our algorithm is to express the probability of each
output relation as a symbolic expression over the joint probability variables. Because all of these
expressions are instantiations of the same template, we first explain what these templates look like.

Definition 7. (Product term) Let𝐶1 . . .𝐶𝑛 be the set of all correlation classes, i.e.,𝐶𝑖 ∈ C. A product
term𝜓 is a product of joint probability variables 𝑣1 . . . 𝑣𝑛 where each 𝑣𝑖 is a joint probability variable
associated with class 𝐶𝑖 , i.e., 𝑣𝑖 = Rep(𝐶𝑖) [𝑏] for some bitvector 𝑏.

Intuitively, a product term represents the probability of a particular truth assignment to all

input relations in the program. For example, if we have two correlation classes 𝐶1 = {𝐼1, 𝐼2} and
𝐶2 = {𝐼3, 𝐼4}, then the product term𝜓 = 𝑉1 [10] ×𝑉2 [11] represents the probability of 𝐼2 being false
and 𝐼1, 𝐼3, 𝐼4 being true. Extending our previous notation, given a product term𝜓 and input relation
𝐼 , we write𝜓 |= 𝐼 (resp.𝜓 ̸ |= 𝐼) to denote that𝜓 represents the probability of an event in which 𝐼 is
true (resp. false). For instance, in our previous example, we have𝜓 |= 𝐼1 and𝜓 ̸ |= 𝐼2.

Definition 8. (Probability expression template) Let Ψ be the set of all possible product terms. A
probability expression template 𝜉 is a sum-of-product expression of the form

∑
𝜓𝑖 ∈Ψ □𝑖 ×𝜓𝑖 .

For instance, if we have two correlation classes each with a single input fact, the probability
expression template would be of the form:

□1 ×𝑉1 [0]𝑉2 [0] + □2 ×𝑉1 [0]𝑉2 [1] + □3 ×𝑉1 [1]𝑉2 [0] + □4 ×𝑉1 [1]𝑉2 [1]
Intuitively, the probability of every relation in the program can be expressed symbolically as an
instantiation of a probability expression template, where holes □ are filled by coefficient terms 𝜆:

Definition 9. (Coefficient term) A coefficient term 𝜆 is an expression of the form
∑

𝑖 𝜆
+
𝑖 ×𝜆−𝑖 where

𝜆+𝑖 = 𝑟1 × . . . × 𝑟𝑛 and 𝜆−𝑖 = (1 − 𝑟 ′1) × . . . × (1 − 𝑟 ′
𝑘
) and each 𝑟 𝑗 , 𝑟

′
𝑗 is a variable representing the

probability of some rules in the Datalog program.

A coefficient term represents the probability of an output fact being derived by applying a specific
sequence of rules. However, since rule bodies can include negations, the derivation of some facts
may depend on certain rules not being applied. As a result, coefficient terms also incorporate factors
of the form (1 − 𝑟), which represent the probability of a rule not being applied.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:11

⟦𝐷⟧ =
∧
𝐶𝑖 ∈C⟦𝐶𝑖⟧ ∧

∧
𝐼𝑟 ∈𝑃𝐼 ⟦𝐼𝑟⟧ ∧

∧
𝑟 ∈𝑅 ProbVar(𝑟) = 𝑃𝑅 (𝑟)

⟦𝐶⟧ = ∀𝑏 ∈ B |𝐶 | . Rep(𝐶) [𝑏] ∈ [0, 1] ∧ ∑
𝑏∈B|𝐶 | Rep(𝐶) [𝑏] = 1

⟦𝐼𝑟⟧ = Expr(𝐼) = 𝑝 if 𝐼𝑟 = (𝑝 :: 𝐼 |∅)
⟦𝐼𝑟⟧ = ⊗𝑛

𝑖=0Expr(𝐼𝑖) = 𝑝 × ⊗𝑛
𝑖=1Expr(𝐼𝑖) if 𝐼𝑟 = (𝑝 :: 𝐼0 | 𝐼1, . . . , 𝐼𝑛)

Fig. 8. Rules for producing constraints from a Datalog program 𝐷 = (C, 𝑅, 𝑃𝑅, 𝑃𝐼). ProbVar(r) is a fresh

variable representing the probability of rule 𝑟 .

Definition 10. (Template instantiation) An instantiation of template 𝜉 either replaces each hole
with a 𝑐 ∈ {0, 1} or with a coefficient term 𝜆. Given a vector of expressions 𝜎 , we use the notation
𝜉 [𝜎] to denote a probability expression that is obtained by filling hole □𝑖 in 𝜉 with expression 𝜎𝑖 .

Intuitively, template instantiations that fill holes with coefficient terms represent probabilities
of output facts whereas those that use constants represent probabilities of input relations. Given
a relation 𝑅, Expr(𝑅) denotes the symbolic expression representing the probability of 𝑅 and is
obtained through some instantiation 𝜎 of the holes in 𝜉 — i.e., Expr(𝑅) = 𝜉 [𝜎] for some 𝜎 .

Definition 11. (Input expression) Let 𝜉 be a template with 𝜓𝑖 as its 𝑖’th term. The probability
expression for input fact 𝐼 , denoted Expr(𝐼), is given by 𝜎𝑖 = 1 if𝜓𝑖 |= 𝐼 and 𝜎𝑖 = 0 otherwise.

In other words, the symbolic expression for an input relation is obtained by choosing 1 as the
coefficient of a product term𝜓𝑖 if𝜓𝑖 represents the probability of an event in which 𝐼 is true and 0
otherwise. It is easy to see that Expr(𝐼) symbolically represents the probability of an input relation
in terms of the joint probability variables.

6.3 Constraint Generation

We now turn to the GenConstraint procedure used in Algorithm 1, with its implementation
summarized in Figure 8. Given a program 𝐷 = (C, 𝑅, 𝑃𝑅, 𝑃𝐼), this procedure generates three types
of constraints. First, for each correlation class 𝐶𝑖 with representative 𝑉𝑖 , it introduces a constraint
ensuring that all variables in 𝑉𝑖 are valid probabilities in the range [0, 1] and that they sum to 1
(line 2 of Figure 8). Second, the procedure introduces constraints to encode the (conditional) input
probabilities in the Datalog program. Specifically, for each rule of the form 𝑝 :: 𝐼 , a constraint is
introduced stating that Expr(𝐼) = 𝑝 , where Expr(𝐼) is defined in Definition 11. Additionally, for
conditional probability declarations of the form 𝑝 :: 𝐼0 |𝐼1 . . . 𝐼𝑛 (line 4 of Figure 8), a constraint is
introduced stating that 𝑃 (𝐼0∧ . . .∧ 𝐼𝑛) = 𝑝 ×𝑃 (𝐼1∧ . . .∧ 𝐼𝑛). Note that the probability 𝑃 (𝐼0∧ . . .∧ 𝐼𝑛)
is computed using a special multiplication operator ⊗, which is explained in the next section.
Finally, the procedure generates a third type of constraint that relates variables in the coefficient
terms to the actual rule probabilities given by 𝑃𝑅 (the last conjunct in the first line).

6.4 Generating Optimization Objective

In this final subsection, we focus on the GenObjective procedure. As a reminder, the purpose of
this procedure is to express the probability of each output relation as a symbolic expression over the
joint probability variables—i.e., as an instantiation of the probability expression template defined in
Definition 10. The key idea behind this procedure is to use the logical derivation graph 𝐺 to find
a coefficient term that can be used to fill each hole in the expression template. In particular, the
algorithm performs bottom-up traversal of the derivation graph to construct a symbolic probability
expression of each node, utilizing the probability expressions of its children.
Our bottom-up traversal algorithm is presented in Figure 9. The base case is the rule labeled

Leaf, which corresponds to input relations. Since we already know how to compute the probability
expression for an input relation (see Definition 11), the Leaf rule simply produces Expr(𝐼), where

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:12 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

𝑣 ∈ Leaves(𝐺) Pred(𝑣) = 𝐼

𝐺 ⊢ 𝑣 ↩→ Expr(𝐼)
(Leaf)

OutgoingEdges(𝐺, 𝑣) = {𝑒1, . . . , 𝑒𝑛 } 𝐺 ⊢ 𝑒𝑖 ↩→ 𝐸𝑖 for 𝑖 ∈ [1, 𝑛] 𝐸1 ⊕ · · · ⊕ 𝐸𝑛 ⇝ 𝐸

𝐺 ⊢ 𝑣 ↩→ 𝐸
(Node)

𝐵+ = {𝑣+1 , . . . 𝑣+𝑚 } 𝐺 ⊢ 𝑣+𝑖 ↩→ 𝐸+𝑖 for 𝑖 ∈ [1,𝑚] 𝐵− = {𝑣−1 , . . . 𝑣−𝑛 } 𝐺 ⊢ 𝑣−𝑖 ↩→ 𝐸−𝑖 for 𝑖 ∈ [1, 𝑛]
(𝐸+1 ⊗ · · · ⊗ 𝐸+𝑚) ⇝ 𝐸+ (⊖(𝐸−1)) ⊗ · · · ⊗ (⊖(𝐸−𝑛)) ⇝ 𝐸− 𝐸+ ⊗ 𝐸− ⇝ 𝐸

𝐺 ⊢ (_, 𝐵+, 𝐵−, 𝑟) ↩→ ProbVar(𝑟) × 𝐸
(Edge)

Fig. 9. Rules for inferring symbolic probability expression for output relations.

𝐸 =
∑︁

𝜆𝑖𝜓𝑖

⊖(𝐸) ⇝
∑︁
(1 − 𝜆𝑖)𝜓𝑖

(Neg)

𝐸1 =
∑︁

𝜆1𝑖𝜓𝑖 𝐸2 =
∑︁

𝜆2𝑖𝜓𝑖

JointProb(𝜆1𝑖 , 𝜆2𝑖) ⇝ 𝜆𝑖

⊢ 𝐸1 ⊗ 𝐸2 ⇝
∑︁

𝜆𝑖𝜓𝑖

(Mul)

𝐸1 =
∑︁

𝜆1𝑖𝜓𝑖 𝐸2 =
∑︁

𝜆2𝑖𝜓𝑖

JointProb(𝜆1𝑖 , 𝜆2𝑖) ⇝ 𝜆𝑖

𝐸1 ⊕ 𝐸2 ⇝
∑︁
(𝜆1𝑖 + 𝜆2𝑖 − 𝜆𝑖)𝜓𝑖

(Add)

𝜆1 =
∑︁𝑛

𝑖=1
𝑒𝑖 𝜆2 =

∑︁𝑚

𝑗=1
𝑒 𝑗 ∀(𝑖, 𝑗) . 𝑒𝑖 ⋄ 𝑒 𝑗 ⇝ 𝑒𝑖 𝑗

JointProb(𝜆1, 𝜆2) ⇝
∑︁(𝑛,𝑚)
(𝑖,𝑗)=1

𝑒𝑖 𝑗

(Joint)
𝑒𝑖 = 𝑋 +𝑖 × 𝑋 −𝑖 𝑒 𝑗 = 𝑌 +𝑗 × 𝑌 −𝑗
𝑋 +𝑖 ♦𝑌

+
𝑗 ⇝ 𝑍+ 𝑋 −𝑖 ♦𝑌 −𝑗 ⇝ 𝑍 −

𝑒𝑖 ⋄ 𝑒 𝑗 ⇝ Disjoint(𝑋𝑖 , 𝑌𝑗) ? 𝑍+𝑍 − : 0
(⋄)

∏𝑝

𝑖=1
⃝(𝑥𝑖) ♦

∏𝑞

𝑗=1
⃝(𝑦 𝑗) ⇝

∏
𝑧𝑘 ∈ (

⋃𝑝

𝑖=1 𝑥𝑖 ∪
⋃𝑞

𝑗=1 𝑦 𝑗)
⃝(𝑧𝑘)

(♦)

Fig. 10. Rules defining ⊖, ⊗ and ⊕ operations. Disjoint(𝑋𝑖 , 𝑌𝑗) is true iff Vars(𝑋+𝑖)∩Vars(𝑌
−
𝑗
) = ∅ ∧Vars(𝑋 −

𝑖
)∩

Vars(𝑌+
𝑗
) = ∅. Vars(𝑋) denotes the set of rule probability variables present in𝑋 . In the ♦ rule,⃝(𝑥) represents

a term of the form 𝑥 or 1 − 𝑥 .

𝐼 is the input relation represented by the node 𝑣 . Next, the rule labeled Node describes how to
compute the probability expression for an internal node 𝑣 representing an output relation. If a
node labeled 𝑂 has 𝑛 outgoing edges, this means 𝑂 can be derived in 𝑛 different ways. Therefore,
the rule first computes a probability expression 𝐸𝑖 for each edge 𝑒𝑖 , representing the probability
of a possible derivation of 𝑂 . It then computes the probability of 𝑃 (𝑒1 ∨ . . . ∨ 𝑒𝑛) using a special
⊕ operator, which we explain later. Finally, the last rule, labeled Edge, computes the probability
expression for a derivation. Recall that a hyperedge with source 𝑣 and target nodes 𝐵+ and 𝐵−

represents the application of a rule 𝑟 , whose body consists of positive facts 𝐵+ and negative facts 𝐵− .
This rule first computes the probability expressions 𝐸+𝑖 for each 𝑣+𝑖 ∈ 𝐵+ and 𝐸−𝑖 for each 𝑣−𝑖 ∈ 𝐵− ,
respectively. It then combines these to obtain a probability expression for the edge.
To combine these expressions, we first note that the probability expression for ¬𝑅 is given by
⊖𝐸, where 𝐸 denotes the probability expression for 𝑅, i.e., 𝐸 = Expr(𝑅). Next, we define an operator
⊗ (explained later) to compute the probability of 𝑃 (𝑣1 ∧ 𝑣2) as 𝑃 (𝑣1) ⊗ 𝑃 (𝑣2). Therefore, the Edge
rule first computes the probability of all positive facts being true as 𝐸+ = 𝐸+1 ⊗ . . . ⊗ 𝐸+𝑚 , and the
probability of all negative facts being true as 𝐸− = ⊖(𝐸−1) ⊗ . . . ⊗ ⊖(𝐸−𝑛). The probability of both
positive and negative facts being satisfied is then given by 𝐸 = 𝐸+ ⊗ 𝐸− . Finally, since the rule itself
has a probability, the final probability expression is obtained as ProbVar(𝑟) × 𝐸, where ProbVar(𝑟)
is the variable representing the probability of rule 𝑟 .
Finally, we turn our attention to the definitions of the ⊖, ⊗, and ⊕ operators from Figure 10,

which are used to compute probability expressions for conjunctions and disjunctions of events.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:13

𝑝1 :: 𝐼1 𝑃𝑟 (𝐼1) = 0 ∗𝑉 [00] + 0 ∗𝑉 [01] + 1 ∗𝑉 [10] + 1 ∗𝑉 [11]
𝑝2 :: 𝐼2 𝑃𝑟 (𝐼2) = 0 ∗𝑉 [00] + 1 ∗𝑉 [01] + 0 ∗𝑉 [10] + 1 ∗𝑉 [11]
𝑝3 :: 𝐼2 |𝐼1
𝑟1 :: 𝐴 :− 𝐼1 𝑃𝑟 (𝐴) = 0 ∗𝑉 [00] + 0 ∗𝑉 [01] + 𝑟1 ∗𝑉 [10] + 𝑟1 ∗𝑉 [11]
𝑟2 :: 𝐵 :− 𝐴 𝑃𝑟 (𝐵) = 0 ∗𝑉 [00] + 0 ∗𝑉 [01] + 𝑟1𝑟2 ∗𝑉 [10] + 𝑟1𝑟2𝑉 [11]
𝑟3 :: 𝐶 :− \+𝐴, 𝐼2 𝑃𝑟 (\+𝐴) = 1 ∗𝑉 [00] + 1 ∗𝑉 [01] + (1 − 𝑟1)𝑉 [10] + (1 − 𝑟1)𝑉 [11]

𝑃𝑟 (𝐶) = 𝑟3 × (𝑃𝑟 (\+𝐴) ⊗ 𝑃𝑟 (𝐼2)) = 0 ∗𝑉 [00] + 𝑟3 ∗𝑉 [01] + 0 ∗𝑉 [10] + 𝑟3 (1 − 𝑟1)𝑉 [11]
𝑟4 :: 𝐷 :− 𝐵,𝐴 𝑃𝑟 (𝐷) = 𝑟4 × (𝑃𝑟 (𝐵) ⊗ 𝑃𝑟 (𝐴)) = 0 ∗𝑉 [00] + 0 ∗𝑉 [01] + 𝑟1𝑟2𝑟4𝑉 [10] + 𝑟1𝑟2𝑟4𝑉 [11]
𝑟5 :: 𝐸 :− 𝐶 𝑃𝑟 (𝐸1) = 0 ∗𝑉 [00] + 𝑟3𝑟5 ∗𝑉 [01] + 0 ∗𝑉 [10] + 𝑟3𝑟5 (1 − 𝑟1)𝑉 [11]
𝑟6 :: 𝐸 :− 𝐷 𝑃𝑟 (𝐸2) = 0 ∗𝑉 [00] + 0 ∗𝑉 [01] + 𝑟1𝑟2𝑟4𝑟6𝑉 [10] + 𝑟1𝑟2𝑟4𝑟6𝑉 [11]

𝑃𝑟 (𝐸) = 𝑃𝑟 (𝐸1) ⊕ 𝑃𝑟 (𝐸2)
= 0 ∗𝑉 [00] + 𝑟3𝑟5𝑉 [01] + 𝑟1𝑟2𝑟4𝑟6𝑉 [10] + (𝑟3𝑟5 (1 − 𝑟1) + 𝑟1𝑟2𝑟4𝑟6 − 0)𝑉 [11]

Fig. 11. Left: Praline program. Right: Probability expressions for both input and output facts.

All of these rules rely on the fact that probability expressions are in a normalized form, consisting
of sums of terms of the form 𝜆 × 𝜓 , where 𝜆 is a coefficient term (Def. 9) and 𝜓 is a product
term (Def. 7). First, given a symbolic expression 𝐸 representing the probability of some relation
𝑅, the Neg rule computes the probability of ¬𝑅 by simply replacing all coefficient terms 𝜆 with
1 − 𝜆. Second, the Mul rule computes the probability of a conjunction of events by combining
the coefficients of each product term using the JointProb function (explained later). Similarly,
the Add rule computes the probability of a disjunction of events by updating the coefficient of
each term𝜓𝑖 as 𝜆1𝑖 + 𝜆2𝑖 − JointProb(𝜆1𝑖 , 𝜆2𝑖). Intuitively, this corresponds to an application of the
inclusion-exclusion principle.

Next, we focus on the last three rules for computing the joint probability of two coefficient terms
𝜆1 and 𝜆2. The rule labeled Joint essentially distributes multiplication over addition, as we require
each coefficient term to be a sum of products. The second rule, labeled ⋄, considers multiplication
expressions of the form (𝑋 +𝑖 × 𝑋 −𝑖) and (𝑌 +𝑖 × 𝑌 −𝑖). In this rule, 𝑍+ denotes a product of variables
𝑣 , and 𝑍 − represents a product of terms of the form 1 − 𝑣 , where 𝑣 represents a rule probability.
Intuitively, 𝑍+ indicates the rules that must be applied to derive a fact, while 𝑍 − indicates the rules
that must not be applied. Thus, if a variable 𝑣 appears in 𝑋 +𝑖 (or 𝑌 +𝑖) and 1− 𝑣 appears in 𝑌 −𝑗 (or 𝑋 −𝑖),
this results in a contradiction, and the probability of the term is zero. Otherwise, if the disjointness
condition is satisfied, the probability is computed using the rule labeled ♦. The intuition behind
the ♦ rule is as follows: If a variable 𝑣 appears in both 𝑋𝑖 and 𝑌𝑖 , it indicates that the same fact is
derived using the same rule. To avoid overcounting, we do not multiply probabilities repeatedly, as
that rule only needs to be applied once. Therefore, the ♦ rule multiplies probabilities after ensuring
that variables associated with the same rule are treated uniquely.
Example 3. Consider the Praline program on the left side of Figure 11, with the corresponding
probability expressions for both input and output facts displayed on the right. In this example, 𝐼1
and 𝐼2 are correlated, so they belong to the same correlation class 𝑉 — e.g., 𝑉 [01] represents the
joint probability of 𝐼1 being false and 𝐼2 being true. The right side of Figure 11 shows the symbolic
probability expressions for each fact. The parts highlighted in red show the need for the disjointness
check in the ⋄ rule; and the parts highlighted in blue illustrate the need for the ♦ operator.

Theorem 1. Let 𝐸1 and 𝐸2 denote the probability expressions of events 𝐴 and 𝐵 respectively. Then,

we have: (1) If ⊖𝐸1 ⇝ 𝐸, then 𝐸 represents the probability of ¬𝐴; (1) if 𝐸1 ⊕𝐸2 ⇝ 𝐸, then 𝐸 represents

the probability of event 𝐴 ∨ 𝐵 (3) iff 𝐸1 ⊗ 𝐸2 ⇝ 𝐸,then 𝐸 represents the probability of event 𝐴 ∧ 𝐵.

7 𝛿-Exact Probabilistic Inference

Building on our approach from Section 6, we now present a more practical 𝛿-exact probabilistic
inference algorithm, summarized in Algorithm 2. Similar to the previous algorithm, it first uses the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:14 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Algorithm 2 Solve±𝛿 (𝐷,𝛿)

Input: Datalog program 𝐷 , precision bound 𝛿
Output: Mapping𝑀 that maps output facts to probabilities
1: 𝑆𝑜 ,𝐺 ← SolveStandard(𝐷) ⊲ SolveStandard produces output facts 𝑆𝑜 and derivation graph𝐺
2: 𝜙 ← GenConstraints(𝐷,𝐺) ⊲ Use technique from Section 6.3 to generate constraints
3: Σ← InferCorrelationType(𝐺,𝜙) ⊲ Infer type of statistical correlation between facts
4: 𝑀 ← DeriveApproximateBounds(𝐺,𝐷, Σ) ⊲ Approximate bounds using static analysis and constraint solving
5: 𝑀 ′ ← MakeDeltaPrecise(𝑀,𝑆𝑜 , 𝜙, 𝛿) ⊲ Iterative refinement of bounds
6: return𝑀 ′

𝑝 :: (𝐼 |∅) ∈ 𝑃𝐼 𝑝 < 1

𝐷,𝜙 ⊢ 𝐼 ▶+ 𝐼
(Id)

Class(𝐼1) ≠ Class(𝐼2)
𝐷,𝜙 ⊢ 𝐼1 ▶⊥ 𝐼2

(Indep)
𝐼1 ▶★ 𝐼2 (★ ∈ {+, −,⊥})

𝐷,𝜙 ⊢ 𝐼2 ▶★ 𝐼1
(Symm)

𝐸1 = Expr(𝐼1) 𝐸2 = Expr(𝐼2) 𝐸1 ⊗ 𝐸2 ⇝ 𝐸∧ |= 𝜙 ⇒ 𝐸∧ ⊡ 𝐸1 × 𝐸2 ★ = Sign(⊡)
𝐷,𝜙 ⊢ 𝐼1 ▶★ 𝐼2

(Semantic)

Fig. 12. Inference of statistical correlation between input variables. Here, ⊡ ∈ {<, >,=}, and Sign(⊡) yields +
for >, − for <, and ⊥ for =.

underlying Datalog solver to obtain a derivation graph 𝐺 . Next, it invokes the InferCorrelation-
Type function to compute the type of the statistical correlation between facts, where a correlation
type is either positive, negative, independent, or unknown. In the third step, the algorithm uses this
correlation type environment Σ to derive approximate probability bounds on output facts. Finally,
the call to MakeDeltaPrecise at line 5 keeps refining the inferred bounds until the derived bounds
are within 𝛿 of the ground truth.

7.1 Inference of Correlation Types

In this section, we present the InferCorrelationType algorithm that can be used to infer whether
a pair of relations are positively/negatively correlated or whether they are independent.

Definition 12. (Statistical correlation) Two events 𝑋 and 𝑌 are positively (resp. negatively) corre-
lated if 𝑃 (𝑋 |𝑌) > 𝑃 (𝑋) (resp. 𝑃 (𝑋 |𝑌) < 𝑃 (𝑋)). If 𝑃 (𝑋 |𝑌) = 𝑃 (𝑋), then 𝑋 and 𝑌 are independent.

Note that the notion of statistical correlation is symmetric. That is, if 𝑋 is positively correlated
with𝑌 , then𝑌 is also positively correlated with𝑋 . A correlation type for a pair of Datalog facts is one
of Pos (+),Neg (−),⊥,⊤, where ⊥,⊤ indicate independence and unknown correlation respectively.
As stated earlier, identifying correlation types allows us to derive tighter approximate bounds
than would otherwise be possible. To infer these correlation types, our method proceeds in two
phases: First, it infers statistical correlations between input facts. In the second phase, it uses this
information to infer statistical correlations between outputs.

Phase 1: Inferring correlation types between input facts. Figure 12 presents our method
for inferring correlation types for pairs of input facts using the judgment 𝐷,𝜙 ⊢ 𝐼1 ▶★ 𝐼2 where
★ ∈ {+,−,⊥} indicates positive and negation correlation and statistical independence respectively.
Here, 𝐷 is the Datalog program and 𝜙 is the set of constraints generated from the Datalog program
as described in Section 6.3. The first rule, labeled Id indicates that the input fact 𝐼 is positively
correlated with itself. The next rule, labeled Indep applies to two input facts that do not belong
to the same correlation class. Finally, the last rule labeled Semantic uses the constraint-based
technique from Section 6 to check for statistical correlation. The basic idea is to use the algorithm

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:15

Dep(𝑂) = {𝐼 | 𝐼 ▷ 𝑂 } Dep
★ (𝑂) = {𝐼 | 𝐼 ▷★ 𝑂 }

Dep(𝐸1 ∧ 𝐸2) = Dep(𝐸1) ∪ Dep(𝐸2) Dep
★ (𝐸1 ∧ 𝐸2) = Dep

★ (𝐸1) ∪ Dep★ (𝐸2)
Dep(𝐸1 ∨ 𝐸2) = Dep(𝐸1) ∪ Dep(𝐸2) Dep

★ (𝐸1 ∨ 𝐸2) = Dep
★ (𝐸1) ∪ Dep★ (𝐸2)

Dep(¬𝐸) = Dep(𝐸) Dep
★ (¬𝐸) = Dep

★ (𝐸)

Fig. 13. Auxiliary Dep function. 𝑂 denotes an output fact and ★ ∈ {+,−}. ★ is + if ★ is − and vice versa.

∀(𝑥, 𝑦) ∈ Dep(𝐸) . 𝑥 ≠ 𝑦 → Class(𝑥) ≠ Class(𝑦)
⊢ 𝜒 (𝐸) (NonInterfere)

∃(𝑥, 𝑦) ∈ Dep
★ (𝐸1) × Dep

★ (𝐸2) . 𝑥 ▶♮ 𝑦

⊢ 𝐸1 ⇀
♮ 𝐸2

(May-1)
∃(𝑥, 𝑦) ∈ Dep

★ (𝐸1) × Dep
★ (𝐸2) . 𝑥 ▶♮ 𝑦

⊢ 𝐸1 ⇀
♮ 𝐸2

(May-2)

⊢ 𝜒 (𝐸1) ⊢ 𝜒 (𝐸2) ⊢ 𝐸1 ⇀
+ 𝐸2 ⊬ 𝐸1 ⇀

− 𝐸2

⊢ 𝐸1
⊕−→ 𝐸2

(Pos) ⊢ 𝜒 (𝐸1) ⊢ 𝜒 (𝐸2) ⊢ 𝐸1 ⇀
− 𝐸2 ⊬ 𝐸1 ⇀

+ 𝐸2

⊢ 𝐸1
⊖−→ 𝐸2

(Neg)

∀𝑥, 𝑦 ∈ Dep(𝐸1) × Dep(𝐸2) . Class(𝑥) ≠ Class(𝑦)
⊢ 𝐸1

⊥−→ 𝐸2
(Indep) ⊬ 𝐸1

⊕−→ 𝐸2 ⊬ 𝐸1
⊖−→ 𝐸2 ⊬ 𝐸1

⊥−→ 𝐸2

⊢ 𝐸1
⊤−→ 𝐸2

(Unknown)

Fig. 14. Inference rules for computing statistical correlation between expressions, where ♮ ∈ {+,−}. Note
that predicates 𝑥 ▶★ 𝑦 are derived using Figure 12, and ★ (resp. ♮) is + if ★ (resp. ♮) is − and vice versa.

of Section 6 to check how the joint probability of 𝐼1 ∧ 𝐼2 relates to the product of the individual
probabilities of 𝐼1 and 𝐼2. To do so, it first generates symbolic expressions 𝐸1, 𝐸2, 𝐸∧ for 𝐼1, 𝐼2, and
𝐼1 ∧ 𝐼2 respectively. Then, it uses a solver to check whether the constraints 𝜙 (encoding the input
probabilities) logically imply whether 𝐸∧ ⊡ 𝐸1 × 𝐸2, where ⊡ denotes one of <, >,=. Note that this
semantic approach is not as susceptible to the scalability challenges discussed earlier because we
consider only input facts and only those that belong to the same correlation class.

Theorem 2. Suppose that we derive 𝐼1 ▶★ 𝐼2 using the rules from Figure 12. Then, 𝑝 (𝐼1 |𝐼2) > 𝑝 (𝐼1)
if ★ = +, 𝑝 (𝐼1 |𝐼2) < 𝑝 (𝐼1) if ★ = −, and 𝑝 (𝐼1 |𝐼2) = 𝑝 (𝐼1) if ★ = ⊥.

Phase 2: Inferring correlation types between outputs. The second phase of our inference
algorithm uses the results of the first phase to infer correlation types between expressions involving
outputs. Note that we could, in principle, use the same constraint-based approach presented Figure 12
to infer correlation types between arbitrary expressions; however, such an approach does not scale
well. To overcome this scalability bottleneck, we instead utilize lightweight static analysis.

The key idea underlying our method is to utilize the derivation graph, along with the known
correlations between input facts, to infer correlation types between arbitrary expressions (i.e.,
boolean combinations of ground predicates). Given a pair of expressions 𝐸1, 𝐸2, our method first
uses the derivation graph to identify the set 𝑆1, 𝑆2 of input facts, along with their polarity, that 𝐸1
and 𝐸2 logically depend on; it then analyzes the statistical correlations between elements in 𝑆1, 𝑆2
to decide whether we can determine the correlation type between 𝐸1 and 𝐸2.

Our analysis is summarized in Figures 13 and 14, where the former defines two auxiliary functions
Dep,Dep★(★ ∈ {+,−}) used in Figure 14. As shown in Figure 13, Dep(𝐸) simply yields the set of
all input facts that 𝐸 is logically dependent on according to the derivation graph (recall Def 3).
Similarly, Dep+ (𝐸) (resp. Dep− (𝐸)) yields the set of input facts that 𝐸 depends positively (resp.
negatively) on. For example, consider an output fact 𝑂 that can be derived using 𝐼1 ∧ ¬𝐼2 or using
only 𝐼2. In this case, both Dep(𝑂) and Dep

+ (𝑂) include 𝐼1, 𝐼2 but Dep− (𝑂) only includes 𝐼2.
Figure 14 uses these auxiliary functions to infer correlation types between arbitrary expressions.

The basic idea is to infer whether two expressions 𝐸1 and 𝐸2 may be positively or negatively

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:16 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Algorithm 3 DeriveApproximateBounds(𝐺,𝐷, Σ)

1: for node 𝑛 ∈ InternalNodes(𝐺) do
2: 𝐸𝑛 ← ⟦𝑛⟧(𝐺)
3: 𝑀 [𝑛] ← ApproxExpr(Σ, 𝐷, 𝐸𝑛)
4: return𝑀

⟦𝑛⟧(𝐺) = Pred(𝑛) if 𝑛 is a leaf node
⟦𝑛⟧(𝐺) =

∨
𝑒∈𝐸 (⟦𝑒⟧(𝐺), P(𝑒)) where OutEdges(𝐺,𝑛) = 𝐸

⟦𝑒⟧(𝐺) =
∧

𝑛∈𝐵+⟦𝑛⟧(𝐺) where 𝑒 = (𝑛𝑠 , 𝐵+, 𝐵−, 𝑟)
∧∧𝑛∈𝐵− ¬⟦𝑛⟧(𝐺)

Fig. 15. Computation of derivation expressions. P(𝑒)
yields the probability of the rule labeling edge 𝑒 .

Operation ★ = + ★ = − ★ = ⊥ ★ = ⊤

CL(𝑒1, 𝑒2,★) 𝑒1 × 𝑒2 max(𝑒1 + 𝑒2 − 1, 0) 𝑒1 × 𝑒2 max(𝑒1 + 𝑒2 − 1, 0)
CU(𝑒1, 𝑒2,★) min(𝑒1, 𝑒2) 𝑒1 × 𝑒2 𝑒1 × 𝑒2 min(𝑒1, 𝑒2)
DL(𝑒1, 𝑒2,★) max(𝑒1, 𝑒2) 1 − (1 − 𝑒1) (1 − 𝑒2) 1 − (1 − 𝑒1) (1 − 𝑒2) max(𝑒1, 𝑒2)
DU(𝑒1, 𝑒2,★) 1 − (1 − 𝑒1) (1 − 𝑒2) min(1, 𝑒1 + 𝑒2) 1 − (1 − 𝑒1) (1 − 𝑒2) min(1, 𝑒1 + 𝑒2)

Table 1. CL/CU/DL/DU computation rules. CL and CU denote the lower and upper bounds of the conjunction

operation, respectively, while DL and DU represent the lower and upper bounds of the disjunction operation.

𝐼 ∈ InputFacts(𝐷) 𝑝 :: (𝐼 | ∅) ∈ InputProbs(𝐷)
Σ, 𝐷 ⊢ 𝐼 ↷ [𝑝, 𝑝]

(In)
Σ, 𝐷 ⊢ 𝐸 ↷ [𝑙,𝑢]

Σ, 𝐷 ⊢ ¬𝐸 ↷ [1 − 𝑢, 1 − 𝑙]
(Neg)

Σ, 𝐷 ⊢ 𝐸1 ↷ [𝑙1,𝑢1] Σ, 𝐷 ⊢ 𝐸2 ↷ [𝑙2,𝑢2] Σ(𝐸1, 𝐸2) = ★

Σ, 𝐷 ⊢ 𝐸1 ∧ 𝐸2 ↷ [CL(𝑙1, 𝑙2,★),CU(𝑢1,𝑢2,★)]
(Conjunct)

Σ, 𝐷 ⊢ 𝐸1 ↷ [𝑙1,𝑢1] Σ, 𝐷 ⊢ 𝐸2 ↷ [𝑙2,𝑢2] Σ(𝐸1, 𝐸2) = ★

Σ, 𝐷 ⊢ (𝐸1, 𝑝1) ∨ (𝐸2, 𝑝2) ↷ [DL(𝑙1 × 𝑝1, 𝑙2 × 𝑝2,★),DU(𝑢1 × 𝑝1,𝑢2 × 𝑝2,★)]
(Disjunct)

Fig. 16. Inference rules for computing approximate probability bounds.

correlated (rules labeled May), meaning that a pair of shared input predicates in 𝐸1 and 𝐸2 have
the potential to introduce a positive or negative correlation. Then, according to the rules labeled
Pos and Neg, if we find that 𝐸1 and 𝐸2 may be positively (resp. negatively) correlated and there is
nothing that introduces a potential negative (resp. positive) correlation, we can conclude that 𝐸1
and 𝐸2 are definitely positively (resp. negatively) correlated as long as both expressions exhibit
a certain non-interference property shown in the NonInterfere rule as 𝜒 (𝐸). Intuitively, the
non-interference property is necessary because, if an input fact 𝐼 is positively correlated with 𝐼1 and
𝐼2 individually, it does not necessarily mean that it is positively correlated with 𝐼1 ∧ 𝐼2. At the end
of the correlation type analysis, the inferred dependencies are stored in Σ and used in Algorithm 2.

Theorem 3. If 𝐸1 ⊕−→ 𝐸2 is derivable using the rules in Figure 14, then 𝑝 (𝐸1 |𝐸2) > 𝑝 (𝐸1). Similarly,

⊢ 𝐸1 ⊖−→ 𝐸2 implies 𝑝 (𝐸1 |𝐸2) < 𝑝 (𝐸1) and ⊢ 𝐸1 ⊥−→ 𝐸2 implies 𝑝 (𝐸1 |𝐸2) = 𝑝 (𝐸1).

7.2 Computing Approximate Probability Bounds

In this section, we present a technique, summarized in Algorithm 3, for deriving approximate

probability bounds on output relations. For each node in the derivation graph, this algorithm
computes a so-called derivation expression 𝐸 that summarizes all ways in which a given relation
can be derived (line 2). For example, if there are two rules 𝑝1 :: 𝑅 :− 𝐴, 𝐵 and 𝑝2 :: 𝑅 :− 𝐶 , then
the derivation expression is of the form (𝐴 ∧ 𝐵) ∨ 𝐶 . However, because we also need to keep
track of the rule probabilities, expressions inside a disjunct also have a corresponding probability,
represented as (𝐴 ∧ 𝐵, 𝑝1) ∨ (𝐶, 𝑝2) for this example. Figure 15 presents the rules for generating
derivation expressions for each node. Then, given the derivation expression 𝐸𝑛 for node 𝑛, the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:17

Algorithm 4MakeDeltaPrecise(𝑀,𝑆𝑜 , 𝜙, 𝛿)

Input: Maping 𝑀 , set of output relations 𝑆𝑜 , constraints
𝜙 , precision bound 𝛿

Output: Mapping𝑀 that maps output facts to probabilities

1: 𝐵 ← BoundBounds(𝑀,𝜙, 𝑆𝑜)
2: ⊲ Compute upper and lower bounds for the bounds
3: for node 𝑅 ∈ 𝑆𝑜 do

4: (𝑙−, 𝑙+,𝑢−,𝑢+) ← 𝐵 [𝑅]
5: (𝑙−, 𝑙+) ← BinarySearch(𝑙−, 𝑙+, 𝜙, 𝛿, 𝑅, true)
6: (𝑢−,𝑢+) ← BinarySearch(𝑢−,𝑢+, 𝜙, 𝛿, 𝑅, false)
7: 𝑀 [𝑅] ← (𝑙−,𝑢+)
8: return𝑀

Algorithm 5 BoundBounds(𝑀,𝜙, 𝑆𝑜)

Input: Mapping𝑀 , constraints 𝜙 , set of output relations
𝑆𝑜

Output: A new mapping 𝐵, where 𝐵 [𝑛] is a quadruple
(𝑙−, 𝑙+,𝑢−,𝑢+) where 𝑙−, 𝑙+ (resp. 𝑢−,𝑢+) are lower
and upper bounds for the ground truth lower (resp.
upper) bound

1: for node 𝑅 ∈ 𝑆𝑜 do

2: (𝑙,𝑢) ← 𝑀 [𝑅]
3: (𝑙−, 𝑙+) ← MakeSAT(𝑙, 𝑙, 𝜙, Expr(𝑅), true)
4: (𝑢−,𝑢+) ← MakeSAT(𝑢,𝑢,𝜙, Expr(𝑅), false)
5: 𝐵 [𝑅] ← (𝑙−, 𝑙+,𝑢−,𝑢+)
6: return 𝐵

ApproxExpr procedure (called at line 3 in Algorithm 3) computes the approximate upper and lower
bounds for 𝐸𝑛 using the rules presented in Figure 16. Given a derivation expression 𝐸, these rules
derive judgments of the form Σ, 𝐷 ⊢ 𝐸 ↷ [𝑙, 𝑢] indicating that 𝑙, 𝑢 are lower and upper bounds
on the probability of expression 𝐸 evaluating to true. To compute these lower and upper bounds,
we leverage the results of the correlation type analysis (stored in Σ) as well as known statistical
inequalities provided in Table 1 for different correlation types [46].
Theorem 4. Let 𝐷 be a Praline program with derivation graph 𝐺 , and suppose Σ is a sound

correlation environment for 𝐷 . Also, let𝑀 ′ = DeriveApproxBounds(𝐺,𝐷, Σ) and let𝑀 = Solve(𝐷)
(Algorithm 1). For every output relation 𝑂 of 𝐷 such that 𝑀 (𝑂) = (𝑙∗, 𝑢∗) and 𝑀 ′ (𝑂) = (𝑙, 𝑢), we
have 𝑙 ≤ 𝑙∗ ≤ 𝑢∗ ≤ 𝑢.

7.3 Iterative Refinement of Probability Bounds

In this section, we describe the MakeDeltaPrecise algorithm that iteratively tightens the computed
probability bounds until it is within some 𝛿 of the ground-truth. The key idea is to combine the
algorithm from Section 6 with the approximate bounds as illustrated in Figure 7. In this Figure 7,
𝑙∗ and 𝑢∗ denote the ground truth (but unknown) probability bounds for relation 𝑅, and 𝑙 and 𝑢
denote the approximate probability bounds for 𝑅, computed as described in Section 7.2. Thus, it is
always the case that 𝑙 ≤ 𝑙∗ and 𝑢∗ ≤ 𝑢. Our key observation is that the constraint 𝜙 generated in
Section 6.3 partitions this space into three regions:
• Region 1: This is the region 𝜓1 = (𝑙 ≤ Expr(𝑅) < 𝑙∗), where Expr(𝑅) denotes the symbolic
expression generated for 𝑅, as described in Section 6.4. Since the ground truth is 𝑙∗ ≤ Expr(𝑅) ≤
𝑢∗,𝜓1 ∧ 𝜙 must be unsatisfiable.
• Region 2: This is the “ground truth” region𝜓2 = 𝑙∗ ≤ Expr(𝑅) ≤ 𝑢∗; thus, 𝜙 ∧𝜓2 is satisfiable.
• Region 3: This is the region𝜓3 = (𝑢∗ < Expr(𝑅) ≤ 𝑢), so𝜓3 ∧ 𝜙 is again unsatisfiable.
As illustrated in Figure 7, the idea is to repeatedly increase 𝑙 (resp. 𝑢) by 𝜖 until the formula

𝑙𝑖 ≤ Expr(𝑅) ≤ 𝑙𝑖 +𝜖 ∧𝜙 (resp. 𝑢𝑖 −𝜖 ≤ Expr(𝑅) ≤ 𝑢𝑖 ∧𝜙) becomes satisfiable. When this procedure
terminates, we can obtain lower and upper bounds (𝑙−, 𝑙+) for 𝑙∗ as well as bounds (𝑢−, 𝑢+) for 𝑢∗.
We can then perform binary search until the distance between the two becomes less than 𝛿 .

This discussion is summarized in Algorithm 4. The MakeDeltaPrecise procedure first calls
BoundBounds to compute upper and lower bounds for 𝑙∗, 𝑢∗, as depicted in Figure 7. As shown in
Algorithm 5 (and its auxiliary procedure MakeSAT in Algorithm 6), BoundBounds increments
(resp. decrements) 𝑙 (resp. 𝑢) until we get into the SAT region in Figure 7. Upon termination of
MakeSAT, (𝑙−, 𝑙+) (resp. (𝑢−, 𝑢+)) provide lower and upper bounds for 𝑙∗ (resp. 𝑢∗). Then, for each
relation 𝑅, MakeDeltaPrecise calls BinarySearch (Algorithm 7) to find a 𝛿-optimal solution.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:18 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Algorithm 6MakeSAT(𝑙,𝑢, 𝜙, 𝑒, b)

Input: Lower bound 𝑙 , upper bound 𝑢, constraints 𝜙 ,
expression 𝑒 , boolean flag b. Boolean flag b indicat-
ing if we are dealing with a lower or upper bound

Output: Updated lower bound 𝑙 and upper bound 𝑢
1: while UNSAT(𝜙 ∧ 𝑙 ≤ 𝑒 ≤ 𝑢) do
2: (𝑙,𝑢) ← b ? (𝑢, Inc(𝑢))
3: : (Dec(𝑙), 𝑙)
4: return (𝑙,𝑢)

Algorithm 7 BinarySearch(𝑙,𝑢, 𝜙, 𝛿, 𝑅, b)

Input: Lower bound 𝑙 , upper bound 𝑢, constraints 𝜙 , error
bound 𝛿 , output relation 𝑅, boolean flag low

Output: Updated lower bound 𝑙 and upper bound 𝑢
1: while (𝑢 − 𝑙) ≥ 𝛿 do

2: 𝑚𝑖𝑑 ← (𝑙 +𝑢)/2
3: (𝑙 ′,𝑢′) ← low?(𝑙,𝑚𝑖𝑑) : (𝑚𝑖𝑑,𝑢)
4: if UNSAT(𝜙 ∧ (𝑙 ′ ≤ Expr(𝑅) ≤ 𝑢′)) then
5: (𝑙,𝑢) ← low?(𝑚𝑖𝑑,𝑢) : (𝑙,𝑚𝑖𝑑)
6: else (𝑙,𝑢) ← low?(𝑙,𝑚𝑖𝑑) : (𝑚𝑖𝑑,𝑢)
7: return (𝑙,𝑢)

When BinarySearch terminates, the returned interval [𝑙−, 𝑙+] is guaranteed to contain 𝑙∗, with
𝑙+ − 𝑙− ≤ 𝛿 . The same guarantee also applies to the upper bound.

Theorem 5. Let (𝑙∗, 𝑢∗) be the ground truth probability bounds for relation 𝑅, and let (𝑙, 𝑢) be the
bounds computed by MakeDeltaPrecise. Then, we have 𝑙∗ − 𝛿 ≤ 𝑙 ≤ 𝑙∗ and 𝑢∗ ≤ 𝑢 ≤ 𝑢∗ + 𝛿 .

8 Implementation

We have implemented our proposed approach in a tool called Praline written in C++. Praline
instruments the solving procedure of Souffle [30] to generate the derivation graph and utilizes
the Gurobi [10] solver for optimization and the Cvc5 [6] SMT solver for satisfiability.
Derivation graph generation. Datalog solvers such as Souffle avoid generating the same relation
from different rules. For instance, if an output relation 𝑂 has already been derived using a rule
𝑅, the Datalog solver would avoid applying other rules to derive 𝑂 again. However, to compute
the probability of 𝑂 , we need all possible ways of deriving it; thus, our implementation modifies
Souffle to generate the complete derivation graph. It also augments the derivation graph to keep
track of rule probabilities.
Inference of correlation classes. While Praline allows the user to explicitly specify correlation
classes (e.g., via the corr declaration) , it does not require them to do so. In particular, Praline
constructs a dependency graph between input facts based on the specified conditional probabilities
and assumes that a pair of input facts are in the same correlation class iff they belong to the same
connected component. This default behavior can be overridden by users by explicitly specifying
correlation classes.
Optimized satisfiability checks. Recall that the iterative refinement technique from Section 7.3
requires repeatedly checking satisfiability until the constraint becomes satisfiable. However, be-
cause the overwhelming majority of these calls return unsatisfiable, we simplify the problem by
overapproximating the constraints until the overapproximation becomes satisfiable, in which case
we switch to the exact encoding. The key idea underlying our over-approximation is as follows.
While the exact encoding introduces joint probability variables over the input facts, we can instead
introduce joint probability variables over intermediate relations that are 𝑘 steps from the root node
and encode the known correlations between them as part of the constraint. We provide an example
of this encoding in Appendix A.4. 𝑘 is not a fixed value; instead, 𝑘 is selected dynamically. Details
on how 𝑘 is determined are provided in the Appendix.
Handling very large correlation classes. In cases where correlation classes become prohibitively
large, even computing joint probability distributions within a single correlation class may be
infeasible. For instance, some outliers in our experimental evaluation have hundreds of input facts
in the same correlation class, making it infeasible to reason precisely about the joint probability
for the entire class. In such cases, our implementation retains soundness but may compromise

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:19

𝛿-exactness. In particular, for correlation classes whose size exceeds a predefined threshold, we do
not compute correlation types as described in Phase 1 of Section 7.1; however, we still perform the
static analysis from Phase 2, assuming that input correlations within the same class are unknown.
Second, when performing iterative refinement of the probability bounds, we approximate the
satisfiability check as described in the previous paragraph and do not switch to the fully precise
encoding. However, we emphasize that even this approximate solution for handling excessively
large correlation classes utilizes the exact same machinery described in the rest of the paper.

9 Evaluation

In this section, we now describe the results for the evaluation that is designed to answer the
following questions:
• RQ1: How accurate are the probability bounds inferred by Praline?
• RQ2: How efficient/scalable is our method in inferring the probability bounds?
• RQ3: How impactful are the key technical ingredients underlying Praline?

9.1 Application Domains and Benchmarks

Min Max Avg Med

S
C

nodes 56 200,164 43,366 9,093
edges 3 173,617 33,284 5,919
CC size 8 731 133 31

B
a
y
e
s # nodes 10 223 79 60

edges 11 328 128 77
CC size 2 13 5 4

Table 2. Benchmark statistics, CC de-

notes “correlation class”.

We evaluate Praline on two different application domains
spanning 30 benchmarks, summarized in Table 2. The first cat-
egory, labeled SC (for Side Channel) in Table 2, corresponds to
19 Datalog-based program analyses for detecting power side-
channel leaks. The second category, labeled Bayes, consists
of 11 Bayesian networks sourced from the bnlearn repository.
We provide more information about each of these application
domains below.
Side channel benchmarks. Our first application domain is power side channel detection – a

problem that has received significant attention in recent work [58, 59]. For this domain, input facts
in the Datalog program are derived from the programs under analysis and include implementations
of well-known cryptographic protocols such as AES, SHA3, and MAC-Keccak. The Datalog rules
describing the side channel analysis are taken from [59]. Hence, each benchmark in the side channel
category corresponds to the “cross product” of an existing side channel detector [59] and a real-world
implementation of a cryptographic protocol. However, since the original Datalog-based analyzer
only outputs a yes/no answer (indicating a potential power side channel vulnerability), we extend
the analysis to quantify leakage severity. Our extension retains the existing Datalog rules and input
facts as is, but augments them with probabilities as well as conditional dependencies/probabilities
between input facts.

In more detail, we obtain the probabilities of the Datalog rules describing the program analysis
using a similar methodology to what has been described in prior work on quantitative Datalog-
based race detection [44]. This involves instrumenting the program to count rule firings and using
these counts to estimate the probability of each rule applying in practice. To obtain the probabilities
of input facts, we first note that while some input facts remain deterministic, others are probabilistic
due to variations in register allocation algorithms and hardware architectures. For instance, the
probability of register sharing is estimated using empirical data from profiling a code corpus.
Similarly, certain input facts are probabilistic as they stem from pre-analysis [59, 62] that infers
semantic data dependencies from syntactic ones. The probability of such dependencies is derived
from prior empirical studies measuring how often syntactic dependencies translate into actual
data dependencies in compiled programs [59]. To quantify conditional probabilities between input
facts, we leverage empirical co-occurrence statistics from an existing code corpus [58]. We analyze
execution traces to measure how often certain conditions –such as register sharing information

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:20 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

and key-related data dependencies – appear together. These conditional probabilities are essential
for accurately assessing the severity of detected side channels, as some Datalog rules depend on
both register-sharing behavior and secret-dependent data flows between variables. Consequently,
the overall probability of data leakage must account for these correlations between (probabilistic)
input facts rather than treating them as independent events.

Bayesian network benchmarks. Our second set of benchmarks, labeled Bayes in Table 2, consists
of 11 discrete Bayesian networks sourced from the bnlearn repository [50], encompassing a range
of network sizes, including small, medium, and large examples. We derive these benchmarks by
preserving the original network structure, designating nodes without incoming edges as input
facts and all other nodes as output facts. To introduce partially known statistical correlations
between input facts, we inject dependencies that reflect realistic co-occurrence patterns observed in
empirical data. For example, in medical networks, we introduce correlations between demographic
and lifestyle factors, such as smoking and being Asian, while in weather models, we correlate atmo-
spheric conditions like humidity and precipitation, which often vary together. These correlations
are not deterministically defined, meaning that while input facts are not mutually independent,
their exact joint distribution remains unknown. This approach enables us to evaluate inference
under conditions where partial dependency information is available.

Benchmark statistics. Table 2 summarizes key statistics for both benchmark categories. #nodes
and #edges represent the number of nodes and hyperedges in the derivation graph, while CC size

denotes the size of the largest correlation class. We report the minimum, maximum, average, and
median values across all benchmarks in each category. As shown in Table 2, the 19 side-channel
benchmarks present a greater computational challenge than the 11 Bayesian network benchmarks
from [50], highlighting the complexity of probabilistic inference in security applications. These
two categories illustrate distinct but complementary use cases for Praline, both of which involve
correlated inputs where exact dependencies are not fully known.

9.2 Experimental Methodology and Set-up

Existing probabilistic extensions of logic programming languages do not account for conditional
dependencies between inputs. To assess whether ProbLog[16] could serve as a baseline, we
attempted to encode input correlations4 using its evidence predicate (see Appendix A.1 for details).
However, ProbLog successfully terminated in only 17 of 30 benchmarks and failed to terminate
on the remaining 13. Moreover, even when it did terminate, it produced unsound results due to
its inability to faithfully represent Praline programs. This limitation stems from fundamental
expressiveness gaps—accurately encoding a single Praline program in ProbLog would require
generating an infinite number of distinct ProbLog programs (Appendix A.1).
Given these limitations, we evaluate Praline against the constrained optimization approach

introduced in Section 6, which we use as the baseline to produce the ground truth. Our evaluation
compares this baseline with the proposed 𝛿-exact algorithm, which enhances scalability while
preserving precise probability bounds. Throughout the remainder of this section, Praline refers to
the 𝛿-exact method from Section 7, and “Constrained Optimization” refers to the baseline.

All experiments were conducted on macOS Sonoma 14.4.1 with a 3-hour time limit and a memory
cap of 16GB. In our evaluation, we set the 𝛿 parameter to 0.01 for the 𝛿-exact algorithm, as it offered
a practical balance between runtime and accuracy. In general, 𝛿 controls a clear trade-off: smaller
values produce tighter probability bounds but incur longer runtimes due to additional refinement
iterations, whereas larger values yield faster computations at the cost of looser bounds.

4For a fair comparison, we also constructed modified versions of our benchmarks where all input facts are treated as
independent; in these cases, Praline and ProbLog produced identical results whenever ProbLog successfully terminated.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:21

9.3 Accuracy Evaluation

In this section, we evaluate the accuracy of the probability bounds inferred by Praline in two
ways. First, for those benchmarks where exact inference (Constrained Optimization) terminates,
we compare the bounds computed by Praline against the ground truth. Second, because Praline
may compromise 𝛿-exactness for very large correlation classes (recall Section 8), we evaluate the
percentage of output facts for which Praline guarantees 𝛿-exact inference.

LB Error UB Error

Average 0.00168 0.00177
Min 0.00000 0.00000
Max 0.00904 0.00935

Table 3. Accuracy Comparison

9.3.1 Comparison with ground truth. For 12 of the 30 benchmarks
used in our evaluation (covering 3,179 queried facts), exact in-
ference terminates within the 3-hour time limit, allowing us to
evaluate Praline’s results against the ground truth values. Table 3
presents the results of this evaluation, where the LB Error column
reports the average, minimum, and maximum deviations in the
lower bound, and the UB Error column provides the same for the upper bound. Specifically, LB
Error corresponds to 𝑙∗ − 𝑙 , while UB Error denotes 𝑢 −𝑢∗, where (𝑙, 𝑢) are the probability bounds
computed by the 𝛿-exact procedure and (𝑙∗, 𝑢∗) are the exact values obtained via constrained opti-
mization. Despite the substantial efficiency gains of the 𝛿-exact method (evaluated more thoroughly
in Section 9.5), its computed probability bounds remain highly precise. Across all 12 benchmarks,
the average lower and upper bound errors are just 0.00168 and 0.00177, respectively—well within
the specified 𝛿 threshold of 0.01 (i.e., 1%). These results demonstrate that our approximate infer-
ence method provides an effective alternative to exact inference while maintaining near-optimal
accuracy.

#facts 𝛿%

SC 96,393 73%
Bayes 663 100%
Overall 97,056 73%

Table 4. 𝛿-exactness rate

9.3.2 Evaluation of 𝛿-exactness. As mentioned in Section 8, the im-
plementation of Praline gives up on 𝛿-exactness in some cases to
scale to programs with very large correlation classes. In this section,
we evaluate for what percent of output facts Praline can guarantee
𝛿-exactness of inference. In particular, the result of inference for an
output fact is guaranteed to be 𝛿-exact if either (1) the length of the
inferred interval is ≤ 𝛿 , or (2) the (final) satisfiability check in Section 7.3 uses the exact encoding
over input facts, theoretically guaranteeing 𝛿-exactness. Note that while these constitute sufficient
conditions for 𝛿-exact inference, they are not necessary conditions, meaning that the numbers
reported here form a lower bound on the percentage of 𝛿-exact results. The result of this eval-
uation is presented in Table 4, where #facts denotes the number of output facts queried by the
program. Overall, at least 73% of the queried output facts are guaranteed to be 𝛿-exact. As stated
earlier, this number is merely a lower bound on the percentage of 𝛿-exact results, owing to the sim-
ple reason that we do not have a scalable method of computing ground truths for the remaining facts.

Result for RQ1: For the benchmarks where ground truth bounds are available, Praline
produces precise probability bounds, with average lower/upper bound errors of 0.1%. Over all
30 benchmarks comprising 97,056 queried facts, at least 73% are guaranteed to be 𝛿-exact.

9.4 Inference Time Evaluation Time Rate

< 1s 50%
1-10s 10%
10-100s 16%
100-1000s 17%
>1000s 7%

Table 5. Runtime

To answer our second research question, we evaluate Praline’s inference effi-
ciency and scalability.

9.4.1 Inference time. Table 5 shows the percentage of benchmarks that can be
solved within a given time limit. As shown in this table, Praline is able to analyze
60% of the benchmarks in under 10 seconds and 76% in under 100 seconds. All 30

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:22 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

benchmarks terminate within the specified time limit, with the largest benchmark (with 200164
nodes, 173617 edges, 116 as the average correlation class size) taking 1414.23 seconds. This result
shows that Praline is able to achieve practical inference times even for complex benchmarks.

(a) X = #Node (b) X = Average #Corr

Fig. 17. Runtime (Y-axis) vs. benchmark complexity (X-axis).

9.4.2 Scalability Evaluation. To evaluate
the scalability of Praline with respect to
benchmark complexity, Figure 17 plots
runtime against two complexity metrics.
Figure 17a shows runtime (Y-axis, in sec-
onds) versus the number of nodes (X-
axis), while Figure 17b plots runtime
against the average correlation class size.
In Figure 17a, the orange curve (a poly-

nomial fit) aligns closely with the data,
achieving a high correlation coefficient of 0.9869, whereas the exponential fit (green dashed line)
does not capture the trend well. Similarly, in Figure 17b, the blue curve (an approximately polynomial

fit) provides a better fit than the exponential alternative.

Result for RQ2: Praline is able to perform efficient probabilistic inference, with 76% of
benchmarks being solved in under 100 seconds. Empirically, Praline scales polynomially with
both the number of nodes and the average correlation class size.

9.5 Ablation Study

In this section, we describe a series of ablation studies designed to evaluate the impact of key
ingredients of our approach. Specifically, we compare Praline against the following ablations:
• Constrained optimization This variant implements Algorithm 1.
• Approx Only (AO) This is a variant of Praline that computes loose approximate bounds using
the approximated bound computation technique from Section 7.2. However, it does not utilize
correlation types (correlation types are unknown), and it also does not perform refinement.
• Approx+Correlation (AC) This variant does not use iterative refinement for tightening the
bound. That is, it computes approximate probabilities while leveraging correlation types.
• Approx+Refinement (AR) This ablation does not compute correlation types to assist the
approximated bound computation. However, it does perform the refinement method of Section 7.3.

Among these ablations, we note that AO and AC do not provide any precision guarantees. Next,
we evaluate the impact of each key ingredient on both inference time as well as accuracy.

Fig. 18. Inference time.

9.5.1 Evaluation of inference time. Figure 18 explores the
impact of various design choices on inference time. As
we can see from Figure 18, the variants of Praline that
do not have precision guarantees can perform inference
more efficiently than all of the others. As expected, Con-
strained Optimization is the slowest and times out
on the majority of the benchmarks. In contrast, both Pra-
line andAR solve all benchmarks within the three-hour
time limit, exhibiting similar performance in inference
time. To see why Praline and AR have similar perfor-
mance, note that computing correlation types adds some
overhead, however, it also reduces time to perform iterative refinement, as the refinement algorithm

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:23

starts with tighter bounds. Thus, overall, the computation of correlation types does not end up
having a significant impact on inference time.

9.5.2 Accuracy evaluation. We now consider how the different variants of Praline perform in
terms of accuracy. To quantify the impact of removing a specific feature in terms of accuracy, we
consider a bound tightness ratio (BTR) metric, defined as follows:

BTR(PralineΔ) = 𝑢′ − 𝑙 ′
𝑢 − 𝑙

Med Avg Max

BT
R

AO 22.50 28.20 82.24
AC 11.33 17.16 52.08
AR 2.20 2.38 5.53

Table 6. Ablation results of BTR

Here, PralineΔ refers to a specific ablation for Praline and [𝑙, 𝑢]
and [𝑙 ′, 𝑢′] are the bounds produced by Praline and PralineΔ
respectively. Intuitively, the closer the BTR is to 1, the more accurate the ablation. The results of
this evaluation are shown in Table 6. For each ablation (e.g., AO), we compute the BTR value for all
output facts, and report the median, average, and maximum values. As is evident from the data,
the intervals computed by Praline are much tighter compared to the other ablations, with AO

producing the least precise intervals, followed by AC, and then AR.
Theoretically, AR and Praline should achieve similar accuracy, as both employ iterative

refinement via binary search to tighten probability bounds. In practice, however, a key difference
in how satisfiability checking is performed during refinement leads to Praline achieving at least
twice the tightness of AR, as shown in Table 6.

This accuracy gap stems from our implementation (Section 8). When correlation classes are large,
the exact SAT encoding becomes computationally expensive and often intractable. To mitigate this,
we introduce an optimized satisfiability checking strategy that leverages over-approximation. The
precision of this optimization depends on the availability of accurate correlation type information.
Praline explicitly infers correlation types in earlier stages (Section 7.1), enabling it to apply tighter
over-approximations that closely match the exact encoding. In contrast, AR does not perform
correlation type inference and conservatively treats all correlations as Unknown, resulting in
looser encodings and reduced accuracy.

Result for RQ3: Praline strikes an effective balance between precision and inference time,
delivering the most precise results across ablations that terminate on all benchmarks. Variants
of Praline that do not perform refinement result in bounds that are 17− 28× worse on average.

10 Related Work

Probabilistic logic programming. Probabilistic programming allows programmers to model
distributions and perform probabilistic sampling and inference, with systems like Pyro [9], Tur-
ing [24], Hakaru [42], SPPL [47], Dice [29] and PPL [52] leading the way. Recently, there has been
significant progress in integrating logical reasoning into probabilistic programming to capture
richer logical formalisms such as Horn clauses and first-order logic. Notable examples include
probabilistic relational models [26], Markov logic networks [43], Bayesian logic programs [31], and
probabilistic logic programming languages such as PRISM [49], LPADs [54], Blog [40], CP-logic[53],
PPDL [5, 27], Datalogp [21], Scallop [38], and ProbLog [16, 17]. These formalisms extend existing
logic programming languages like Prolog and Datalog by associating each rule with probabilities.

Among these languages, ProbLog [16, 17] and Scallop [38] focus on discrete distributions, which
are closely related to our work. These techniques reduce probabilistic inference to weighted model
counting (WMC) [55] and employ representations like binary decision diagrams (BDD) [12] to
support efficient WMC. However, both ProbLog [16, 17] and Scallop [38] largely assume that input
facts are independent and do not allow expressing general forms of conditional dependencies

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:24 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

(other than providing the ability to express mutual exclusion between predicates). In contrast,
Praline offers syntactic support to declare general forms of conditional dependency between input
facts, assign numerical probabilities to such dependencies, and assumes independence only in the
absence of such declarations. To the best of our knowledge, JudgeD [56] is the only current Datalog
extension that allows expressing dependencies between clauses by associating each input fact with
a logical sentence. However, it neither supports negations nor does it allow specifying numerical
probabilities for conditional dependencies.
Datalog for program analysis. Logic programming languages like Datalog have found numerous
applications in program analysis, including for data-race detection [41, 44, 63], thread-modular anal-
ysis [35, 36], side-channel detection [58, 59], and points-to analysis [11, 39, 51, 61, 64]. Traditionally,
Datalog-based analyses have been qualitative, but recent work [44, 64] has investigated quantitative
analysis methods for inferring the likelihood of data races by incorporating probabilistic reasoning.
These approaches, however, are constrained by their assumption about independence of input
predicates, which our approach aims to address.
Exact probabilistic inference. Our method also relates to exact inference in graphical models
like Bayesian networks and Markov networks. Exact inference techniques include weighted model
counting [20, 29, 55], symbolic analysis [25], variable elimination [37], conjugacy [28], generating
functions [32, 33], and optimization methods [4, 15]. However, applying these techniques directly to
our problem domain is challenging for several reasons. Aside from the obvious structural differences
between a Bayesian network and a Datalog derivation graph, our work also distinguishes itself
from the Bayesian network setting by allowing for the specification of incomplete conditional
dependencies for which it is not possible to compute a single probability value. Because of these
important differences, prior approaches [29, 37] for speeding up probabilistic inference are unlikely
to be effective in our setting.
Approximate probabilistic inference. Approximate inference techniques are primarily based
on sampling methods [14, 34] such as Importance Sampling (IS), Markov Chain Monte Carlo
(MCMC) and variational inference. However, these methods do not provide guarantees for results
produced within a finite time frame. Some approaches [1, 8, 13, 19, 48] infer approximate posterior
probabilities with guaranteed bounds; however, these methods typically focus on continuous rather
than discrete distributions. Additionally, their guarantees rely on a countable set of sampled interval
traces, which scale exponentially with the model’s dimension [8].
Verifying probabilistic properties. There is large body of work on verifying probabilistic proper-
ties of programs, such as differential privacy and demographic fairness. For example, differential
privacy can be expressed as relational properties of probabilistic computations involving expected
values. Barthe et al. [7] propose a relational refinement type system and use approximate coupling
to construct proofs. Albarghouthi and Hsu [2] and Wang et al. [60] simplify approximate coupling
proofs to make it more automated. FairSquare [1], on the other hand, uses symbolic solving to
verify if a program meets specified demographic fairness properties. While these approaches deal
with probabilistic properties, they are largely orthogonal to our approach.

11 Conclusion

In this paper, we introduced a new probabilistic Datalog framework, Praline, which allows users
to specify arbitrary statistical correlations between input facts, addressing a significant limitation
in existing methods. Importantly, Praline is designed to handle scenarios where the statistical
correlations between inputs are not fully known, allowing accurate probabilistic inference even
under partial information. To solve this problem, we first proposed a constrained optimization

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:25

approach that can compute exact probability bounds. Then, to address the scalability limitations of
exact inference, we used this constrained optimization method in a more lightweight manner as
the basis of 𝛿-exact algorithm that can approximate the true bounds, while guaranteeing that they
are within distance 𝛿 of the ground truth. Our proposed 𝛿-exact approach iteratively strengthens
the approximated bounds through a synergistic combination of static analysis, approximation, and
iterative refinement. Our empirical evaluation on 30 real-world probabilistic Datalog programs
demonstrates that Praline can compute precise probability bounds, while scaling to large bench-
marks with more than 200,000 relations. In contrast, the ablations of Praline that are not 𝛿-exact
infer significantly less accurate probability bounds, while exact inference does not scale. These
experiments demonstrate that Praline strikes an effective balance between precision and inference
time.

12 Data-Availability Statement

An artifact supporting the results of this paper is available on Zenodo [57]. Our tool depends on
Datalog, SMT, and optimization solvers, which users will need to install separately. One requirement
is a free academic license for Gurobi optimization solver, which can be easily obtained using an
institutional email address.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback. This work was conducted in a
research group supported by NSF awards CCF-1762299, CCF-1918889, CNS-1908304, CCF-1901376,
CNS-2120696, CCF- 2210831, and CCF-2319471, CCF-2422130, CCF-2403211 as well as a DARPA
award under agreement HR00112590133.

References

[1] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017. Fairsquare: probabilistic verification of
program fairness. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–30.

[2] Aws Albarghouthi and Justin Hsu. 2017. Synthesizing coupling proofs of differential privacy. Proceedings of the ACM
on Programming Languages 2, POPL (2017), 1–30.

[3] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 2007. Compilers principles, techniques & tools. pearson Education.
[4] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2017. Hinge-loss markov random fields and

probabilistic soft logic. Journal of Machine Learning Research 18, 109 (2017), 1–67.
[5] Vince Bárány, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. 2017. Declarative probabilistic

programming with datalog. ACM Transactions on Database Systems (TODS) 42, 4 (2017), 1–35.
[6] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 415–442.

[7] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015.
Higher-order approximate relational refinement types for mechanism design and differential privacy. ACM SIGPLAN

Notices 50, 1 (2015), 55–68.
[8] Raven Beutner, C-H Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal

probabilistic programming. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 536–551.
[9] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. Journal of
machine learning research 20, 28 (2019), 1–6.

[10] Bob Bixby. 2007. The gurobi optimizer. Transp. Re-search Part B 41, 2 (2007), 159–178.
[11] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

In Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications.
243–262.

[12] Randal E Bryant. 1986. Graph-based algorithms for boolean function manipulation. Computers, IEEE Transactions on

100, 8 (1986), 677–691.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:26 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

[13] Patrick Cousot and Michael Monerau. 2012. Probabilistic abstract interpretation. In European Symposium on Program-

ming. Springer, 169–193.
[14] Adnan Darwiche. 2009. Modeling and reasoning with Bayesian networks. Cambridge university press.
[15] Erik Daxberger, Anastasia Makarova, Matteo Turchetta, and Andreas Krause. 2021. Mixed-variable Bayesian opti-

mization. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial

Intelligence. 2633–2639.
[16] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A probabilistic Prolog and its application in

link discovery. In IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence. IJCAI-INT
JOINT CONF ARTIF INTELL, 2462–2467.

[17] Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlasselaer, and Luc De Raedt.
2015. Problog2: Probabilistic logic programming. In Machine Learning and Knowledge Discovery in Databases: European

Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III 15. Springer, 312–315.
[18] Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures against side channel attacks. In Computer

Aided Verification: 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,

Austria, July 18-22, 2014. Proceedings 26. Springer, 114–130.
[19] Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023.

Lower bounds for possibly divergent probabilistic programs. Proceedings of the ACM on Programming Languages 7,
OOPSLA1 (2023), 696–726.

[20] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens,
and Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted boolean formulas.
Theory and Practice of Logic Programming 15, 3 (2015), 358–401.

[21] Norbert Fuhr. 1995. Probabilistic datalog—a logic for powerful retrieval methods. In Proceedings of the 18th annual

international ACM SIGIR conference on Research and development in information retrieval. 282–290.
[22] Norbert Fuhr. 2000. Probabilistic Datalog: Implementing logical information retrieval for advanced applications.

Journal of the American Society for Information Science 51, 2 (2000), 95–110.
[23] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. 2012. 𝛿-complete decision procedures for satisfiability over the

reals. In International Joint Conference on Automated Reasoning. Springer, 286–300.
[24] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International

conference on artificial intelligence and statistics. PMLR, 1682–1690.
[25] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In

Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,

Part I 28. Springer, 62–83.
[26] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. 2007. Probabilistic relational models. (2007).
[27] Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter Lindner. 2022. Generative datalog with

continuous distributions. J. ACM 69, 6 (2022), 1–52.
[28] Matthew D Hoffman, Matthew J Johnson, and Dustin Tran. 2018. Autoconj: recognizing and exploiting conjugacy

without a domain-specific language. Advances in Neural Information Processing Systems 31 (2018).
[29] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic

programs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–31.
[30] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of program analyzers. In Computer

Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28.
Springer, 422–430.

[31] Kristian Kersting and Luc De Raedt. 2007. Bayesian logic programming: Theory and tool. (2007).
[32] Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and Joost-Pieter Katoen. 2024. Exact Bayesian

Inference for Loopy Probabilistic Programs using Generating Functions. Proceedings of the ACM on Programming

Languages 8, OOPSLA1 (2024), 923–953.
[33] Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and Joost-Pieter Katoen. 2023. Exact probabilistic inference using

generating functions. arXiv preprint arXiv:2302.00513 (2023).
[34] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.
[35] Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-modular abstract interpretation. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 799–809.
[36] Markus Kusano and Chao Wang. 2017. Thread-modular static analysis for relaxed memory models. In Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering. 337–348.
[37] Jianlin Li, Eric Wang, and Yizhou Zhang. 2024. Compiling Probabilistic Programs for Variable Elimination with

Information Flow. Proceedings of the ACM on Programming Languages 8, PLDI (2024), 1755–1780.
[38] Ziyang Li, Jiani Huang, and Mayur Naik. 2023. Scallop: A language for neurosymbolic programming. Proceedings of

the ACM on Programming Languages 7, PLDI (2023), 1463–1487.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:27

[39] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From datalog to flix: A declarative language for fixed points
on lattices. ACM SIGPLAN Notices 51, 6 (2016), 194–208.

[40] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong, and Andrey Kolobov. 2007. BLOG:
Probabilistic models with unknown objects. (2007).

[41] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the 27th

ACM SIGPLAN Conference on Programming Language Design and Implementation. 308–319.
[42] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic

inference by program transformation in Hakaru (system description). In Functional and Logic Programming: 13th

International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings 13. Springer, 62–79.
[43] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. 2011. Tuffy: Scaling up Statistical Inference in Markov Logic

Networks using an RDBMS. Proceedings of the VLDB Endowment 4, 6 (2011).
[44] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning

using Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 722–735.
[45] Thomas W Reps. 1995. Demand interprocedural program analysis using logic databases. In Applications of Logic

Databases. Springer, 163–196.
[46] Ludger Rüschendorf. [n. d.]. Fréchet-bounds and their applications. In Advances in Probability Distributions with Given

Marginals: beyond the copulas. Springer, 151–187.
[47] Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. 2021. SPPL: probabilistic programming with fast exact

symbolic inference. In Proceedings of the 42nd acm sigplan international conference on programming language design

and implementation. 804–819.
[48] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs:

inferring whole program properties from finitely many paths. In Proceedings of the 34th ACM SIGPLAN conference on

Programming language design and implementation. 447–458.
[49] Taisuke Sato. 1995. A statistical learning method for logic programs with distribution semantics. (1995).
[50] Marco Scutari. 2009. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817 (2009).
[51] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across

the board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation.
485–495.

[52] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An introduction to probabilistic
programming. arXiv preprint arXiv:1809.10756 (2018).

[53] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. 2009. CP-logic: A language of causal probabilistic events
and its relation to logic programming. Theory and practice of logic programming 9, 3 (2009), 245–308.

[54] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. 2004. Logic programs with annotated disjunctions. In
Logic Programming: 20th International Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004. Proceedings 20.
Springer, 431–445.

[55] Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. 2016. Tp-compilation for
inference in probabilistic logic programs. International Journal of Approximate Reasoning 78 (2016), 15–32.

[56] Brend Wanders, Maurice van Keulen, and Jan Flokstra. 2016. Judged: a probabilistic datalog with dependencies. In
Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.

[57] Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Isil Dillig. 2025. Reproduction Package for Article
‘Probabilistic Inference for Datalog with Correlated Inputs’. ACM. https://doi.org/10.5281/zenodo.15760564

[58] Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021. Data-driven synthesis of provably sound
side channel analyses. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).

[59] Jingbo Wang, Chungha Sung, and ChaoWang. 2019. Mitigating power side channels during compilation. In Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 590–601.
[60] Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Danfeng Zhang. 2019. Proving differential privacy

with shadow execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 655–669.
[61] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using Datalog with binary decision diagrams

for program analysis. In Asian Symposium on Programming Languages and Systems. Springer, 97–118.
[62] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-based verification of software counter-

measures against side-channel attacks. In International Conference on Computer Aided Verification. Springer, 157–177.
[63] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–30.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

https://doi.org/10.5281/zenodo.15760564

280:28 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

[64] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program
analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 239–248.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:29

A Appendix

A.1 Encoding Input Correlations using ProbLog

To the best of our knowledge, ProbLog primarily supports mutual independence as a form of
input correlation. To encode more complex types of input correlations, we must creatively use
other available syntax structures in ProbLog to implicitly represent them. We have explored two
methods to encode input correlations. However, both approaches rely on computations using a
complete conditional probability table and can not capture the exact semantics as Praline does.
In our evaluation, we use the first method, specifically the evidence feature, to encode input

correlations in ProbLog.

1 0.6::edge(1,4).

2 0.6::edge(2,5).

3 0.6::edge(2,6).

4 0.8::edge(2,5) | edge(1,4).

5 0.83::edge(2,6) | edge(1,4).

6 r :− edge(1,4), edge(2,5), \+edge(2,6).

7 query(r).

Fig. 19. An example Praline program 𝑃∗.

1 1/2::edge(2,5).

2 1/2::edge(1,4).

3 1/2::edge(2,6).

4

5 1/2::c :− edge(2,5), edge(1,4), edge(2,6).

6 1/8::c :− edge(2,5), edge(1,4), \+edge(2,6).

7 1/8::c :− edge(2,5), \+edge(1,4), edge(2,6).

8 1/32::c :− edge(2,5), \+edge(1,4), \+edge(2,6).

9 19/128::c :− \+edge(2,5), edge(1,4), edge(2,6).

10 1/128::c :− \+edge(2,5), edge(1,4), \+edge(2,6).

11 1/128::c :− \+edge(2,5), \+edge(1,4), edge(2,6).

12 137/384::c :− \+edge(2,5), \+edge(1,4), \+edge(2,6).

13

14 e_25_14 :− edge(2,5), edge(1,4).

15 e_14_26 :− edge(1,4), edge(2,6).

16 r :− edge(1,4), edge(2,5), \+edge(2,6).

17

18 evidence(c, true).

19

20 query(edge(2,5)). % ProbLog result: 0.6 -> encoding 0.6::edge(2,5).

21 query(edge(1,4)). % ProbLog result: 0.6 -> encoding 0.6::edge(1,4).

22 query(edge(2,6)). % ProbLog result: 0.6 -> encoding 0.6::edge(2,6).

23 query(e_25_14). % ProbLog result: 0.6*0.8 -> encoding 0.8::edge(2,5)|edge(1,4).

24 query(e_14_26). % ProbLog result: 0.6*0.83 -> encoding 0.83::edge(2,6)|edge(1,4).

25 query(r). % ProbLog result: Pr(r) = 0.096

Fig. 20. The first Problog program encoding the same input fact and conditional probabilities as Figure 19.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:30 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

1 1/2::edge(2,5).

2 1/2::edge(1,4).

3 3/4::edge(2,6).

4

5 5/8::c :− edge(2,5), edge(1,4), edge(2,6).

6 1/2::c :− edge(2,5), edge(1,4), \+edge(2,6).

7 1/32::c :− edge(2,5), \+edge(1,4), edge(2,6).

8 1/2::c :− edge(2,5), \+edge(1,4), \+edge(2,6).

9 377/1920::c :− \+edge(2,5), edge(1,4), edge(2,6).

10 3/640::c :− \+edge(2,5), edge(1,4), \+edge(2,6).

11 263/1920::c :− \+edge(2,5), \+edge(1,4), edge(2,6).

12 1871/1920::c :− \+edge(2,5), \+edge(1,4), \+edge(2,6).

13

14 e_25_14 :− edge(2,5), edge(1,4).

15 e_14_26 :− edge(1,4), edge(2,6).

16 r :− edge(1,4), edge(2,5), \+edge(2,6).

17

18 evidence(c, true).

19

20 query(edge(2,5)). % ProbLog result: 0.6 -> encoding 0.6::edge(2,5).

21 query(edge(1,4)). % ProbLog result: 0.6 -> encoding 0.6::edge(1,4).

22 query(edge(2,6)). % ProbLog result: 0.6 -> encoding 0.6::edge(2,6).

23 query(e_25_14). % ProbLog result: 0.6*0.8 -> encoding 0.8::edge(2,5)|edge(1,4).

24 query(e_14_26). % ProbLog result: 0.6*0.83 -> encoding 0.83::edge(2,6)|edge(1,4).

25 query(r). % ProbLog result: Pr(r) = 0.10105263

Fig. 21. The second Problog program encoding the same input fact and conditional probabilities as Figure 19.

1. Using evidence features. In ProbLog, we can utilize evidence features to encode the condi-
tional probabilities among input facts. The idea is to introduce mutually-independent facts, and
constraint them using the derived rules. For instance, given three independent facts 𝑥,𝑦, 𝑧 (i.e.,
𝑃 (𝑥∧𝑦) = 𝑃 (𝑥)𝑃 (𝑦)), two rules 𝑝1 :: 𝑐 :− 𝑥,𝑦, 𝑧, 𝑝2 :: 𝑐 :− \+𝑥,𝑦, 𝑧, and the statement evidence(𝑐) (i.e.,
observing that 𝑐 is true), 𝑥,𝑦, 𝑧 become dependent after observing 𝑐 , i.e., 𝑃 (𝑥∧𝑦 |𝑐) ≠ 𝑃 (𝑥 |𝑐) ∗𝑃 (𝑦 |𝑐).
By reverse engineering the value of 𝑝1 and 𝑝2, we can encode 𝑃 (𝑥 |𝑦, 𝑐) to any value as follows:

𝑃 (𝑥 |𝑦, 𝑐) = 𝑃 (𝑥,𝑦 |𝑐)/𝑃 (𝑦 |𝑐)
= 𝑃 (𝑥,𝑦, 𝑐)/𝑃 (𝑦, 𝑐)
=

𝑃 (𝑐 |𝑥,𝑦)𝑃 (𝑥,𝑦)
𝑃 (𝑐 |𝑦)𝑃 (𝑦)

=
[𝑃 (𝑐 |𝑥,𝑦,𝑧)∗𝑃 (𝑧)+𝑃 (𝑐 |𝑥,𝑦,¬𝑧)∗(1−𝑃 (𝑧))]𝑃 (𝑥,𝑦)

[𝑃 (𝑐 |𝑦,𝑥,𝑧)𝑃 (𝑥,𝑧)+𝑃 (𝑐 |𝑦,¬𝑥,𝑧)𝑃 (¬𝑥,𝑧)+𝑃 (𝑐 |𝑦,𝑥,¬𝑧)𝑃 (𝑥,¬𝑧)+𝑃 (𝑐 |𝑦,¬𝑥,¬𝑧)𝑃 (¬𝑥,¬𝑧)]𝑃 (𝑦)
=

[𝑝1∗𝑃 (𝑧)+0]∗𝑃 (𝑥)∗𝑃 (𝑦)
[𝑝1∗𝑃 (𝑥)𝑃 (𝑧)+𝑝2∗𝑃 (¬𝑥)𝑃 (𝑧)+0+0]𝑃 (𝑦)

𝑃 (𝑥 |𝑦, 𝑐) specifies the conditional probability between input facts 𝑥 and 𝑦, given 𝑐 is true.

Example 4. We first provide an example Praline program simplified from the motivation example
of Figure 4 in Section 3. Given this Praline program in Figure 19, we provide two corresponding
ProbLog programs that encode the same conditional probabilities as shown in Figures 20 and 21.
For instance, in Figure 20, we denote edge(2,5) and edge(1,4) as 𝑥 and 𝑦 respectively. They are
independent initially. We can correlate 𝑥 and 𝑦 by using the derived rules (Lines 5-12) and the
observation that 𝑐 is true. Given 𝑐 is true, 𝑥 and 𝑦 are no longer independent. In this ProbLog
encoding, we get 𝑃 (𝑥,𝑦 |𝑐) = 0.48 = 0.6 ∗ 0.8 ≠ 𝑃 (𝑥 |𝑐) ∗ 𝑃 (𝑦 |𝑐) = 0.6 ∗ 0.6 (line 23), which encodes
the input correlation 0.8::edge(2,5) :− edge(1,4) .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:31

Given the Praline program 𝑃∗ as shown in Figure 19, we can generate infinitely many ProbLog
programs that encode the same input fact probabilities and conditional probabilities from 𝑃∗ (Lines
1-6). However, these ProbLog programs yield different results of query(r), e.g., 0.096 (Figure 20)
and 0.101 (Figure 21).
In short, a single ProbLog program might not always capture the same semantics as a Pra-

line program. Praline is equipped to handle scenarios where some conditional probabilities are
unknown, allowing it to provide outputs as probability intervals as the exact inference result.
Conversely, ProbLog is designed to compute absolute probabilities as its exact result, typically
requiring complete information to do so.
Figures 20 and 21 are two ProbLog examples that encode the same input fact and conditional

probabilities as the Praline program 𝑃∗ (in Figure 19), by correlating the independent input facts
using derived rules, e.g., edge(1,4), edge(2,5) and edge(2,6) are independent input facts but
they are dependent given event c is true (e.g., evidence(c, true)). We also want to highlight that
to encode the same conditional probabilities using ProbLog, users would need to reverse engineer
all the rule probabilities, e.g., 19/128::c :− \+edge(2,5), edge(1,4), edge(2,6) as shown in Line
9 of Figure 20.

2. Using 𝑝 :: 𝐼 :− 𝑆𝐼 . Another approach involves using the syntax 𝑝 :: 𝐼 :− 𝑆𝐼 to represent
input correlations. In ProbLog, however, this syntax is not intended for articulating conditional
probabilities among input facts (e.g., it is not designed to accommodate an input fact 𝐼 as the rule
head). Utilizing this syntax for input correlations might consequently yield unforeseen results.

To demonstrate how such unexpected outcomes occur, we present a new example illustrated in
Figure 22. The figure highlights specified input correlations in green, and ProbLog computes the
query result for the output fact path(1,2) as 0.824, shown in red.
We analyze the derivation graph of path(1,2) to trace the source of this discrepancy. As

detailed in Figure 22, ProbLog initially selects edge(1,2)with a probability of 0.6. If not, it assumes
edge(1,2) is false with a probability of 0.4 and attempts to derive it using the input correlation
rule (colored in green):

𝑃 (edge(1,2)) = 𝑃 (edge(1,2) ∧ edge(2,5)) + 𝑃 (edge(1,2) ∧ ¬edge(2,5))
= 𝑃 (edge(1,2) ∧ edge(2,5)) + 0
= 0.8 × 𝑃 (edge(2,5)) = 0.8 × 0.7

This approach leads to an erroneous outcome, as ProbLog is not designed to handle input
correlations using such rules and mistakenly processes edge(1,2) as both an input and output
fact. This results in two conflicting calculations for 𝑃 (edge(1,2))=0.6 or 0.4 × 0.8 × 0.7, which are
incorrectly aggregated. As a result, 𝑃 (path(1,2)) = 𝑃 (edge(1,2)) = 0.6 + 0.4 ∗ 0.8 ∗ 0.7 = 0.824.
The unexpected result occurs because ProbLog is not typically designed to use rules such as

𝑝 :: 𝑅 :− 𝑆𝑅 to directly express input correlations. These rules are primarily intended for specifying
the probability of rules where the output fact serves as the rule head.

A.2 Discussion of Syntax Constructs in Praline and Problog

In Praline, there are two types of rules: 𝑝 :: 𝑅 :− 𝑆𝑅 and 𝑝 :: 𝐼 | 𝑆𝐼 . In Problog, only the first type
is available.

The first type defines how the output fact 𝑅 is derived. If 𝑅 can be derived by only one rule, then
𝑃 (𝑅) = 𝑃 (𝑅 ∧ 𝑆𝑅) + 𝑃 (𝑅 ∧ ¬𝑆𝑅) = 𝑃 (𝑅 ∧ 𝑆𝑅) = 𝑝 × 𝑃 (𝑆𝑅), since 𝑃 (𝑅 ∧ ¬𝑆𝑅) is zero by default.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:32 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

1 0.6::edge(1,2).

2 0.7::edge(2,5).

3 0.8::edge(1,2) :− edge(2,5).

4 1::path(X,Y) :− edge(X,Y).

5 query(path(1,2)).

path(1,2)

edge(1,2)

edge(2,5)

edge(1,2)

𝑒4

𝑒6

𝑒′4

0.8

0.6 0.4

0.7

0.824

0.824 = 0.6 + 0.4 ∗ 0.8 ∗ 0.7

Fig. 22. Computation procedure of path(1,2) by Problog.

If multiple rules infer 𝑅, it is interpreted as follows:

𝑝1 :: 𝑅 :− 𝑆1
𝑝2 :: 𝑅 :− 𝑆2
. . .

𝑝𝑛 :: 𝑅 :− 𝑆𝑛

𝑃 (𝑅) = 𝑃 (𝑅 ∧ 𝑆1 ∨ 𝑅 ∧ 𝑆2 ∨ . . . 𝑅 ∧ 𝑆𝑛) + 𝑃 (𝑅 ∧ ¬(𝑆1 ∨ 𝑆2 . . . 𝑆𝑛)) = 𝑃 (𝑅 ∧ 𝑆1 ∨ 𝑅 ∧ 𝑆2 ∨ . . . 𝑅 ∧ 𝑆𝑛)
where 𝑃 (𝑅 ∧ ¬(𝑆1 ∨ 𝑆2 . . . 𝑆𝑛)) is zero. It is because if no rules are applicable to infer 𝑅, i.e.,
¬(𝑆1 ∨ 𝑆2 ∨ . . . 𝑆𝑛), then 𝑅 is false by default according to probabilistic Datalog semantics.
The second type, 𝑝 :: 𝐼 | 𝑆𝐼 , encodes statistical correlations among input facts 𝐼 , which are

considered constraints, rather than the definition of 𝐼 . It denotes 𝑃 (𝐼 |𝑆𝐼) = 𝑝 . Unlike the first type,
𝑃 (𝐼∧¬𝑆𝐼) is unknown and may not be zero. If 𝑃 (𝐼∧¬𝑆𝐼) is zero, we may get conflicting probabilities
for 𝑃 (𝐼), such as 𝑃 (𝐼)1 = 𝑝1 from the rule 𝑝1 :: 𝐼 and 𝑃 (𝐼)2 = 𝑃 (𝐼 ∧ 𝑆𝐼) + 𝑃 (𝐼 ∧ ¬𝑆𝐼) = 𝑃 (𝐼 ∧ 𝑆𝐼) =
𝑝 × 𝑃 (𝑆𝐼). To avoid conflicts, 𝑃 (𝐼 ∧ ¬𝑆𝐼) is not enforced as zero.

When user-provided correlation constraints are conflicting, such as 0.5 :: 𝐼1, 0.3 :: 𝐼2, 0.6 :: 𝐼1 | 𝐼2,
and 0.7 :: 𝐼1 | ¬𝐼2, which imply 𝑃 (𝐼1) = 0.5 is inconsistent with 𝑃 (𝐼1) = 𝑃 (𝐼1 |𝐼2)𝑃 (𝐼2) +𝑃 (𝐼1 |¬𝐼2) (1−
𝑃 (𝐼2)) = 0.6 × 0.3 + 0.7 × 0.7, Praline will return "No solution" and produce no output.
The syntax structure 𝑝 :: 𝐼 | 𝑆𝐼 enables users to represent conditional probabilities even when

only partially known. For example, consider a scenario where a user is aware of 𝑃 (𝐼 | 𝑆𝐼) = 𝑝 but
lacks knowledge about 𝑃 (𝐼 | ¬𝑆𝐼). Under such conditions, determining an exact probability may
not be feasible. Our tool, Praline, is designed to handle such cases by inferring probabilities and
providing them as intervals. This is not a reflection of imprecision in our tool, but rather a result
of dealing unknown conditional dependencies. In contrast, traditional probabilistic Datalog tools
like ProbLog calculate absolute probabilities and assume unspecified probabilities as zero, such as
𝑃 (𝐼 | ¬𝑆𝐼) = 0, instead of providing outputs as probability intervals.

Praline allows expressing conditional dependencies that are not precisely known, which is a
common scenario in many real-world applications including program analysis tasks. In such cases,
the probability of output facts cannot be determined precisely, but one can compute lower and
upper bounds on the probability. In contrast, ProbLog cannot express such scenarios, as it always
produces a single probability value. To capture the same semantics as Praline, one would need
to write infinitely many ProbLog programs. Any ProbLog program inherently corresponds to a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:33

Praline program where all joint probabilities are known. Sec A.1 shows a Praline program (a
simplified version of Figure 4) and why it would take infinitely many ProbLog programs to encode
the same semantics.

A.3 Semantics of Praline
In this section, we formally define the semantics of Praline. Since Praline inherits its syntax
from Probabilistic Datalog, we extend the possible-world semantics [22] of probabilistic Datalog to
formalize Praline.

Probabilistic Datalog

• Rule: A sentence of the form:

𝑝 :: 𝑂 :− 𝑂1,𝑂2, . . . ,𝑂𝑛 .

Here, 𝑂 is an atom, while 𝑂1,𝑂2, . . . ,𝑂𝑛 are literals. Each atom represents a predicate or
relation, and each literal is either an atom or its negation. If the body of a rule is empty, the
rule is considered an input fact declaration.
• Query: A query is a conjunction of literals.

Praline inherits the syntax of probabilistic Datalog but relaxes the mutual independence as-
sumption among rule probabilities. In Praline, rules that declare input facts are allowed to be
dependent, whereas rules with non-empty bodies are still treated as mutually independent. Ad-
ditionally, Praline introduces new syntax features that allow users to flexibly specify partially

known or completely known conditional dependencies.
• Correlation classes: corr(𝐼1, 𝐼2, . . .) or 𝑘 :: Class(𝐼)
• Conditional dependencies: 𝑝 :: 𝐼 | 𝑆.

The newly added syntax features from Praline do not modify the probability expression of
any derived fact but only affect its evaluation. We first describe how the probability expression is
obtained from a Praline program according to the semantics of Probabilistic Datalog and then
discuss how it is evaluated based on Praline’s semantics.
The probability expression is computed based on the probabilities of the ground facts and

instantiated rules used in deriving the fact.

Definition 13. A Datalog program 𝐷 is modularly stratified if there exists an assignment of ordinal
levels to ground atoms such that: (a) if a ground atom appears negatively in the body of a rule, then
the ground atom in the head of that rule is assigned a strictly higher level; (b) if a ground atom
appears positively in the body of a rule, then the ground atom in the head is assigned a level that is
at least as high.

For a Probabilistic Datalog program 𝐷 , let 𝑆𝑔 denote the set of grounded rules, consisting of 𝑆𝑑
and 𝑆𝑝 , i.e., 𝑆𝑔 = 𝑆𝑑 ∪ 𝑆𝑝 . We define 𝑆𝑑 as the set of deterministic rules (𝑝 = 1) and 𝑆𝑝 as the set of
probabilistic (indeterministic, 0 < 𝑝 < 1) rules. The set of all possible deterministic programs of 𝐷
is given by:

𝑆 (𝐷) = {𝑆𝑑 ∪ 𝑥 | 𝑥 ∈ PowerSet(𝑆𝑝)}

Lemma 1. A probabilistic Datalog program 𝐷 is modularly stratified if every element in the set of

its possible deterministic programs 𝐷 ′ ∈ 𝑆 (𝐷) is modularly stratified.

Lemma 2. A modularly stratified Datalog program has a least fixed point.

The least fixed point of a Datalog program corresponds to its least Herbrand model, which
captures all facts that can be derived from the program.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:34 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Definition 14. The Herbrand universe of a Datalog program 𝐷 is the set of all ground terms
that can be formed using the constants in 𝐷 . For a deterministic program 𝐷 ′ (i.e., 𝐷 ′ ∈ 𝑆 (𝐷))
with a complete, well-founded Herbrand model, let 𝜔 (𝐷 ′) denote this model. Additionally, 𝜔 (𝐷 ′)
represents a possible world of 𝐷 .

For each deterministic program 𝐷 ′, 𝜔 (𝐷 ′) is defined as a set of all ground rules (𝑟) used in 𝐷 ′,
i.e., 𝜔 (𝐷 ′) = {𝑟 }. An input fact can also be represented as a rule with a body that is always true.

Definition 15. Given a Probabilistic Datalog program 𝐷 , the set of possible worlds is defined as
𝑊 (𝐷) = {𝜔 (𝐷 ′) | 𝐷 ′ ∈ 𝑆 (𝐷)}.

We also use the judgment𝜔 |= 𝐷 to denote that𝜔 is a possible world consistent with the Praline
program 𝐷 .

Definition 16. Let 𝜇 be a mapping that assigns each possible world 𝜔 (𝜔 ∈𝑊 (𝐷)) to its full joint
probability distribution over the ground terms/rules in 𝜔 .

Given that 𝜔 = {𝑟 }, if all input facts and rules are assumed to be mutually independent, 𝜇
maps each joint distribution of 𝑟 to a unique value (one-to-one mapping). Otherwise, without the
independence assumption, 𝜇 maps it to a set of values (one-to-many mapping).

Definition 17. For a possible world 𝜔 , let 𝜖 : 𝜔 → EK be a mapping that assigns each ground rule
(𝑟 ∈ 𝜔) to an event key (EK). This mapping satisfies the following constraints:
• ∀𝑟 ∈ 𝜔. 𝜇 (𝑟) = 1↔ 𝜖 (𝑟) = true.
• ∀𝑟, 𝑟 ′ ∈ 𝜔. 𝜖 (𝑟) = 𝜖 (𝑟 ′) → (𝑟 = 𝑟 ′ ∨ (𝜇 (𝑟) = 1 ∧ 𝜇 (𝑟 ′) = 1)).

If the probability of a rule 𝑟 is constantly true (i.e., 𝜇 (𝑟) = 1), it is not mapped to an EK variable.
Instead, it is assigned a constant value. If two rules share the same EK variable, they are either
identical (i.e., 𝑟 = 𝑟 ′) or both have a probability of 1.
Given an event key variable 𝑣 , the inverse mapping 𝜖−1 (𝑣) denotes the corresponding ground

rule 𝑟 .

Definition 18. For each output fact 𝑂 , we define a mapping 𝜃 from 𝑂 to a Boolean expression (B)
over event keys (EK). This mapping is defined as follows:
• For an output fact 𝑂 ,

𝜃 (𝑂) =
∨

𝑟𝑜
𝜃 (𝑟𝑜),

where 𝑟𝑜 is a rule whose head matches 𝑂 and 𝑟𝑜 ∈ 𝜔, 𝜔 ∈𝑊 (𝐷).
• For a rule 𝑟 of the form 𝑝 :: 𝑂 :− 𝑂1,𝑂2, . . . ,𝑂𝑛 ,

𝜃 (𝑟) = 𝜖 (𝑟) ∧ 𝜃 (𝑂1) ∧ 𝜃 (𝑂2) ∧ · · · ∧ 𝜃 (𝑂𝑛).
• For a negated fact ¬𝑂 ,

𝜃 (¬𝑂) = ¬𝜃 (𝑂).

The subtlety lies in the case of an input fact 𝐼 . If rule 𝑟 is used to declare the input fact, i.e., 𝑝 :: 𝐼
is a special case of 𝑝 :: 𝐼 :− 𝑂1,𝑂2, . . . ,𝑂𝑛 where 𝑂1 ∧𝑂2 ∧ · · · ∧𝑂𝑛 = true, then 𝜃 (𝐼) = 𝜖 (𝑟).

Definition 19. We define a mappingW that assigns each Boolean expression 𝐵 to the set of possible
worlds in which 𝐵 holds true.

The mappingW satisfies the following properties:
• W(true) =𝑊 (𝐷)
• W(¬𝐵) =𝑊 (𝐷) \W(𝐵)
• W(𝐵1 ∧ 𝐵2) =W(𝐵1) ∩W𝐵2

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:35

• W(𝐵1 ∨ 𝐵2) =W(𝐵1) ∪W(𝐵2)
• W(𝐵) = {𝜔 |𝑟 = 𝜖−1 (𝐵), 𝑟 ∈ 𝜔, 𝜔 |= 𝐷}

For the last case,W(𝐵), the Boolean expression 𝐵 represents an atomic formula corresponding
to an input fact, and 𝑟 is the rule that declares this input fact.
Specifically, for any output fact 𝑂 in the Praline program 𝐷 , let 𝜃 (𝑂) denote the Boolean

expression over event keys representing 𝑂 . The set of possible worlds in which 𝑂 holds is given by
W(𝜃 (𝑂)).
Given a possible world 𝜔 , if 𝜔 ∈ W(𝜃 (𝑂)), we establish the judgment 𝜔 |= 𝑂 , meaning that 𝑂

can be inferred from 𝜔 .

Definition 20. Given a full joint probability distribution 𝜇, the probability expression of an output
fact 𝑂 is computed as follows:

𝑃𝜇 (𝑂) =
∑︁
𝜔∈Ω

𝑃𝜇 (𝜔),

where Ω = {𝜔 | 𝜔 |= 𝑂, (𝜔, 𝜇) |= 𝐷}.

The judgment (𝜔, 𝜇) |= 𝐷 indicates that the world 𝜔 and the full joint probability distribution 𝜇

are consistent with the input Praline program 𝐷 .
For instance, consider a Praline program where an input fact is specified as follows: 0.5 ::

I1., denoted as 𝑟1. If 𝜇 (𝑟1) ≠ 0.5, then the judgment (𝜔, 𝜇) |= 𝐷 is no longer valid.
In a classical probabilistic Datalog program, all rules are assumed to be mutually independent.

Consequently, we have:

𝑃𝜇 (𝜔) = 𝑃𝜇

(∧
𝑟 ∈𝜔

𝑟

)
=
∏

𝑟 ∈𝜔
𝑃𝜇 (𝑟) =

∏
𝑟 ∈𝜔

𝜇 (𝑟).

However, in a Praline program, this independence assumption is relaxed. Specifically, rules that
define input facts (i.e., rules with an empty body) are not required to be independent. As a result, in
Praline, we may have:

𝑃𝜇

(∧
𝑟 ∈𝜔

𝑟

)
≠
∏

𝑟 ∈𝜔
𝑃𝜇 (𝑟).

To determine 𝑃𝜇 (𝜔), users must provide a complete conditional probability distribution 𝜇, which
uniquely determines 𝑃𝜇 (

∧
𝑟 ∈𝜔 𝑟). However, specifying the full distribution may be impractical in

many cases. To address this, Praline allows users to provide partially specified conditional proba-
bility information within the Praline program 𝐷 . Consequently, multiple probability distributions
𝜇 may satisfy 𝐷 , whereas in classical probabilistic Datalog, there is a unique 𝜇 that satisfies the
input program 𝐷 .

For example, consider the following input facts and their dependencies in a Praline program:

0.6 :: I1, 0.7 :: I2, 0.6 :: I3, 0.8 :: I3 | I1, I2.

In this case, multiple probability distributions 𝜇 satisfy these constraints. Consequently, the proba-
bility of an output fact 𝑃 (𝑂) is no longer a singular value but a set of values, defined as follows:

𝑃 (𝑂) = {𝑃𝜇 (𝑂) | ∃𝜔.(𝜔, 𝜇) |= 𝐷}.

To obtain a valid set of probability distributions 𝜇 consistent with the Praline program 𝐷 ,
this can be formulated as a constraint-solving problem. Any complete model that satisfies the
constraints specified by 𝐷 represents a valid 𝜇. The semantic encoding of these constraints are as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:36 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

follows:

⟦𝑝 :: 𝐼 .⟧ = 𝑃 (𝐼) = 𝑝 (1)
⟦𝑝 :: 𝐼0 | 𝐼1, 𝐼2, . . . 𝐼𝑛 .⟧ = 𝑃 (𝐼0 ∧ 𝐼1 · · · ∧ 𝐼𝑛) = 𝑝 × 𝑃 (𝐼1 ∧ · · · ∧ 𝐼𝑛) (2)

⟦𝑘1 :: Class(𝐼1). 𝑘2 :: Class(𝐼2) . ⟧ = 𝐼1 ⊥⊥ 𝐼2 if 𝑘1 ≠ 𝑘2; (3)
Otherwise, 𝐼1 ̸⊥⊥ 𝐼2 (4)

⟦corr(𝐼1, 𝐼2)⟧ = 𝐼1 ̸⊥⊥ 𝐼2 (5)
⟦𝑝 :: 𝑂 :− 𝑂1,𝑂2, ...𝑂𝑛 .⟧ = 𝑃 (𝑟) = 𝑝 if 𝑟 denotes the rule 𝑝 :: 𝑂 :− 𝑂1,𝑂2, ...𝑂𝑛 .

(6)
= ∀𝑟, 𝐼 . 𝑟 ⊥⊥ 𝐼 . (7)
= ∀𝑟𝑖 , 𝑟 𝑗 . (𝑖 ≠ 𝑗) ⇒ 𝑟𝑖 ⊥⊥ 𝑟 𝑗 (8)

⊥⊥ denotes mutual independence. The notation 𝑟 refers only to rules with non-empty bodies,
excluding input declarations. If users do not explicitly declare the correlation class of an input fact
𝐼 , we assign it a default class ID of −1, which satisfies the following property: ∀𝐼𝑖 , 𝐼 𝑗 . Class(𝐼𝑖) =
−1 =⇒ 𝐼𝑖 ⊥⊥ 𝐼 𝑗 . All the above probability computation 𝑃 (𝑥) can be rewritten as 𝜇 (𝑥). The
semantics above naturally extends to multiple correlation class declarations.

⟦𝑘1 :: Class(𝐼1). . . . 𝑘𝑛 :: Class(𝐼𝑛).⟧ =

𝐼1 ⊥⊥ 𝐼2 ⊥⊥ . . . 𝐼𝑛 if ∀𝑖 ≠ 𝑗, 𝑘𝑖 ≠ 𝑘 𝑗∧
1≤𝑖< 𝑗≤𝑛

{
𝐼𝑖 ⊥⊥ 𝐼 𝑗 if 𝑘𝑖 ≠ 𝑘 𝑗

𝐼𝑖 ̸⊥⊥ 𝐼 𝑗 if 𝑘𝑖 = 𝑘 𝑗 ≠ −1
otherwise

(9)

⟦corr(𝐼1, 𝐼2, . . . , 𝐼𝑛)⟧ =
∧

1≤𝑖< 𝑗≤𝑛
𝐼𝑖 ̸⊥⊥ 𝐼 𝑗 (10)

A.4 Optimized Satisfiability Check

The iterative refinement from Section 7.3 requires frequent satisfiability checks, most of which
return unsatisfiable. To speed up this process, constraints are overapproximated by introducing
joint probability variables over intermediate relations that are 𝑘 steps from the root node.
In the BoundBounds procedure, we iteratively check unsatisfiability until it reaches the SAT

region. To optimize performance, we propose an overapproximated version 𝜙 ′ of the original set of
constraints 𝜙 , such that 𝜙 =⇒ 𝜙 ′. Thus, ¬(𝜙 ′ ∧ 𝑙 ≤ Expr(𝑅) ≤ 𝑢) =⇒ ¬(𝜙 ∧ 𝑙 ≤ Expr(𝑅) ≤ 𝑢).
Hence, if we get the UNSAT result from the approximated version 𝜙 ′, it implies the unsatisfiability
of the original version 𝜙 .

To see why the approximated version improves performance and why 𝜙 =⇒ 𝜙 ′, we provide an
example to illustrate this.

There is a derivation graph in Figure 23, focusing on computing the probability of the root node
(relation 𝐴). 𝐼1 till 𝐼8 are input facts. There are two correlation classes {𝐼1, 𝐼2, 𝐼3, 𝐼4} and {𝐼5, 𝐼6, 𝐼7, 𝐼8}.
The original constraint 𝜙 is shown on the left of Figure 24. Here, 𝜙corr denotes the constraints from
the correlation classes, and we omit the details of 𝜙corr here.

The overapproximated version is shown on the right of Figure 24. The encoding starts from the
intermediate relations (𝐵,𝐶, 𝐷, 𝐸) instead of the input facts (See Figure 23). From the correlation
analysis, we know that 𝐵,𝐶 are dependent and 𝐷, 𝐸 are dependent. We also treat all unknown cases
as if they are inside the same correlation class for soundness reasons.
In 𝜙 ′, there are also two correlation classes 𝑉1 = {𝐵,𝐶} and 𝑉2 = {𝐷, 𝐸}. For the constraint∑
𝑖 𝑉1 [1𝑖] ∈ [𝑙𝐵, 𝑢𝐵],

∑
𝑖 𝑉1 [1𝑖] represents the probability of relation 𝐵, i.e., 𝑃 (𝐵), and [𝑙𝐵, 𝑢𝐵] is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:37

A

B C D E

I1 I2 I3 I4 I5 I6 I7 I8

𝑉1 𝑉2

𝑒1 𝑒2

𝑒3 𝑒4 𝑒5 𝑒6

Fig. 23. An example derivation graph.

𝜙 :
∑

𝑏∈B4 𝑉1 [𝑏] = 1 (𝐼1, 𝐼2, 𝐼3, 𝐼4) 𝜙 ′ :
∑

𝑏∈B2 𝑉1 [𝑏] = 1 (𝐵,𝐶)∑
𝑏∈B4 𝑉2 [𝑏] = 1 (𝐼5, 𝐼6, 𝐼7, 𝐼8)

∑
𝑏∈B2 𝑉2 [𝑏] = 1 (𝐷, 𝐸)

∀𝑏 ∈ B4. 𝑉1 [𝑏] ∈ [0, 1], 𝑉2 [𝑏] ∈ [0, 1] ∀𝑏 ∈ B2. 𝑉1 [𝑏] ∈ [0, 1], 𝑉2 [𝑏] ∈ [0, 1]∑
𝑖, 𝑗,𝑘 𝑉1 [1𝑖 𝑗𝑘] = 𝑃 (𝐼1)

∑
𝑖 𝑉1 [1𝑖] ∈ [𝑙𝐵, 𝑢𝐵]∑

𝑖, 𝑗,𝑘 𝑉1 [𝑖1 𝑗𝑘] = 𝑃 (𝐼2)
∑

𝑖 𝑉1 [𝑖1] ∈ [𝑙𝐶 , 𝑢𝐶]∑
𝑖, 𝑗,𝑘 𝑉1 [𝑖 𝑗1𝑘] = 𝑃 (𝐼3)∑
𝑖, 𝑗,𝑘 𝑉1 [𝑖 𝑗𝑘1] = 𝑃 (𝐼4)∑
𝑖, 𝑗,𝑘 𝑉2 [1𝑖 𝑗𝑘] = 𝑃 (𝐼5)

∑
𝑖 𝑉2 [1𝑖] ∈ [𝑙𝐷 , 𝑢𝐷]∑

𝑖, 𝑗,𝑘 𝑉2 [𝑖1 𝑗𝑘] = 𝑃 (𝐼6)
∑

𝑖 𝑉2 [𝑖1] ∈ [𝑙𝐸, 𝑢𝐸]∑
𝑖, 𝑗,𝑘 𝑉2 [𝑖 𝑗1𝑘] = 𝑃 (𝐼7)∑
𝑖, 𝑗,𝑘 𝑉2 [𝑖 𝑗𝑘1] = 𝑃 (𝐼8)

𝜙𝑐𝑜𝑟𝑟 𝜙 ′𝑐𝑜𝑟𝑟

Fig. 24. Original constraints 𝜙 vs. overapproximated constraints 𝜙 ′.

obtained from the correlation analysis. For example, assuming that 𝑙∗
𝐵
, 𝑢∗

𝐵
denote the ground truth

lower and upper bounds of 𝑃 (𝐵) satisfying 𝜙 . Since our correlation analysis is sound, we know
that 𝑙𝐵 ≤ 𝑙∗

𝐵
≤ 𝑢∗

𝐵
≤ 𝑢𝐵 . As a result, 𝜙 =⇒ 𝑙𝐵 ≤ 𝑃 (𝐵) ≤ 𝑢𝐵 . A similar implication happens

to 𝐶, 𝐷, 𝐸. Meanwhile, with the correlation analysis, we can get the correlation type between a
pair of relations from {𝐵,𝐶, 𝐷, 𝐸}, and encode them as constraints 𝜙 ′𝑐𝑜𝑟𝑟 . Due to the soundness of
correlation analysis, according to Theorem 3, we know that 𝜙 =⇒ 𝜙 ′corr.

To summarize, 𝜙 =⇒ 𝜙 ′.
In terms of performance improvement, it is because the approximated version has fewer joint

probability variables compared to the original version. We can see that the number of variables in
𝜙 ′ is significantly less than the number of variables in 𝜙 . For instance, 𝜙 has 32 variables, while 𝜙 ′
only has 8 variables. It would significantly reduce the number of variables when this derivation
graph is larger, and we pick a suitable step 𝑘 to select intermediate relations.

It is worth noting that 𝑘 is not a fixed value. The core idea behind our over-approximation is to
partition the derivation graph𝐺 into two disjoint sets, 𝑆𝑠 and 𝑆𝑡 , such that 𝑆𝑠 ∪ 𝑆𝑡 = Nodes(𝐺) and
𝑆𝑠 ∩ 𝑆𝑡 = ∅. We omit all edges that connect nodes from 𝑆𝑠 to nodes in 𝑆𝑡 .

Assume that 𝑆𝑠 contains the root node (e.g., the output fact 𝐴 in Figure 23). Instead of expressing
the probability of 𝐴 in terms of input facts, our over-approximated formulation encodes this

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:38 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

probability based on the leaf nodes within 𝑆𝑠 . Here, we define leaf nodes as those without outgoing
edges.

For example, in Figure 23, one possible cut yields 𝑆𝑠 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸} and 𝑆𝑡 = {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8}.
Alternatively, a valid cut could be 𝑆𝑠 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐼5, 𝐼6, 𝐼7, 𝐼8} and 𝑆𝑡 = {𝐼1, 𝐼2, 𝐼3, 𝐼4}. We encode
the cut selection as an ILP (Integer Linear Programming) problem, where the objective is to choose
the leaf nodes of 𝑆𝑠 along the cut such that the number of incoming edges to these leaf nodes is
maximized.

A.5 Inferring Symbolic Probability Expressions

Theorem 1. Let 𝐸1 and 𝐸2 denote the probability expressions of events 𝐴 and 𝐵 respectively. Then,
we have: (1) If ⊖𝐸1 ⇝ 𝐸, then 𝐸 represents the probability of ¬𝐴; (1) if 𝐸1 ⊕ 𝐸2 ⇝ 𝐸, then 𝐸

represents the probability of event 𝐴 ∨ 𝐵 (3) iff 𝐸1 ⊗ 𝐸2 ⇝ 𝐸,then 𝐸 represents the probability of
event 𝐴 ∧ 𝐵
In this subsection, we present soundness proofs for ⊖, ⊗ and ⊕ computations used in deriv-

ing symbolic probability expressions. We also present some Lemmas that are used to prove the
soundness of both ⊗ and ⊕ computation.

A.5.1 Theorem 1 (⊖). Let 𝐸𝐴 denote the probability of event 𝐴, then we have:
If ⊖𝐸𝐴 ⇝ 𝐸,then 𝐸 represents the probability of event ¬𝐴.

Proof. Let 𝑃𝑟 (𝐴) = Expr(𝐴) = 𝜉 [®𝜎𝐴] where ®𝜎𝐴 = {𝜆0, 𝜆1, . . . , 𝜆𝑖 , . . .}, as per Definition 10. Hence,
𝐸𝐴 = 𝑃𝑟 (𝐴) = ∑

𝑖 𝜆𝑖𝜓𝑖 .
Since 𝑃𝑟 (¬𝐴) = 1 − 𝑃𝑟 (𝐴), it follows that:

𝑃𝑟 (¬𝐴) = 1 − 𝐸𝐴 = 1 −
∑︁
𝑖

𝜆𝑖𝜓𝑖 .

From Definition 8, we know
∑

𝑖 𝜓𝑖 = 1 as it spans the complete joint probability space. This leads
to:

𝑃𝑟 (¬𝐴) = 1 −
∑︁
𝑖

𝜆𝑖𝜓𝑖 =
∑︁
𝑖

𝜓𝑖 −
∑︁
𝑖

𝜆𝑖𝜓𝑖 =
∑︁
𝑖

(1 − 𝜆𝑖)𝜓𝑖 .

By the ⊖ rule, ⊖𝐸𝐴 ⇝ 𝐸 yields 𝐸 =
∑

𝑖 (1 − 𝜆𝑖)𝜓𝑖 . Therefore, we conclude:

𝑃𝑟 (¬𝐴) = 𝐸.

□

Lemma 3. Given two events 𝐴 and 𝐵, if 𝑃𝑟 (𝐴) = 𝜓𝐴, 𝑃𝑟 (𝐵) = 𝜓𝐵 and𝜓𝐴 ≠ 𝜓𝐵 , then events 𝐴 and

𝐵 are mutually exclusive.

Proof. Based on the definition of product terms (Definition 7), we have 𝑃 (𝐴) = 𝜓𝐴 =
∏

𝑐∈C 𝑉𝑐 [𝑏],
𝑃 (𝐵) = 𝜓𝐵 =

∏
𝑐∈C 𝑉𝑐 [𝑏′], and 𝑏 ≠ 𝑏′. Both 𝑏 and 𝑏′ represent bit-vectors. Here, we use 𝑉𝑐 to

denote Rep(𝑐) for the ease of presentation.
Given a boolean event𝐴, we can rewrite𝐴 = 𝐴1∧𝐴2∧𝐴𝑛 , where𝑛 = |C|, 𝑃 (𝐴𝑖) = 𝑉𝑖 [𝑏]. Based on

the independence definition of distinct correlation classes, we know that 𝑃 (𝐴) = 𝑃 (𝐴1)𝑃 (𝐴2) . . . 𝑃 (𝐴𝑛).
Similarly, 𝑃 (𝐵) = 𝑃 (𝐵1)𝑃 (𝐵2) . . . 𝑃 (𝐵𝑛). For the same correlation class 𝑖 , 𝑃 (𝐴𝑖) = 𝑉𝑖 [𝑏] and
𝑃 (𝐵𝑖) = 𝑉𝑖 [𝑏′]. For instance, 𝑏 = 001 and 𝑏′ = 100, as for 𝑏, it represents the joint probabil-
ity of the first two events being false and the third event being true, whereas 𝑏′ represents the
joint probability of the first event being true while the last two events being false. Hence, 𝐴𝑖 and 𝐵𝑖
represent two mutually-exclusive events, i.e., 𝑃 (𝐴𝑖𝐵𝑖) = 0. The joint probability of 𝑃 (𝐴 ∧ 𝐵) is as
follows:

𝑃 (𝐴 ∧ 𝐵) =
∏

1≤𝑖≤ |C |
𝑃 (𝐴𝑖𝐵𝑖) using definitions of correlation class

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:39

Hence, 𝑃 (𝐴 ∧ 𝐵) = 0 as 𝑃 (𝐴𝑖𝐵𝑖) = 0. We can also get 𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∧ 𝐵)/𝑃 (𝐵) = 0. □

A.5.2 Theorem 1 (⊗). Let 𝐸𝐴 and 𝐸𝐵 denote the probability of events 𝐴 and 𝐵 respectively. Then,
we have:

If ⊢ 𝐸𝐴 ⊗ 𝐸𝐵 ⇝ 𝐸,then 𝐸 represents the probability of event 𝐴 ∧ 𝐵.
Proof. Given 𝐸𝐴 = 𝑃 (𝐴), 𝐸𝐵 = 𝑃 (𝐵), we will first compute 𝑃 (𝐴 ∧ 𝐵) and prove it is equivalent

to 𝐸.
Assuming that 𝐸𝐴 =

∑
𝜆𝐴
𝑘
𝜓𝑘 , 𝐸𝐵 =

∑
𝜆𝐵
𝑘
𝜓𝑘 and 𝜓𝑘 =

∏
𝑐∈C 𝑉𝑐 [𝑏]. Let 𝑒𝑘 be an event, where

𝑃 (𝑒𝑘) = 𝜓𝑘 . Let 𝑒− be the event which is a complement of the event 𝑒1 ∨ · · · ∨ 𝑒𝑘 · · · ∨ 𝑒𝑛 .

(1)𝑃 (𝐴 ∧ 𝐵) = 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒1) + . . . 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒𝑘) + . . . 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒𝑛) + 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒−)
(2) = 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒1) + . . . 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒𝑘) + . . . 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒𝑛)
(3) = 𝑃 (𝐴 ∧ 𝐵 |𝑒1)𝑃 (𝑒1) + . . . 𝑃 (𝐴 ∧ 𝐵 |𝑒𝑘)𝑃 (𝑒𝑘) + . . . 𝑃 (𝐴 ∧ 𝐵 |𝑒𝑛)𝑃 (𝑒𝑛)
(4) = 𝑃 (𝐴1 ∧ 𝐵1)𝑃 (𝑒1) + . . . 𝑃 (𝐴𝑛 ∧ 𝐵𝑛)𝑃 (𝑒𝑛)
(5) = 𝑃 (∨𝑖∈𝐼 𝐴

𝑖
1 ∧

∨
𝑗∈ 𝐽 𝐵

𝑗

1)𝑃 (𝑒1) + . . .
(6) = 𝑃 (∨𝑖, 𝑗∈𝐼× 𝐽 𝐴

𝑖
1 ∧ 𝐵

𝑗

1)𝑃 (𝑒1) + . . .
(7) = (∑𝑖, 𝑗∈𝐼× 𝐽 𝑃 (𝐴𝑖

1 ∧ 𝐵
𝑗

1))𝑃 (𝑒1) + . . .

Step (1): Since each 𝑒𝑖 is mutually exclusive (according to Lemma 3), we can get 𝑃 (𝑒−)+∑𝑖 𝑃 (𝑒𝑖) =
1. Hence, we can rewrite 𝑃 (𝐴∧𝐵) as 𝑃 (𝐴∧𝐵∧𝑒1)+ . . . 𝑃 (𝐴∧𝐵∧𝑒𝑘)+ . . . 𝑃 (𝐴∧𝐵∧𝑒𝑛)+𝑃 (𝐴∧𝐵∧𝑒−).

Transformation from (1) - (2): Given that 𝑃 (𝐴) = ∑
𝜆𝐴
𝑘
𝑃 (𝑒𝑘) and each 𝑒𝑘 is mutually exclusive,

we can infer that the boolean event𝐴 = ∨𝑒′
𝑘
, where 𝑒′

𝑘
is an event with probability 𝑃 (𝑒′

𝑘
) = 𝜆𝐴

𝑘
𝑃 (𝑒𝑘).

Let’s assume an event 𝑐 with probability 𝑃 (𝑐) = 𝜆𝐴
𝑘
. As we know that 𝑐 is the coefficient which

is independent of the term event 𝑒𝑘 , we can get 𝑒′
𝑘
= 𝑒𝑘 ∧ 𝑐 . Hence 𝑃 (𝑒′

𝑘
|𝑒𝑘) = 𝑃 (𝑐 ∧ 𝑒𝑘 |𝑒𝑘) =

𝑃 (𝑐)𝑃 (𝑒𝑘)/𝑃 (𝑒𝑘) = 𝜆𝐴
𝑘
, and 𝑃 (𝑒𝑘 ∧ 𝑒′𝑘) = 𝑃 (𝑒′

𝑘
).

We have the following:

𝑃 (𝑒− ∧ (𝑒′1 ∨ 𝑒′2 ∨ . . . 𝑒′𝑛)) = 𝑃 (𝑒− ∧ 𝑒′1 ∨ 𝑒− ∧ 𝑒′2 ∨ . . . 𝑒− ∧ 𝑒′𝑛)
= 𝑃 (𝑒− ∧ 𝑒′1 ∧ 𝑒1 ∨ 𝑒− ∧ 𝑒′2 ∧ 𝑒2 ∨ . . . 𝑒− ∧ 𝑒′𝑛 ∧ 𝑒𝑛)
= 𝑃 (𝑒− ∧ 𝑒′1 ∧ 𝑒1) + 𝑃 (𝑒− ∧ 𝑒′2 ∧ 𝑒2) + . . . 𝑃 (𝑒− ∧ 𝑒′𝑛 ∧ 𝑒𝑛)
= 0

From the above, we can get 𝑒− is also mutually exclusive with the union of 𝑒′1 ∨ 𝑒′2 ∨ . . . 𝑒′𝑛 . As
𝐴 = ∨𝑒′

𝑘
, we can get 𝑒− is mutually exclusive with 𝐴. As a result, 𝑃 (𝐴 ∧ 𝐵 ∧ 𝑒−) = 0.

Transformation from (2) - (3): According to Bayes’ theorem, 𝑃 (𝐴∧𝐵 ∧ 𝑒1) = 𝑃 (𝐴∧𝐵 |𝑒1)𝑃 (𝑒1).
This applies to 𝑒2 . . . , 𝑒𝑛 .

Transformation from (3) - (4): For instance, we introduce events𝐴1 and𝐵1 such that 𝑃 (𝐴1) = 𝜆𝐴1
and 𝑃 (𝐵1) = 𝜆𝐵1 . We have (𝐴1 ∧ 𝐵1) ⊥⊥ 𝑒1 (i.e., the product of coefficients 𝜆 are independent of the
product terms 𝜓 .) Since 𝐴 = (𝐴1 ∧ 𝑒1) ∨ . . . (𝐴𝑛 ∧ 𝑒𝑛) and 𝐵 = (𝐵1 ∧ 𝑒1) ∨ . . . (𝐵𝑛 ∧ 𝑒𝑛), we have
𝐴 ∧ 𝐵 = (𝐴1 ∧ 𝐵1 ∧ 𝑒1) ∨ . . . (𝐴𝑛 ∧ 𝐵𝑛 ∧ 𝑒𝑛). Thus 𝑃 (𝐴 ∧ 𝐵 |𝑒1) = 𝑃 (𝐴1 ∧ 𝐵1 ∧ 𝑒1 |𝑒1) = 𝑃 (𝐴1 ∧ 𝐵1)

Transformation from (4) - (5): Event 𝐴1 can be represented as a DNF formula: 𝐴1 =
∨

𝑖∈𝐼 𝐴
𝑖
1,

where each 𝐴𝑖
1 is a disjoint conjunctive clause. 𝐴

𝑖
1 =

∧
𝑥+∈𝑋 + 𝑥

+∧
𝑥−∈𝑋 − 𝑥

− , where 𝑥+ represents
the rule probability variable and 𝑥− represents the negated rule probability variable. We also use
𝑃𝑥+ to represent the concrete probability value for variable 𝑥+, similar to 𝑃𝑥− . The probability of
each conjunctive clause 𝑃 (𝐴𝑖

1) =
∏

𝑥+∈𝑋 + 𝑃𝑥+
∏

𝑥−∈𝑋 − (1 − 𝑃𝑥−).
Transformation from (5) - (6): We follow the distributive law of conjunction over disjunction

operator.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:40 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Transformation from (6) - (7): Each 𝐴𝑖
1 ∧ 𝐵

𝑗

1 is mutually disjoint from another one 𝐴𝑖′
1 ∧ 𝐵

𝑗 ′

1 if
𝑖 ≠ 𝑖′ ∨ 𝑗 ≠ 𝑗 ′. Due to this mutual disjoint relation, we can rewrite the probability of a DNF formula
over disjoint conjunction as a summation of the conjunction probabilities.

When computing 𝑃 (𝐴𝑖
1∧𝐵

𝑗

1), we have to consider two cases. Since 𝑃 (𝐴𝑖
1) =

∏
𝑥+∈𝑋 + 𝑃𝑥+

∏
𝑥−∈𝑋 − (1−

𝑃𝑥−) and 𝑃 (𝐵 𝑗

1) =
∏

𝑦+∈𝑌 + 𝑃𝑦+
∏

𝑦−∈𝑌 − (1 − 𝑃𝑦−), if the set 𝑋 + ∩ 𝑌 − ≠ ∅ or 𝑋 − ∩ 𝑌 + ≠ ∅, we know
that one term in 𝐴𝑖

1 is a negated version of the term in 𝐵
𝑗

1, so that their conjunction is 0. Otherwise,
without the contradiction, we can compute the joint probability of𝐴𝑖

1 and 𝐵
𝑗

1. If there are no overlap-
ping terms, e.g.𝑋 +∩𝑌 + = ∅, due to the mutual independence among rule probabilities, we can have
𝑃 (𝐴𝑖

1 ∧ 𝐵
𝑗

1) = 𝑃 (𝐴𝑖
1)𝑃 (𝐵

𝑗

1). Otherwise, if there are overlapping terms and denote the conjunction of
overlapping terms as S, let’s assume that 𝐴𝑖

1 = 𝑎1 ∧ · · · ∧ 𝑆 ∧ 𝑎𝑛 and 𝐵
𝑗

1 = 𝑏1 ∧ · · · ∧ 𝑆 ∧ 𝑏𝑛 , then
𝐴𝑖
1 ∧ 𝐵

𝑗

1 = (𝑎1 ∧ · · · ∧ 𝑆 ∧ 𝑎𝑛) ∧ (𝑏1 ∧ · · · ∧ 𝑆 ∧ 𝑏𝑛) = 𝑎1 ∧ · · · ∧ 𝑆 ∧ 𝑎𝑛 ∧ 𝑏1 ∧ · · · ∧ 𝑏𝑛 by removing
the overlapping part 𝑆 .
By following the above computation, we have the formula in (∑𝑖, 𝑗∈𝐼× 𝐽 𝑃 (𝐴𝑖

1 ∧ 𝐵
𝑗

1)) shown in
Line (7) is evaluated the same as JointProb(𝑃 (𝐴1), 𝑃 (𝐵1)). Hence, we can have the following:

𝑃 (𝐴 ∧ 𝐵) = (∑𝑖, 𝑗∈𝐼× 𝐽 𝑃 (𝐴𝑖
1 ∧ 𝐵

𝑗

1)) · 𝑃 (𝑒1) · · · +
∑

𝑖, 𝑗∈𝐼× 𝐽 𝑃 (𝐴𝑖
𝑛 ∧ 𝐵

𝑗
𝑛))𝑃 (𝑒𝑛)

= JointProb(𝑃 (𝐴1), 𝑃 (𝐵1)) · 𝑃 (𝑒1) · · · + JointProb(𝑃 (𝐴𝑛), 𝑃 (𝐵𝑛)) · 𝑃 (𝑒𝑛)
=
∑
JointProb((𝑃 (𝐴𝑖), 𝑃 (𝐵𝑖)) · 𝑃 (𝑒𝑖)

= 𝑃 (𝐴) ⊗ 𝑃 (𝐵)
□

A.5.3 Theorem 1 (⊕) . Let 𝐸𝐴 and 𝐸𝐵 denote the probability of events 𝐴 and 𝐵 respectively. Then,
we have:

If ⊢ 𝐸𝐴 ⊕ 𝐸𝐵 ⇝ 𝐸, then 𝐸 represents the probability of event 𝐴 ∨ 𝐵.
Proof. Here, we do not provide a formal proof for ⊕ as it is very similar to the proof of Theorem 1

(⊗), which mainly utilizes the Lemma 3.

A.6 Inferring Correlation Types

In this section, we give soundness proof for Theorem 2 and Theorem 3.

A.6.1 Soundness of Theorem 2. We prove the soundness of this theorem for each ★ ∈ {+,−,⊥}:
• Case +: There are four rules in Figure 12 to infer the positive correlation 𝐼1 ▶+ 𝐼2.
– Rule Id states that 𝐼 ▶+ 𝐼 , because 𝑃 (𝐼 |𝐼) = 1 > 𝑃 (𝐼).
– Rule Symm states that 𝐼2 ▶+ 𝐼1 if 𝐼1 ▶+ 𝐼2. Given 𝐼1 ▶+ 𝐼2, we can infer that 𝑃 (𝐼1 |𝐼2) > 𝑃 (𝐼1).
Thus, 𝑃 (𝐼2 |𝐼1) = 𝑃 (𝐼1 |𝐼2)𝑃 (𝐼2)/𝑃 (𝐼1) > 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼1) = 𝑃 (𝐼2), which implies 𝐼2 ▶+ 𝐼1.

– Rule Semantic states that 𝐼1 ▶+ 𝐼2 if 𝑃 (𝐼1 ∧ 𝐼2) > 𝑃 (𝐼1)𝑃 (𝐼2). With this information, we can
infer that 𝑃 (𝐼1 |𝐼2) = 𝑃 (𝐼1 ∧ 𝐼2)/𝑃 (𝐼2) > 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼2) = 𝑃 (𝐼1), implying 𝐼1 ▶+ 𝐼2.

• Case -: There are three rules in Figure 12 to infer the negative correlation 𝐼1 ▶− 𝐼2.
– Rule Symm states that 𝐼2 ▶− 𝐼1 if 𝐼1 ▶− 𝐼2. Given 𝐼1 ▶− 𝐼2, we can infer that 𝑃 (𝐼1 |𝐼2) < 𝑃 (𝐼1).
Thus, 𝑃 (𝐼2 |𝐼1) = 𝑃 (𝐼1 |𝐼2)𝑃 (𝐼2)/𝑃 (𝐼1) < 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼1) = 𝑃 (𝐼2), which implies 𝐼2 ▶− 𝐼1.

– Rule Semantic states that 𝐼1 ▶− 𝐼2 if 𝑃 (𝐼1 ∧ 𝐼2) < 𝑃 (𝐼1)𝑃 (𝐼2). With this information, we can
infer that 𝑃 (𝐼1 |𝐼2) = 𝑃 (𝐼1 ∧ 𝐼2)/𝑃 (𝐼2) < 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼2) = 𝑃 (𝐼1), implying 𝐼1 ▶− 𝐼2.

• Case ⊥: There are three rules in Figure 12 to infer the independence relation 𝐼1 ▶⊥ 𝐼2.
– Rule Indep states that 𝐼1 ▶⊥ 𝐼2 ifClass(𝐼1) ≠ Class(𝐼2). This is correct based on our assumption
that elements from different correlation classes are independent.

– Rule Symm states that 𝐼2 ▶⊥ 𝐼1 if 𝐼1 ▶⊥ 𝐼2. Given 𝐼1 ▶⊥ 𝐼2, we can infer that 𝑃 (𝐼1 |𝐼2) = 𝑃 (𝐼1).
Thus, 𝑃 (𝐼2 |𝐼1) = 𝑃 (𝐼1 |𝐼2)𝑃 (𝐼2)/𝑃 (𝐼1) = 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼1) = 𝑃 (𝐼2), which implies 𝐼2 ▶⊥ 𝐼1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:41

– Rule Semantic states that 𝐼1 ▶⊥ 𝐼2 if 𝑃 (𝐼1 ∧ 𝐼2) = 𝑃 (𝐼1)𝑃 (𝐼2). With this information, we can
infer that 𝑃 (𝐼1 |𝐼2) = 𝑃 (𝐼1 ∧ 𝐼2)/𝑃 (𝐼2) = 𝑃 (𝐼1)𝑃 (𝐼2)/𝑃 (𝐼2) = 𝑃 (𝐼1), implying 𝐼1 ▶⊥ 𝐼2.

A.6.2 Soundness of Theorem 3. In the rest of this section, we use the⊥⊥ symbol to indicate statistical
independence and prove a series of lemmas that are used to prove Theorem 3.
Proof of Theorem 3. To establish the proof, we need to prove the correctness of three rules

(Rule Indep, Rule Pos and Rule Neg) in Figure 14.
In the following, we use Lemma 6 to establish the correctness of Rule Indep, Lemma 10 to

establish the correctness of Rule Pos and Lemma 14 for Rule Neg.
Lemma 10 establishes the correctness of Rule Pos in Figure 14, used for inferring the positive

correlation between a pair of expressions 𝐸1 and 𝐸2. As 𝐸1 and 𝐸2 are arbitrary expressions in
Lemma 10, we can use DNF as a general format to represent both 𝐸1 and 𝐸2. In order to prove
Lemma 10, we need to use the following Lemmas 4, 7, 8 and 9 that are also used to prove the
soundness of the rule Pos but with a restricted format of 𝐸1 and 𝐸2.

Similarly, to prove Lemma 14 for Rule Neg in Figure 14, we use the following Lemmas: Lemma 4,
Lemma 11, Lemma 12, and Lemma 13.

Lemma 4. If 𝜕𝑓

𝜕𝛼
> 0 and

𝜕𝑓

𝜕𝛽
> 0, function 𝑓 (𝛼, 𝛽) is strictly monotonically increasing, i.e.,

𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2), where 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2.

Proof of Lemma 4.
We assume the following:

𝑓𝛼 (𝛼, 𝛽) =
𝜕𝑓

𝜕𝛼
𝑓𝛽 (𝛼, 𝛽) =

𝜕𝑓

𝜕𝛽

For a function 𝑓 of two variables, the Mean Value Theorem states that:

𝑓 (𝛼1, 𝛽1) − 𝑓 (𝛼2, 𝛽2) = 𝑓𝛼 (𝜒, 𝜂) · (𝛼1 − 𝛼2) + 𝑓𝛽 (𝜒, 𝜂) · (𝛽1 − 𝛽2)
where (𝜒, 𝜂) lies on the line segment joining (𝛼1, 𝛽1) and (𝛼2, 𝛽2).
Given that 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2, and knowing that 𝑓𝛼 (𝜒, 𝜂) > 0 and 𝑓𝑦 (𝜒, 𝜂) > 0, we have:

𝑓 (𝛼1, 𝛽1) − 𝑓 (𝛼2, 𝛽2) = 𝑓𝛼 (𝜒, 𝜂) · (𝛼1 − 𝛼2) + 𝑓𝛽 (𝜒, 𝜂) · (𝛽1 − 𝛽2) > 0

This is because each term in the sum is positive, given the positivity of the partial derivatives
and the non-negativity of the differences 𝛼1 − 𝛼2 and 𝛽1 − 𝛽2.

Therefore, 𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2) if 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2. This completes the proof that 𝑓 (𝛼, 𝛽) is
strictly increasing in both 𝛼 and 𝛽 . □

Lemma 5. Given two different correlation classes 𝑉1 and 𝑉2, if we have two arbitrary boolean

expressions 𝐸1 = 𝑓 (𝑥), 𝑥 ∈ 𝑉1, and 𝐸2 = 𝑔(𝑦), 𝑦 ∈ 𝑉2, then 𝐸1 ⊥⊥ 𝐸2.

Proof. We omit the proof here since this is our definition of correlation classes.

Lemma 6. Given a pair of 𝐸1 and 𝐸2, if ∀ 𝑥,𝑦 ∈ Dep(𝐸1) × Dep(𝐸2). Class(𝑥) ≠ Class(𝑦), then
𝐸1 ⊥⊥ 𝐸2.

Proof of Lemma 6.
Let 𝑆1 = Dep(𝐸1) and 𝑆2 = Dep(𝐸2). We define the following function:

V(𝐸) = {𝑉 |𝑉 = Class(𝑥), 𝑥 ∈ Dep(𝐸)} (11)

Based on the premises of rule Indep, we know that ∀𝑥,𝑦 ∈ 𝑆1 × 𝑆2. Class(𝑥) ≠ Class(𝑦), we can
getV(𝐸1) ∩ V(𝐸2) = ∅. With this, we can assume that all the variables (input facts) appearing in

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:42 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

𝐸1 belong to a single correlation class𝑉1 =
⋃

𝑖∈V(𝐸1) 𝑉𝑖 and all the variables appearing in 𝐸2 belong
to a single correlation class 𝑉2 =

⋃
𝑗∈V(𝐸2) 𝑉𝑗 .

We can express 𝐸1 and 𝐸2 as follows:

𝐸1 = 𝑓 (𝑥1, 𝑥2, . . . 𝑥𝑛), 𝑥𝑖 ∈ 𝑉1, 𝐸2 = 𝑔(𝑦1, 𝑦2, . . . , 𝑦𝑛), 𝑦𝑖 ∈ 𝑉2

Given that 𝑉1 and 𝑉2 are two different correlation classes, based on Lemma 5, we know that any
arbitrary boolean combinations of variables from 𝑉1 are mutually independent from the boolean
combinations of variables from 𝑉2. Thus, 𝐸1 ⊥⊥ 𝐸2.

Note that, in general, independence does not necessarily propagate to conjunctions of conditions,
e.g., given 𝑥1 ⊥⊥ 𝑥 and 𝑥2 ⊥⊥ 𝑥 , it does not imply that 𝑥 ⊥⊥ (𝑥1 ∧ 𝑥2). However, this is a valid
assumption in our domain. Since all the input facts 𝑥, 𝑦 are atomic, it is natural to assume the mutual
independence between arbitrary boolean formulas 𝑓 (𝑥) and 𝑔(𝑦) if 𝑥 and 𝑦 are from different
correlation classes.

□

Lemma 7. Given an input fact 𝐸1 = 𝐼 and a general DNF formula 𝐸2 =
∨∧

𝑗 𝐼 𝑗 , if ⊢ 𝜒 (𝐸1), ⊢
𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2 and ⊬ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2), 𝑖 .𝑒 ., 𝐸1 ⊕−→ 𝐸2.

Proof of Lemma 7. We prove this by induction and start with the base case.
Base cases: 𝐸1 = 𝐼 , 𝐸2 =

∧
𝑖 𝐼𝑖 .

We can compute the expression 𝑃 (𝐸1 ∧ 𝐸2) as follows:

(1)𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐼 ∧∧𝑖 𝐼𝑖)
(2) = 𝑃 (𝐼 ∧ 𝐼𝑘 ∧

∧
𝑖≠𝑘 𝐼𝑖) ∃𝐼𝑘 ∈ Dep(𝐸2). 𝐼𝑘 ▶+ 𝐼 (i.e., ⊢ 𝐸1 ⇀+ 𝐸2)

(3) = 𝑃 (𝐼 ∧ 𝐼𝑘)
∏

𝑖≠𝑘 𝑃 (𝐼𝑖) Definition of 𝜒 (𝐸2), 𝐼1 ⊥⊥ 𝐼2 ⊥⊥ . . . (𝐼𝑘 , 𝐼) ⊥⊥ . . . 𝐼𝑖
(4) = 𝑃 (𝐼 |𝐼𝑘)𝑃 (𝐼𝑘)

∏
𝑖≠𝑘 𝑃 (𝐼𝑖)

(5) = 𝑃 (𝐼 |𝐼𝑘)
∏

𝑖 𝐼𝑖

The expression of 𝑃 (𝐸1)𝑃 (𝐸2) is as follows:

(1)𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐼)𝑃 (∧𝑖 𝐼𝑖)
(2) = 𝑃 (𝐼)∏𝑖 𝐼𝑖 Definition of 𝜒 (𝐸2)

Based on the precondition ⊢ 𝐸1 ⇀+ 𝐸2, we know that ∃𝐼𝑘 ∈ Dep(𝐸2). 𝐼𝑘 ▶+ 𝐸1, which is 𝐼𝑘 ▶+ 𝐼 .
It implies that 𝑃 (𝐼 |𝐼𝑘) > 𝑃 (𝐼), and thus 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2), i.e., 𝐸1 ⊕−→ 𝐸2.
Inductive cases: 𝐸1 = 𝐼 , 𝐸2 = 𝐸′2 ∨ 𝑡 , where 𝐸′2 =

∨∧
𝑖 𝐼𝑖 , 𝑡 =

∧
𝑖 𝐼𝑖 .

Case 1: 𝐸1 ⊕−→ 𝐸′2. Given 𝐸1 = 𝐼 , we have the following three subcases.

• Case 1.1: 𝐸1 ⇀+ 𝑡 violates the precondition 𝜒 (𝐸2).
• Case 1.2: 𝐸1 ⇀− 𝑡 violates the precondition ⊬ 𝐸1 ⇀− 𝐸2.
• Case 1.3: 𝐸1 ⊥⊥ 𝑡 is valid.
Proof of Case 1.3
Given 𝐸1

⊕−→ 𝐸′2, and 𝐸1 = 𝐼 , we can get V(𝐸1) ⊆ V(𝐸′2), where V(𝐸1) is defined by
Eq 11. Given 𝜒 (𝐸2), we know that the correlation classes for each 𝑥 ∈ Dep(𝐸2) are disjoint.
With 𝐸2 = 𝐸′2 ∨ 𝑡 , we can get V(𝐸′2) ∩ V(𝑡) = ∅. With V(𝐸1) ⊆ V(𝐸′2), we can get
V(𝐸1) ∩ V(𝑡) = ∅, thus 𝐸1 ⊥⊥ 𝑡 .
The inductive case focuses on proving the following: given 𝐸1

⊕−→ 𝐸′2, and 𝐸1 ⊥⊥ 𝑡 , it implies
that 𝐸1 ⊕−→ 𝐸′2 ∨ 𝑡 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:43

(1)𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐼 ∧ 𝐸2) 𝐸1 = 𝐼

(2) = 𝑃 ((𝐼 ∧ 𝐸′2) ∨ (𝐼 ∧ 𝑡)) 𝐸2 = 𝐸′2 ∨ 𝑡
(3) = 𝑃 (𝐼 ∧ 𝐸′2) + 𝑃 (𝐼 ∧ 𝑡) − 𝑃 (𝐼 ∧ 𝐸

′
2 ∧ 𝑡)

(4) = 𝑃 (𝐼 ∧ 𝐸′2) + 𝑃 (𝐼)𝑃 (𝑡) − 𝑃 (𝐼 ∧ 𝐸
′
2)𝑃 (𝑡) definitions of 𝜒 (𝐸) : {𝐼 , 𝐸′2} ⊥⊥ 𝑡 .

(1)𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐼)𝑃 (𝐸′2 ∨ 𝑡) 𝐸1 = 𝐼

(2) = 𝑃 (𝐼) (𝑃 (𝐸′2) + 𝑃 (𝑡) − 𝑃 (𝐸
′
2)𝑃 (𝑡)) definitions of and 𝜒 (𝐸)

(3) = 𝑃 (𝐼)𝑃 (𝐸′2) + 𝑃 (𝐼)𝑃 (𝑡) − 𝑃 (𝐼)𝑃 (𝐸
′
2)𝑃 (𝑡)

From above expressions, we can compute 𝑃 (𝐸1 ∧ 𝐸2) − 𝑃 (𝐸1)𝑃 (𝐸2) as Δ:
(1)Δ = 𝑃 (𝐼 ∧ 𝐸′2) − 𝑃 (𝐼 ∧ 𝐸

′
2 ∧ 𝑡) − 𝑃 (𝐼)𝑃 (𝐸

′
2) + −𝑃 (𝐼)𝑃 (𝐸

′
2)𝑃 (𝑡)

(2) = 𝑃 (𝐼 |𝐸′2)𝑃 (𝐸
′
2) − 𝑃 (𝐼 |𝐸

′
2)𝑃 (𝐸

′
2)𝑃 (𝑡) − 𝑃 (𝐼)𝑃 (𝐸

′
2) + −𝑃 (𝐼)𝑃 (𝐸

′
2)𝑃 (𝑡)

(3) = (1 − 𝑃 (𝑡)) (𝑃 (𝐼 |𝐸′2)𝑃 (𝐸
′
2) − 𝑃 (𝐼)𝑃 (𝐸

′
2))

As 𝐸1 ⊕−→ 𝐸′2 and 𝐸1 = 𝐼 , we can get 𝑃 (𝐼 |𝐸′2)𝑃 (𝐸′2) > 𝑃 (𝐼)𝑃 (𝐸′2), and thus Δ > 0, i.e.,
𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2). Hence, we are able to prove 𝐸1 ⊕−→ 𝐸′2 ∨ 𝑡 .

Case 2: 𝐸1 ⊥⊥ 𝐸′2.
• Case 2.1: 𝐸1 ⊥⊥ 𝑡 violates the precondition ⊢ 𝐸1 ⇀+ 𝐸2.
• Case 2.2: 𝐸1 ⇀− 𝑡 violates the precondition ⊬ 𝐸1 ⇀− 𝐸2.
• Case 2.3: 𝐸1 ⇀+ 𝑡 is valid.
The proof of Case 2.3 is similar to Case 1.3, so we omit it here.

Other cases
Case 3: 𝐸1 ⊖−→ 𝐸′2 is invalid as it violates the precondition ⊬ 𝐸1 ⇀− 𝐸2. □

Lemma 8. Let 𝐸1, 𝐸2 be conjunctions over input facts, i.e., 𝐸1 =
∧

𝑖 𝐼𝑖 and 𝐸2 =
∧

𝑗 𝐼 𝑗 . If ⊢ 𝜒 (𝐸1), ⊢
𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2 and ⊬ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2).

Proof of Lemma 8. We prove this by induction and start with the base cases.
Base cases: 𝐸1 = 𝐼𝑎𝑖 ∧ 𝐼𝑏𝑖 and 𝐸2 = 𝐼𝑎𝑗 ∧ 𝐼𝑏 𝑗
To compute 𝑃 (𝐸1∧𝐸2), we first list all the possible dependency information among {𝐼𝑎𝑖 , 𝐼𝑏𝑖 , 𝐼𝑎𝑗 , 𝐼𝑏 𝑗 }.

Given the precondition 𝜒 (𝐸1) and 𝜒 (𝐸2), we know that 𝐼𝑎𝑖 ⊥⊥ 𝐼𝑏𝑖 and 𝐼𝑎𝑗 ⊥⊥ 𝐼𝑏 𝑗 . Based on the pre-
condition ⊢ 𝐸1 ⇀+ 𝐸2, ⊬ 𝐸1 ⇀− 𝐸2, we can list all the cases satisfying these conditions:
(1) 𝐼𝑎𝑖 ▶+ 𝐼𝑎𝑗 , 𝐼𝑏𝑖 ▶+ 𝐼𝑏 𝑗 : In this case, these four input facts are grouped to two correlation classes:
{𝐼𝑎𝑖 , 𝐼𝑎𝑗 }, {𝐼𝑏𝑖 , 𝐼𝑏 𝑗 }, thus 𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐼𝑎𝑖 ∧ 𝐼𝑏𝑖)𝑃 (𝐼𝑎𝑗 ∧ 𝐼𝑏 𝑗) = 𝑃 (𝐼𝑎𝑖)𝑃 (𝐼𝑏𝑖)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏 𝑗).
Meanwhile, we can rewrite the joint probability as follows: 𝑃 (𝐸1∧𝐸2) = 𝑃 (𝐼𝑎𝑖∧𝐼𝑏𝑖∧𝐼𝑏𝑖∧𝐼𝑏 𝑗) =
𝑃 (𝐼𝑎𝑖∧𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖∧𝐼𝑏 𝑗) = 𝑃 (𝐼𝑎𝑖 |𝐼𝑎𝑗)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖 |𝐼𝑏 𝑗)𝑃 (𝐼𝑏 𝑗). Given 𝐼𝑎𝑖 ▶+ 𝐼𝑎𝑗 , 𝐼𝑏𝑖 ▶+ 𝐼𝑏 𝑗 , we know
that 𝑃 (𝐼𝑎𝑖 |𝐼𝑎𝑗) > 𝑃 (𝐼𝑎𝑖) and 𝑃 (𝐼𝑏𝑖 |𝐼𝑏 𝑗) > 𝑃 (𝐼𝑏𝑖).
Thus, 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐼𝑎𝑖 |𝐼𝑎𝑗)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖 |𝐼𝑏 𝑗)𝑃 (𝐼𝑏 𝑗) > 𝑃 (𝐼𝑎𝑖)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖)𝑃 (𝐼𝑏 𝑗) = 𝑃 (𝐸1)𝑃 (𝐸2).

(2) 𝐼𝑎𝑖 ▶+ 𝐼𝑏 𝑗 , 𝐼𝑏𝑖 ▶+ 𝐼𝑎𝑗 . The proof of this is similar to case (1).
(3) 𝐼𝑎𝑖 ▶+ 𝐼𝑎𝑗 , 𝐼𝑏𝑖 ⊥⊥ 𝐼𝑏 𝑗 : In this case, these four input facts are grouped to three correlation classes:
{𝐼𝑎𝑖 , 𝐼𝑎𝑗 }, {𝐼𝑏𝑖 }, {𝐼𝑏 𝑗 }, thus 𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐼𝑎𝑖 ∧ 𝐼𝑏𝑖)𝑃 (𝐼𝑎𝑗 ∧ 𝐼𝑏 𝑗) = 𝑃 (𝐼𝑎𝑖)𝑃 (𝐼𝑏𝑖)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏 𝑗).
Similarly, 𝑃 (𝐸1∧𝐸2) = 𝑃 (𝐼𝑎𝑖∧𝐼𝑏𝑖∧𝐼𝑏𝑖∧𝐼𝑏 𝑗) = 𝑃 (𝐼𝑎𝑖∧𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖∧𝐼𝑏 𝑗) = 𝑃 (𝐼𝑎𝑖 |𝐼𝑎𝑗)𝑃 (𝐼𝑎𝑗)𝑃 (𝐼𝑏𝑖 |𝐼𝑏 𝑗)𝑃 (𝐼𝑏 𝑗).
Given 𝐼𝑎𝑖 ▶+ 𝐼𝑎𝑗 and 𝐼𝑏𝑖 ⊥⊥ 𝐼𝑏 𝑗 , we know that 𝑃 (𝐼𝑎𝑖 |𝐼𝑎𝑗) > 𝑃 (𝐼𝑎𝑖), and 𝑃 (𝐼𝑏𝑖 |𝐼𝑏 𝑗) = 𝑃 (𝐼𝑏𝑖). As a
result, 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2).

(4) 𝐼𝑎𝑖 ▶+ 𝐼𝑏 𝑗 , 𝐼𝑏𝑖 ⊥⊥ 𝐼𝑎𝑗 .
(5) 𝐼𝑎𝑖 ⊥⊥ 𝐼𝑏 𝑗 , 𝐼𝑏𝑖 ▶+ 𝐼𝑎𝑗 .
(6) 𝐼𝑎𝑖 ⊥⊥ 𝐼𝑎𝑗 , 𝐼𝑏𝑖 ▶+ 𝐼𝑏 𝑗 .
The proof of cases (4)-(6) is simlar to case (3), so we omit the proof here.
Inductive cases.

𝐸1 = 𝐸′1 ∧ 𝐼1 𝐸′1 =
∧

𝑖 𝐼𝑖
𝐸2 = 𝐸′2 ∧ 𝐼2 𝐸′2 =

∧
𝑗 𝐼 𝑗

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:44 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

Case 1: 𝐸′1
⊕−→ 𝐸′2. Based on the precondition 𝜒 (𝐸1) (resp. 𝜒 (𝐸2)), we know that 𝐸′1 ⊥⊥ 𝐼1 (resp.

𝐸′2 ⊥⊥ 𝐼2).
• Case 1.1 𝐼1 ⇀+ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1.
Proof of Case 1.1 𝐸′1

⊕−→ 𝐸′2, 𝐼1 ⇀
+ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1 ∧ 𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2)𝑃 (𝐼1 ∧ 𝐼2) definitions of {𝐸′1, 𝐸

′
2} ⊥⊥ {𝐼1, 𝐼2}

= 𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2)𝑃 (𝐼1 |𝐼2)𝑃 (𝐼2)

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1)𝑃 (𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1)𝑃 (𝐼1)𝑃 (𝐸
′
2)𝑃 (𝐼2) definitions of 𝜒 (𝐸1) and 𝜒 (𝐸2)

In case 1.1, given 𝐸′1
⊕−→ 𝐸′2, we can infer that 𝑃 (𝐸′1 |𝐸′2) > 𝑃 (𝐸′1). Given 𝐼1 ⇀+ 𝐼2, as both

𝐼1 and 𝐼2 are input facts, we know that 𝐼1 ▶+ 𝐼2, and thus 𝑃 (𝐼1 |𝐼2) > 𝑃 (𝐼1). As a result,
𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2).

• Case 1.2 𝐼1 ⇀+ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⇀
+ 𝐸′1. It is invalid as it violates the precondition 𝜒 (𝐸1).

• Case 1.3 𝐼1 ⇀+ 𝐼2, 𝐼1 ⇀+ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1. It is invalid as it violates the preconditions 𝜒 (𝐸2).
• Case 1.4 𝐼1 ⇀+ 𝐼2, 𝐼1 ⇀+ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1. It is invalid as it violates the precondition 𝜒 (𝐸1) and
𝜒 (𝐸2).
• Case 1.5 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1
Proof of Case 1.5 𝐸′1

⊕−→ 𝐸′2, 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1 ∧ 𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2)𝑃 (𝐼1)𝑃 (𝐼2) definitions of 𝐼1 ⊥⊥ 𝐼2 ⊥⊥ {𝐸′1, 𝐸

′
2}

= 𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2)𝑃 (𝐼1)𝑃 (𝐼2)

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1)𝑃 (𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1)𝑃 (𝐼1)𝑃 (𝐸
′
2)𝑃 (𝐼2) definitions of 𝜒 (𝐸1) and 𝜒 (𝐸2)

In case 1.5, given 𝐸′1
⊕−→ 𝐸′2, we can infer that 𝑃 (𝐸′1 |𝐸′2) > 𝑃 (𝐸′1). Thus, 𝑃 (𝐸1 ∧ 𝐸2) >

𝑃 (𝐸1)𝑃 (𝐸2).

• Case 1.6 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀
+ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1

Proof of Case 1.6 𝐸′1
⊕−→ 𝐸′2, 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀

+ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1
Given 𝐸′1

⊕−→ 𝐸′2 and 𝐼1 ⇀
+ 𝐸′2, we split 𝐸

′
2 into 𝐸

′
2 (1) and 𝐸′2 (2), where 𝐸′1

⊕−→ 𝐸′2 (1), 𝐸′1 ⊥⊥
𝐸′2 (2) and 𝐼1 ⇀

+ 𝐸′2 (2), 𝐼1 ⊥⊥ 𝐸′2 (1). Meanwhile, given 𝐸′2 =
∧

𝑗 𝐼 𝑗 , 𝐸′2 can be represented as
𝐸′2 = 𝐸′2 (1) ∧ 𝐸′2 (2).

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1 ∧ 𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2 (1))𝑃 (𝐼1 ∧ 𝐸

′
2 (2))𝑃 (𝐼2) definitions of {𝐸′1, 𝐸

′
2 (1)} ⊥⊥ {𝐼1, 𝐸

′
2 (2)} ⊥⊥ 𝐼2

= 𝑃 (𝐸′2 (1) |𝐸
′
1)𝑃 (𝐸

′
1)𝑃 (𝐸

′
2 (2) |𝐼1)𝑃 (𝐼1)𝑃 (𝐼2)

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1)𝑃 (𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1)𝑃 (𝐼1)𝑃 (𝐸
′
2)𝑃 (𝐼2) definitions of 𝜒 (𝐸1) and 𝜒 (𝐸2)

In case 1.6, given 𝐸′1
⊕−→ 𝐸′2 (1), we can get 𝑃 (𝐸′2 (1) |𝐸′1) > 𝑃 (𝐸′2 (1)). Given the precondition

⊬ 𝐸1 ⇀− 𝐸2, it implies that ⊬ 𝐼1 ⇀− 𝐸′2 since 𝐸1 = 𝐸′1∧𝐼1 and 𝐸2 = 𝐸′2∧𝐼2. As 𝐸′2 = 𝐸′2 (1)∧𝐸′2 (2),
it implies that ⊬ 𝐼1 ⇀− 𝐸′2 (2). Together with 𝐼1 ⇀+ 𝐸′2 (2), from Lemma 7, we know that
𝐼1

⊕−→ 𝐸′2 (2). As a result, 𝑃 (𝐸′2 (2) |𝐼1) > 𝑃 (𝐸′2 (2)).
Thus, 𝑃 (𝐸1∧𝐸2) = 𝑃 (𝐸′2 (1) |𝐸′1)𝑃 (𝐸′1)𝑃 (𝐸′2 (2) |𝐼1)𝑃 (𝐼1)𝑃 (𝐼2) > 𝑃 (𝐸′2 (1))𝑃 (𝐸′1)𝑃 (𝐸′2 (2))𝑃 (𝐼1)𝑃 (𝐼2)
= 𝑃 (𝐸′1)𝑃 (𝐸′2)𝑃 (𝐼1)𝑃 (𝐼2) = 𝑃 (𝐸1)𝑃 (𝐸2).

• Case 1.7 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀
+ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1
Proof of Case 1.7 𝐸′1

⊕−→ 𝐸′2, 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀
+ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:45

In this case, we split 𝐸′1 into 𝐸
′
1 (1) and 𝐸′1 (2), such that 𝐸′1 (1)

⊕−→ 𝐸2, 𝐸
′
1 (2) ⇀+ 𝐼2, 𝐸′1 (1) ⊥⊥

𝐼2, 𝐸
′
1 (2) ⊥⊥ 𝐸2. Similarly, we split 𝐸′2 into 𝐸

′
2 (1) and 𝐸′2 (2), such that 𝐸′2 (1)

⊕−→ 𝐸1, 𝐸
′
2 (2) ⇀+

𝐼1, 𝐸
′
2 (1) ⊥⊥ 𝐼1, 𝐸

′
2 (2) ⊥⊥ 𝐸1.

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1 ∧ 𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1 (1)𝐸
′
2 (1))𝑃 (𝐼1 ∧ 𝐸

′
2 (2))𝑃 (𝐼2 ∧ 𝐸

′
1 (2))

definitions of {𝐸′1 (1), 𝐸
′
2 (1)} ⊥⊥ {𝐼1, 𝐸

′
2 (2)} ⊥⊥ {𝐼2, 𝐸

′
1 (1)}

= 𝑃 (𝐸′2 (1) |𝐸
′
1 (1))𝑃 (𝐸

′
1 (1))𝑃 (𝐸

′
2 (2) |𝐼1)𝑃 (𝐼1)𝑃 (𝐸

′
1 (2) |𝐼2)𝑃 (𝐼2)

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∧ 𝐼1)𝑃 (𝐸
′
2 ∧ 𝐼2)

= 𝑃 (𝐸′1)𝑃 (𝐼1)𝑃 (𝐸
′
2)𝑃 (𝐼2)

definitions of 𝜒 (𝐸1) and 𝜒 (𝐸2)
Given 𝐸′1 (2) ⇀+ 𝐼2, and ⊬ 𝐸′1 (2) ⇀− 𝐼2, according to Lemma 7, we can get 𝐸′1 (2)

⊕−→ 𝐼2. Simi-
larly, we can get 𝐸′2 (2)

⊕−→ 𝐼1. With this, we have 𝑃 (𝐸′1 (2) |𝐼2) > 𝑃 (𝐸′1 (2)) and 𝑃 (𝐸′2 (2) |𝐼1) >
𝑃 (𝐸′2 (2)). As a result, 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′2 (1) |𝐸′1 (1))𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (2) |𝐼1)𝑃 (𝐼1)𝑃 (𝐸′1 (2) |𝐼2)𝑃 (𝐼2)
> 𝑃 (𝐸′2 (1))𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (2))𝑃 (𝐸′1 (2))𝑃 (𝐼1)𝑃 (𝐼2) = 𝑃 (𝐸′1)𝑃 (𝐸′2)𝑃 (𝐼1)𝑃 (𝐼2) = 𝑃 (𝐸1)𝑃 (𝐸2). We
then prove 𝐸1 ⊕−→ 𝐸2.
• Case 1.8 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1
This proof of case 1.8 is symmetric to proof of case 1.6, so we omit it here.
• We do not talk about⇀− relation between a pair of expressions as it violates the precondition
⊬ 𝐸1 ⇀− 𝐸2.

Case 2: 𝐸′1 ⊥⊥ 𝐸′2. We also know that 𝐸′1 ⊥⊥ 𝐼1 and 𝐸′2 ⊥⊥ 𝐼2.
• Case 2.1 𝐼1 ⇀+ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1
This proof of case 2.1 is symmetric to proof of case 1.5, so we omit it here.
• Case 2.2 𝐼1 ⇀+ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1. It is invalid as it violates the preconditions 𝜒 (𝐸1).
• Case 2.3 𝐼1 ⇀+ 𝐼2, 𝐼1 ⇀+ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1. It is invalid as it violates the preconditions 𝜒 (𝐸2).
• Case 2.4 𝐼1 ⇀+ 𝐼2, 𝐼1 ⇀+ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1. It is invalid as it violates the preconditions 𝜒 (𝐸1) and
𝜒 (𝐸2).
• Case 2.5 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1. It is invalid as it violates the precondition ⊢ 𝐸1 ⇀+ 𝐸2.
• Case 2.6 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀

+ 𝐸′2, 𝐼2 ⊥⊥ 𝐸′1.
This proof of case 2.6 is symmetric to proof of case 1.5, so we omit it here.
• Case 2.7 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⊥⊥ 𝐸′2, 𝐼2 ⇀

+ 𝐸′1.
This proof of case 2.7 is symmetric to proof of case 1.5, so we omit it here.
• Case 2.8 𝐼1 ⊥⊥ 𝐼2, 𝐼1 ⇀

+ 𝐸′2, 𝐼2 ⇀
+ 𝐸′1.

This proof of case 2.7 is symmetric to proof of case 1.1, so we omit it here.
Case 3: 𝐸′1

⊖−→ 𝐸′2 is invalid as it violates the precondition ⊢ 𝐸1 ⇀− 𝐸2.
□

Lemma 9. Let 𝐸1 be a conjunction over input facts (i.e., 𝐸1 =
∧

𝑖 𝐼𝑖) and let 𝐸2 =
∨∧

𝑗 𝐼 𝑗 be a DNF

formula over input facts. If ⊢ 𝜒 (𝐸1), ⊢ 𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2 and ⊬ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) >
𝑃 (𝐸1)𝑃 (𝐸2).

Proof of Lemma 9. We prove this by induction and start with the base cases.
Base case: 𝐸1 =

∧
𝑖 𝐼𝑖 , 𝐸2 =

∧
𝑗 𝐼 𝑗

Given 𝜒 (𝐸1), 𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2, and ⊬ 𝐸1 ⇀− 𝐸2, according to Lemma 8, we can get 𝐸1 ⊕−→ 𝐸2.
Inductive case:

𝐸1 = 𝐸′1 𝐸′1 =
∧

𝑖 𝐼𝑖
𝐸2 = 𝐸′2 ∨𝐶 𝐸′2 =

∨∧
𝑗 𝐼 𝑗 𝐶 =

∧
𝑗 ′ 𝐼 𝑗 ′

Case 1 𝐸′1
⊕−→ 𝐸′2

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:46 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

• Case 1.1 𝐸′1 ⇀
+ 𝐶

Proof of Case 1.1 𝐸′1
⊕−→ 𝐸′2, 𝐸

′
1 ⇀

+ 𝐶

Given ⊬ 𝐸1 ⇀− 𝐸2, we can infer that ⊬ 𝐸′1 ⇀
− 𝐶 . Given 𝜒 (𝐸1) and 𝜒 (𝐸2), we can also infer

that 𝜒 (𝐸′1) and 𝜒 (𝐶) hold.
Given 𝐸′1 ⇀

+ 𝐶 , ⊬ 𝐸′1 ⇀
− 𝐶 , 𝜒 (𝐸′1) and 𝜒 (𝐶), we get 𝐸′1

⊕−→ 𝐶 by applying Lemma 8.

𝑃 (𝐸1)𝑃 (𝐸2)
= 𝑃 (𝐸′1)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1)𝑃 (𝐶) − 𝑃 (𝐸

′
1)𝑃 (𝐸

′
2)𝑃 (𝐶)

𝑃 (𝐸1 ∧ 𝐸2)
= 𝑃 (𝐸′1 ∧ 𝐸

′
2 ∨ 𝐸

′
1 ∧𝐶)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2) + 𝑃 (𝐸

′
1 ∧𝐶) − 𝑃 (𝐸

′
1 ∧ 𝐸

′
2 ∧𝐶)

= 𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1 |𝐶)𝑃 (𝐶) − 𝑃 (𝐸

′
1 (1) ∧ 𝐸

′
2)𝑃 (𝐸

′
1 (2) ∧𝐶) splitting 𝐸′1 : 𝑃 (𝐸

′
1) = 𝑃 (𝐸′1 (1))𝑃 (𝐸

′
1 (2))

= 𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1 |𝐶)𝑃 (𝐶) − 𝑃 (𝐸

′
1 (1) |𝐸

′
2)𝑃 (𝐸

′
1 (2) |𝐶)𝑃 (𝐸

′
2)𝑃 (𝐶)

Given 𝐸′1
⊕−→ 𝐸′2, we know that 𝑃 (𝐸′1 |𝐸′2) > 𝑃 (𝐸′1). Similarly, given 𝐸′1

⊕−→ 𝐶 , we also have
𝑃 (𝐸′1 |𝐶) > 𝑃 (𝐸′1).
We define a function 𝑓 (𝑥,𝑦) as follows (𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1]):

𝑓 (𝛼, 𝛽) = 𝛼 ∗ 𝑃 (𝐸′2) + 𝛽 ∗ 𝑃 (𝐶) − 𝛼𝛽𝑃 (𝐸′2)𝑃 (𝐶)/𝑃 (𝐸′1)

We then define the expression of the joint probability as follows: 𝑃 (𝐸1∧𝐸2) = 𝑓 (𝑥1, 𝑦1) where
𝛼1 = 𝑃 (𝐸′1 |𝐸′2) and 𝛽1 = 𝑃 (𝐸′1 |𝐶). Meanwhile 𝑃 (𝐸1)𝑃 (𝐸2) = 𝑓 (𝑥2, 𝑦2) where 𝛼2 = 𝑃 (𝐸′1), 𝛽2 =
𝑃 (𝐸′1). To summarize, 𝛼 ∈ {𝑃 (𝐸′1 |𝐸′2), 𝑃 (𝐸′1)}, 𝛼 ≥ 𝑃 (𝐸′1) and 𝛽 ≥ 𝑃 (𝐸′1).
The partial derivation 𝑓𝛼 (𝛼, 𝛽) = 𝜕𝑓

𝜕𝛼
= 𝑃 (𝐸′2) − 𝛽𝑃 (𝐸′2)𝑃 (𝐶)/𝑃 (𝐸′1) > 0. Similarly, 𝑓𝛽 (𝛼, 𝛽) =

𝜕𝑓

𝜕𝛽
= 𝑃 (𝐶) − 𝛼𝑃 (𝐸′2)𝑃 (𝐶)/𝑃 (𝐸′1) > 0. With both 𝑓𝛼 (𝛼, 𝛽) and 𝑓𝛽 (𝛼, 𝛽) being positive, accord-

ing to the Lemma 4, we can get the 𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2) if 𝛼1 > 𝛼2, 𝛽1 > 𝛽2. Given 𝛼1 > 𝛼2
and 𝛽1 > 𝛽2, we can get 𝑃 (𝐸1 ∧ 𝐸2) = 𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2) = 𝑃 (𝐸1)𝑃 (𝐸2). Therefore, we are
able to prove 𝐸1 ⊕−→ 𝐸2.

• Case 1.2 𝐸′1 ⊥⊥ 𝐶

Here we omit the proof of case 1.2 since it is similar to the proof of Case 1.1.
Case 2 𝐸′1 ⊥⊥ 𝐸′2
• Case 2.1 𝐸′1 ⇀

+ 𝐶
Here we omit the proof of case 2.1 since it is similar to the proof of Case 1.1.
• Case 12.2 𝐸′1 ⊥⊥ 𝐶

Here we omit the proof of case 2.2 since it is similar to the proof of Case 1.1.
Case 3 𝐸′1

⊖−→ 𝐸′2: This case is invalid as it violates the precondition ⊬ 𝐸1 ⇀− 𝐸2.
□

Lemma 10 (Soundness of Rule Pos). The rule Pos in Figure 14 are sound. In particular, given a

pair of DNF formulas 𝐸1 =
∨∧

𝑖 𝐼𝑖 , 𝐸2 =
∨∧

𝑗 𝐼 𝑗 , if ⊢ 𝜒 (𝐸1), ⊢ 𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2 and ⊬ 𝐸1 ⇀− 𝐸2,
then 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2).

Proof of Lemma 10.
In Lemma 10, both 𝐸1 and 𝐸2 are arbitrary boolean formulas so we use DNF format to represent

both of them, i.e., 𝐸1 =
∨∧

𝑖 𝐼𝑖 and 𝐸2 =
∨∧

𝑗 𝐼 𝑗 .

Base case: 𝐸1 =
∧

𝑖 𝐼𝑖 , 𝐸2 =
∧

𝑗 𝐼 𝑗

Given 𝜒 (𝐸1), 𝜒 (𝐸2), ⊢ 𝐸1 ⇀+ 𝐸2, and ⊬ 𝐸1 ⇀− 𝐸2, according to Lemma 8, we can get 𝐸1 ⊕−→ 𝐸2.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:47

Inductive case:
𝐸1 = 𝐸′1 ∨𝐶1 𝐸′1 =

∨∧
𝑖 𝐼𝑖 𝐶1 =

∧
𝑖′ 𝐼𝑖′

𝐸2 = 𝐸′2 ∨𝐶2 𝐸′2 =
∨∧

𝑗 𝐼 𝑗 𝐶2 =
∧

𝑗 ′ 𝐼 𝑗 ′

Case 1: 𝐸′1
⊕−→ 𝐸′2

Based on the precondition 𝜒 (𝐸1) (resp. 𝜒 (𝐸2)), we know that 𝐸′1 ⊥⊥ 𝐶1 (resp. 𝐸′2 ⊥⊥ 𝐶2). Following
are the valid cases.
• Case 1.1 𝐶1 ⇀

+ 𝐶2, 𝐶1 ⊥⊥ 𝐸′2, 𝐶2 ⊥⊥ 𝐸′1
Proof of Case 1.1 𝐸′1

⊕−→ 𝐸′2, 𝐶1 ⇀
+ 𝐶2, 𝐶1 ⊥⊥ 𝐸′2, 𝐶2 ⊥⊥ 𝐸′1

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 ((𝐸′1 ∨𝐶1) ∧ (𝐸′2 ∨𝐶2))
= 𝑃 (𝐸′1 ∧ 𝐸

′
2 ∨ 𝐸

′
1 ∧𝐶2 ∨𝐶1 ∧ 𝐸′2 ∨𝐶1 ∧𝐶2)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2) + 𝑃 (𝐸

′
1 ∧𝐶2) + 𝑃 (𝐶1 ∧ 𝐸′2) + 𝑃 (𝐶1 ∧𝐶2)

−𝑃 (𝐸′1𝐸
′
2𝐶2) − 𝑃 (𝐸′1𝐶1𝐸′2) − 𝑃 (𝐸

′
1𝐶1𝐶2) − 𝑃 (𝐶1𝐸′2𝐶2) + 𝑃 (𝐸′1𝐸

′
2𝐶1𝐶2)

= 𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1)𝑃 (𝐶2) + 𝑃 (𝐶1)𝑃 (𝐸′2) + 𝑃 (𝐶1 |𝐶2)𝑃 (𝐶2)

−𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐸

′
2)𝑃 (𝐶2) − 𝑃 (𝐸′1 |𝐸

′
2)𝑃 (𝐶1)𝑃 (𝐸′2) − 𝑃 (𝐶1 |𝐶2)𝑃 (𝐶2)𝑃 (𝐸′1) − 𝑃 (𝐶1 |𝐶2)𝑃 (𝐸′2)𝑃 (𝐶2)

𝑃 (𝐸′1 |𝐸
′
2)𝑃 (𝐶1 |𝐶2)𝑃 (𝐸′2)𝑃 (𝐶2) using 𝐶1 ⊥⊥ 𝐸′2, 𝐶2 ⊥⊥ 𝐸′1

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∨𝐶1)𝑃 (𝐸′2 ∨𝐶2)
= (𝑃 (𝐸′1) + 𝑃 (𝐶1) − 𝑃 (𝐸′1𝐶1)) (𝑃 (𝐸′2) + 𝑃 (𝐶2) − 𝑃 (𝐸′2𝐶2))
= 𝑃 (𝐸′1)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1)𝑃 (𝐶2) + 𝑃 (𝐶1)𝑃 (𝐸′2) + 𝑃 (𝐶1)𝑃 (𝐶2)

−𝑃 (𝐸′1)𝑃 (𝐸
′
2𝐶2) − 𝑃 (𝐸′1𝐶1)𝑃 (𝐸′2) − 𝑃 (𝐸

′
1𝐶1)𝑃 (𝐶2) − 𝑃 (𝐶1)𝑃 (𝐸′2𝐶2) + 𝑃 (𝐸′1𝐶1)𝑃 (𝐸′2𝐶2)

= 𝑃 (𝐸′1)𝑃 (𝐸
′
2) + 𝑃 (𝐸

′
1)𝑃 (𝐶2) + 𝑃 (𝐶1)𝑃 (𝐸′2) + 𝑃 (𝐶1)𝑃 (𝐶2)

−𝑃 (𝐸′1)𝑃 (𝐸
′
2)𝑃 (𝐶2) − 𝑃 (𝐸′1)𝑃 (𝐶1)𝑃 (𝐸′2) − 𝑃 (𝐶1)𝑃 (𝐶2)𝑃 (𝐸′1) − 𝑃 (𝐶1)𝑃 (𝐸′2)𝑃 (𝐶2)

+𝑃 (𝐸′1)𝑃 (𝐶1)𝑃 (𝐸′2)𝑃 (𝐶2) using 𝐶1 ⊥⊥ 𝐸′2, 𝐶2 ⊥⊥ 𝐸′1
As we can see from above, both 𝑃 (𝐸1 ∧ 𝐸2) and 𝑃 (𝐸1)𝑃 (𝐸2) share some terms. Here, we
use the same color to denote the same terms. The different parts between 𝑃 (𝐸1 ∧ 𝐸2) and
𝑃 (𝐸1)𝑃 (𝐸2) are still colored in black. Based on this observation, we can define a function
𝑓 (𝛼, 𝛽) as follows:

𝑓 (𝛼, 𝛽) = 𝛼𝑃 (𝐸′2) + 𝑃 (𝐸
′
1)𝑃 (𝐶2) + 𝑃 (𝐶1)𝑃 (𝐸′2) + 𝛽𝑃 (𝐶2)

−𝛼𝑃 (𝐸′2)𝑃 (𝐶2) − 𝛼𝑃 (𝐶1)𝑃 (𝐸′2) − 𝛽𝑃 (𝐶2)𝑃 (𝐸′1) − 𝛽𝑃 (𝐸
′
2)𝑃 (𝐶2)

𝛼𝛽𝑃 (𝐸′2)𝑃 (𝐶2)
Based on the definition of 𝑓 (𝛼, 𝛽), we can infer that 𝑃 (𝐸1∧𝐸2) = 𝑓 (𝛼1, 𝛽1), 𝛼1 = 𝑃 (𝐸′1 |𝐸′2), 𝛽1 =
𝑃 (𝐶1 |𝐶2) whereas 𝑃 (𝐸1)𝑃 (𝐸2) = 𝑓 (𝛼2, 𝛽2), 𝛼2 = 𝑃 (𝐸′1), 𝛽2 = 𝑃 (𝐶1). Hence 𝛼 ∈ {𝑃 (𝐸′1 |𝐸′2),
𝑃 (𝐸1)}, 𝛽 ∈ {𝑃 (𝐶1 |𝐶2, 𝐶1)}.
Given 𝐸′1

⊕−→ 𝐸′2, we know that 𝑃 (𝐸′1 |𝐸′2) > 𝑃 (𝐸′1), and thus 𝛼 ≥ 𝑃 (𝐸′1). Based on the precon-
dition ⊬ 𝐸1 ⇀− 𝐸2, we can also imply that ⊬ 𝐶1 ⇀− 𝐶2 since 𝐸1 = 𝐸′1 ∨ 𝐶1, 𝐸2 = 𝐸′2 ∨ 𝐶′2,
and it does not introduce new negations here. In this case 1.1, we know that 𝐶1 ⇀+ 𝐶2,
and ⊬ 𝐶1 ⇀

− 𝐶2, and both 𝐶1, 𝐶2 is a conjunction of input facts, i.e., 𝐶1 =
∧

𝑖′ 𝐼𝑖′ . By apply-
ing Lemma 8, we can infer that𝐶1

⊕−→ 𝐶2, and thus 𝑃 (𝐶1 |𝐶2) > 𝑃 (𝐶1). As a result, 𝛽 ≥ 𝑃 (𝐶1).

Compute the partial derivatives of 𝑓 with respect to 𝛼 and 𝛽 :

𝑓𝛼 (𝛼, 𝛽) =
𝜕𝑓

𝜕𝛼
= 𝑃 (𝐸′2) − 𝑃 (𝐸′2)𝑃 (𝐶2) − 𝑃 (𝐸′2)𝑃 (𝐶1) + 𝛽 ∗ 𝑃 (𝐸′2)𝑃 (𝐶2)

𝑓𝛽 (𝛼, 𝛽) =
𝜕𝑓

𝜕𝛽
= 𝑃 (𝐶2) − 𝑃 (𝐶2)𝑃 (𝐸′1) − 𝑃 (𝐸′2)𝑃 (𝐶2) + 𝛼 ∗ 𝑃 (𝐸′2)𝑃 (𝐶2)

Prove that the partial derivatives 𝑓𝛼 (𝛼, 𝛽) and 𝑓𝛽 (𝛼, 𝛽) are positive for all 𝛼 and 𝛽 :
𝑓𝛼 (𝛼, 𝛽) = 𝑃 (𝐸′2) − 𝑃 (𝐸

′
2)𝑃 (𝐶2) − 𝑃 (𝐸′2)𝑃 (𝐶1) + 𝑦 ∗ 𝑃 (𝐸′2)𝑃 (𝐶2)

≥ 𝑃 (𝐸′2) − 𝑃 (𝐸
′
2)𝑃 (𝐶2) − 𝑃 (𝐸′2)𝑃 (𝐶1) + 𝑃 (𝐶1) ∗ 𝑃 (𝐸′2)𝑃 (𝐶2) using 𝛽 ≥ 𝑃 (𝐶1)

= (1 − 𝑃 (𝐶2)) (𝑃 (𝐸′2) − 𝑃 (𝐸
′
2)𝑃 (𝐶1)) using 𝑃 (𝐶1), 𝑃 (𝐶2) ∈ [0, 1]

> 0

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:48 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

𝑓𝛽 (𝛼, 𝛽) = 𝑃 (𝐶2) − 𝑃 (𝐶2)𝑃 (𝐸′1) − 𝑃 (𝐸
′
2)𝑃 (𝐶2) + 𝛼 ∗ 𝑃 (𝐸′2)𝑃 (𝐶2)

≥ 𝑃 (𝐶2) − 𝑃 (𝐶2)𝑃 (𝐸′1) − 𝑃 (𝐸
′
2)𝑃 (𝐶2) + 𝑃 (𝐸′1) ∗ 𝑃 (𝐸

′
2)𝑃 (𝐶2) using 𝛼 ≥ 𝑃 (𝐸′1)

= (1 − 𝑃 (𝐸′1)) (𝑃 (𝐶2) − 𝑃 (𝐶2)𝑃 (𝐸′2)) using 𝑃 (𝐸′1), 𝑃 (𝐸
′
2) ∈ [0, 1]

> 0

As we can get from the above, both 𝜕𝑓

𝜕𝑥𝛼
and 𝜕𝑓

𝜕𝛽
are positive. According to Lemma 4, we know

that 𝑓 (𝛼1, 𝛼2) > 𝑓 (𝛽1, 𝛽2) if 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2.
As we know, 𝑃 (𝐸1 ∧ 𝐸2) = 𝑓 (𝛼1, 𝛽1) while 𝑃 (𝐸1)𝑃 (𝐸2) = 𝑓 (𝛼2, 𝛽2). Given 𝛼1 = 𝑃 (𝐸′1 |𝐸′2) >
𝑃 (𝐸′1) = 𝛼2 and 𝛽1 = 𝑃 (𝐶1 |𝐶2) > 𝑃 (𝐶1) = 𝛽2, we can get 𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2), and thus
𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1)𝑃 (𝐸2).

• Case 1.2 𝐶1 ⊥⊥ 𝐶2, 𝐶1 ⇀
+ 𝐸2, 𝐶2 ⇀

+ 𝐸1
Proof of Case 1.2 𝐸′1

⊕−→ 𝐸′2, 𝐶1 ⊥⊥ 𝐶2, 𝐶1 ⇀
+ 𝐸′2, 𝐶2 ⇀

+ 𝐸′1

Given 𝐸′1
⊕−→ 𝐸′2, 𝐶1 ⇀+ 𝐸′2, and 𝐶2 ⇀+ 𝐸′1, we split 𝐸′1 (resp. 𝐸

′
2) into 𝐸′1 (1) and 𝐸′1 (2)

(resp. 𝐸′2 (1) and 𝐸′2 (2)), such that 𝐸′1 (1)
⊕−→ 𝐸′2 (1), 𝐸′1 (1) ⊥⊥ 𝐶2, 𝐸

′
1 (2) ⇀+ 𝐶2, 𝐸

′
2 (1) ⊥

⊥ 𝐶1, 𝐸
′
2 (2) ⇀+ 𝐶1. There are two cases for the splitting, taking 𝐸′1 for example, 𝐸′1 =

𝐸′1 (1) ∧ 𝐸′1 (2) or 𝐸′1 = 𝐸′1 (1) ∨ 𝐸′1 (2). We take the first form (i.e., 𝐸′1 = 𝐸′1 (1) ∧ 𝐸′1 (2)) to prove,
and the proof of the second form is similar to that, so we focus on proving the first form and
omit the proof of the second form here.
After splitting, 𝐸′1 (1)

⊕−→ 𝐸′2 (1), 𝐸′1 (2) ⇀+ 𝐶2, 𝐸
′
2 (2) ⇀+ 𝐶1. We also know that ⊬ 𝐸′1 (2) ⇀−

𝐶2, according to Lemma 9, we can get 𝐸′1 (2)
⊕−→ 𝐶2. Similarly 𝐸′2 (2)

⊕−→ 𝐶1.
From the proof of Case 1.1, we get the expression of 𝑃 (𝐸1 ∧ 𝐸2) and 𝑃 (𝐸1)𝑃 (𝐸2) as follows:

𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 ((𝐸′1 ∨𝐶1) ∧ (𝐸′2 ∨𝐶2))
= 𝑃 (𝐸′1 ∧ 𝐸

′
2 ∨ 𝐸

′
1 ∧𝐶2 ∨𝐶1 ∧ 𝐸′2 ∨𝐶1 ∧𝐶2)

= 𝑃 (𝐸′1 ∧ 𝐸
′
2) + 𝑃 (𝐸

′
1 ∧𝐶2) + 𝑃 (𝐶1 ∧ 𝐸′2) + 𝑃 (𝐶1 ∧𝐶2)

−𝑃 (𝐸′1𝐸
′
2𝐶2) − 𝑃 (𝐸′1𝐶1𝐸′2) − 𝑃 (𝐸

′
1𝐶1𝐶2) − 𝑃 (𝐶1𝐸′2𝐶2) + 𝑃 (𝐸′1𝐸

′
2𝐶1𝐶2)

𝑃 (𝐸1)𝑃 (𝐸2) = 𝑃 (𝐸′1 ∨𝐶1)𝑃 (𝐸′2 ∨𝐶2)
= (𝑃 (𝐸′1) + 𝑃 (𝐶1) − 𝑃 (𝐸′1𝐶1)) (𝑃 (𝐸′2) + 𝑃 (𝐶2) − 𝑃 (𝐸′2𝐶2))
= 𝑃 (𝐸′1)𝑃 (𝐸

′
2) + 𝑃 (𝐸

′
1)𝑃 (𝐶2) + 𝑃 (𝐶1)𝑃 (𝐸′2) + 𝑃 (𝐶1)𝑃 (𝐶2)

−𝑃 (𝐸′1)𝑃 (𝐸
′
2)𝑃 (𝐶2) − 𝑃 (𝐸′1)𝑃 (𝐶1)𝑃 (𝐸′2) − 𝑃 (𝐸

′
1)𝑃 (𝐶1)𝑃 (𝐶2) − 𝑃 (𝐶1)𝑃 (𝐸′2)𝑃 (𝐶2)

+𝑃 (𝐸′1)𝑃 (𝐶1)𝑃 (𝐸′2)𝑃 (𝐶2)
We now define a new function 𝑓 (𝛼, 𝛽) to represent the blue colored formulas in 𝑃 (𝐸1 ∧ 𝐸2)
and 𝑃 (𝐸1)𝑃 (𝐸2).

𝑓 (𝛼, 𝛽) = 𝛼𝑃 (𝐶2) + 𝛽𝑃 (𝐶1) − 𝛼
𝑃 (𝐸′1 (1) |𝐸′2)
𝑃 (𝐸′1 (1))

𝑃 (𝐸′2)𝑃 (𝐶2) − 𝛽
𝑃 (𝐸′2 (1) |𝐸′1)
𝑃 (𝐸′2 (1))

𝑃 (𝐸′1)𝑃 (𝐶1)

−𝛼𝑃 (𝐶1)𝑃 (𝐶2) − 𝑦𝑃 (𝐶1)𝑃 (𝐶2) + 𝛼𝛽
𝑃 (𝐸′1 (1)𝐸′2 (1))

𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (1))
𝑃 (𝐼1)𝑃 (𝐼2)

Joint probability 𝑃 (𝐸1 ∧ 𝐸2) is equivalent to 𝑃 (𝐸′1 ∧ 𝐸′2) + 𝑃 (𝐶1 ∧𝐶2) + 𝑓 (𝛼1, 𝛽1) while the
formula 𝑃 (𝐸1)𝑃 (𝐸2) is defined as 𝑃 (𝐸′1)𝑃 (𝐸′2) + 𝑃 (𝐶1)𝑃 (𝐶2) + 𝑓 (𝛼2, 𝛽2), where 𝛼1, 𝛼2, 𝛽1, 𝛽2
are defined as follows:

𝛼1 = 𝑃 (𝐸′1 |𝐶2) 𝛽1 = 𝑃 (𝐸′2 |𝐶1)
𝛼2 = 𝑃 (𝐸′1) 𝛽2 = 𝑃 (𝐸′2)

After splitting, we know that 𝐸′1 (1)
⊕−→ 𝐸′2 (1), 𝐸′1 (1) ⊥⊥ 𝐶2, 𝐸′1 (2)

⊕−→ 𝐶2, 𝐸′2 (1) ⊥
⊥ 𝐶1, 𝐸′2 (2)

⊕−→ 𝐶1. Hence, we can infer that 𝑃 (𝐸′1 ∧ 𝐶2) = 𝑃 (𝐸′1 (1) ∧ 𝐸′1 (2) ∧ 𝐶2) =
𝑃 (𝐸′1 (1))𝑃 (𝐸′1 (2)𝐶2) > 𝑃 (𝐸′1 (1))𝑃 (𝐸′1 (2))𝑃 (𝐶2) = 𝑃 (𝐸′1)𝑃 (𝐶2). Thus, 𝐸′1

⊕−→ 𝐶2. Similarly,
we can get 𝐸′2

⊕−→ 𝐶1. With this, we can get 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2. In addition, 𝛼 ≥ 𝑃 (𝐸′1) and
𝛽 ≥ 𝑃 (𝐸′2).
Similarly, we compute the partial derivative of 𝑓 (𝛼, 𝛽) as follows:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:49

𝜕𝑓
𝜕𝛼 = 𝑃 (𝐶2) −

𝑃 (𝐸′1 (1) |𝐸′2)
𝑃 (𝐸′1 (1))

𝑃 (𝐸′2)𝑃 (𝐶2) − 𝑃 (𝐶1)𝑃 (𝐶2) + 𝛽𝑃 (𝐶1)𝑃 (𝐶2)
𝑃 (𝐸′1 (1)𝐸′2 (1))

𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (1))

≥ 𝑃 (𝐶2) −
𝑃 (𝐸′1 (1) |𝐸′2)
𝑃 (𝐸′1 (1))

𝑃 (𝐸′2)𝑃 (𝐶2) − 𝑃 (𝐶1)𝑃 (𝐶2) + 𝑃 (𝐸′2)𝑃 (𝐶1)𝑃 (𝐶2)
𝑃 (𝐸′1 (1)𝐸′2 (1))

𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (1))

= (1 − 𝑃 (𝐶1)𝑃 (𝐶2)) (1 − 𝑃 (𝐸′2)
𝑃 (𝐸′1 (1)𝐸′2 (1))

𝑃 (𝐸′1 (1))𝑃 (𝐸′2 (1))
)

= (1 − 𝑃 (𝐶1)𝑃 (𝐶2)) (1 − 𝑃 (𝐸′2 (2))𝑃 (𝐸
′
2 (1) |𝐸

′
1 (1)))

> 0

Similarly, we can also prove that the partial derivative 𝜕𝑓

𝜕𝛽
is positive. Given 𝜕𝑓

𝜕𝛼
> 0 and

𝜕𝑓

𝜕𝛽
> 0, based on Lemma 4, we can get 𝑓 (𝛼1, 𝛽1) > 𝑓 (𝛼2, 𝛽2) if 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2.

In addition, we also have 𝐸′1
⊕−→ 𝐸′2, 𝐶1 ⊥⊥ 𝐶2, so 𝑃 (𝐸′1 ∧ 𝐸′2) > 𝑃 (𝐸′1)𝑃 (𝐸′2) and 𝑃 (𝐶1 ∧𝐶2) =

𝑃 (𝐶1)𝑃 (𝐶2). Thus we are able to prove 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸′1 ∧ 𝐸′2) + 𝑃 (𝐶1 ∧ 𝐶2) + 𝑓 (𝛼1, 𝛽1)
> 𝑃 (𝐸′1)𝑃 (𝐸′2) + 𝑃 (𝐶1)𝑃 (𝐶2) + 𝑓 (𝛼2, 𝛽2) = 𝑃 (𝐸1)𝑃 (𝐸2). Thus, we can get 𝐸1 ⊕−→ 𝐸2.

• Case 1.3 𝐶1 ⊥⊥ 𝐶2, 𝐶1 ⇀
+ 𝐸2, 𝐶2 ⊥⊥ 𝐸1

• Case 1.4 𝐶1 ⊥⊥ 𝐶2, 𝐶1 ⊥⊥ 𝐸2, 𝐶2 ⇀
+ 𝐸1

• Case 1.5 𝐶1 ⊥⊥ 𝐶2, 𝐶1 ⊥⊥ 𝐸2, 𝐶2 ⊥⊥ 𝐸1

Case 2: 𝐸′1 ⊥⊥ 𝐸′2

• Case 2.1 𝐶1 ⇀
+ 𝐶2, 𝐸

′
1 ⊥⊥ 𝐶2, 𝐸

′
2 ⊥⊥ 𝐶1

• Case 2.2 𝐶1 ⊥⊥ 𝐶2, 𝐸
′
1 ⇀

+ 𝐶2, 𝐸
′
2 ⊥⊥ 𝐶1

• Case 2.3 𝐶1 ⊥⊥ 𝐶2, 𝐸
′
1 ⊥⊥ 𝐶2, 𝐸

′
2 ⇀

+ 𝐶1
• Case 2.4 𝐶1 ⊥⊥ 𝐶2, 𝐸

′
1 ⇀

+ 𝐶2, 𝐸
′
2 ⇀

+ 𝐶1

Case 3: 𝐸′1
⊖−→ 𝐸′2 This case is invalid as it violates the precondition ⊬ 𝐸1 ⇀− 𝐸2.

Proof of other cases
Here we omit the proof of other valid cases (1.3, 1.4, 1.5, 2.1, 2.2, 2.3, and 2.4) since it is similar to

the proof of Case 1.1 and Case 1.2. □

Assumptions

For the above proof of Lemmas 7, 8, 9 and 10, we made two assumptions. First, we assume
that input 𝐼 is a term, instead of the literal or input fact. For instance, 𝐼 ∈ {𝑎, ¬𝑎} where 𝑎 ∈
InputFacts(𝐷). Second, given 𝐼𝑎 ⇀+ 𝐼𝑏 , we imply 𝑃 (𝐼𝑎𝐼𝑏) > 𝑃 (𝐼𝑎𝐼𝑏).
Now we give a proof about the second assumption: if 𝐼𝑎 ⇀+ 𝐼𝑏, 𝐼𝑎 ∈ {𝑎,¬𝑎}, 𝐼𝑏 ∈ {𝑏,¬𝑏},

𝑎 ∈ InputFacts(𝐷), and 𝑏 ∈ InputFacts(𝐷), then 𝑃 (𝐼𝑎𝐼𝑏) > 𝑃 (𝐼𝑎𝐼𝑏).
Proof.
Based on the rules May-1 and May-2, there are four cases for 𝐼𝑎 and 𝐼𝑏 that can infer 𝐼𝑎 ⇀+ 𝐼𝑏 .

(1) Case 1: 𝐼𝑎 = 𝑎, 𝐼𝑏 = 𝑏, 𝑎 ▶+ 𝑏.
𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (𝑎 ∧ 𝑏) > 𝑃 (𝑎)𝑃 (𝑏) according to 𝑎 ▶+ 𝑏.

(2) Case 2: 𝐼𝑎 = 𝑎, 𝐼𝑏 = ¬𝑏, 𝑎 ▶− 𝑏.
𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (𝑎 ∧ ¬𝑏) = 𝑃 (¬𝑏 |𝑎)𝑃 (𝑎) = (1 − 𝑃 (𝑏 |𝑎))𝑃 (𝑎). Given 𝑎 ▶− 𝑏, we have 𝑃 (𝑏 |𝑎) <
𝑃 (𝑏), and thus (1 − 𝑃 (𝑏 |𝑎)) > (1 − 𝑃 (𝑏)). Hence 𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = (1 − 𝑃 (𝑏 |𝑎))𝑃 (𝑎) > (1 −
𝑃 (𝑏))𝑃 (𝑎) = 𝑃 (𝐼𝑏)𝑃 (𝐼𝑎)

(3) Case 3: 𝐼𝑎 = ¬𝑎, 𝐼𝑏 = 𝑏, 𝑎 ▶− 𝑏.
𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (¬𝑎 ∧ 𝑏) = 𝑃 (¬𝑎 |𝑏)𝑃 (𝑏) = (1 − 𝑃 (𝑎 |𝑏))𝑃 (𝑏). Given 𝑎 ▶− 𝑏, we have 𝑃 (𝑎 |𝑏) <
𝑃 (𝑎), and thus (1 − 𝑃 (𝑎 |𝑏)) > (1 − 𝑃 (𝑎)). Hence 𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = (1 − 𝑃 (𝑎 |𝑏))𝑃 (𝑏) > (1 −
𝑃 (𝑎))𝑃 (𝑏) = 𝑃 (𝐼𝑎)𝑃 (𝐼𝑏)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:50 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

(4) Case 4: 𝐼𝑎 = ¬𝑎, 𝐼𝑏 = ¬𝑏, 𝑎 ▶+ 𝑏.

𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (¬𝑎 ∧ ¬𝑏) = 1 − 𝑃 (𝑎 ∨ 𝑏) = 1 − 𝑃 (𝑎) − 𝑃 (𝑏) + 𝑃 (𝑎 ∧ 𝑏)
> 1 − 𝑃 (𝑎) − 𝑃 (𝑏) + 𝑃 (𝑎)𝑃 (𝑏) using 𝑎 ▶+ 𝑏
= (1 − 𝑃 (𝑎)) (1 − 𝑃 (𝑏)) = 𝑃 (𝐼𝑎)𝑃 (𝐼𝑏)

□

Lemma 11. Given an input fact 𝐸1 = 𝐼 and a general DNF formula 𝐸2 =
∨∧

𝑗 𝐼 𝑗 , if ⊢ 𝜒 (𝐸1), ⊢
𝜒 (𝐸2), ⊬ 𝐸1 ⇀+ 𝐸2 and ⊢ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) < 𝑃 (𝐸1)𝑃 (𝐸2), 𝑖 .𝑒 ., 𝐸1 ⊖−→ 𝐸2.

Lemma 12. Let 𝐸1, 𝐸2 be conjunctions over input facts, i.e., 𝐸1 =
∧

𝑖 𝐼𝑖 and 𝐸2 =
∧

𝑗 𝐼 𝑗 . If ⊢ 𝜒 (𝐸1), ⊢
𝜒 (𝐸2), ⊬ 𝐸1 ⇀+ 𝐸2 and ⊢ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) < 𝑃 (𝐸1)𝑃 (𝐸2).

Lemma 13. Let 𝐸1 be a conjunction over input facts (i.e., 𝐸1 =
∧

𝑖 𝐼𝑖) and let 𝐸2 =
∨∧

𝑗 𝐼 𝑗 be a

DNF formula over input facts. If ⊢ 𝜒 (𝐸1), ⊢ 𝜒 (𝐸2), ⊬ 𝐸1 ⇀+ 𝐸2 and ⊢ 𝐸1 ⇀− 𝐸2, then 𝑃 (𝐸1 ∧ 𝐸2) <
𝑃 (𝐸1)𝑃 (𝐸2).

Lemma 14 (Soundness of Rule Neg). The rule Negative in Figure 14 are sound. In particular,

given a pair of relations 𝐸1 =
∨∧

𝑖 𝐼𝑖 , 𝐸2 =
∨∧

𝑗 𝐼 𝑗 , if ⊢ 𝜒 (𝐸1), ⊢ 𝜒 (𝐸2), ⊬ 𝐸1 ⇀+ 𝐸2 and ⊢ 𝐸1 ⇀− 𝐸2,
then 𝑃 (𝐸1 ∧ 𝐸2) < 𝑃 (𝐸1)𝑃 (𝐸2).

Proof of Lemma 14.
To prove negative correlation 𝐸1

⊖−→ 𝐸2, we also make two assumptions as we did for Lemma 10.
First, we assume that the input 𝐼 is a term, instead of a literal or input fact. For instance, 𝐼 ∈ {𝑎,¬𝑎}
where 𝑎 ∈ InputFacts(𝐷). Second, given 𝐼𝑎 ⇀− 𝐼𝑏 , we imply 𝑃 (𝐼𝑎𝐼𝑏) < 𝑃 (𝐼𝑎𝐼𝑏).

Now we give a proof about the second assumption: if 𝐼𝑎 ⇀− 𝐼𝑏, 𝐼𝑎 ∈ {𝑎,¬𝑎}, 𝐼𝑏 ∈ {𝑏,¬𝑏},
𝑎 ∈ InputFacts(𝐷), and 𝑏 ∈ InputFacts(𝐷), then 𝑃 (𝐼𝑎𝐼𝑏) < 𝑃 (𝐼𝑎𝐼𝑏).

Proof.
Based on the rules May-1 and May-2, there are four cases for 𝐼𝑎 and 𝐼𝑏 that can infer 𝐼𝑎 ⇀− 𝐼𝑏 .
(1) Case 1: 𝐼𝑎 = 𝑎, 𝐼𝑏 = 𝑏, 𝑎 ▶− 𝑏.

𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (𝑎 ∧ 𝑏) < 𝑃 (𝑎)𝑃 (𝑏) according to 𝑎 ▶− 𝑏.
(2) Case 2: 𝐼𝑎 = 𝑎, 𝐼𝑏 = ¬𝑏, 𝑎 ▶+ 𝑏.

𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (𝑎 ∧ ¬𝑏) = 𝑃 (¬𝑏 |𝑎)𝑃 (𝑎) = (1 − 𝑃 (𝑏 |𝑎))𝑃 (𝑎). Given 𝑎 ▶+ 𝑏, we have 𝑃 (𝑏 |𝑎) >
𝑃 (𝑏), and thus (1 − 𝑃 (𝑏 |𝑎)) < (1 − 𝑃 (𝑏)). Hence 𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = (1 − 𝑃 (𝑏 |𝑎))𝑃 (𝑎) < (1 −
𝑃 (𝑏))𝑃 (𝑎) = 𝑃 (𝐼𝑏)𝑃 (𝐼𝑎)

(3) Case 3: 𝐼𝑎 = ¬𝑎, 𝐼𝑏 = 𝑏, 𝑎 ▶+ 𝑏.
𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (¬𝑎 ∧ 𝑏) = 𝑃 (¬𝑎 |𝑏)𝑃 (𝑏) = (1 − 𝑃 (𝑎 |𝑏))𝑃 (𝑏). Given 𝑎 ▶+ 𝑏, we have 𝑃 (𝑎 |𝑏) >
𝑃 (𝑎), and thus (1 − 𝑃 (𝑎 |𝑏)) < (1 − 𝑃 (𝑎)). Hence 𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = (1 − 𝑃 (𝑎 |𝑏))𝑃 (𝑏) < (1 −
𝑃 (𝑎))𝑃 (𝑏) = 𝑃 (𝐼𝑎)𝑃 (𝐼𝑏)

(4) Case 4: 𝐼𝑎 = ¬𝑎, 𝐼𝑏 = ¬𝑏, 𝑎 ▶− 𝑏.

𝑃 (𝐼𝑎 ∧ 𝐼𝑏) = 𝑃 (¬𝑎 ∧ ¬𝑏) = 1 − 𝑃 (𝑎 ∨ 𝑏) = 1 − 𝑃 (𝑎) − 𝑃 (𝑏) + 𝑃 (𝑎 ∧ 𝑏)
< 1 − 𝑃 (𝑎) − 𝑃 (𝑏) + 𝑃 (𝑎)𝑃 (𝑏) using 𝑎 ▶− 𝑏
= (1 − 𝑃 (𝑎)) (1 − 𝑃 (𝑏)) = 𝑃 (𝐼𝑎)𝑃 (𝐼𝑏)

To prove Lemma 14 for Rule Neg in Figure 14, we use the following Lemmas: Lemma 4, Lemma 11,
Lemma 12 and Lemma 13. The proof of Lemma 14 (𝐸1 ⊖−→ 𝐸2) is symmetric to the proof of Lemma 10
(𝐸1 ⊕−→ 𝐸2). Similarly, the proofs of Lemma 11, Lemma 12, Lemma 13 are symmetric to the the
proofs of Lemma 7, Lemma 8, Lemma 9. Hence, we omit the detailed proof here.

□

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:51

A.7 Computing approximate probability bounds

In this section, we give proof for Theorem 4. To prove Theorem 4, we first introduce the follow
Lemmas which establish the soundness of the rules in Figure 16 and Table 1.

Lemma 15 (Soundness of rules in Table 1). Given Boolean expressions 𝐸1 and 𝐸2 with proba-

bilities 𝑃 (𝐸1) ∈ [𝑙1, 𝑢1] and 𝑃 (𝐸2) ∈ [𝑙2, 𝑢2], and their correlation type ★, applying the formulas in

Table 1 yields:

CL(𝑙1, 𝑙2,★) ≤ 𝑃 (𝐸1 ∧ 𝐸2) ≤ CU(𝑢1, 𝑢2,★) and DL(𝑙1, 𝑙2,★) ≤ 𝑃 (𝐸1 ∨ 𝐸2) ≤ DU(𝑢1, 𝑢2,★).

Proof. We will prove the four cases (CL, CU, DL, DU) respectively.
• CL CU This case is used for computing the lower and upper bounds of conjunction 𝐸1 ∧ 𝐸2.
(1) ★ = ⊥: In this case, 𝐸1 and 𝐸2 are independent, and thus 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸1)𝑃 (𝐸2). Given

𝑢1 ≥ 𝑃 (𝐸1) ≥ 𝑙1 and 𝑢2 ≥ 𝑃 (𝐸2) ≥ 𝑙2, 𝑢1𝑢2 ≥ 𝑃 (𝐸1)𝑃 (𝐸2) ≥ 𝑙1𝑙2. Thus, 𝑃 (𝐸1 ∧𝐸2) ∈ [𝑙1𝑙2, 𝑢1𝑢2].
(2) ★ = ⊤: In this case, the correlation between 𝐸1 and 𝐸2 is unknown. Given the conjunction

𝑃 (𝐸1∧𝐸2) = 𝑃 (𝐸1)*𝑃 (𝐸2 |𝐸1) = 𝑃 (𝐸2)*𝑃 (𝐸1 |𝐸2), 𝑃 (𝐸1 |𝐸2) ∈ [0, 1] and 𝑃 (𝐸2 |𝐸1) ∈ [0, 1], in order
to maximize 𝑃 (𝐸1 ∧ 𝐸2), either 𝑃 (𝐸1 |𝐸2) or 𝑃 (𝐸2 |𝐸1) must be one. There are following three
cases to compute the upper bound of 𝑃 (𝐸1 ∧ 𝐸2):
– 𝑃 (𝐸1) = 𝑃 (𝐸2): In this case, 𝑃 (𝐸1 |𝐸2) = 𝑃 (𝐸2 |𝐸1) = 1, the upper bound of 𝑃 (𝐸1 ∧𝐸2) is 𝑃 (𝐸1).
– 𝑃 (𝐸1) < 𝑃 (𝐸2): In this case, only 𝑃 (𝐸1 |𝐸2) can be one, and 𝑃 (𝐸2 |𝐸1) < 1, the upper bound of
𝑃 (𝐸1 ∧ 𝐸2) is 𝑃 (𝐸1).

– 𝑃 (𝐸1) > 𝑃 (𝐸2): In this case, only 𝑃 (𝐸2 |𝐸1) can be one, and 𝑃 (𝐸1 |𝐸2) < 1, the upper bound of
𝑃 (𝐸1 ∧ 𝐸2) is 𝑃 (𝐸2).

To summarize the upper bound of 𝑃 (𝐸1 ∧ 𝐸2) is min(𝑃 (𝐸1), 𝑃 (𝐸2)). As we focus on the upper
bound, 𝑃 (𝐸1 ∧ 𝐸2) < min(𝑢1, 𝑢2).
Aswe know, 𝑃 (𝐸1∨𝐸2) = 𝑃 (𝐸1)+𝑃 (𝐸2)−𝑃 (𝐸1∧𝐸2) < 1, we can get 𝑃 (𝐸1∧𝐸2) > 𝑃 (𝐸1)+𝑃 (𝐸2)−1.
As we focus on computing the lower bound, 𝑃 (𝐸1 ∧ 𝐸2) > 𝑙1 + 𝑙2 − 1. Meanwhile, naturally,
𝑃 (𝐸1 ∧ 𝐸2) ∈ [0, 1], so the lower bound can be rewritten as max(0, 𝑙1 + 𝑙2 − 1).
As a result, 𝑃 (𝐸1 ∧ 𝐸2) ∈ [max(0, 𝑙1 + 𝑙2 − 1),min(𝑢1, 𝑢2)].

(3) ★ = +: In this case, 𝐸1 ⊕−→ 𝐸2. According to the definition of ⊕−→, we know that 𝑃 (𝐸1 ∧ 𝐸2) >
𝑃 (𝐸1)𝑃 (𝐸2). Thus the lower bound of 𝑃 (𝐸1 ∧ 𝐸2) is 𝑃 (𝐸1)𝑃 (𝐸2), which is 𝑙1𝑙2. The upper bound
in this case is same as the upper bound of the unknown (⊤) case, which is min(𝑢1, 𝑢2). Hence,
𝑃 (𝐸1 ∧ 𝐸2) ∈ [𝑙1𝑙2,min(𝑢1, 𝑢2)].

(4) ★ = −: In this case, 𝐸1 ⊖−→ 𝐸2. According to the definition of ⊖−→, we know that 𝑃 (𝐸1 ∧ 𝐸2) <
𝑃 (𝐸1)𝑃 (𝐸2). Thus the upper bound of 𝑃 (𝐸1∧𝐸2) is 𝑃 (𝐸1)𝑃 (𝐸2), which is𝑢1𝑢2. The lower bound
in this case is same as the upper bound of the unknown (⊤) case, which is max(0, 𝑙1 + 𝑙2 − 1).
Hence, 𝑃 (𝐸1 ∧ 𝐸2) ∈ [max(0, 𝑙1 + 𝑙2 − 1), 𝑢1𝑢2].

• DL DU This case is used for computing the lower and upper bounds of disjunction 𝐸1 ∨ 𝐸2.
(1) ★ = ⊥: In this case, 𝐸1 and 𝐸2 are independent, and thus 𝑃 (𝐸1∨𝐸2) = 𝑃 (𝐸1)+𝑃 (𝐸2)−𝑃 (𝐸1)𝑃 (𝐸2).

Given 𝑢1 ≥ 𝑃 (𝐸1) ≥ 𝑙1 and 𝑢2 ≥ 𝑃 (𝐸2) ≥ 𝑙2, 𝑢1𝑢2 ≥ 𝑃 (𝐸1)𝑃 (𝐸2) ≥ 𝑙1𝑙2. Thus, 𝑃 (𝐸1 ∧ 𝐸2) ∈
[𝑙1 + 𝑙2 − 𝑙1𝑙2, 𝑢1 + 𝑢2 − 𝑢1𝑢2].

(2) ★ = ⊤: In this case, the correlation between 𝐸1 and 𝐸2 is unknown. Given the disjunction
𝑃 (𝐸1 ∨ 𝐸2) = 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸1 ∧ 𝐸2), in order to maximize 𝑃 (𝐸1 ∨ 𝐸2), 𝑃 (𝐸1 ∧ 𝐸2) should
be zero, i.e., 𝐸1 and 𝐸2 are mutually exclusive. Meanwhile, as 𝑃 (𝐸1 ∨ 𝐸2) ∈ [0, 1]. We refine the
upper bound as min(1, 𝑃 (𝐸1) + 𝑃 (𝐸2), which is min(1, 𝑢1 + 𝑢2).
To compute the lower bound of 𝑃 (𝐸1 ∨ 𝐸2), we want to maximize 𝑃 (𝐸1 ∧ 𝐸2), which is
𝑃 (𝐸1 |𝐸2)𝑃 (𝐸2) or 𝑃 (𝐸2 |𝐸1)𝑃 (𝐸1). There are two cases as follows:
– 𝑃 (𝐸1) = 𝑃 (𝐸2): in this case, the maximal value of 𝑃 (𝐸1 |𝐸2) is 1 and 𝑃 (𝐸1 ∧𝐸2) = 𝑃 (𝐸1). Thus,
𝑃 (𝐸1 ∨ 𝐸2) = 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸1) = 𝑃 (𝐸2) = (𝐸1).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:52 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

– 𝑃 (𝐸1) > 𝑃 (𝐸2): in this case, the maximal value of 𝑃 (𝐸1 |𝐸2) is one and 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸2).
Thus, 𝑃 (𝐸1 ∨ 𝐸2) = 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸2) = 𝑃 (𝐸1).

– 𝑃 (𝐸1) < 𝑃 (𝐸2): in this case, the maximal value of 𝑃 (𝐸2 |𝐸1) is one and 𝑃 (𝐸1 ∧ 𝐸2) = 𝑃 (𝐸1).
Thus, 𝑃 (𝐸1 ∨ 𝐸2) = 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸1) = 𝑃 (𝐸2).

To summarize the lower bound of 𝑃 (𝐸1 ∨ 𝐸2) is max(𝑃 (𝐸1), 𝑃 (𝐸2)). As we focus on the lower
bound, 𝑃 (𝐸1 ∨ 𝐸2) > max(𝑙1, 𝑙2).
As a result, 𝑃 (𝐸1 ∨ 𝐸2) ∈ [max(𝑙1, 𝑙2),min(1, 𝑢1 + 𝑢2)].

(3) ★ = +: In this case, 𝐸1 ⊕−→ 𝐸2. According to the definition of ⊕−→, we know that 𝑃 (𝐸1 ∧ 𝐸2) >
𝑃 (𝐸1)𝑃 (𝐸2). Thus 𝑃 (𝐸1 ∨𝐸2) = 𝑃 (𝐸1) +𝑃 (𝐸2) −𝑃 (𝐸1 ∧𝐸2) < 𝑃 (𝐸1) +𝑃 (𝐸2) −𝑃 (𝐸1)𝑃 (𝐸2). The
upper bound of 𝑃 (𝐸1 ∨ 𝐸2) is 𝑢1 +𝑢2 −𝑢1𝑢2. The lower bound in this case is same as the lower
bound of the unknown (⊤) case, which is max(𝑙1, 𝑙2). Hence, 𝑃 (𝐸1 ∨ 𝐸2) ∈ [max(𝑙1, 𝑙2), 𝑢1 +
𝑢2 − 𝑢1𝑢2].

(4) ★ = −: In this case, 𝐸1 ⊖−→ 𝐸2. According to the definition of ⊖−→, we know that 𝑃 (𝐸1 ∧ 𝐸2) <
𝑃 (𝐸1)𝑃 (𝐸2). Thus 𝑃 (𝐸1 ∨ 𝐸2) = 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸1 ∧ 𝐸2) > 𝑃 (𝐸1) + 𝑃 (𝐸2) − 𝑃 (𝐸1)𝑃 (𝐸2).
Given a function 𝑓 (𝑥,𝑦) = 𝑥 +𝑦 − 𝑥𝑦, it is evident that function 𝑓 is strictly increasing. Hence,
𝑃 (𝐸1 ∨ 𝐸2) > 𝑓 (𝑃 (𝐸1), 𝑃 (𝐸2)) ≥ 𝑓 (𝑙1, 𝑙2). Thus, the lower bound of 𝑓 (𝑥,𝑦) is 𝑙1 + 𝑙2 − 𝑙1𝑙2.
The upper bound in this case is same as the upper bound of the unknown (⊤) case, which is
min(1, 𝑢1 + 𝑢2). Hence, 𝑃 (𝐸1 ∨ 𝐸2) ∈ [𝑙1 + 𝑙2 − 𝑙1𝑙2,min(1, 𝑢1 + 𝑢2)].

□

Lemma 16 (Soundness of rules in Figure 16). Given a Boolean expression 𝐸, an environment

mapping Γ, a Datalog program 𝐷 , and a correlation environment Σ, the rules in Figure 16 compute the

lower and upper bounds 𝑙 and 𝑢 of 𝑃 (𝐸) such that 𝑙 ≤ 𝑃 (𝐸) ≤ 𝑢.

Proof. We prove that each rule is sound.
• In: Given 𝐼 ∈ InputFacts(𝐷) and 𝑝 :: (𝐼 | ∅) ∈ InputProbs(𝐷), we can get 𝑃 (𝐼) = 𝑝 and thus
𝑃 (𝐼) ∈ [𝑝, 𝑝].
• Out: Γ is an environment mapping output relations 𝑂 to a pair of variables representing their
upper and lower bounds, i.e., Γ [𝑂] = [𝑙, 𝑢]. Hence, 𝑃 (𝑂) ∈ [𝑙, 𝑢].
• Neg: Given 𝑃 (𝐸) = [𝑙, 𝑢], 𝑃 (¬𝐸) = 1 − 𝑃 (𝐸) ∈ [1 − 𝑢, 1 − 𝑙].
• Conjunct: Given 𝑃 (𝐸1) ∈ [𝑙1, 𝑢1], 𝑃 (𝐸2) ∈ [𝑙2, 𝑢2], and Σ(𝐸1, 𝐸2) = ★, according to Lemma 15,
the probability of 𝐸1 ∧ 𝐸2 is 𝑃 (𝐸1 ∧ 𝐸2) ∈ [CL(𝑙1, 𝑙2,★),CU(𝑢1, 𝑢2,★)].
• Disjunct: Given (𝐸1, 𝑝1) and (𝐸2, 𝑝2), 𝐸1 =

∧
𝑖 𝐼𝑖 , 𝐸2 =

∨∧
𝑗 𝐼 𝑗 , this rule computes the probability

of (𝐸1, 𝑝1) ∨ (𝐸2, 𝑝2). We prove this rule by listing two possible cases.
(1) Case 1: 𝐸1 =

∧
𝑖 𝐼𝑖 , 𝐸2 =

∧
𝑗 𝐼 𝑗 .

Given 𝑃 (𝐸1) ∈ [𝑙1, 𝑢2], we use 𝑒1 to denote the event (𝐸1, 𝑝1), and 𝑃 (𝑒1) = [𝑝1𝑙1, 𝑝1𝑢1]. Simi-
larly, we use 𝑒2 to denote the event (𝐸2, 𝑝2) and 𝑃 (𝑒2) ∈ [𝑝2𝑙2, 𝑝2𝑢2]. Given Σ(𝐸1, 𝐸2) = ★,
it’s obvious that Σ(𝑒1, 𝑒2) = ★. According to Lemma 15, the probability of 𝑃 (𝑒1 ∨ 𝑒2) ∈
[DL(𝑝1𝑙1, 𝑝2𝑙2,★),DU(𝑝1𝑢1, 𝑝2𝑢2,★)].

(2) Case 2: 𝐸1 =
∧

𝑖 𝐼𝑖 , 𝐸2 =
∨∧

𝑗 𝐼 𝑗
In the derivation graph, edge 𝐸1 leads to one derivation 𝐷1 with path probability 𝑃 (𝐷1 |𝐸1) = 𝑝 .
The probability of the union of two derivations is 𝑃 (𝐷𝑖 ∨ 𝐷 𝑗) = 𝑃 ((𝐸𝑖 , 𝑝𝑖) ∨ (𝐸 𝑗 , 𝑝 𝑗)), thus
𝑃 (𝐷𝑖 ∨ 𝐷 𝑗 | (𝐸𝑖 , 𝑝𝑖) ∨ (𝐸 𝑗 , 𝑝 𝑗)) = 1. Therefore, the path probability of the union of multiple
derivations is 1, making the path probability of 𝐸2 equal to 1.
Let 𝑒1 denote (𝐸1, 𝑝1) and 𝑒2 represent (𝐸2, 1). Given 𝑃 (𝐸1) ∈ [𝑙1, 𝑢1] and 𝑃 (𝐸2) ∈ [𝑙2, 𝑢2], we
have 𝑃 (𝑒1) = [𝑝1𝑙1, 𝑝1𝑢1] and 𝑃 (𝑒2) ∈ [𝑙2, 𝑢2]. Since Σ(𝐸1, 𝐸2) = ★, it follows that Σ(𝑒1, 𝑒2) = ★.
According to Lemma 15, the probability 𝑃 (𝑒1 ∨𝑒2) falls within [DL(𝑝1𝑙1, 𝑙2,★),DU(𝑝1𝑢1, 𝑢2,★)].

□

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:53

Lemma 17. Given a derivation graph 𝐺 , a Datalog program 𝐷 , and a correlation mapping Σ,
Algorithm 3 outputs a mapping𝑀 that associates each output fact with its probability interval. For an

output relation 𝑅, the mapping𝑀 [𝑅] = (𝑙, 𝑢) ensures that the probability 𝑃 (𝑅) lies within the interval

[𝑙, 𝑢].

Proof.
The probability interval (𝑙, 𝑢) is directly computed by the ApproxExpr function. Since the

ApproxExpr function applies the rules in Figure 16, according to Lemma 16, we know that the
computed interval (𝑙, 𝑢) is sound, i.e., 𝑙 ≤ 𝑃 (𝑅) ≤ 𝑢, given the output relation 𝑅. Here, 𝑅 is also an
internal node 𝑛 in 𝐺 .

□
Proof of Theorem 4

Based on Lemma 17, we know that Algorithm 3 outputs a mapping𝑀 that associates each output
fact with its probability interval. For an output relation 𝑅, the mapping𝑀 [𝑅] = (𝑙, 𝑢) ensures that
the probability 𝑃 (𝑅) lies within the interval [𝑙, 𝑢]. That is, 𝑙 ≤ 𝑃 (𝑅) ≤ 𝑢.
For the constrained optimization shown in Algorithm 1, it also returns a mapping 𝑀 . Let’s

denote (𝑙∗, 𝑢∗) = 𝑀 (𝑅). Since it is based on optimization, we know that 𝑙∗ = min(𝑃 (𝑅)) and
𝑢∗ = max(𝑃 (𝑅)).

Hence, we have 𝑙 ≤ 𝑃 (𝑅), which implies 𝑙 ≤ min(𝑃 (𝑅)) = 𝑙∗, and 𝑢 ≥ 𝑃 (𝑅), which implies
𝑢 ≥ max(𝑃 (𝑅)) = 𝑢∗. Thus, we have 𝑙 ≤ 𝑙∗ ≤ 𝑢∗ ≤ 𝑢. □

A.8 Iterative Refinement of Probability Bounds

In this section, we provide the formal proof of Theorem 5. To establish this proof, we need the
following Lemmas: Lemma 18, Lemma 19, and Lemma 20.
Given an output relation 𝑅, 𝑙∗ and 𝑢∗ denote the ground truth probability bounds for 𝑅, i.e.,

𝑙∗ = min(𝑃 (𝑅)) and 𝑢∗ = max(𝑃 (𝑅)).

Lemma 18. Given the lower bound 𝑙 , upper bound 𝑢, constraints 𝜙 , expression 𝑒 and the boolean

flag low, MakeSat procedure returns an interval (𝑙, 𝑢) such that 𝑙 ≤ 𝑙∗ ≤ 𝑢 if low and 𝑙 ≤ 𝑢∗ ≤ 𝑢

otherwise.

Proof of Lemma 18

We start the proof by listing all possible cases as follows:

• low=true: in this case, it focuses on the lower bound. It starts from [𝑙, 𝑙]. As we know thatmin(𝑒)
= 𝑙∗, and our lower bound is sound: 𝑙 ≤ 𝑙∗. Let’s futher classify this case:

(1) 𝑙 = 𝑙∗: In this case, 𝜙 ∧ 𝑙 ≤ 𝑒 ≤ 𝑙 is SAT, it does enter the loop in lines 1-2 and MakeSat directly
return (𝑙, 𝑙). It is consistent with 𝑙 ≤ 𝑙∗ ≤ 𝑙 .

(2) 𝑙 < 𝑙∗: In this case, 𝜙 ∧ 𝑙 ≤ 𝑒 ≤ 𝑙 is UNSAT due to the contradiction between 𝑙 < 𝑙∗ = min(𝑒)
and 𝑒 ≤ 𝑙 . Hence, it enters the loop in lines 1-2 to iteratively increasing 𝑙 until at 𝑡-iteration,
𝜙 ∧ 𝑙𝑡 ≤ 𝑒 ≤ Incr(𝑙𝑡) turns SAT. In this case, MakeSat returns (𝑙𝑡 , Incr(𝑙𝑡)).
It also implies that at 𝑡 − 1 iteration, 𝜙 ∧ 𝑙𝑡−1 ≤ 𝑒 ≤ 𝑙𝑡 is UNSAT. From the UNSAT case
in 𝑡 − 1-th iteration, we know that either 𝑙𝑡 < min(𝑒) or 𝑙𝑡−1 > max(𝑒). It’s obvious that
𝑙𝑡−1 > max(𝑒) is an invalid case. Hence, we can infer 𝑙𝑡 < min(𝑒). From the SAT case, we know
that [min(𝑒),max(𝑒)] overlaps with [𝑙𝑡 , Incr(𝑙𝑡)], thus we can get 𝑙𝑡 ≤ max(𝑒) ∧ Incr(𝑙𝑡) ≥
min(𝑒). Hence, we have 𝑙𝑡 < min(𝑒) ≤ Incr(𝑙𝑡), which also implies 𝑙𝑡 ≤ min(𝑒) ≤ Incr(𝑙𝑡). As
𝑙∗ = min(𝑒), we have 𝑙𝑡 ≤ 𝑙∗ ≤ Incr(𝑙𝑡).

• low=false: in this case, it focuses on the upper bound. It starts from [𝑢,𝑢]. As we know that
max(𝑒) = 𝑢∗, and our lower bound is sound: 𝑢 ≥ 𝑢∗. Let’s futher classify this case:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:54 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

(1) 𝑢 = 𝑢∗: In this case, 𝜙 ∧ 𝑢 ≤ 𝑒 ≤ 𝑢 is SAT, it does enter the loop in lines 1-2 and MakeSat
directly return (𝑢,𝑢). It is consistent with 𝑢 ≤ 𝑢∗ ≤ 𝑢.

(2) 𝑢 > 𝑢∗: In this case, 𝜙 ∧𝑢 ≤ 𝑒 ≤ 𝑢 is UNSAT due to the contradiction between𝑢 > 𝑢∗ = max(𝑒)
and 𝑢 ≤ 𝑒 . Hence, it enters the loop in lines 1-2 to iteratively decreasing 𝑢 until at 𝑡-iteration,
𝜙 ∧ Decr(𝑢𝑡) ≤ 𝑒 ≤ 𝑢𝑡 turns SAT. In this case, MakeSat returns (Decr(𝑢𝑡), 𝑢𝑡).
It also implies that at 𝑡 − 1 iteration, 𝜙 ∧ 𝑢𝑡 ≤ 𝑒 ≤ 𝑢𝑡−1 is UNSAT. From the UNSAT case
in 𝑡 − 1-th iteration, we know that either 𝑢𝑡1 < min(𝑒) or 𝑢𝑡 > max(𝑒). It’s obvious that
𝑢𝑡1 < min(𝑒) is an invalid case. Hence, we can infer 𝑢𝑡 > max(𝑒). From the SAT case, we know
that [min(𝑒),max(𝑒)] overlaps with [Decr(𝑢𝑡), 𝑢𝑡], thus we can get Decr(𝑢𝑡) ≤ max(𝑒) ∧𝑢𝑡 ≥
min(𝑒). Hence, we have Decr(𝑢𝑡) < max(𝑒) < 𝑢𝑡 , which also implies Decr(𝑢𝑡) < max(𝑒) ≤ 𝑢𝑡 .
As 𝑢∗ = max(𝑒), we have Decr(𝑢𝑡) ≤ 𝑢∗ ≤ 𝑢𝑡 .

□

Lemma 19. BoundBounds Procedure in Algorithm 5 outputs a mapping 𝐵 that maps 𝑅 to a

quadruple (𝑙−, 𝑙+, 𝑢−, 𝑢+), such that 𝑙− ≤ 𝑙∗ ≤ 𝑙+ and 𝑢− ≤ 𝑢∗ ≤ 𝑢+.

Proof of Lemma 19

We start the proof by listing all possible cases as follows:
• lower bound: When the signal low is set to true, MakeSat function in Line 3 is invoked in
Algorithm 5 and returns (𝑙−, 𝑙+). According to Lemma 18, we know that 𝑙− ≤ 𝑙∗ ≤ 𝑙+.
• upper bound: When the signal low is set to false, MakeSat function in Line 4 is invoked in
Algorithm 5 and returns (𝑢−, 𝑢+). According to Lemma 18, we know that 𝑢− ≤ 𝑢∗ ≤ 𝑢+.

□

Lemma 20. BinarySearch procedure in Algorithm 7 takes an output relation 𝑅, lower bound 𝑙 ,

upper bound 𝑢, the boolean flag low and error bound 𝛿 as inputs, and outputs an interval (𝐿,𝑈). If low
is set to true, 𝐿 ≤ 𝑙∗ ≤ 𝑈 and |𝑈 − 𝐿 | < 𝛿 . Otherwise, if low is set to false, 𝐿 ≤ 𝑢∗ ≤ 𝑈 and𝑈 − 𝐿 < 𝛿 .

Proof of Lemma 20

We start the proof by listing all possible cases as follows:
• low = true:
(1) (𝑢 − 𝑙) < 𝛿 : BinarySearch procedure directly returns (𝑙, 𝑢). Here, the output [𝐿,𝑈] = [𝑙, 𝑢].
(2) (𝑢 − 𝑙) ≥ 𝛿 : it enters the loop in lines 1-6. Given𝑚𝑖𝑑 = (𝑙 + 𝑢)/2. If 𝜙 ∧ 𝑙 ≤ Expr(𝑅) ≤ 𝑚𝑖𝑑 is

UNSAT, we know that intervals [𝑙,𝑚𝑖𝑑] and [𝑙∗, 𝑢∗] are disjoint, we have 𝑙 > 𝑢∗ ∨𝑚𝑖𝑑 < 𝑙∗.
It’s obvious that 𝑙 > 𝑢∗ is false. Given𝑚𝑖𝑑 < 𝑙∗, 𝑙∗ falls into the interval [𝑚𝑖𝑑, 𝑙]. Next iteration
focuses on splitting [𝑚𝑖𝑑, 𝑙] until its distance is less than 𝛿 .
Otherwise, if 𝜙 ∧ 𝑙 ≤ Expr(𝑅) ≤ 𝑚𝑖𝑑 is SAT, it means that two intervals [𝑙,𝑚𝑖𝑑] and [𝑙∗, 𝑢∗]
overlap. Hence, we can get 𝑙 ≤ 𝑢∗ ∧𝑚𝑖𝑑 ≥ 𝑙∗. Thus 𝑙∗ falls into the interval [𝑙,𝑚𝑖𝑑]. Next
iteration focuses on splitting [𝑙,𝑚𝑖𝑑] until its distance is less than 𝛿 .

Hence, after each iteration, the interval [𝑙, 𝑢] we get is guaranteed to contain 𝑙∗. When it termi-
nates, the loop condition is falsified, and it returns the output interval [𝐿,𝑈] where𝑈 − 𝐿 < 𝛿 .
• low = false:
(1) (𝑢 − 𝑙) < 𝛿 : BinarySearch procedure directly returns (𝑙, 𝑢). Here, the output [𝐿,𝑈] = [𝑙, 𝑢].
(2) (𝑢 − 𝑙) ≥ 𝛿 : it enters the loop in lines 1-6. Given𝑚𝑖𝑑 = (𝑙 + 𝑢)/2. If 𝜙 ∧𝑚𝑖𝑑 ≤ Expr(𝑅) ≤ 𝑢 is

UNSAT, we know that intervals [𝑚𝑖𝑑,𝑢] and [𝑙∗, 𝑢∗] are disjoint, we have𝑚𝑖𝑑 > 𝑢∗ ∨ 𝑢 < 𝑙∗.
It’s obvious that𝑢 < 𝑙∗ is false. Given𝑚𝑖𝑑 > 𝑢∗,𝑢∗ falls into the interval [𝑙,𝑚𝑖𝑑]. Next iteration
focuses on splitting [𝑙,𝑚𝑖𝑑] until its distance is less than 𝛿 .
Otherwise, if 𝜙 ∧𝑚𝑖𝑑 ≤ Expr(𝑅) ≤ 𝑢 is SAT, it means that two intervals [𝑚𝑖𝑑,𝑢] and [𝑙∗, 𝑢∗]
overlap. Thus, we can get 𝑙 ≤ 𝑢∗ ∧𝑚𝑖𝑑 ≥ 𝑢∗. Thus 𝑢∗ falls into the interval [𝑚𝑖𝑑,𝑢]. Next
iteration focuses on splitting [𝑚𝑖𝑑,𝑢] until its distance is less than 𝛿 .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

Probabilistic Inference for Datalog with Correlated Inputs 280:55

Hence, after each iteration, the interval [𝑙, 𝑢] we get is guaranteed to contain 𝑢∗. When it
terminates, the loop condition is falsified, and it returns the output interval [𝐿,𝑈] where𝑈 −𝐿 < 𝛿 .

□
Proof of Theorem 5

In MakeDeltaPrecise procedure, the last step invokes BinaryProcedure. For lower bound,
it returns (𝑙−, 𝑙+). For upper bound, it returns (𝑢−, 𝑢+). According to Lemma 20, we know that
𝑙− ≤ 𝑙∗ ≤ 𝑙+, 𝑙+ − 𝑙− < 𝛿 and 𝑢− ≤ 𝑢∗ ≤ 𝑢+, 𝑢+ − 𝑢− < 𝛿 . MakeDeltaPrecise procedure returns
(𝑙, 𝑢) as its probability bounds, where 𝑙 = 𝑙−, 𝑢 = 𝑢+.
Given 𝑙∗ < 𝑙+, we have 𝑙∗ − 𝑙 = 𝑙∗ − 𝑙− ≤ 𝑙+ − 𝑙− < 𝛿 . Hence, 𝑙 > 𝑙∗ − 𝛿 . Given 𝑙 = 𝑙− ≤ 𝑙∗, we can

get 𝑙∗ − 𝛿 ≤ 𝑙 ≤ 𝑙∗.
Given 𝑢∗ > 𝑢− , we have 𝑢 − 𝑢∗ = 𝑢+ − 𝑢∗ ≤ 𝑢+ − 𝑢− < 𝛿 . Given 𝑢 = 𝑢+ ≥ 𝑢∗, we can get

𝑢∗ ≤ 𝑢 ≤ 𝑢∗ + 𝛿 . □

A.9 Correlation type of constantly true and false cases

For cases that are constantly true or false, the correlation type—whether +,−,⊥,⊤—does not affect
the probability computation in Table 1. Regardless of the assigned correlation type, the computation
remains sound and correct.
• 𝐸1 = true, 𝐸2 = true. 𝑒1 = 𝑃𝑟 (𝐸1) = 1, 𝑒2 = 𝑃𝑟 (𝐸2) = 1.
– 𝐶𝐿(𝑒1, 𝑒2, +) = 𝐶𝐿(𝑒1, 𝑒2,−) = 𝐶𝐿(𝑒1, 𝑒2,⊥) = 𝐶𝐿(𝑒1, 𝑒2,⊤) = 1
– 𝐶𝑈 (𝑒1, 𝑒2, +) = 𝐶𝑈 (𝑒1, 𝑒2,−) = 𝐶𝑈 (𝑒1, 𝑒2,⊥) = 𝐶𝑈 (𝑒1, 𝑒2,⊤) = 1
– 𝐷𝐿(𝑒1, 𝑒2, +) = 𝐷𝐿(𝑒1, 𝑒2,−) = 𝐷𝐿(𝑒1, 𝑒2,⊥) = 𝐷𝐿(𝑒1, 𝑒2,⊤) = 1
– 𝐷𝑈 (𝑒1, 𝑒2, +) = 𝐷𝑈 (𝑒1, 𝑒2,−) = 𝐷𝑈 (𝑒1, 𝑒2,⊥) = 𝐷𝑈 (𝑒1, 𝑒2,⊤) = 1
As a result, 𝑃𝑟 (𝐸1 ∧ 𝐸2) ∈ [1, 1] = 1 and 𝑃𝑟 (𝐸1 ∨ 𝐸2) ∈ [1, 1] = 1 for any correlation type.
• 𝐸1 = true, 𝐸2 = false. 𝑒1 = 𝑃𝑟 (𝐸1) = 1, 𝑒2 = 𝑃𝑟 (𝐸2) = 0.
– 𝐶𝐿(𝑒1, 𝑒2, +) = 𝐶𝐿(𝑒1, 𝑒2,−) = 𝐶𝐿(𝑒1, 𝑒2,⊥) = 𝐶𝐿(𝑒1, 𝑒2,⊤) = 0
– 𝐶𝑈 (𝑒1, 𝑒2, +) = 𝐶𝑈 (𝑒1, 𝑒2,−) = 𝐶𝑈 (𝑒1, 𝑒2,⊥) = 𝐶𝑈 (𝑒1, 𝑒2,⊤) = 0
– 𝐷𝐿(𝑒1, 𝑒2, +) = 𝐷𝐿(𝑒1, 𝑒2,−) = 𝐷𝐿(𝑒1, 𝑒2,⊥) = 𝐷𝐿(𝑒1, 𝑒2,⊤) = 1
– 𝐷𝑈 (𝑒1, 𝑒2, +) = 𝐷𝑈 (𝑒1, 𝑒2,−) = 𝐷𝑈 (𝑒1, 𝑒2,⊥) = 𝐷𝑈 (𝑒1, 𝑒2,⊤) = 1
As a result, 𝑃𝑟 (𝐸1 ∧ 𝐸2) ∈ [0, 0] = 0 and 𝑃𝑟 (𝐸1 ∨ 𝐸2) ∈ [1, 1] = 1 for any correlation type.
• 𝐸1 = false, 𝐸2 = true. 𝑒1 = 𝑃𝑟 (𝐸1) = 0, 𝑒2 = 𝑃𝑟 (𝐸2) = 1.
– Symmetric to Case (𝐸1 = true, 𝐸2 = false) , so we will not provide a proof here.
• 𝐸1 = false, 𝐸2 = false. 𝑒1 = 𝑃𝑟 (𝐸1) = 0, 𝑒2 = 𝑃𝑟 (𝐸2) = 0.
– 𝐶𝐿(𝑒1, 𝑒2, +) = 𝐶𝐿(𝑒1, 𝑒2,−) = 𝐶𝐿(𝑒1, 𝑒2,⊥) = 𝐶𝐿(𝑒1, 𝑒2,⊤) = 0
– 𝐶𝑈 (𝑒1, 𝑒2, +) = 𝐶𝑈 (𝑒1, 𝑒2,−) = 𝐶𝑈 (𝑒1, 𝑒2,⊥) = 𝐶𝑈 (𝑒1, 𝑒2,⊤) = 0
– 𝐷𝐿(𝑒1, 𝑒2, +) = 𝐷𝐿(𝑒1, 𝑒2,−) = 𝐷𝐿(𝑒1, 𝑒2,⊥) = 𝐷𝐿(𝑒1, 𝑒2,⊤) = 0
– 𝐷𝑈 (𝑒1, 𝑒2, +) = 𝐷𝑈 (𝑒1, 𝑒2,−) = 𝐷𝑈 (𝑒1, 𝑒2,⊥) = 𝐷𝑈 (𝑒1, 𝑒2,⊤) = 0
As a result, 𝑃𝑟 (𝐸1 ∧ 𝐸2) ∈ [0, 0] = 0 and 𝑃𝑟 (𝐸1 ∨ 𝐸2) ∈ [0, 0] = 0 for any correlation type.

In summary, the correlation type does not affect the computation of always-true and always-false
cases. When assigning a positive correlation (+) to a pair of constantly-true and constantly-false,
the computation remains correct.

A.10 Implied Conditional Dependence from Overview

In this subsection, we provide a proof that input facts edge(2,5) and edge(2,6) from Figure 4
must be dependent. Let 𝐴, 𝐵,𝐶 denote edge(2,5), edge(2,6), and edge(1,4) respectively. Then,
we have 𝑃 (𝐴 ∧ 𝐶) = 𝑃 (𝐴|𝐶) × 𝑃 (𝐶) = 0.8 × 0.6 = 0.48. Since 𝑃 (𝐴 ∧ 𝐶) = 𝑃 (𝐴 ∧ 𝐶 ∧ 𝐵) +
𝑃 (𝐴 ∧ 𝐶 ∧ ¬𝐵), we have 𝑃 (𝐴 ∧ 𝐵 ∧ 𝐶) = 0.48 − 𝑥 where 𝑥 = 𝑃 (𝐴 ∧ 𝐶 ∧ ¬𝐵). Next, consider
𝑃 (𝐵 ∧𝐶) = 𝑃 (𝐵 |𝐶) × 𝑃 (𝐶) = 0.83 × 0.6 = 0.498. Next, observe that 𝑃 (𝐶) = 𝑃 (𝐶 ∧ 𝐵) + 𝑃 (𝐶 ∧ ¬𝐵);

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

280:56 Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Işıl Dillig

thus, 𝑃 (𝐶 ∧ ¬𝐵) = 0.6 − 0.498 = 0.102. Now, because 𝑥 = 𝑃 (𝐴 ∧𝐶 ∧ ¬𝐵) ≤ 𝑃 (𝐶 ∧ ¬𝐵) = 0.102, we
obtain 𝑥 ≤ 0.102. Finally, note that 𝑃 (𝐴 ∧ 𝐵) ≥ 𝑃 (𝐴 ∧ 𝐵 ∧𝐶) = 0.48 − 𝑥 ≥ (0.48 − 0.102) = 0.378.
Thus, clearly, 𝑃 (𝐴∧𝐵) > 𝑃 (𝐴) ×𝑃 (𝐵) = 0.36, so edge(2, 5) and edge(2, 6) are positively correlated.

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 280. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Overview
	3.1 Basic Approach: Inference via Constrained Optimization
	3.2 Scalable -exact Inference

	4 Preliminaries
	5 PRALINE: Probabilistic Datalog with Correlated Inputs
	6 Exact Probabilistic Inference via Constrained Optimization
	6.1 Joint Probability Variables
	6.2 Probability Expressions and Templates
	6.3 Constraint Generation
	6.4 Generating Optimization Objective

	7 -Exact Probabilistic Inference
	7.1 Inference of Correlation Types
	7.2 Computing Approximate Probability Bounds
	7.3 Iterative Refinement of Probability Bounds

	8 Implementation
	9 Evaluation
	9.1 Application Domains and Benchmarks
	9.2 Experimental Methodology and Set-up
	9.3 Accuracy Evaluation
	9.4 Inference Time Evaluation
	9.5 Ablation Study

	10 Related Work
	11 Conclusion
	12 Data-Availability Statement
	Acknowledgments
	References
	A Appendix
	A.1 Encoding Input Correlations using ProbLog
	A.2 Discussion of Syntax Constructs in Praline and Problog
	A.3 Semantics of Praline
	A.4 Optimized Satisfiability Check
	A.5 Inferring Symbolic Probability Expressions
	A.6 Inferring Correlation Types
	A.7 Computing approximate probability bounds
	A.8 Iterative Refinement of Probability Bounds
	A.9 Correlation type of constantly true and false cases
	A.10 Implied Conditional Dependence from Overview

