
Programming-by-Demonstration for Long-Horizon Robot
Tasks
NOAH PATTON, The University of Texas at Austin, USA
KIA RAHMANI, The University of Texas at Austin, USA
MEGHANA MISSULA, The University of Texas at Austin, USA
JOYDEEP BISWAS, The University of Texas at Austin, USA
IŞIL DILLIG, The University of Texas at Austin, USA

Abstract. The goal of programmatic Learning from Demonstration (LfD) is to learn a policy in a programming
language that can be used to control a robot’s behavior from a set of user demonstrations. This paper presents
a new programmatic LfD algorithm that targets long-horizon robot tasks which require synthesizing programs
with complex control flow structures, including nested loops with multiple conditionals. Our proposed method
first learns a program sketch that captures the target program’s control flow and then completes this sketch
using an LLM-guided search procedure that incorporates a novel technique for proving unrealizability of
programming-by-demonstration problems. We have implemented our approach in a new tool called prolex
and present the results of a comprehensive experimental evaluation on 120 benchmarks involving complex
tasks and environments. We show that, given a 120 second time limit, prolex can find a program consistent
with the demonstrations in 80% of the cases. Furthermore, for 81% of the tasks for which a solution is returned,
prolex is able to find the ground truth program with just one demonstration. In comparison, CVC5, a syntax-
guided synthesis tool, is only able to solve 25% of the cases even when given the ground truth program sketch, and
an LLM-based approach, GPT-Synth, is unable to solve any of the tasks due to the environment complexity.

CCS Concepts: • Computing methodologies → Robotic planning; • Theory of computation → Abstraction;
Grammars and context-free languages; Action semantics; Program analysis; • Software and its engineering
→ Automatic programming.

Additional Key Words and Phrases: Abstract Interpretation, Program Synthesis, Learning from Demonstrations

ACM Reference Format:
Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Işil Dillig. 2024. Programming-by-Demonstration
for Long-Horizon Robot Tasks. Proc. ACM Program. Lang. 8, POPL, Article 18 (January 2024), 34 pages.
https://doi.org/10.1145/3632860

1 INTRODUCTION

Learning From Demonstration (LfD) is an attractive paradigm for teaching robots how to perform
novel tasks in end-user environments [Argall et al. 2009]. While most classical approaches to LfD
are based on black-box behavior cloning [Ho and Ermon 2016; Ly and Akhloufi 2021], recent work
has argued for treating LfD as a program synthesis problem [Holtz et al. 2020a; Porfirio et al. 2023;
Xin et al. 2023]. In particular, programmatic LfD represents the space of robot policies in a domain-
specific language (DSL) and learns a program that is consistent with the user’s demonstrations.

Although this programmatic approach has been shown to offer several advantages over black-box
behavior cloning in terms of data efficiency, generalizability, and interpretability [Holtz et al. 2021;
Lipton 2018], existing work in this space suffers from three key shortcomings: First, most prior
techniques focus on simple Markovian policies that select the next action based only on the current
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART18
https://doi.org/10.1145/3632860

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

HTTPS://ORCID.ORG/0009-0002-7028-518X
HTTPS://ORCID.ORG/0000-0001-9064-0797
HTTPS://ORCID.ORG/0000-0002-1610-6198
HTTPS://ORCID.ORG/0000-0002-1211-1731
HTTPS://ORCID.ORG/0000-0001-8006-1230
https://doi.org/10.1145/3632860
https://doi.org/10.1145/3632860

18:2 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Fig. 1. Overview of prolex

state. As a result, the target programs have a simple decision-list structure, and the main difficulty
lies in inferring suitable predicates for each branch. Second, most existing techniques have only
been applied to restricted domains with limited object and interaction types, such as robot soccer
playing where the entities of interest are known a priori and comprise a small set.

Our goal in this work is to develop a programmatic LfD approach for long-horizon tasks that
commonly arise in service mobile robot settings — e.g., putting away groceries in a domestic setting,
or proactively providing tools and parts to a mechanic in assistive manufacturing. Long-horizon
robotics tasks are inherently more challenging, as the robot needs to reason about the interactions
between a long sequence of actions (e.g., that the dishes must be cleared from a table before it can
be wiped down) and the effect of specific environmental states on sequences of actions (e.g., a robot
tasked with dusting a shelf must first remove all items from the shelf if it is not empty vs. directly
dusting it if there are no items on it). This is in stark contrast to control tasks, such as motion
control, where the policy just needs to select the next action for a single time step.

Recognizing the importance of long horizon tasks, recent work [Porfirio et al. 2023] has proposed
a multi-modal user interface (combining natural language with hand-drawn navigation paths) to
facilitate programmatic LfD in this setting. This paper makes another stride towards that goal, but
in an orthogonal direction, by learning more complex programs from demonstration traces. In
particular, the approach that we propose in this paper aims to (a) handle tasks that require complex
control flow (such as nested loops with multiple conditionals) and (b) scale to demonstrations
performed in complex environments with hundreds of objects and a large number of relationships
to consider between those objects.

Our proposed approach tackles these two challenges using a novel program synthesis algorithm
that is illustrated schematically in Figure 1. First, given a set of demonstration traces, our approach
infers a control flow sketch of the target program. To do so, our method abstracts each demo trace
as a string over a finite alphabet and then learns a set of simple regular expressions that “unify” all
of the demonstrations. As there is an obvious correspondence between regex operators and control
flow structures (e.g., loops as Kleene star; conditionals as disjunction), our method can quickly
infer the control flow structure of the target program from a small number of demonstrations.
Furthermore, because the sketch learner prefers small regular expressions over complex ones, this
application of the Occam’s razor principle introduces inductive bias towards control structures
that are more likely to generalize to unseen traces.

Given a program sketch capturing the underlying control flow structure, the second sketch
completion phase of our algorithm tries to find a complete program that is consistent with the
given traces. This algorithm is based on top-down enumerative search, meaning that it starts by
considering all DSL programs as part of the search space and gradually refines it until it contains
a single program. However, because the size of the search space is exponential with respect to
the number of entities in the environment, such a search strategy does not scale to complex
environments. Our approach deals with this challenge using two key ideas, namely (1) guiding the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:3

search procedure using a large language model (LLM), and (2) proving unrealizability of synthesis
sub-problems.

LLM-guided refinement. As shown in Figure 1 (and as standard in the literature), our sketch
completion procedure represents the search space as a partial program (i.e., a program containing
holes), so the refinement step involves filling one of the holes in this partial program with a
concrete expression. In our setting, these holes need to be instantiated with objects (or object
types) in the environment, as well as properties of –and relationships between– those objects.
However, because the demonstration may be performed in complex environments with many
such objects and properties, each hole typically has a very large number of possible completions.
To address this problem, our method consults an LLM to perform refinement; intuitively, this
serves two purposes: First, when the target program contains object types that do not explicitly
occur in the demonstrations (a very common scenario), LLM guidance allows the synthesizer
to propose new entities by reasoning about commonalities between objects that do occur in the
demonstrations. Second, by conditioning the current prediction on previous ones, the synthesizer
can avoid generating programs that do not “make sense" from a semantic perspective.

Proving unrealizability. However, even with LLM guidance, the search procedure may end up
constructing partial programs that have no valid completion with respect to the demonstrations.
Our approach tries to avoid such dead-ends in the search space through a novel procedure for
proving unrealizability. In particular, given a partial program 𝑃 , our approach performs static
analysis to construct a suitable abstraction, in the form of a regex, that represents all possible
traces of all completions of 𝑃 for the demonstration environment. Given such a regex 𝑟 , proving
unrealizability of a synthesis problem boils down to proving that the demonstration trace cannot
possibly belong to the language of 𝑟 .

We have implemented the proposed LfD technique in a tool called prolex1 and evaluate it on a
benchmark set containing 120 long-horizon robotics tasks involving household activities. Given a
2 minute time limit, our approach can complete 80% of the synthesis tasks and can handle tasks
that require multiple loops with several conditionals as well as environments with up to thousands
of objects and dozens of object types. Furthermore, for 81% learning tasks that prolex is able to
complete within the 2 minute time limit, prolex learns a program that matches the ground truth
from just a single demonstration. To put these results in context, we compare our approach against
two relevant baselines, including CVC5, a state-of-the-art SyGuS solver and GPT-Synth, a neural
program synthesizer, and experimentally demonstrate the advantages of our approach over other
alternatives. CVC5 is only able to solve 25% of the tasks even when given the ground-truth sketch.
GPT-Synth, on the other hand, is unable to solve any of the tasks due to environment complexity,
even when the environment is simplified to include only a small fraction of the objects in addition
to the required ground truth entities. Furthermore, we report the results of a series of ablation
studies and show that our proposed ideas contribute to successful synthesis.

In summary, this paper makes the following contributions:
• We propose a novel programming-by-demonstration (PBD) technique targeting long-horizon

robot tasks. Our approach can learn programs with complex control flow structures, including
nested loops with conditionals, from a small number of traces and in complex environments with
thousands of objects.

• We propose a new (reusable) method for proving unrealizability of synthesis problems in the
PBD setting.

1Programming RObots with Language models and regular EXpressions

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:4 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

6

search space. The use of LLMs in sketch completion is crucial in two ways: Joydeep: Note: this is a
nested “First” and “Second” item. First, it guides the search towards programs that are more likely to
be consistent with the demonstrations. Second, because LLMs incorporate “world knowledge", they
bias the search towards programs that are more likely to meet the user’s expectation, beyond just
being consistent with the demonstration. For instance, in our running example, sheets have other
properties beyond cleanliness (e.g., color, texture) that have little to do with whether they should be
placed in a bin. Because LLMs induce a strong prior, they make it more likely that our synthesized
program will check for cleanliness of the sheets rather then their color or texture. Joydeep: The next
sentence goes back from LLMs to regexes, muddying the explanation. Can we put all regex-related
concepts �rst, then all LLM-related concepts? Additionally, our sketch completion approach also
speeds up search by checking compatibility between partial programs and user demonstrations.
To do so, our algorithm constructs a regular expression A that captures all possible behaviors of a
partial program in a given environment and also represents the demonstration in that environment
as a string B over the same alphabet. Then, if string B is not accepted by regular expression A , this
means that the search has reached a dead end, allowing our algorithm to backtrack.

The remainder of this section presents further details of our sketch generation and completion
methodology.
Sketch generation. We now give a brief overview of our sketch generation approach. Our method
�rst abstracts the user’s demonstrations as a set of strings. For instance, in our running example,
the user’s sole demonstration 3 is abstracted as the following string, U (3):

GA>><
A>?4=,18=

A6A01,B⌘44C

A?DC ,B⌘44C ,18=

A2;>B4,18=

GA>><
A>?4=,18=

A6A01,B⌘44C

A?DC ,B⌘44C ,18=

A6A01,B⌘44C

A?DC ,B⌘44C ,18=

A2;>B4,18=

(U (3))

Joydeep: The line break seems to imply a logical separation, why is the Goto action arbitrarily
chosen as the separator, and not (for example) the grab or open action? where G,A denote 6>C> and
02C in the demonstration, and the subscripts indicate the type of their arguments. For example, even
though the demonstration speci�es that the user grabbed speci�c sheets (namely, B⌘44C1, B⌘44C3,
and B⌘44C4), the string abstraction omits such details. This idea of converting the demonstration to
a more abstract form is a crucial �rst step towards generalizing the speci�c demonstration into a
reusable robot execution policy.

Next, our approach utilizes existing techniques to synthesize a regex that matches the string
encoding of the demonstrations. This regex learning serves two key roles: First, when the user
provides multiple demonstrations, it facilitates unifying them under a common syntactic pattern
that can be translated into the target program’s control �ow. Second, even when the user provides
a single demonstration 3 , regex learning facilitates generalization because we can �nd simpler
regexes than U (3) that match the string U (3). Thus, even in the single demonstration setting, regex
learning essentially forces the algorithm to generalize the demonstration to a more abstract form.

, Vol. 1, No. 1, Article . Publication date: April 2023.

4

Location State

A1

$1 9B : {;0<? : [;1, ;2], 143 : [11], B⌘44C : [B1, B2], 18= : [1=1], . . . }
%A>?B : {2;40= : {B2}, 2;>B43 : {1=1}, > 5 5 : {;1, ;2}, . . . }
'4;B : {>=-C>? : { (B1,11), (B2,11) }, =4GC -C> : { (;1,11), (;2,11), . . . },

8=B834 : {}, . . . }

A2

$1 9B : {;0<? : [;3], 143 : [12], B⌘44C : [B3, B4], ⌫8= : [1=2], . . . }
%A>?B : {2;40= : {}, 2;>B43 : {1=2}, > 5 5 : {;3}, . . . }
'4;B : {>=-C>? : { (B3,12), (B4,12) }, =4GC -C> : { (;3,12), . . . },

8=B834 {}, . . . }

(a) Partial representation of the initial environment. Only a small subset of objects, proper-
ties and relations are shown

1 :6>C> (A1)
2 :02C (>?4=,1=1)
3 :02C (6A01, B1)
4 :02C (?DC -8=, B1,1=1)
5 :02C (2;>B4,1=1)
6 :6>C> (A2)
7 :02C (>?4=,1=2)
8 :02C (6A01, B3)
9 :02C (?DC -8=, B3,1=2)
10 :02C (6A01, B4)
11 :02C (?DC -8=, B4,1=2)
12 :02C (2;>B4,1=2)

(b) Trace of demonstrated actions (3).

Fig. 2. A demonstration of the desired task in the running example.

the complete representation of the rooms consists of many more object types which are omitted
from the �gure due to space constraints.
Desired output. Since our goal is to perform programmatic LfD, we wish to learn a programmatic
robot execution policy from the provided demonstration. Figure ?? shows the desired policy that
generalizes from the user’s only demonstration. Intuitively, this policy encodes that the robot
should go to each room, identify any bins and beds present in that room, collect all dirty sheets from
each bed, and �nally place them in one of the bins. Joydeep: Since the demonstrations are speci�c to
the environments where they were provided, the robot needs to infer what general properties de�ne
the objects being acted on — e.g., why did the human pick up sheet1 and not sheet2? To address
this, our programmatic policies include perception actions that allow the robot to enumerate ... and
also to reason about a subset of the enumerated objects based on... (properties + relations) Joydeep:
Complete above, and edit/delete the latter as needed Note that the desired policy contains two
types of actions: (1) manipulation actions like putting an item inside another one, and (2) perception
actions that allow the robot to become aware of its surroundings. In particular, the policy contains
primitives like scanObj that allow the robot to identify all objects that are visible from its current
location.
Synthesis challenges. In this context, generating the desired policy from the user’s demonstration
is challenging for several reasons:
• First, the desired program has complex control �ow, with three nested loops and an if statement

containing multiple predicates.

, Vol. 1, No. 1, Article . Publication date: April 2023.

)

(a) Trace of demonstrated actions (left) and
the abstracted string using function 𝛼 (right)

Program Synthesis for Robot Learning from Demonstrations 7

Going back to our running example, the following regular expressions all match the string U (3)
de�ned above:

(1) (GA>><A>?4=,18= (A6A01,B⌘44CA?DC ,B⌘44C ,18=)⇤A2;>B4,18=)⇤
(2) (GA>><A>?4=,18= (((A6A01,B⌘44CA?DC,B⌘44C,18=)?)⇤)⇤A2;>B4,18=)⇤
(3) (GA>>< (A>?4=,18=)?((A6A01,B⌘44CA?DC,B⌘44C,18=)?)⇤A2;>B4,18=)⇤

Note that there is an obvious parallel between regex operators and the program’s control �ow:
Since Kleene star denotes repetition, it naturally corresponds to a looping construct in our DSL.
Similarly, since the optional operator (i.e., (A)?) denotes choice, it is naturally translated into an
if statement in our DSL. Thus, given a candidate regex A for the demonstrations, our approach
translates it into a sketch by utilizing syntax-translated translation rules to convert regex operators
to the target program’s control �ow. Additionally, because the program should not manipulate any
objects before it perceives them, our sketch generation procedure also inserts any necessary let
bindings and scan operations.

Going back to our running example, regular expression (2) presented above is translated into
the sketch shown in Figure 3b. Observe that the three nested loops in the sketch correspond to
the the three nested Kleene stars in the sketch, and the optional nested regex gives rise to the if
statement in the innermost loop. Finally, observe that the program sketch generated from regex (2)
also contains an inferred let binding because the bin object at line 4 cannot be acted upon before it
being �rst perceived by the robot. Joydeep: It has not been stated before that the robot cannot act
on objects before perceiving them. If that is an assumption, we should state it as such. People will
wonder why the sketch does not scan for bin here, per the explanation. Joydeep: Yes
Sketch completion. For each sketch generated in the �rst step, our method tries to �nd a completion
that matches the user’s demonstration. In practice, many of the sketches generated in the �rst step
are infeasible. For example, consider regular expression (1) presented above, that matches the string
abstraction of the demonstration. Intuitively, sketches generated from this regex will be infeasible
because, without an if statement in the sketch, the resulting programs would end up grabbing both
sheets in room r1, rather than only the single dirty sheet. Hence, the second phase of our technique
considers multiple sketches and tries to �nd a completion of any sketch that is consistent with the
given demonstrations.

As mentioned earlier, our sketch completion algorithm is based on top-down enumerative search
but (a) utilizes an LLM to guide exploration and (b) trace compatibility checking procedure to
quickly detect dead-ends . In particular, starting from a sketch, the synthesis algorithm maintains a
worklist of partial programs containing holes to be �lled. When dequeuing a partial program from
the worklist, we consider its probability according to the LLM, so more promising partial programs
are prioritized compared to less likely ones. Going back to our example, consider a partial program
where we test the color of a bedsheet without putting it in the bin. Because the concepts "laundry
bin" and “cleanliness" are much more related than than “color" and “laundry bin", our technique
prioritizes a program that includes the conditional checkProp(38AC~, ...) over one that is based on
color. As mentioned earlier, this strategy not only allows faster synthesis but also makes it more
likely that the generated program will match the user’s demonstrations.

In addition to utilizing an LLM, our sketch completion method also leverages the demonstration
to reason about compatibility between the partial programs and the demo trace. As an example,
consider the variant of the sketch from Figure 3b but without the conditional at line 7, and suppose
that the algorithm has already instantiated the question marks at 1 and 6 with A>>< and B⌘44C
respectively. Because none of the actions in the sketch modify object locations and because there
are two sheets in each room, any completion of this partial program would end up performing the
6A01 action at least four times but there are only three 6A01 actions in the trace. Hence, this partial

, Vol. 1, No. 1, Article . Publication date: April 2023.

L1

L3
L2

C1

Program Synthesis for Robot Learning from Demonstrations 7

that can be translated into the target program’s control �ow. Second, even when the user provides
a single demonstration 3 , regex learning facilitates generalization because we can �nd simpler
regexes than U (3) that match the string U (3). Thus, even in the single demonstration setting, regex
learning essentially forces the algorithm to generalize the demonstration to a more abstract form.

Going back to our running example, the following regular expressions all match the string U (3)
de�ned above:

A464G1 := (GA>><A>?4=,18= (A6A01,B⌘44CA?DC ,B⌘44C ,18=)⇤A2;>B4,18=)⇤
A464G2 := (GA>><A>?4=,18= (((A6A01,B⌘44CA?DC ,B⌘44C ,18=)?)⇤)⇤A2;>B4,18=)⇤
A464G3 := (GA>>< (A>?4=,18=)?((A6A01,B⌘44CA?DC,B⌘44C,18=)?)⇤A2;>B4,18=)⇤

Note that there is an obvious parallel between regex operators and the program’s control �ow:
Since Kleene star denotes repetition, it naturally corresponds to a looping construct in our DSL.
Similarly, since the optional operator (i.e., (A)?) denotes choice, it is naturally translated into an
if statement in our DSL. Thus, given a candidate regex A for the demonstrations, our approach
translates it into a sketch by utilizing syntax-translated translation rules to convert regex operators
to the target program’s control �ow. Additionally, because the program should not manipulate any
objects before it perceives them, our sketch generation procedure also inserts any necessary let
bindings and scan operations.

Going back to our running example, regular expression (2) presented above is translated into
the sketch shown in Figure 3b. Observe that the three nested loops in the sketch correspond to
the the three nested Kleene stars in the sketch, and the optional nested regex gives rise to the if
statement in the innermost loop. Finally, observe that the program sketch generated from regex (2)
also contains an inferred let binding because the bin object at line 4 cannot be acted upon before it
being �rst perceived by the robot. Joydeep: It has not been stated before that the robot cannot act
on objects before perceiving them. If that is an assumption, we should state it as such. People will
wonder why the sketch does not scan for bin here, per the explanation. Joydeep: Yes
Sketch completion. For each sketch generated in the �rst step, our method tries to �nd a completion
that matches the user’s demonstration. In practice, many of the sketches generated in the �rst step
are infeasible. For example, consider regular expression (1) presented above, that matches the string
abstraction of the demonstration. Intuitively, sketches generated from this regex will be infeasible
because, without an if statement in the sketch, the resulting programs would end up grabbing both
sheets in room r1, rather than only the single dirty sheet. Hence, the second phase of our technique
considers multiple sketches and tries to �nd a completion of any sketch that is consistent with the
given demonstrations.

As mentioned earlier, our sketch completion algorithm is based on top-down enumerative search
but (a) utilizes an LLM to guide exploration and (b) trace compatibility checking procedure to
quickly detect dead-ends . In particular, starting from a sketch, the synthesis algorithm maintains a
worklist of partial programs containing holes to be �lled. When dequeuing a partial program from
the worklist, we consider its probability according to the LLM, so more promising partial programs
are prioritized compared to less likely ones. Going back to our example, consider a partial program
where we test the color of a bedsheet without putting it in the bin. Because the concepts "laundry
bin" and “cleanliness" are much more related than than “color" and “laundry bin", our technique
prioritizes a program that includes the conditional checkProp(38AC~, ...) over one that is based on
color. As mentioned earlier, this strategy not only allows faster synthesis but also makes it more
likely that the generated program will match the user’s demonstrations.

In addition to utilizing an LLM, our sketch completion method also leverages the demonstration
to reason about compatibility between the partial programs and the demo trace. As an example,
consider the variant of the sketch from Figure 3b but without the conditional at line 7, and suppose

, Vol. 1, No. 1, Article . Publication date: April 2023.

Program Synthesis for Robot Learning from Demonstrations 7

that can be translated into the target program’s control �ow. Second, even when the user provides
a single demonstration 3 , regex learning facilitates generalization because we can �nd simpler
regexes than U (3) that match the string U (3). Thus, even in the single demonstration setting, regex
learning essentially forces the algorithm to generalize the demonstration to a more abstract form.

Going back to our running example, the following regular expressions all match the string U (3)
de�ned above:

A464G1 := (GA>><A>?4=,18= (A6A01,B⌘44CA?DC ,B⌘44C ,18=)⇤A2;>B4,18=)⇤
A464G2 := (GA>><A>?4=,18= (((A6A01,B⌘44CA?DC ,B⌘44C ,18=)?)⇤)⇤A2;>B4,18=)⇤
A464G3 := (GA>>< (A>?4=,18=)?((A6A01,B⌘44CA?DC,B⌘44C,18=)?)⇤A2;>B4,18=)⇤

Note that there is an obvious parallel between regex operators and the program’s control �ow:
Since Kleene star denotes repetition, it naturally corresponds to a looping construct in our DSL.
Similarly, since the optional operator (i.e., (A)?) denotes choice, it is naturally translated into an
if statement in our DSL. Thus, given a candidate regex A for the demonstrations, our approach
translates it into a sketch by utilizing syntax-translated translation rules to convert regex operators
to the target program’s control �ow. Additionally, because the program should not manipulate any
objects before it perceives them, our sketch generation procedure also inserts any necessary let
bindings and scan operations.

Going back to our running example, regular expression (2) presented above is translated into
the sketch shown in Figure 3b. Observe that the three nested loops in the sketch correspond to
the the three nested Kleene stars in the sketch, and the optional nested regex gives rise to the if
statement in the innermost loop. Finally, observe that the program sketch generated from regex (2)
also contains an inferred let binding because the bin object at line 4 cannot be acted upon before it
being �rst perceived by the robot. Joydeep: It has not been stated before that the robot cannot act
on objects before perceiving them. If that is an assumption, we should state it as such. People will
wonder why the sketch does not scan for bin here, per the explanation. Joydeep: Yes
Sketch completion. For each sketch generated in the �rst step, our method tries to �nd a completion
that matches the user’s demonstration. In practice, many of the sketches generated in the �rst step
are infeasible. For example, consider regular expression (1) presented above, that matches the string
abstraction of the demonstration. Intuitively, sketches generated from this regex will be infeasible
because, without an if statement in the sketch, the resulting programs would end up grabbing both
sheets in room r1, rather than only the single dirty sheet. Hence, the second phase of our technique
considers multiple sketches and tries to �nd a completion of any sketch that is consistent with the
given demonstrations.

As mentioned earlier, our sketch completion algorithm is based on top-down enumerative search
but (a) utilizes an LLM to guide exploration and (b) trace compatibility checking procedure to
quickly detect dead-ends . In particular, starting from a sketch, the synthesis algorithm maintains a
worklist of partial programs containing holes to be �lled. When dequeuing a partial program from
the worklist, we consider its probability according to the LLM, so more promising partial programs
are prioritized compared to less likely ones. Going back to our example, consider a partial program
where we test the color of a bedsheet without putting it in the bin. Because the concepts "laundry
bin" and “cleanliness" are much more related than than “color" and “laundry bin", our technique
prioritizes a program that includes the conditional checkProp(38AC~, ...) over one that is based on
color. As mentioned earlier, this strategy not only allows faster synthesis but also makes it more
likely that the generated program will match the user’s demonstrations.

In addition to utilizing an LLM, our sketch completion method also leverages the demonstration
to reason about compatibility between the partial programs and the demo trace. As an example,
consider the variant of the sketch from Figure 3b but without the conditional at line 7, and suppose

, Vol. 1, No. 1, Article . Publication date: April 2023.

(b) Regexes learned from the string abstracted from the
demonstration. The correct regex (bottom) is highlighted
to show looping and conditional structures.Program Synthesis for Robot Learning from Demonstrations 5

1: foreach(E1 2 scanLoc(A>><)) {
2: goto(E1) ;
3: let E2 := getFirst(scanObj(18=)) ;
4: actUnary(>?4=, E2) ;
5: foreach(E3 2 scanObj(143)) {
6: foreach(E4 2 scanObj(B⌘44C)) {
7: if(checkProp(38AC~, E4)^ checkRel(>=-C>?-> 5 , E4, E3)) {
8: actUnary(6A01, E4) ;
9: actBinary(?DC -8=, E4, E2) ;

10: }
11: }
12: }
13: actUnary(2;>B4, E2) ;
14: }

(a) Ground-truth robot program

1: foreach(E1 2 scanLoc(??)) {
2: goto(?? : A>><) ;
3: let E2 := getFirst(scanObj(??)) ;
4: actUnary(>?4=, ?? : 18=) ;
5: foreach(E3 2 scanObj(??)) {
6: foreach(E4 2 scanObj(??)) {
7: if(??) {
8: actUnary(6A01, ?? : B⌘44C) ;
9: actBinary(?DC -8=, ?? : B⌘44C , ?? : 18=) ;

10: }
11: }
12: }
13: actUnary(2;>B4, ?? : 18=) ;
14: }

(b) Inferred sketch

Fig. 3. A robot program and the inferred sketch for it

primitives that enable the robot to become aware of its environment. In particular, the function
scanObj(g) allows the robot to identify all objects of type g that are visible from its current location
and reason about their properties and relations. This is crucial for e�ective LfD, since the given
demonstrations are speci�c to the environment where they were provided and the robot must be
able to observe and reason about the state of objects in unseen environments.
Synthesis challenges. In this context, generating the desired policy from the user’s demonstration
is challenging for several reasons:
• First, the desired program has complex control �ow, with three nested loops and an if statement

containing multiple predicates.
• The desired program requires performing perceptual actions (like scanning for objects and testing

for properties) that have no corresponding actions in the demonstration.
• The target policy requires reasoning about concepts (such as being dirty or being on top of some

other object) that are also not indicated in the demonstration.

Our approach. Our approach tackles these challenges through two novel ideas: First, given the
user demonstrations, our approach generates a set of sketches of the target program by (largely)
reducing the sketch inference problem to regular expression synthesis. Second, our method employs
a sketch completion step to �gure out the missing pieces.

Figure 3b shows one of the sketches inferred from the given demonstration for the running exam-
ple3. As we can see, the sketch captures the high-level control �ow structure of the target program
by introducing loops, conditionals, and all primitive commands (such as actUnary). However, the
sketch omits several important details that are hard to glean from the user’s demonstration, such as
variable names and predicates to test for inside the conditional. Our method next employs a sketch
completion step to �gure out the missing pieces. Because sketch completion requires synthesizing
terms that are hard to infer from the user’s demonstration, this second step is primarily based
on enumerative search, but it (a) leverages trace compatibility checking to avoid dead ends in the
search space, and (b) utilizes an LLM to guide the search:

• Trace Compatibility Checking: Our sketch completion approach speeds up search by checking
compatibility between partial programs and user demonstrations. To do so, our algorithm
constructs a regular expression A that captures all possible behaviors of a partial program in

3ignore the dashed lines and high-lightings for now.

, Vol. 1, No. 1, Article . Publication date: April 2023.

L1

L2
L3

C1

Program Synthesis for Robot Learning from Demonstrations 5

1: foreach(E1 2 scanLoc(A>><)) {
2: goto(E1) ;
3: let E2 := getFirst(scanObj(18=)) ;
4: actUnary(>?4=, E2) ;
5: foreach(E3 2 scanObj(143)) {
6: foreach(E4 2 scanObj(B⌘44C)) {
7: if(checkProp(38AC~, E4)^ checkRel(>=-C>?-> 5 , E4, E3)) {
8: actUnary(6A01, E4) ;
9: actBinary(?DC -8=, E4, E2) ;

10: }
11: }
12: }
13: actUnary(2;>B4, E2) ;
14: }

(a) Ground-truth robot program

1: foreach(E1 2 scanLoc(??)) {
2: goto(?? : A>><) ;
3: let E2 := getFirst(scanObj(??)) ;
4: actUnary(>?4=, ?? : 18=) ;
5: foreach(E3 2 scanObj(??)) {
6: foreach(E4 2 scanObj(??)) {
7: if(??) {
8: actUnary(6A01, ?? : B⌘44C) ;
9: actBinary(?DC -8=, ?? : B⌘44C , ?? : 18=) ;

10: }
11: }
12: }
13: actUnary(2;>B4, ?? : 18=) ;
14: }

(b) Inferred sketch

Fig. 3. A robot program and the inferred sketch for it

primitives that enable the robot to become aware of its environment. In particular, the function
scanObj(g) allows the robot to identify all objects of type g that are visible from its current location
and reason about their properties and relations. This is crucial for e�ective LfD, since the given
demonstrations are speci�c to the environment where they were provided and the robot must be
able to observe and reason about the state of objects in unseen environments.
Synthesis challenges. In this context, generating the desired policy from the user’s demonstration
is challenging for several reasons:
• First, the desired program has complex control �ow, with three nested loops and an if statement

containing multiple predicates.
• The desired program requires performing perceptual actions (like scanning for objects and testing

for properties) that have no corresponding actions in the demonstration.
• The target policy requires reasoning about concepts (such as being dirty or being on top of some

other object) that are also not indicated in the demonstration.

Our approach. Our approach tackles these challenges through two novel ideas: First, given the
user demonstrations, our approach generates a set of sketches of the target program by (largely)
reducing the sketch inference problem to regular expression synthesis. Second, our method employs
a sketch completion step to �gure out the missing pieces.

Figure 3b shows one of the sketches inferred from the given demonstration for the running exam-
ple3. As we can see, the sketch captures the high-level control �ow structure of the target program
by introducing loops, conditionals, and all primitive commands (such as actUnary). However, the
sketch omits several important details that are hard to glean from the user’s demonstration, such as
variable names and predicates to test for inside the conditional. Our method next employs a sketch
completion step to �gure out the missing pieces. Because sketch completion requires synthesizing
terms that are hard to infer from the user’s demonstration, this second step is primarily based
on enumerative search, but it (a) leverages trace compatibility checking to avoid dead ends in the
search space, and (b) utilizes an LLM to guide the search:

• Trace Compatibility Checking: Our sketch completion approach speeds up search by checking
compatibility between partial programs and user demonstrations. To do so, our algorithm
constructs a regular expression A that captures all possible behaviors of a partial program in

3ignore the dashed lines and high-lightings for now.

, Vol. 1, No. 1, Article . Publication date: April 2023.

P1

(c) Inferred Sketch

Program Synthesis for Robot Learning from Demonstrations 5

1: foreach(E1 2 scanLoc(A>><)) {
2: goto(E1) ;
3: let E2 := getFirst(scanObj(18=)) ;
4: actUnary(>?4=, E2) ;
5: foreach(E3 2 scanObj(143)) {
6: foreach(E4 2 scanObj(B⌘44C)) {
7: if(checkProp(38AC~, E4)^ checkRel(>=-C>?-> 5 , E4, E3)) {
8: actUnary(6A01, E4) ;
9: actBinary(?DC -8=, E4, E2) ;

10: }
11: }
12: }
13: actUnary(2;>B4, E2) ;
14: }

(a) Ground-truth robot program

1: foreach(E1 2 scanLoc(??)) {
2: goto(?? : A>><) ;
3: let E2 := getFirst(scanObj(??)) ;
4: actUnary(>?4=, ?? : 18=) ;
5: foreach(E3 2 scanObj(??)) {
6: foreach(E4 2 scanObj(??)) {
7: if(??) {
8: actUnary(6A01, ?? : B⌘44C) ;
9: actBinary(?DC -8=, ?? : B⌘44C , ?? : 18=) ;

10: }
11: }
12: }
13: actUnary(2;>B4, ?? : 18=) ;
14: }

(b) Inferred sketch

Fig. 3. A robot program and the inferred sketch for it

primitives that enable the robot to become aware of its environment. In particular, the function
scanObj(g) allows the robot to identify all objects of type g that are visible from its current location
and reason about their properties and relations. This is crucial for e�ective LfD, since the given
demonstrations are speci�c to the environment where they were provided and the robot must be
able to observe and reason about the state of objects in unseen environments.
Synthesis challenges. In this context, generating the desired policy from the user’s demonstration
is challenging for several reasons:
• First, the desired program has complex control �ow, with three nested loops and an if statement

containing multiple predicates.
• The desired program requires performing perceptual actions (like scanning for objects and testing

for properties) that have no corresponding actions in the demonstration.
• The target policy requires reasoning about concepts (such as being dirty or being on top of some

other object) that are also not indicated in the demonstration.

Our approach. Our approach tackles these challenges through two novel ideas: First, given the
user demonstrations, our approach generates a set of sketches of the target program by (largely)
reducing the sketch inference problem to regular expression synthesis. Second, our method employs
a sketch completion step to �gure out the missing pieces.

Figure 3b shows one of the sketches inferred from the given demonstration for the running exam-
ple3. As we can see, the sketch captures the high-level control �ow structure of the target program
by introducing loops, conditionals, and all primitive commands (such as actUnary). However, the
sketch omits several important details that are hard to glean from the user’s demonstration, such as
variable names and predicates to test for inside the conditional. Our method next employs a sketch
completion step to �gure out the missing pieces. Because sketch completion requires synthesizing
terms that are hard to infer from the user’s demonstration, this second step is primarily based
on enumerative search, but it (a) leverages trace compatibility checking to avoid dead ends in the
search space, and (b) utilizes an LLM to guide the search:

• Trace Compatibility Checking: Our sketch completion approach speeds up search by checking
compatibility between partial programs and user demonstrations. To do so, our algorithm
constructs a regular expression A that captures all possible behaviors of a partial program in

3ignore the dashed lines and high-lightings for now.

, Vol. 1, No. 1, Article . Publication date: April 2023.

(d) Synthesized Program

Fig. 2. Motivating Example

• We implement these ideas in a tool called prolex and evaluate its efficacy in the context of 120
benchmarks involving 40 unique household chores in three environments. prolex can complete
the synthesis task within 2 minutes for 80% of the benchmarks, and, for 81% of the completed
tasks, prolex is able to learn the ground truth program from just a single demonstration.

2 MOTIVATING EXAMPLE

In this section, we present a motivating example to illustrate our programmatic LfD approach.
Imagine a hotel worker who wants to instruct a robot to collect dirty sheets from guest rooms and
place them in a laundry bin in the room. The goal of LfD is to teach this task through demonstrations
rather than explicitly programming the robot. We formalize user demonstrations in a form that is
amenable to be captured using smart hand-held devices, similar to existing end-user robots like the
iRobot Roomba [iRobot 2023] and Amazon Astro [Lee et al. 2023].

Loc State

𝑟1
𝑂𝑏 𝑗𝑠 𝑏𝑒𝑑 : [𝑏1], 𝑠ℎ𝑒𝑒𝑡 : [𝑠1, 𝑠2], 𝑏𝑖𝑛 : [𝑏𝑛1], . . .
𝑃𝑟𝑜𝑝𝑠 (𝑠1, 𝑑𝑖𝑟𝑡𝑦), (𝑏𝑛1, 𝑐𝑙𝑜𝑠𝑒𝑑), . . .
𝑅𝑒𝑙𝑠 (𝑠1, 𝑜𝑛-𝑡𝑜𝑝-𝑜 𝑓 ,𝑏1), (𝑠2, 𝑜𝑛-𝑡𝑜𝑝-𝑜 𝑓 ,𝑏1), . . .

𝑟2
𝑂𝑏 𝑗𝑠 𝑏𝑒𝑑 : [𝑏2], 𝑠ℎ𝑒𝑒𝑡 : [𝑠3, 𝑠4], 𝑏𝑖𝑛 : [𝑏𝑛2], . . .
𝑃𝑟𝑜𝑝𝑠 (𝑠3, 𝑑𝑖𝑟𝑡𝑦), (𝑠4, 𝑑𝑖𝑟𝑡𝑦), (𝑏𝑛2, 𝑐𝑙𝑜𝑠𝑒𝑑), . . .
𝑅𝑒𝑙𝑠 (𝑠3, 𝑜𝑛-𝑡𝑜𝑝-𝑜 𝑓 ,𝑏2), (𝑠4, 𝑜𝑛-𝑡𝑜𝑝-𝑜 𝑓 ,𝑏2), . . .

Fig. 3. Partial representation of the initial environment.

User Demonstration. For the above task, sup-
pose that the hotel worker performs a demon-
stration consisting of the 12 actions shown in
the left side of Figure 2a. The demonstration
takes place in two rooms, 𝑟1 and 𝑟2; Figure 3
shows the state of these two rooms before the
demonstration takes place. Each room contains
a large number of objects, including a bed, a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:5

laundry bin, and a few sheets on the bed. In
particular, there is a clean sheet (𝑠2) and a dirty sheet (𝑠1) on the bed in 𝑟1, and there are two dirty
sheets (𝑠3 and 𝑠4) on the bed in 𝑟2. Note that the complete representation of the rooms includes many
more object types and properties, which are omitted from the figure due to space constraints. The
first five steps of the demonstration sequence shown in Figure 2a (left) correspond to the actions
performed in 𝑟1, and the remaining seven steps indicate the actions performed in 𝑟2. Specifically,
𝑔𝑜𝑡𝑜 (𝑙) indicates going to the location 𝑙 , and 𝑎𝑐𝑡 (𝑎, 𝑜) indicates performing a specific action 𝑎 on
objects 𝑜 . Hence, in our example demonstration, the user first visits room 𝑟1, where they open bin
𝑏𝑛1, grab and place sheet 𝑠1 in that bin, and finally close the bin. Next, they go to the second room,
𝑟2, and repeat a similar sequence of actions with the bin 𝑏𝑛2, and sheets 𝑠3 and 𝑠4.
Desired Output. Since our goal is to perform programmatic LfD, we wish to learn a programmatic
robot execution policy from the provided demonstration. Figure 2d shows the desired policy that
generalizes from the user’s only demonstration. Intuitively, this policy encodes that the robot should
go to each room (line 2), identify a bin and all beds present in that room, collect all dirty sheets
from the top of each bed (lines 7-8), and place them in the bin (line 9). The program also contains
perception primitives that enable the robot to become aware of its environment (lines 1, 3, 5, and 6).
In particular, the function scanObj(𝜏) allows the robot to identify all objects of type 𝜏 that are visible
from its current location and reason about their properties and relations. Function scanLoc(𝜏) is
similar but returns all locations of type 𝜏 . Synthesis of appropriate perception primitives is crucial
for effective LfD, since the robot must be able to observe and reason about the state of objects in
new and unseen environments.
Synthesis Challenges. In this context, generating the desired policy from the user’s demonstration
is challenging for several reasons: (1) the desired program has complex control flow, with three
nested loops and an if statement with multiple predicates, (2) the desired program requires perform-
ing appropriate perception actions that have no correspondence in the given demonstrations, and
(3) the desired program requires reasoning about high-level concepts that are also not indicated in
the demonstrations, such as being dirty or being on top of some other object. Additionally, observe
that the synthesized program needs to refer to object types (e.g., bed) that are not involved in the
demonstration. Hence, the synthesizer cannot only consider those objects in the demonstration,
as the desired program could refer to any of the entities in the environment. This means that the
difficulty of the synthesis task is inherently sensitive to the complexity of the environment.
Our Approach. Our algorithm first generates a set of sketches of the target program based on the
demonstration. These sketches capture the control flow structure of the target program but contain
many missing expressions (“holes"). The goal of the subsequent sketch completion step is to fill
these holes in a way that scales to complex environments.
Sketch generation. To generate a sketch, our method first abstracts the user’s demonstrations as
a set of strings: Figure 2a (right) shows the string abstracted from the user’s sole demonstration
using an abstraction function 𝛼 , where G and A denote 𝑔𝑜𝑡𝑜 and 𝑎𝑐𝑡 in the demonstration, and
the subscripts indicate the type of their arguments. For example, even though the demonstration
specifies that the user grabbed specific sheets (namely, 𝑠1, 𝑠3, and 𝑠4), the string abstraction omits
such details and represents all three instances of this action using A𝑔𝑟𝑎𝑏,𝑠ℎ𝑒𝑒𝑡 . Each character in the
abstract string is highlighted using a different color to visually aid the reader. The idea of converting
the demonstration to a more abstract form is a crucial first step towards generalization.

Next, our approach utilizes existing techniques to synthesize a regex that matches the string
encoding of the demonstrations: Figure 2b presents three regular expressions that all match the
string abstraction of the given demonstration. Note that there is an obvious parallel between

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:6 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

regex operators and the program’s control flow: Since Kleene star denotes repetition, it naturally
corresponds to a looping construct. Similarly, since the optional operator (i.e., (𝑟)?) denotes choice, it
is naturally translated into an if statement. Thus, given a candidate regex 𝑟 for the demonstrations,
our approach translates it into a sketch in a syntax-directed way. For instance, the third regular
expression from Figure 2b is translated to the sketch shown in Figure 2c, where the three nested
loops and the conditional block are marked using the same colored dashed lines both in the regex
and in the sketch. Additionally, because the program should not manipulate any objects before it
perceives them, our sketch generation procedure also inserts any necessary perception primitives
to the sketch. For instance, the sketch in Figure 2c contains an inferred let binding (labelled P1),
since the object of type 𝑏𝑖𝑛 at line 4 cannot be acted upon before it is first perceived by the robot.
Sketch completion. For each sketch generated in the first step, our method tries to find a completion
that matches the user’s demonstration. In practice, several of these sketches are unrealizable,
meaning that there is no completion that will match the user’s demonstrations. For example,
consider the first regex presented above in Figure 2b that matches the string abstraction of the
demonstration. This regex does not include the optional operator ? used in the correct regex.
Intuitively, sketches generated from this regex will be infeasible because, without an if statement
in the sketch, the resulting programs would end up grabbing both sheets in room 𝑟1, rather than
only the single dirty sheet. Hence, the second phase of our technique considers multiple sketches
and tries to find a completion of any sketch that is consistent with the given demonstrations.

Our sketch completion algorithm is based on top-down enumerative search but (a) utilizes a
novel unrealizability checking procedure to quickly detect dead-ends and (b) leverages an LLM
to guide exploration. In particular, starting from a sketch, the synthesis algorithm maintains a
worklist of partial programs containing holes to be filled. When dequeuing a partial program from
the worklist, we consider its probability according to the LLM, so more promising partial programs
are prioritized over less likely ones. Going back to our example, consider a partial program where
we test the color of a bedsheet before putting it in the bin. Because the concepts “laundry bin” and
“cleanliness” are much more related compared to “color” and “laundry bin”, our technique prioritizes
a program that includes the conditional checkProp(𝑑𝑖𝑟𝑡𝑦, ...) over one that is based on color.

Fig. 4. An Unrealizable Partial Program

Our sketch completion method also leverages the
demonstration to prove unrealizability of a given
synthesis problem. As an example, consider the par-
tial program shown in Figure 4. We can prove that
there is no completion of this partial program that
will be consistent with the user’s demonstrations:
Because none of the actions in the partial program
modify object locations and because there are two
sheets in each room, any completion of this partial
program would end up performing the 𝑔𝑟𝑎𝑏 action
at least four times but there are only three 𝑔𝑟𝑎𝑏 ac-
tions in the trace. Hence, this partial program is
a dead end, and our approach can detect unrealiz-
ability of such a synthesis sub-problem. To do so,
it statically analyzes the partial program to infer upper and lower bounds on the number of loop
executions. It then uses this information to construct a regex, shown at the bottom of Figure 4,
that summarizes all possible traces that this partial program can generate. Since the demo trace
from Figure 2(a) is not accepted by the regular expression in Figure 4, our algorithm can prove the
unrealizability of this synthesis problem.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:7

𝜏𝑙 ∈ Location Type∗ := {𝑏𝑒𝑑𝑟𝑜𝑜𝑚, 𝑘𝑖𝑡𝑐ℎ𝑒𝑛, 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡, 𝑚𝑎𝑖𝑙𝑟𝑜𝑜𝑚, . . . }
𝜏𝑜 ∈ Object Type∗ := {𝑝𝑙𝑎𝑡𝑒, 𝑑𝑟𝑎𝑤𝑒𝑟, 𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟, 𝑠𝑖𝑛𝑘, . . . }
𝑝 ∈ Property∗ := {𝑒𝑚𝑝𝑡𝑦, 𝑏𝑟𝑜𝑘𝑒𝑛, 𝑔𝑟𝑒𝑒𝑛, 𝑑𝑟𝑦, . . . }
𝑟 ∈ Relation∗ := {𝑖𝑛𝑠𝑖𝑑𝑒-𝑜 𝑓 , 𝑛𝑒𝑥𝑡-𝑡𝑜, 𝑜𝑛-𝑡𝑜𝑝-𝑜 𝑓 , 𝑏𝑒𝑙𝑜𝑛𝑔𝑠-𝑡𝑜, . . . }
𝑎 ∈ Action∗ := {𝑔𝑟𝑎𝑏, 𝑜𝑝𝑒𝑛, 𝑝𝑜𝑢𝑟 -𝑖𝑛𝑡𝑜, 𝑠𝑐𝑟𝑢𝑏-𝑤𝑖𝑡ℎ, 𝑝𝑢𝑡 -𝑖𝑛, . . . }
𝜌 ∈ Item List := scanObj(𝜏𝑜) | scanLoc(𝜏𝑙)
𝜙 ∈ Conditional := checkProp(𝑝, 𝑣) | checkRel(𝑟, 𝑣1, 𝑣2) | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ¬𝜙
𝜋 ∈ Program := actUnary(𝑎, 𝑣) | actBinary(𝑎, 𝑣1, 𝑣2) | goto(𝑣) | if(𝜙) {𝜋 } | skip |

foreach(𝑣 ∈ 𝜌) {𝜋 } | let 𝑣 := getNth(𝜌,𝑛) | 𝜋 ;𝜋

Fig. 5. DSL syntax where 𝑣 denotes variables and 𝑛 is a natural number. Rules marked with ∗ domain-specific.

3 ROBOT EXECUTION POLICIES

In this section, we introduce a domain-specific language (DSL) for programming robots and provide
a formal definition of the robot learning from demonstrations (LfD) problem.
3.1 Syntax
The syntax of the our DSL is presented in Figure 5. A robot program (𝜋) contains functions to
perform various operations on a single object (actUnary) or a pair of objects (actBinary). The
robot can move between locations using the goto function. The robot becomes aware of its location
by scanning the environment using scanLoc, and it becomes aware of objects in its current location
using the scanObj function. The result of running a scan operation is an ordered list of location or
object instances (denoted by 𝜌) of the specified type 𝜏 . For example, scanObj(𝑝𝑙𝑎𝑡𝑒) yields all plates
at the current location of the robots. Specific elements in the scan result can be bound to variables
using a restricted let binding of the form let 𝑣 := getNth(𝜌, 𝑛). This expression introduces a
new variable 𝑣 and assigns the 𝑛’th element of list 𝜌 to 𝑣 . As standard, the DSL also contains
typical conditional and looping control structures. Conditional expressions check properties of
objects (checkProp), relationships between them (checkRel), as well as their Boolean compositions.
The abstractions for robot actions and perception in our DSL is similar to widely used accepted
symbolic abstractions for classical planning [Aeronautiques et al. 1998; Fox and Long 2003], and
more recently, symbolic robot policies [Liang et al. 2022].

Note that the DSL presented in Figure 5 is parametrized over a set of domain-specific terminals,
indicated by an asterisk. For example, location types 𝜏𝑙 are not fixed and can vary based on the
target application domain. For example, for robot execution policies targeting household chores,
locations might be kitchen, living room, basement etc. Similarly, object types, properties, relations,
and actions are also domain-specific and can be customized for a given family of tasks.
3.2 Operational Semantics

In this section, we present the operational semantics of our robot DSL using the small-step reduction
relation ⇒ shown in Figure 6. This relation formalizes how the robot interacts with its environment
while executing the program. Specifically, the relation ⇒ is defined between tuples of the form
(𝜋, E, 𝜎, 𝑡), where 𝜋 is a program, E is the robot’s execution environment, 𝜎 is a valuation (mapping
variables to their values), and 𝑡 is a program trace. In more detail, the environment E is a quadruple
(L,O, ℓ,I) where L is a set of typed location identifiers; O is a mapping from (typed) object
identifiers to their corresponding location; ℓ is the current location of the robot; and I is an
interpretation for all the relation symbols. That is, for a relation 𝑝 , I(𝑝) yields the set of tuples of
objects for which 𝑝 evaluates to true. Given object type 𝜏𝑜 and a location 𝑙 , we write E .objs(𝑙, 𝜏𝑜)
to denote the list of all objects that are at location 𝑙 and that have type 𝜏𝑜 . Similarly, given a location
type 𝜏𝑙 , the list of locations of this type is denoted by E .locs(𝜏𝑙). Finally, a trace is a sequence of
actions performed by the robot. Robot actions are denoted using 𝑎𝑐𝑡 (𝑎, 𝑜) and 𝑔𝑜𝑡𝑜 (𝑙), where 𝑎 is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:8 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

(seqence)
𝜋, E, 𝜎, 𝑡 ⇒ 𝜋 ′, E′, 𝜎 ′, 𝑡 ′

𝜋 ;𝜋 ′′, E, 𝜎, 𝑡 ⇒ 𝜋 ′;𝜋 ′′, E′, 𝜎 ′, 𝑡 ′

(skip)

skip;𝜋, E, 𝜎, 𝑡 ⇒ 𝜋, E, 𝜎, 𝑡
(if-t)

𝜙 ⇓E,𝜎 ⊤
if(𝜙) {𝜋 }, E, 𝜎, 𝑡 ⇒ 𝜋, E, 𝜎, 𝑡

(if-f)
𝜙 ⇓E,𝜎 ⊥

if(𝜙) {𝜋 }, E, 𝜎, 𝑡 ⇒ skip, E, 𝜎, 𝑡
(act-unary)

𝜋 = actUnary(𝑎, 𝑣)
𝑜 = 𝜎 (𝑣) E 𝑎,𝑜−−→ E′

𝑡 ′ = 𝑎𝑐𝑡 (𝑎,𝑜)
𝜋, E, 𝜎, 𝑡 ⇒ skip, E′, 𝜎, 𝑡 ; 𝑡 ′

(act-binary)
𝜋 = actBinary(𝑎, 𝑣1, 𝑣2)
𝑜1 = 𝜎 (𝑣1) 𝑜2 = 𝜎 (𝑣2)

E 𝑎,𝑜1,𝑜2−−−−−→ E′ 𝑡 ′ = 𝑎𝑐𝑡 (𝑎,𝑜1, 𝑜2)
𝜋, E, 𝜎, 𝑡 ⇒ skip, E′, 𝜎, 𝑡 ; 𝑡 ′

(goto)
𝜋 = goto(𝑣)

𝑙 = 𝜎 (𝑣) E′ = E[ℓ ↦→ 𝑙]
𝑡 ′ = 𝑔𝑜𝑡𝑜 (𝑙)

𝜋, E, 𝜎, 𝑡 ⇒ skip, E′, 𝜎, 𝑡 ; 𝑡 ′

(let-obj)
𝜋 = let 𝑣 := getNth(scanObj(𝜏𝑜), 𝑛)

𝜎 ′ = 𝜎 [𝑣 ↦→ E .objs(ℓ, 𝜏𝑜) [𝑛]]
𝜋, E, 𝜎, 𝑡 ⇒ skip, E, 𝜎 ′, 𝑡

(foreach-obj)
𝑛 = | E .objs(ℓ, 𝜏𝑜) | ∀0≤𝑖<𝑛 . 𝜎𝑖 = 𝜎 [𝑣 ↦→ E .objs(ℓ, 𝜏𝑜) [𝑖]]
E0 = E 𝑡0 = 𝑡 ∀0≤𝑖<𝑛 . 𝜋, E𝑖 , 𝜎𝑖 , 𝑡𝑖 ⇒ skip, E𝑖+1, _ , 𝑡𝑖+1

foreach(𝑣 ∈ scanObj(𝜏𝑜)) {𝜋 }, E, 𝜎, 𝑡 ⇒ skip, E𝑛, 𝜎, 𝑡𝑛

(let-loc)
𝜋 = let 𝑣 := getNth(scanLoc(𝜏𝑙), 𝑛)

𝜎 ′ = 𝜎 [𝑣 ↦→ E .locs(𝜏𝑙) [𝑛]]
𝜋, E, 𝜎, 𝑡 ⇒ skip, E, 𝜎 ′, 𝑡

(foreach-loc)
𝑛 = | E .locs(𝜏𝑙) | ∀0≤𝑖<𝑛 . 𝜎𝑖 = 𝜎 [𝑣 ↦→ E .locs(𝜏𝑙) [𝑖]]

E0 = E 𝑡0 = 𝑡 ∀0≤𝑖<𝑛 . 𝜋, E𝑖 , 𝜎𝑖 , 𝑡𝑖 ⇒ skip, E𝑖+1, _ , 𝑡𝑖+1

foreach(𝑣 ∈ scanLoc(𝜏𝑙)) {𝜋 }, E, 𝜎, 𝑡 ⇒ skip, E𝑛, 𝜎, 𝑡𝑛

Fig. 6. Operational semantics. Relation ⇓ is defined in Figure 7, and the definition of relation → can be found
in the extended version of this paper [Patton et al. 2023a].

(check_prop_t)
o ∈ I(𝑝)

checkProp(𝑝, 𝑣) ⇓E,𝜎 ⊤

(check_prop_f)
𝜎 (𝑣) ∉ I(𝑝)

checkProp(𝑝, 𝑣) ⇓E,𝜎 ⊥

(check_rel_t)
(𝜎 (𝑣1), 𝜎 (𝑣2)) ∈ I (𝑟)

checkRel(𝑟, 𝑣1, 𝑣2) ⇓E,𝜎 ⊤

(check_rel_f)
(𝜎 (𝑣1), 𝜎 (𝑣2)) ∉ I(𝑟)

checkRel(𝑟, 𝑣1, 𝑣2) ⇓E,𝜎 ⊥
(negation)

𝜙 ⇓E,𝜎 𝑏

¬𝜙 ⇓E,𝜎 ¬𝑏

(conjunction)
𝜙1 ⇓E,𝜎 𝑏1 𝜙2 ⇓E,𝜎 𝑏2

𝜙1 ∧ 𝜙2 ⇓E,𝜎 𝑏1 ∧ 𝑏2

(disjunction)
𝜙1 ⇓E,𝜎 𝑏1 𝜙2 ⇓E,𝜎 𝑏2

𝜙1 ∨ 𝜙2 ⇓E,𝜎 𝑏1 ∨ 𝑏2

Fig. 7. Boolean expression evaluation.

an action that was performed on objects 𝑜 , and 𝑙 is a location that the robot visited. Note that robot
execution policies are effectful programs: for example, the location of the robot or some properties
of an object can change after executing 𝜋 .

With the above notations in place, we now explain the operational semantics from Figure 6 in
more detail. The first rule, labeled (seqence), defines how the robot takes a step by executing
the first statement in the program. The next rule (skip) defines the semantics of executing a skip
statement, which has no effect on the execution state. The rules (if-t) and (if-f) describe the flow
of the program when a conditional statement if(𝜙){𝜋} is executed. First, the Boolean expression
𝜙 is evaluated to ⊥ or ⊤, depending on the result, the program either skips or executes 𝜋 . Boolean
expressions are evaluated using the relation ⇓ defined in Figure 7. This relation is parameterized by
the execution environment E and valuation 𝜎 .

The (act-unary) and (act-binary) rules specify the outcomes of executing a unary and a binary
action, respectively, using the auxiliary relation →⊆ E × E. Given an environment E, an action
𝑎 and affected object instance(s), the relation → formalizes how the environment E is modified
based on the semantics of action 𝑎. Since our DSL is parameterized over the set of actions, we do
not discuss the → relation in detail in the main body of the paper and refer the interested reader to
the longer version of this paper [Patton et al. 2023a] for a representative subset of actions used in
our evaluation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:9

Algorithm 1: Top-level Synthesis Algorithm
Input: A set of demonstrations D, a statistical completion model \
Output: A policy consistent with the demonstrations or ⊥ if none exists
1: Synthesize(D, \)
2: 𝐴 := {𝛼 (𝑡) | (_ , 𝑡) ∈ D} # get the abstraction of given traces using function 𝛼

3: while (𝑡𝑟𝑢𝑒) {
4: 𝑟 := GetNextRegex(𝐴) # get a regular expression that matches the abstractions of all demos
5: if(𝑟 = ⊥) break
6: while (𝑡𝑟𝑢𝑒) {
7: 𝑠 := GetNextSketch(𝑟) # get the next lazily generated sketch from 𝑟
8: if(𝑠 = ⊥) break
9: 𝜋 := CompleteSketch\ (𝑠, D) # search for a consistent completion of 𝑠 and return the result

10: if(𝜋 ≠ ⊥) return 𝜋
11: }
12: }
13: return ⊥

The goto rule defines the effect of executing a goto(𝑣) statement, where the environment is
updated to reflect the robot’s new location, and a new trace element 𝑔𝑜𝑡𝑜 (𝑙) is generated and
appended to the existing trace, where 𝑙 is the location stored in variable 𝑣 . Next, the rules let-obj
and let-loc, define the semantics of the let 𝑣 := getNth(𝜌, 𝑛) statement, which assigns to variable
𝑣 the 𝑛𝑡ℎ element of list 𝜌 obtained via either scanObj or scanLoc. Specifically, scanObj(𝜏𝑜) yields
all objects of type 𝜏𝑜 that are present at the robot’s current location, and scanLoc(𝜏𝑙) yields all
locations of type 𝜏𝑙 . The rules (foreach-obj) and (foreach-loc) describe the semantics of loops of
the form foreach(𝑣 ∈ 𝜌){𝜋}, where 𝜌 is the result of a scan operation. As expected, these rules
iteratively bind 𝑣 to each of the elements in 𝜌 and execute the loop body 𝜋 under this new valuation.

Finally, we use the ⇒ relation to define the semantics of executing a policy 𝜋 on environment E.
Given E and robot execution policy 𝜋 , we write 𝜋 (E) = 𝑡 iff 𝜋, E,Nil,Nil ⇒ skip, _, _, 𝑡 where Nil
denotes an empty list/mapping.
3.3 Problem Statement

In this section, we formally define the LfD problem that we address in this paper. Informally, given
a set of demonstrations D, the LfD problem is to find a robot execution policy 𝜋∗ (in the DSL of
Figure 5) such that 𝜋 is consistent with D. To make the notion of consistency more precise, we
represent a demonstration 𝛿 as a pair (E, 𝑡) where E is the initial environment and 𝑡 is a trace of
the user’s demonstration in this environment.

Definition 3.1. (Consistency with demonstration) We say that a robot execution policy 𝜋∗ is
consistent with a demonstration 𝛿 = (E, 𝑡), denoted 𝜋 |= 𝛿 , iff 𝜋 (E) = 𝑡 .

We also extend this notion of consistency to a set of demonstrations D, and we write 𝜋 |= D iff
𝜋 |= 𝛿 for every demonstration 𝛿 in D. We can now formalize our problem statement as follows:

Definition 3.2. (Programmatic LfD) Given a set of demonstrations D, the programmatic LfD
problem is to find a robot execution policy 𝜋∗ such that 𝜋∗ |= D.
4 SYNTHESIS ALGORITHM

In this section, we present our synthesis technique for solving the programmatic LfD problem
defined in the previous section. We start by giving an overview of the top-level algorithm and then
describe each of its key components in more detail.
4.1 Top-Level Algorithm

Our top-level learning procedure is presented in Algorithm 1. This algorithm takes as input a set of
demonstrations D and returns a policy 𝜋 such that for all 𝛿 ∈ D, we have 𝜋 |= 𝛿 . If there is no
programmatic policy that is consistent with all demonstrations, the algorithm returns ⊥.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:10 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

The synthesis procedure starts by constructing an abstraction of each demonstration 𝛿 ∈ D as a
string over the alphabet Σ = {G𝜏 ,A𝑎,𝜏 ,A𝑎,𝜏,𝜏 ′ } where 𝜏, 𝜏 ′ indicate location and object types (e.g.,
𝑝𝑙𝑎𝑡𝑒 , 𝑘𝑖𝑡𝑐ℎ𝑒𝑛) and 𝑎 denotes a specific type of action (e.g., 𝑔𝑟𝑎𝑏). This abstraction is performed at
line 2 of Algorithm 1 using the function 𝛼 , defined as follows:

𝛼 (𝑔𝑜𝑡𝑜 (𝑙)) := G𝜏𝑙 𝛼 (𝑎𝑐𝑡 (𝑎, 𝑜)) := A𝑎,𝜏𝑜 𝛼 (𝑎𝑐𝑡 (𝑎, 𝑜, 𝑜 ′)) := A𝑎,𝜏𝑜 ,𝜏 ′𝑜

where 𝜏𝑙 , 𝜏𝑜 denote the type of location 𝑙 and object 𝑜 respectively. In other words, when abstracting
a trace as a string, the algorithm replaces specific object instances with their corresponding types.
Intuitively, this abstraction captures the commonality between different actions in the trace, allowing
generalization from a specific sequence of actions to a more general program structure.

Next, given the string abstraction 𝐴 of the demonstrations D, the loop in lines 3–12 alternates
between the following key steps:
• Regex synthesis: The GetNextRegex procedure at line 4 finds a regular expression 𝑟 matching

all strings in 𝐴. Intuitively, this regex captures the main control flow structure of the target
program and can be used to generate a set of program sketches.

• Sketch generation: The inner loop in lines 6–10 translates a given regex to a set of program
sketches. As shown in Figure 8, a sketch has almost the same syntax as programs in our DSL
except that the arguments of most constructs are unknown, as indicated by question marks.
In particular, note that (1) the types of objects and locations being scanned are unknown, (2)
predicates of if statements are yet to be determined, and (3) the specific objects and locations
being acted on are also unknown (although their types are known).

• Sketch completion: Given a candidate program sketch 𝑠 , line 9 of the algorithm invokes
CompleteSketch to find a completion 𝜋 of 𝑠 that is consistent with the demonstrations. If
CompleteSketch does not return failure (⊥), the synthesized policy is guaranteed to satisfy all
demonstrations; hence, Synthesize returns 𝜋 as a solution at line 10.
In the remainder of this section, we describe sketch generation and sketch completion in more

detail. Because learning regexes from a set of positive string examples is a well-understood problem,
we do not describe it in this paper, and our implementation uses an off-the-shelf tool customized to
our needs via some post-processing (see Section 5).
4.2 Sketch Inference

Given a regex 𝑟 over the alphabet Σ = {G𝜏𝑙 ,A𝑎,𝜏𝑜 ,A𝑎,𝜏𝑜 ,𝜏 ′𝑜 }, the goal of sketch inference is to
(lazily) generate a set of program sketches. The inputs to the sketch inference procedure are regular
expression of the following form:

𝑟 := A𝑎,𝜏𝑜 | A𝑎,𝜏𝑜 ,𝜏 ′𝑜 | G𝜏𝑙 | 𝑟𝑟 | (𝑟)∗ | (𝑟)?
Given such a regex, sketch inference consists of two steps:
(1) Syntax-directed translation: In the first step, sketch inference converts the given regex to

control flow operations using syntax-directed translation. Intuitively, string concatenation
is translated into to sequential composition; Kleene star corresponds to loops; and, optional
regexes translate into conditionals.

(2) Perception inference: While the sketches generated in step (1) are syntactically valid, they
may lack essential perception operations (i.e., scanObj and scanLoc). Hence, in the second

𝜌𝑠 ∈ Item List := scanObj(??𝜏𝑜) | scanLoc(??𝜏𝑙)
𝑠 ∈ Sketch := actUnary(𝑎, ??𝑣 : 𝜏𝑜) | actBinary(𝑎, ??𝑣 : 𝜏𝑜 , ??𝑣 : 𝜏 ′𝑜) | goto(??𝑣) | if(??𝜙) {𝑠 } |

foreach(𝑣 ∈ 𝜌𝑠) {𝑠 } | let 𝑣 := getNth(𝜌𝑠 , ??𝑛) | 𝑠 ; 𝑠

Fig. 8. Syntax of Program Sketches. Domain specific definitions (i.e., 𝜏𝑜 , 𝜏𝑙 , 𝑎) are identical to Figure 5.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:11

G𝜏𝑙
▷ goto(??𝑣 : 𝜏𝑙) A𝑎,𝜏𝑜 ▷ actUnary(𝑎, ??𝑣 : 𝜏𝑜) A𝑎,𝜏𝑜 ,𝜏

′
𝑜
▷ actBinary(𝑎, ??𝑣 : 𝜏𝑜 , ??𝑣 : 𝜏 ′𝑜)

𝑟 ▷ 𝑠

(𝑟)∗ ▷ foreach(𝑣 ∈ scanLoc(??𝜏𝑙)) {𝑠 }
𝑟 ▷ 𝑠

(𝑟)∗ ▷ foreach(𝑣 ∈ scanObj(??𝜏𝑜)) {𝑠 }
𝑟1 ▷ 𝑠1 𝑟2 ▷ 𝑠2

𝑟1𝑟2 ▷ 𝑠1; 𝑠2

𝑟 ▷ 𝑠

(𝑟)? ▷ if(??𝜙) {𝑠 }
𝑟 ▷ 𝑠

𝑟 ▷ let 𝑣 := getNth(scanObj(??𝜏𝑜), ??𝑛) ; 𝑠
𝑟 ▷ 𝑠

𝑟 ▷ let 𝑣 := getNth(scanLoc(??𝜏𝑙), ??𝑛) ; 𝑠

Fig. 9. Regex to sketch inference rules.

step, our sketch inference procedure inserts these perception operations such that the resulting
sketch is perception-complete, meaning that it contains at least the minimum number of required
scan operation. However, since the target program may require additional scan operations,
the second step of sketch inference yields a set of sketches that only differ with respect to the
placement of these perception operations.

Figure 9 presents our syntax-directed translation rules for converting regular expressions to a
syntactically valid sketch using judgments of the form 𝑟 ⊲ 𝑠 , meaning that regex 𝑟 is translated to
sketch 𝑠 . As expected, characters G𝜏 ,A𝑎,𝜏 ,A𝑎,𝜏,𝜏 ′ are translated to goto, actUnary, and actBinary
constructs respectively. The Kleene star operator is translated into a looping construct, but may
iterate either over locations or objects. Finally, regex concatanation is translated into sequential
composition, and (𝑟)? is translated into a conditional with an unknown predicate.

Recall that our DSL also allows let bindings that assign a new variable to the result of a perception
operation. Since program traces (and, hence, the inferred regexes) do not contain these perception
operations, the last two rules in Figure 9 allow inserting let bindings at arbitrary positions in
the sketch. In particular, if 𝑟 can be translated into a sketch 𝑠 , then the last two rules of Figure 9
state that 𝑟 can also be translated into a sketch of the form 𝑙 ; 𝑠 where 𝑙 is a new let binding which
assigns a fresh variable 𝑣 to an entity that is obtained by scanning objects or locations.

In general, observe that a regex can give rise to a large number of program sketches, as we do
not a priori know where to insert let bindings. To tackle this problem, our lazy sketch inference
procedure first translates a regex into a sketch without using the last two rules in Figure 9 for
inserting let bindings. In a second step, it infers where perception operations are needed and
inserts let bindings according to the results of this analysis.

This second step of our sketch inference procedure is formalized using the notion of perception
completeness. Intuitively, a sketch is perception complete if the program perceives (using scan
operations) all objects that it manipulates, before it manipulates them. If a sketch is not perception
complete, it can never be realized into a valid program; hence, it is wasteful to consider such
sketches. We formalize the notion of perception completeness using the following definition:

Definition 4.1. (Perception Completeness) Let ≺ denote a standard partial order between
program points.2 A sketch 𝑠 is said to be perception complete if the following conditions are satisfied:
(1) for all 𝑠1 := actUnary(𝑎, ?? : 𝜏𝑜) in 𝑠 , there exists a 𝑠2 := scanObj(𝜏𝑜) such that 𝑠2 ≺ 𝑠1.
(2) for all 𝑠1 := actBinary(𝑎, ?? : 𝜏𝑜 , ?? : 𝜏 ′𝑜) in 𝑠 , there exist 𝑠2 := scanObj(𝜏𝑜) and 𝑠3 :=

scanObj(𝜏 ′𝑜), such that 𝑠2 ≺ 𝑠1 and 𝑠3 ≺ 𝑠1.
(3) for all 𝑠1 := goto(?? : 𝜏𝑙) in 𝑠 , there exists a statement 𝑠2 := scanLoc(𝜏𝑙) in 𝑠 such that 𝑠2 ≺ 𝑠1.

Our sketch inference algorithm leverages this notion of perception completeness to lazily enu-
merate program sketches as follows: First, it translates a given regex into a set of sketches using
2We refer the interested reader to the chapter 6 of "Programming Language Pragmatics" by Michael L. Scott [2000] for a
detailed discussion on program orders and their usage in control flow analysis.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:12 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Algorithm 2: Sketch Completion Algorithm
Input: A set of demonstrations D, a sketch 𝑠
Output: A completion of 𝑠 consistent with D or ⊥ if none exists
1: CompleteSketch\ (𝑠, D){
2: 𝑊 := [(𝑠, 1.0)] # the given sketch 𝑠 is the only partial program initially
3: while (𝑊 ≠ ∅) {
4: (𝜕, 𝑝) :=𝑊 .dequeue() # get the partial program with the highest probability
5: if (IsComplete(𝜕)) { # check if there is any holes left to be filled
6: if (𝜕 |= D) return 𝜕 # return the completed program if it is consistent with the demos
7: else continue
8: if ¬Compatible(𝜕, D) continue # check compatibility of the partial program and demos
9: ℎ := GetNextHole(𝜕)

10: foreach (𝑐 ∈ Fill(𝜕,ℎ, D)) {
11: 𝜕′ := 𝜕[ℎ ↦→ 𝑐]; 𝑝′ := \ (𝑐 | 𝜕,ℎ, D) # fill the chosen hole and assign a probability to the result
12: 𝑊 .enqueue((𝜕′, 𝑝′)) # add the new partial program to the worklist
13: }}}

the inference rules shown in Figure 9 but without using the last two rules. It then infers a minimal
set of applications of the last two rules needed to make the sketch perception complete and then
augments the resulting sketches with the inferred let bindings. Finally, because additional let
bindings may be needed, it lazily inserts more let bindings (up to a bound) if the current sketch
does not produce a valid completion.

4.3 Sketch Completion

We now turn our attention to the sketch completion procedure, shown in Algorithm 2, for finding
a sketch instantiation that satisfies the given demonstrations. Given a sketch 𝑠 and demonstrations
D, CompleteSketch either returns ⊥ to indicate failure in finding a policy 𝜋 that is consistent with
all demonstrations. Note that the sketch completion procedure is parameterized over a statistical
model \ for assigning probabilities to possible sketch completions.

CompleteSketch is a standard top-down search procedure that iteratively expands partial pro-
grams until a solution is found.3 However, our sketch completion procedure has two novel aspects:
First, it assigns probabilities to partial programs using a large language model, and second, it uses a
novel compatibility checking procedure for proving unrealizability of synthesis problems.

In more detail, the sketch completion procedure initializes the worklist to a singleton containing
the input sketch 𝑠 , with corresponding probability 1.0 (line 2). It then enters a loop (lines 3–14)
where each iteration processes the highest probability partial program 𝜕 in the worklist. If the
dequeued partial program 𝜕 is complete, meaning that it has no holes (line 5), the algorithm checks
whether all demonstrations are satisfied (line 6). If so, 𝜕 is returned as a solution; otherwise, it is
discarded. If 𝜕 is incomplete, the algorithm performs a compatibility check at line 8 to avoid solving
an unrealizable synthesis problem. Next, if 𝜕 is a compatible with the demonstrations, the algorithm
considers one of the holes ℎ in 𝜕 and all well-typed grammar productions that can be used to fill
that hole. In particular, given a hole ?𝑁 , the procedure Fill yields a set of expressions 𝑐1, . . . , 𝑐𝑛
such that (1) 𝑁 → 𝑐𝑖 is a production in the grammar, and (2) replacing ℎ with 𝑐𝑖 can result in a
well-typed program. Hence, for each such expression 𝑐𝑖 , we obtain a new partial program 𝜕′ at line
11 by replacing hole ℎ in 𝜕 with expressions 𝑐𝑖 .4 However, since some completions are much more
likely than others, our algorithm assigns probabilities to completions using the statistical model \ .
Hence, when dequeuing partial programs from the worklist, the algorithm prioritizes programs
that are assigned a higher probability.

3Partial programs belong to the grammar from Figure 5 augmented with productions 𝑀 →?? for each non-terminal 𝑀 .
4When doing the replacement 𝜕[ℎ ↦→ 𝑐], all non-terminals 𝑁 occurring in 𝑐 are replaced with a hole ?𝑁 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:13

Algorithm 3: Checking compatibility between partial programs and demonstrations
Input: A partial program 𝜕, a set of demonstrations D
Output: True if the given partial program is compatible with D and otherwise false
1: Compatible(𝜕, D)
2: foreach ((E, 𝑡) ∈ D)
3: 𝜕∗ := PartialEval(𝜕, E) # Partially evaluate the given partial program on the demonstration environment
4: 𝑟 := ProgToRegex(𝜕∗, 𝛼 (E)) # Find the regex that over-approximates behaviors of 𝜕∗
5: if(𝛼 (𝑡) ∉ 𝑟) return false # check if the trace is not accepted by the over-approximating regex
6: return 𝑡𝑟𝑢𝑒

4.3.1 Proving Unrealizability A key component of our sketch completion procedure is a novel
technique for proving unrealizability of a programming-by-demonstration (PbD) problem. While
there has been significant prior work on proving unrealizability in the context of programming-by-
example (PbE) [Feng et al. 2018a; Hu et al. 2019; Kim et al. 2023], such techniques only consider
the input-output behavior rather than the entire execution trace. In contrast, our goal is to prove
unrealizability of synthesis problems where the specification is a set of demonstrations (i.e., traces).

Given a partial program 𝜕 (representing a hypothesis space), our key idea is to generate a regex
𝑟 such that the language of 𝑟 includes all possible traces of all programs in the hypothesis space.
Hence, if there exists some trace 𝑡 ∈ D where 𝛼 (𝑡) is not accepted by 𝑟 , this constitutes a proof
that the synthesis problem (𝜕,D) is unrealizable.

Our algorithm for checking compatibility between partial programs and traces is presented
in Algorithm 3. At a high level, this algorithm iterates over all demonstrations (lines 2–5) and
returns false if it can prove that 𝜕 is incompatible with some demonstration (E, 𝑡) in D. To check
compatibility with (E, 𝑡), the algorithm first partially evaluates 𝜕 on the initial environment E
to obtain a simplified program 𝜕∗, as done in existing work [Feng et al. 2017]. The novel part
of our technique lies in constructing a regex abstraction of the partial program 𝜕 under a given
environment E. Specifically, our compatibility checking procedure constructs a regex 𝑟 that over-
approximates the possible behaviors of 𝜕 under initial environment E. In particular, the regex 𝑟 is
constructed at line 4 in such a way that if 𝛼 (𝑡) is not accepted by 𝑟 , then no completion of 𝜕 can be
compatible with (E, 𝑡) (see, Theorem 4.2).

Hence, the crux of the compatibility checking algorithm is the ProgToRegex procedure (formalized
as inference rules shown in Figures 10 and 11) for generating a regex that over-approximates the
behavior of 𝜕 under environment E. These rules utilize the notion of an abstract environment which
is a triple Ê := (CurLoc, Locs,Objs) where (1) CurLoc is a set containing all possible locations that
the robot could currently be at; (2) Locs is a mapping from location types to the set of locations
of that type; (3) Objs is a mapping from each location to the set of objects of each type at that
location (or ⊤ if unknown). Because statements in our DSL can modify the environment, this notion
of abstract environment is used to conservatively capture (the possibly unknown) side effects of
partial programs on the environment. The inference rules shown in Figures 10 and 11 formalize
the ProgToRegex procedure using two types of judgments:
(1) Scan rules (shown in Figure 10) are of the form Ê ⊢ scan(...) : Θ, indicating that the cardinality

of the set returned by scan must be some element of Θ. For example, if Θ = {1, 4}, this means
that the number of objects/locations returned by scan is either 1 or 4. On the other hand, if Θ
includes the special ★ element, then the number of elements is unknown.

(2) Partial program rules (shown in Figure 11) are of the form Ê ⊢ 𝜋 : Ê′, 𝑟 , meaning that, under
initial abstract environment Ê, (a) the behavior of 𝜋 is over-approximated by regex 𝑟 , and (b)
Ê′ is a new environment that captures all possible environment states after executing 𝜋 on Ê.

Before we explain these rules in detail, we first describe the high level idea, which is to encode
(a) atomic actions using characters drawn from the alphabet {G𝜏 ,A𝑎,𝜏 ,A𝑎,𝜏,𝜏 ′ }, (b) if statements

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:14 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig
(loc-known)

Ê ⊢ scanLoc(𝜏𝑙) : { | Ê .Locs(𝜏𝑙) | }

(loc-unknown)
LocTypes(Ê) = {𝜏1, . . . , 𝜏𝑛 }

Ê ⊢ scanLoc(??) :
⋃

1≤𝑖≤𝑛 { | Ê .Locs(𝜏𝑖) | }
(obj-known)

Ê .CurLocs = {𝑙1, . . . , 𝑙𝑛 }
Ê ⊢ scanObj(𝜏𝑜) :

⋃
1≤𝑖≤𝑛 { | Ê .Objs(𝑙𝑖 , 𝜏𝑜) | }

(obj-unknown)
Ê .CurLocs = {𝑙1, . . . , 𝑙𝑛 } ObjTypes(Ê) = {𝜏0, . . . , 𝜏𝑘 }
Ê ⊢ scanObj(??) :

⋃
1≤𝑖≤𝑛

⋃
1≤ 𝑗≤𝑘 { | E .Objs(𝑙𝑖 , 𝜏 𝑗) | }

Fig. 10. Over-approximation of robot perception used in ProgToRegex function.

using optional regexes, and (c) loops using regexes of the form 𝑟𝑛 where 𝑛 denotes the number of
times the loop will execute (or as 𝑟 ∗ if the number of loop iterations is completely unknown). As
mentioned in earlier sections (and, as we demonstrate empirically in Section 6), static reasoning
about the number of loop iterations improves the effectiveness of our unrealizability checking
procedure. With this intuition in mind, we now explain the rules shown in Figures 10 and 11.

Scan rules. There are two sets of rules for scan operations, (loc-known) and (loc-unknown)
for scanning locations, and (obj-known) and (obj-unknown) for scanning objects. For a scanLoc
operation, if its argument is a known location type 𝜏𝑙 , we simply look up the number of locations
of that type from the given abstract environment. If it is unknown, we take the union over all
possible location types. The rules for scanObj are similar: The (Obj-Known) rule handles the case
where the argument is a known object type 𝜏𝑜 . In this case, we consider all the locations that the
robot could be currently at and take the union of the number of objects of type 𝜏𝑜 for all of those
locations. In the Obj-Unknown rule, we additionally take the union over all possible object types,
since the argument of the scanObj operation is unknown.

Atomic actions. The rule labeled (atomic) in Figure 11 deals with goto, actUnary, and actBinary
statements and serves two roles. First, it abstracts the performed action as a letter in our regex
alphabet using the abstraction function 𝛼 . Second, it produces a new abstract environment Ê′

by considering all possible effects of the action on the input environment via the UpdateAbsEnv
function. Since the UpdateAbsEnv function is domain-specific and depends on the types of actions
of interest, we do not describe in detail but provide a set of representative examples in the longer
version of this paper [Patton et al. 2023a].

Sequence. Sequential composition is abstracted using regex concatanation, and its final effect on
the environment is captured by threading the environment through the two premises of the rule.

Conditionals. As expected, if statements are abstracted using the optional operator ((𝑟)?). Fur-
thermore, since we do not know whether the predicate evaluates to true or not5, we take the join of
the two abstract environments. Intuitively, the join of abstract environments Ê and Ê′, denoted by
Ê ⊔Ê′, is the smallest environment that over-approximates both Ê and Ê′. An abstract environment
Ê is said to over-approximate an abstract environment Ê′, denoted by Ê′ ⊑ Ê, if and only if:

Ê′ .Locs ⊆ Ê .Locs ∧ ∀𝑙∈ Ê′ .Locs∀𝜏∈ObjTypes(Ê′) . Ê′ .Objs(𝑙, 𝜏) ⊆ Ê .Objs(𝑙, 𝜏)
Then, we can define a join operator on abstract environments as follows:

Ê ⊔ Ê′ = Ê′′ ⇐⇒ (Ê ⊑ Ê′′) ∧ (Ê′ ⊑ Ê′′) ∧ (∀Ê′′′ (Ê ⊑ Ê′′′ ∧ Ê′ ⊑ Ê′′′ ⇒ Ê′′ ⊑ Ê′′′))
Intuitively, Ê′′′ is the result of joining Ê and Ê′ if it is the smallest abstract environment that
over-approximates both.

Loops. The last rule in Figure 11 summarizes the analysis of loops. First, since the environment
may be modified in the loop body, this rule first computes an inductive abstract environment, Ê′,
for the loop (see Section 5 for further details). In particular, the premise Ê ⊑ Ê′ ensures that Ê′

5Recall that we apply partial evaluation before performing this step. Hence, if the predicate of a conditional can be fully
evaluated, it will be simplified away and rewritten as conditional-free code.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:15

(atomic)
AtomicAction(𝑠) Ê′ = UpdateAbsEnv(Ê, 𝑠)

Ê ⊢ 𝑠 : Ê′, 𝛼 (𝑠)

(seq)
Ê ⊢ 𝑠1 : Ê1, 𝑟1 Ê1 ⊢ 𝑠2 : Ê2, 𝑟2

Ê ⊢ 𝑠1; 𝑠2 : Ê2, 𝑟1𝑟2
(if)

Ê ⊢ 𝑠 : Ê′, 𝑟

Ê ⊢ if(_) {𝑠 } : Ê ⊔ Ê′, (𝑟)?

(let)

Ê ⊢ let 𝑣 := 𝑒 : Ê, 𝜖

(loop)
Ê ⊢ 𝜌𝑠 : {𝑛1, . . . , 𝑛𝑘 } Ê′ ⊢ 𝑠 : Ê′, 𝑟 Ê ⊑ Ê′

Ê ⊢ foreach(𝑣 ∈ 𝜌𝑠) {𝑠 } : Ê′, 𝑟𝑛1 |𝑟𝑛2 | . . . |𝑟𝑛𝑘

Fig. 11. Over-approximation of partial programs used in ProgToRegex function.

over-approximates the initial environment, thereby establishing our base case. Second, the premise
Ê′ ⊢ 𝜋 : Ê′, 𝑟 ensures that Ê′ is preserved in all iterations of the loop body. Furthermore, because
Ê′ is an over-approximation of the environment that the loop body 𝜋 operates in, the regular
expression 𝑟 also over-approximares the behavior of 𝜋 . Finally, to over-approximate the behavior of
the entire loop, we determine the possible number of loop executions using the rules from Figure 10
under the initial environment Ê. If 𝜌𝑠 can yield 𝑛 different objects, then the behavior of the loop is
captured as 𝑟𝑛 . However, since we may not be able to compute the exact number of objects returned
by a scan operation, we consider all possible cardinalities 𝑛1, . . . , 𝑛𝑘 of the resulting set. Hence, the
behavior of the loop is captured by the disjunction of the regexes 𝑟𝑛1 , . . . , 𝑟𝑛𝑘 .

The following theorem states that none of the completions of an unrealizable partial program is
consistent with all demonstrations (see the longer version of this paper for a proof [Patton et al.
2023a]). An immediate corollary is the bounded completeness of our search algorithm, i.e., that
Algorithm 1 always finds a program consistent with the demonstrations if it exists within the
bounds of the search space.

Theorem 4.2. Let 𝜕 be a partial program and let D be a set of demonstrations. Then, for any
complete program 𝑃 that is a completion of 𝜕, we have:

𝑃 |= D =⇒ Compatible(𝜕,D)

4.3.2 Using LLM for Sketch Completion We conclude this section with a discussion of how prolex
infers a probability distribution over partial programs by prompting a large language model. Our
prompting approach is inspired by the success of LLMs in addressing the “Fill in the Middle (FIM)”
challenges in NLP literature [Liu et al. 2023]. We reduce the sketch completion task to a FIM
problem, as described below.

Given a partial program 𝜕 with a hole ℎ to fill, our approach encodes the context of ℎ in 𝜕 as a
natural language prompt with unknown masks [Devlin et al. 2019]. The prompt includes the set
of valid completions for each mask, chosen by the Fill(.) procedure in Algorithm 2, to ensure the
resulting program is well-typed. The LLM is then instructed to infer a probability distribution over
the set of completions (represented by \ in Algorithm 2). This procedure is repeated whenever a
partial program is expanded into a set of partial programs, to prioritize the enumerative search
towards the intended program.

To illustrate how prolex prompts the LLM, Figure 12a (top) shows a partial program containing
six unfilled holes, denoted as ??𝑖 . Figure 12b (top) shows the prompt used for completing hole ??1,
which essentially corresponds to a natural description of the program.6 To generate such a prompt,
our approach translates control-flow constructs to natural language in a syntax-directed way and
replaces some of the holes (??1 and ??2 in this example) with masks. Because the remaining holes
??3−??6 will be replaced with synthetic variable names like 𝑣1, 𝑣2, they are not meaningful to the
LLM; so our approach simply uses the types of these holes rather than masks when translating the
partial program to natural language. As we can see from the LLM output in Figure 12b, the highest

6Note that the demonstration is implicitly encoded as part of the partial program using type information for each hole.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:16 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

likelihood completion of ??1 is deemed to be bed by the model, so the sketch completion algorithm
prioritizes this completion over other alternatives such as chair or mug.

1: foreach(𝑣1 ∈ scanLoc(𝑟𝑜𝑜𝑚)) {
2: goto(𝑣1 : 𝑟𝑜𝑜𝑚) ;
3: let 𝑣2 := getNth(scanObj(𝑏𝑖𝑛), 0) ;
4: actUnary(𝑜𝑝𝑒𝑛, 𝑣2 : 𝑏𝑖𝑛) ;
5: foreach(𝑣3 ∈ scanObj(??1)) {
6: foreach(𝑣4 ∈ scanObj(𝑠ℎ𝑒𝑒𝑡)) {
7: if(??2) {
8: actUnary(𝑔𝑟𝑎𝑏, ??3 : 𝑠ℎ𝑒𝑒𝑡) ;
9: actBinary(𝑝𝑢𝑡 -𝑖𝑛, ??4 : 𝑠ℎ𝑒𝑒𝑡, ??5 : 𝑏𝑖𝑛) ;

10: }}}
11: actUnary(𝑐𝑙𝑜𝑠𝑒, ??6 : 𝑏𝑖𝑛) ; }

4: . . .
5: foreach(𝑣3 ∈ scanObj(𝑏𝑒𝑑)) {
6: foreach(𝑣4 ∈ scanObj(𝑠ℎ𝑒𝑒𝑡)) {
7: if(checkProp(??2𝑎, 𝑣4) ∧ checkRel(??2𝑏 , 𝑣4, 𝑣3)) {

. . .

(a) Partial programs 𝜕 (top) and 𝜕′ (bottom)

Prompt for ??1: For each room; Go to room; Look for bins; Open
a bin; For each [𝑀]1 do; For each sheet do; If [𝑀]2 , grab sheet
and put sheet in bin; Close bin.

LLM Output for [𝑀]1: {Bed: 0.8, Chair: 0.1, Mug: 0.05, . . . }

Prompt for ??2𝑎 : For each room; Go to room; Look for bins; Open
a bin; For each bed do; For each sheet do; If sheet is [𝑀]2𝑎 and
sheet is [𝑀]2𝑏 bed, grab sheet and put sheet in bin; Close bin.
LLM Output for [𝑀]2𝑎 : {Dirty: 0.75, Folded: 0.2, White: 0.02, . . . }

Prompt for ??2𝑏 : For each room; Go to room; Look for bins; Open
a bin; For each bed do; For each sheet do; If sheet is dirty and
sheet is [𝑀]2𝑏 bed, grab sheet and put sheet in bin. Close bin.
LLM Output for [𝑀]2𝑏 : {On-top-of: 0.9, Under: 0.05, . . . }

(b) LLM prompts for ??1, ??2𝑎 and ??2𝑏

Fig. 12. Partial programs during synthesis and the generated LLM prompts to choose the next completion

As another example, consider the process of filling hole ??2, and suppose that the algorithm has
already refined ??2 to the conjunct checkProp(??2𝑎, 𝑣4) ∧ checkRel(??2𝑏, 𝑣4, 𝑣3) as shown in the
bottom part of Figure 12a. When generating the prompt for ??2𝑎 , both holes ??2𝑎 and ??2𝑏 are filled
with masks, and the LLM outputs dirty as the most likely completion for ??2𝑎 . When querying
the remaining hole (??2𝑏), ??2𝑎 has already been filled with dirty, so the prompt only contains a
single mask, and the LLM outputs on-top-of as the most likely completion. As illustrated by these
examples, the LLM-guided search strategy allows the sketch completion engine to quickly home in
on the right concepts (such as bed, dirty, and on-top-of in this example) and therefore allows the
search procedure to focus on the most promising sketch completions.

5 IMPLEMENTATION

We implemented the proposed approach in a tool called prolex written in Python. In this section,
we discuss salient aspects of prolex that are not covered in the technical sections.
Regex Learner. Our implementation leverages an open-source library to learn regular expressions
from positive samples [Nordmann 2014]. However, since our sketch generation procedure does not
allow arbitrary regex operators, our implementation post-processes the synthesized regexes by
applying a set of rewrite rules. For instance, because our sketch generation procedure does not
allow arbitrary disjunction, one of the rewrite rules ((𝑥 |𝑦) → (𝑥𝑦?)) replaces disjunction with
an optional operator. The full list of our rewrite rules can be found in the longer version of this
paper [Patton et al. 2023a].
Large Language Model. Our sketch completion module utilizes the BERT large language model [De-
vlin et al. 2019], with pre-trained weights obtained from the HuggingFace library [Wolf et al. 2020].
Since our algorithm generates masked language modeling (MLM) queries, we chose to use the
bert-base-uncased model. This model is primarily fine-tuned for tasks that make use of the
whole sentence, potentially with masked words, to make decisions. It is a lightweight model, and
in our experiments, it consistently returns responses in less than 70𝑚𝑠 on average.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:17

(a) Complexity of the Tasks

Env # Obj. # Obj. # Props.Types Instances
Easy 40 140 609

Medium 60 295 2455
Hard 80 1109 13944

(b) Complexity of the Environments

Fig. 13. Overview of the Benchmark

Parallel Sketch Completion. The inherent independence of program sketches naturally lends
itself to parallelization of the search process. To take advantage of this, prolex spawns a new
process to execute sketch completion (Algorithm 2) for each generated sketch.
Computing Loop Invariants. Recall that our procedure for proving unrealizability relies on an
inductive abstract environment for translating loops to regular expressions. Our implementation
conservatively models the effect of any statement with holes by assuming that the hole could
be filled with any value, and it performs standard least fixed point computation under these
conservative semantics.

6 Evaluation

In this section, we present experiments designed to answer the following research questions:
(RQ1) How effective is prolex at learning policies from human demonstrations?
(RQ2) What is the relative significance of each of the key components in our synthesis algorithm?
(RQ3) How does prolex compare against relevant baselines in terms of learning policies that

match the user’s intention?

6.1 Benchmarks and Experimental Set-up

Tasks.
We evaluate prolex on a set of 40 programmatic LfD problems involving long-horizon service

tasks in typical household environments. We gathered these tasks from two sources, which we
describe below.

First, we use 25 tasks from the Behavior Project [Srivastava et al. 2022]. This project is an
interactive platform designed for a virtual embodied AI agent operating within simulated household
environments. The Behavior Project offers simulation videos of the agent carrying out a range
of long-horizon tasks. These demonstrations are produced by human users who use a joystick
to control the agent’s movements and actions in the simulation environment. Out of 100 tasks
provided in the Behavior project, we observed that 75 required precise low-level motion control of
the robot’s arms, like detailed cleaning of a car’s surfaces. As our DSL can trivially execute these
tasks without any conditionals or loops, we excluded them from our evaluation. The demonstration
videos for the remaining 25 tasks were transcribed using our action alphabet by an expert annotator
—one of the authors— who is knowledgeable about the skill abstractions used by the robot.7

Next, to broaden the scope of our evaluation and include more realistic tasks, we surveyed
students at our institution and collected 15 additional tasks to evaluate prolex on. We did not

7Note that, in principle, this step could be performed by an off-the-shelf vision-to-action detection (V2A) algorithm [Ashutosh
et al. 2023; Nazarczuk and Mikolajczyk 2020]. However, since this perception inference is orthogonal to our main problem,
we opt to directly use the expert annotations.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:18 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

impose any requirements regarding the users’ technical expertise, as our aim was to gather a list of
household tasks that a typical end-user would consider beneficial to have automated

A full list of the above 40 tasks and their ground-truth programs is provided in the longer
version of this paper [Patton et al. 2023a]. Figure 13a presents an overview of the ground-truth
programs for these tasks, ordered by program size. In more detail, the right y-axis represents
program size (measured in terms of the number of nodes in the abstract syntax tree) and the left
y-axis represents the number of loops, conditionals and perception primitives in the program. Tasks
from the Behavior project are labeled as B1 . . . B25, and surveyed tasks are labeled as S1 . . . S15.

Fig. 14. Length of Demonstrations

Environments. All of our benchmarks are defined in three
household environments, summarized in Figure 13b. Because
the difficulty of the synthesis task depends crucially on the
number of object types and objects in the environment, we
classify the three environments as Easy, Medium, and Hard
based on these numbers. As we can see from Figure 13b, these
environments contain up to thousands of objects and over ten
thousand properties.
Full benchmark set. Overall, we evaluate prolex on a to-
tal of 120 benchmarks, with 40 unique tasks and 3 different
environments. For each of the 40 tasks, we manually write
the ground truth program in our DSL and obtain a demonstration by running the ground truth
program. Figure 14 presents statistics regarding the length of these demonstrations. On average,
demonstrations in the easy, medium, and hard environments consist of 11, 13, and 24 actions,
respectively. Some demonstrations in the hard environment exceed 100 actions due to the large
number of object instances that need to be handled.
Experimental set-up. Our experiments were conducted on a server with 64 available Intel Xeon
Gold 5218 CPUs @2.30GHz, 264GB of available memory, and running Ubuntu 22.04.2. We use a
time limit of 120 seconds per task in all of our experiments.

6.2 Main Results for Prolex

Our main results are presented in Figure 15, with Figure 15a showing the percentage of completed
tasks against synthesis time. We consider a task to be completed if prolex is able to synthesize a
policy within the time limit, and solved if the learned program also matches the user’s intent. We
determine if a task is solved by comparing it against the ground truth program (written manually)
and checking if the learned program is semantically equivalent. Since the manually written policy is
intended to work in all environments, tasks classified as “solved" generalize to unseen environments.
Running time. In Figure 15a, the three lines indicate the percentage of benchmarks (y-axis)
completed with a given time limit (x-axis) for each of the three environments (Easy, Medium, Hard).
Across all environments, prolex is able to complete 36% of the tasks within the first 5 seconds, 28%
of the tasks within 6-30 seconds, and 16% of the tasks within 31-120 seconds. Overall, prolex is
able to complete 80% of the tasks within the 2 minute time limit.

Figure 15 also provides a more detailed look at these statistics by showing the percentage
of completed tasks with respect to task complexity. In particular, Figure 15b shows the rate of
completion according to the size of the ground truth program. As expected, the learning problem
becomes harder as the complexity of target policy increases. However, even for the most complex
programs, prolex is still able to complete the learning task for 68% of the benchmarks.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:19

(a) Success Rate per Environment (b) Success by AST Size (c) Generalizability

Fig. 15. Experimental Results

Generalizability. As mentioned earlier, completing a task is not the same as “solving” it, since the
synthesized policy may not match user intent despite being consistent with the demonstrations.
We manually inspected all programs synthesized by prolex and found that it is equivalent to the
ground truth program in 81% of the completed cases. Interestingly, as shown in Figure 15c, we found
that prolex’s generalization power improves as environment complexity increases. Intuitively, the
more complex the environment, the more objects there are with different properties, so it becomes
harder to find multiple programs that “touch” exactly the same objects as the demonstration.
Search Statistics.

As explained in Section 4, sketches in prolex are enumerated based on increasing order of
complexity. In each iteration, a finite number of completions are considered for the current sketch.
If none of these completions aligns with the demonstrations, the algorithm advances to the next
sketch. This process continues until either a successful match is found or the time limit is reached.
Figure 16 presents the average number of sketches encountered before finding the solution or
timing out for each task in all three environments. For almost all tasks, prolex considers fewer
than 50 sketches before termination. One task (S5) is exceptionally challenging and requires 143
sketches before a solution is found.

Fig. 16. Number of Sketches Considered

Failure analysis. As discussed above, there are
two reasons why prolex may fail to solve a task: (1)
it fails to find a policy consistent with the demon-
strations within the time limit, or (2) the synthesized
policy does not adequately capture the user intent.
We have manually inspected both classes of failure
cases and report on our findings.

The main cause of prolex’s timeouts is due to
perception operations. Many of our environments
contain a large number of object types, all of which
can be arguments of scan operations. Our approach
tries to overcome this issue by using an LLM to guide
search, but in some cases, the LLM proposes the wrong object type to scan for. This causes the
synthesizer to go down a rabbit hole, particularly in cases when the proposed object type has many
properties associated with it. We believe more advanced LLMs that can reason about finer-grained
properties between the environment and the context of the task can potentially mitigate this issue.

We also inspected the cases where prolex finds a robot execution policy consistent with the
demonstrations, but the synthesized policy does not generalize to different environments (i.e.,
it completes the task but fails to solve it). There are two main reasons for this, both due to the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:20 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

inadequacy of the demonstrations with respect to the desired task. Specifically, if there is only one
instance of a particular object type in the environment, the synthesizer may not return a program
with a foreach loop over that object type, even though the ground truth program contains such
a loop. Likewise, prolex is capable of inferring conditional blocks only if the demonstrations
are branch complete. This means that, in the demonstration environment, some instances of a
manipulated object type must satisfy the intended property, while others must not. If all (or none)
of the object instances of that type are acted upon, the synthesizer cannot learn the conditional
block for such manipulations. As noted earlier, this generalizability issue becomes less of a problem
in more complex environments with many instances of an object type.

RQ1 Summary. Given a 2 minute time limit, prolex is able to find a policy consistent with
the demonstations for 80% of the benchmarks. Furthermore 81% of the synthesized programs
correspond to the ground truth, meaning that they can generalize to any unseen environment.

6.3 Ablation Studies

As mentioned throughout the paper, there are three key components underlying our approach,
namely (1) learning control flow structures (i.e., sketches), (2) use of LLMs to guide sketch comple-
tion, and (3) new technique for proving unrealizability. To better understand the relative importance
of each component, we present the results of an ablation study where we disable each component
or combinations of components. Specifically, for our ablation study, we consider the following
variants of prolex:

• prolex-NoSketch: This is a variant of prolex that does not generate program sketches using
regex learning.

• prolex-NoLLM: This is a variant of prolex that does not utilize LLMs for sketch completion.
• prolex-NoPrune: This is a variant of prolex that does not utilize the unrealizability checking

procedure (Algorithm 2) for pruning the search space during sketch completion.
• prolex-SketchOnly: This is a variant of prolex that infers control flow sketches (through

regex learning) but neither utilizes LLM nor unrealizability checking during sketch completion.
• prolex-NoLoopBound: This is a variant of prolex summarizes loops using the Kleene star

operator during the unrealizability checking procedure. That is, it does not reason about the
number of loop iterations; however, it is the same as the full prolex tool otherwise.

Figure 17a shows the results of our ablation study in the form of a Cumulative Distribution
Function (CDF). The x-axis represents the cumulative running time, while the y-axis shows the
percentage of benchmarks solved in all environments. The results indicate a significant gap between
the number of the tasks solved by prolex and its variants defined above. In particular, prolex
is able to solve 8% more tasks than NoLLM, 19% more tasks than NoPrune, 24% more tasks
than SketchOnly, and 8% more tasks than NoLoopBound variants. However, the results for the
NoSketch variant are particularly poor, with none of the tasks solved.

RQ2 Summary. All of the key components of our proposed synthesis algorithm contribute
to the practicality of our learning approach. The most important component is regex-based
sketch generation, without which none of the tasks can be solved. The unrealizability checking
procedure helps solve an additional 18% of the tasks, and LLM guidance increases success rate by
another 8%.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:21

(a) Ablation results over all environments. (b) prolex vs. CVC5 in Easy environments. CVC5 is
provided the ground truth sketch but prolex is not

Fig. 17. Experimental Results

6.4 Comparison with Alternative Approaches

In this section, we report on our experience comparing prolex against alternative approaches. While
there is no existing off-the-shelf LfD approach that targets our problem domain (see Section 6.1),
we compare prolex against the following two baselines:
• CVC5: We formulate our learning problem as an instance of syntax-guided synthesis and use a

leading SyGuS solver, CVC5 [Barbosa et al. 2022], as a programmatic policy synthesizer.
• GPT-Synth: We use an LLM as a neural program synthesizer in our domain. To this end, we con-

sider a baseline called “GPT-Synth” that synthesizes programs in our DSL from demonstrations.

Case Study with CVC5. Our programmatic LfD task can be reduced to an instance of the
syntax-guided synthesis (SyGuS) problem [Alur et al. 2015a], which is the standard formulation
for synthesis problems. To compare prolex against state-of-the-art SyGuS solvers, we encoded
our tasks as instances of SyGuS and leveraged an off-the-shelf solver, namely, CVC5 [Barbosa et al.
2022], which is the winner of the most recent SyGuS competition.

To perform this comparison, we defined our DSL using the syntactic constraints in SyGuS,
and we incorporated semantic constraints based on the initial and final environment states in the
demonstrations. Note that SyGuS solvers are unable to perform synthesis from demonstrations,
as demonstrations correspond to intermediate program states, which are not expressible in the
SyGuS formulation. Hence, when comparing against CVC5, we only use the initial and final
environments and consider a task to be completed if the solver returns a policy that produces the
desired environment. Furthermore, we only compare the performance of prolex and CVC5 on the
“easy” environment as encoding the environments in SyGuS requires significant manual labor.

When we tried to use CVC5 to perform synthesis from scratch (i.e., without a sketch), it was not
able to complete any task within a reasonable time limit. Hence, for this evaluation, we manually
provided CVC5 with the ground truth sketch for the specific task. The results of this comparison
are presented in Figure 17b. As in Figure 17a, this figure plots the cumulative distribution of the
percentage of synthesized programs against solver time. Overall, CVC5 only solves 25% of the tasks,
compared to 88% solved by prolex.

Case Study with GPT-Synth. For this experiment, we use the GPT 3.5 LLM8 to generate
programmatic policies from demonstrations. This study aims to evaluate the effectiveness of LLMs
as an end-to-end program synthesizer, henceforth referred to as GPT-Synth.

8We specifically use the text-davinci-003 model, which is the most capable publicly available LLM from OpenAI finetuned
for completion, including natural language and code.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:22 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

(a) GPT-Synth with environment (b) GPT-Synth without environment

Fig. 18. LLM Experiments

The prompts used in this study were developed using the "template" pattern as described by White
et al. [2023]. This pattern has been shown to be highly effective in situations where the generated
output must conform to a specific format that may not be part of the LLM’s training data. In
particular, for each benchmark task, we created a prompt that includes a description of our DSL, and
a set of example demonstrations and the environment states, along with the correct programs for the
desired task. For a novel task, we provide the language model with the prompt, the demonstrations
and environment states for the novel task, and ask it to generate a corresponding program.

To use GPT 3.5 as an end-to-end synthesizer, we adopt the following methodology, as done in
prior work [Chen et al. 2021b]. If the first program returned by the LLM is consistent with the
demonstration, GPT-Synth returns that program as the solution. Otherwise, it asks the model to
produce another program, for up to 10 iterations. Unfortunately, we found that GPT-Synth is unable
to solve any of the benchmarks when we provide both the demonstrations and the environment.
This behavior seems to be caused by the large number of entities and relations in the environment
– prior work has reported similar results in other domains (e.g., planning [Mahowald et al. 2023])
where LLMs were used to perform tasks in non-trivial environments.

To gain more intuition about how the language model scales with the environment size, we report
on our experience with using GPT-Synth on five representative tasks involving toy environments.
We construct these toy environments by incorporating only the objects (and their properties)
required for that task plus some additional objects and properties. Figure 18a shows how the
success rate of GPT-Synth scales with respect to environment size. Here, the x-axis shows the
number of additional objects (and their properties) in the environment and the y-axis shows the
success rate. As we can see from Figure 18a , GPT-Synth works well if it is given only the relevant
objects (which is not a realistic usage scenario), but, as environment size increases, its success rate
drops dramatically. In fact, when the environment contains only 10 additional objects — a tiny
fraction of our “Easy" environment — the success rate of GPT-Synth already drops to zero.

The reader may wonder if the environment is actually necessary for GPT-Synth to learn the
correct program. To answer this question, we perform an additional experiment where we provide
GPT-Synth with only the demonstration, but not the environment. The results of this evaluation are
presented in Figure 18b, where we classify tasks into two categories as “Forall” and “Conditional”.
The former class of tasks does not involve branching, whereas the latter does. Here, “Completed”
shows the percentage of tasks for which GPT-Synth finds a program consistent with the demon-
stration, and “Solved” shows the percentage of tasks for which GPT-Synth returns a program that
also matches the ground truth. As we can see, GPT-Synth returns a program consistent with the
demonstration for 45% of all tasks, but it is only able to identify the ground truth program in 25% of
the cases. Furthermore, as one might expect, GPT-Synth is much more effective at the much simpler
“Forall" category of tasks that involve acting on all instances of a particular type. In contrast, the
“Conditional" category is much more challenging without having access to the environment, and the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:23

success rate of GPT-Synth is only 11% for this category. Intuitively, without knowing which objects
have what properties, GPT-Synth has little chance of knowing that there should be a conditional
and what its corresponding predicate should be. We came across a few cases where GPT-Synth
is able to “hallucinate” the right predicates after several rounds of interaction; but, in general,
guessing the user’s intent without knowing the environment, is at best a matter of sheer luck.

RQ3 Summary. prolex performs significantly better than the CVC5 and GPT-Synth baselines.
Even when given the ground truth sketches, CVC5 is only able to return a program consistent
with the final environment in 25% of the cases. On the other hand, the GPT-based synthesizer
cannot solve any tasks when provided with both the demonstration and the full environment,
but it is able to solve 25% of the tasks when it is given only the demonstration.

7 RELATEDWORK

Robot Learning from Demonstrations. Our approach builds upon a substantial body of literature
on the use of Learning from Demonstration (LfD) techniques to learn robot execution policies [Argall
et al. 2008, 2009; Sosa-Ceron et al. 2022]. This literature can be broadly categorized into two
approaches: (1) learning neural models to represent robot behaviors [Ho and Ermon 2016; Kober
et al. 2013; Ly and Akhloufi 2021; Rusu et al. 2017; Sünderhauf et al. 2018; Taylor and Stone
2009; Xiao et al. 2021; Ziebart et al. 2008], and (2) synthesizing programmatic representations
of execution policies [French et al. 2019; Holtz et al. 2021, 2020a; Niekum et al. 2015]. The most
well-established techniques for learning neural models from demonstrations include behavior
cloning within the framework of imitation learning [Ho and Ermon 2016; Ly and Akhloufi 2021]
and (deep) reinforcement learning (RL) methods [Kober et al. 2013; Sünderhauf et al. 2018; Ziebart
et al. 2008]. Empirical studies have demonstrated the efficacy of these neural policies in perception
tasks and their ability to perform well in unknown or ill-defined environments. However, such
neural models lack robust interpretability and generalization capabilities — as a testament to this,
there exist no neural LfD algorithms to date capable of leveraging the user demonstrations in the
Behavior benchmarks [Srivastava et al. 2022]. The field of transfer learning [Pan and Yang 2010;
Rusu et al. 2017; Taylor and Stone 2009] aims to resolve generalization problems to some degree
and also enhance data efficiency. A related setting to our work is applying reinforcement learning
(RL) by specifying the task via formal specification of the goal conditions; in fact, the Behavior
benchmark set [Srivastava et al. 2022] reports the results of such an approach. However, even in the
simplest 12 activities, the RL algorithms are unable to complete the tasks even when initiated close
to the goal states. Further, even when the actions are abstracted into symbols in Behavior-1K [Li
et al. 2023], RL approaches demonstrate very poor performance. These results mainly highlight the
complexity of the tasks that we tackle in this paper.

Recently, there has also been growing interest in developing techniques to enhance the trans-
parency and reliability of RL systems through formal explanations [Glanois et al. 2021; Krajna et al.
2022; Li et al. 2019; Topin and Veloso 2019]. These techniques aim to explain different aspects of the
learned models, such as inputs and transitions, by finding interpretable representations of neural
policies, such as Abstracted Policy Graphs [Topin and Veloso 2019] or structures in a high-level
DSL [Verma et al. 2018]. More recently, there has also been interest in utilizing program synthesis
methods [Holtz et al. 2020b; Xin et al. 2023] to learn robot execution policies from demonstrations
as an alternative to neural model learning [Holtz et al. 2021, 2020a]. These approaches provide
improved interpretability, generalizability [Holtz et al. 2018], and data efficiency. prolex falls into
the same class of techniques as these approaches but broadens their applicability in several ways:
First, it can learn policies to handle long-horizon tasks; second, it can synthesize programs with

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:24 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

complex control flow, such as loops with nested conditionals and loops; and, third, it can handle
environments with a large number of objects and properties.

Lastly, recent work proposes a methodology for automated learning of robotic programs for
long-horizon human-robot interaction policies from multi-modal inputs, including demonstrations
and natural language [Porfirio et al. 2019, 2023]. The contributions of this work are largely comple-
mentary to ours: their main focus is an interface for allowing end-users to draw the navigation
path of a robot on a 2D map of the environment and inferring symbolic traces from this raw path
representation. Similar to our regex-learning-based sketch inference algorithm, the synthesizer in
this work utilizes an automata learning approach to generalize user-provided traces into Mealy
automata, based on the approach in [Neider 2014]. However, the control structures in their learned
programs only admit restricted loops with no nesting. Additionally, this synthesizer does not
produce loops over objects and locations in the environment and does not address challenges
related to perception, i.e. inference of objects not present in the demonstrations.
Program Synthesis from Demonstrations. This paper is related to a long line of research on
program synthesis, which aims to find a program that meets a specified requirement [Alur et al.
2015a,b; Bornholt et al. 2016; Chen et al. 2021a; Feng et al. 2018a; Gulwani 2011; Gulwani et al.
2017; Jha et al. 2010a; Kalyan et al. 2018; Solar-Lezama 2008; Wang et al. 2020, 2018b]. Different
synthesizers adopt different types of specifications, such as input-output examples [Feser et al.
2015], demonstrations [Chasins et al. 2018], logical constraints [Miltner et al. 2022], refinement
types [Polikarpova et al. 2016], or a reference implementation [Wang et al. 2019a].

Among these, our method is mostly related to the synthesizers that enable programming by
demonstration (PbD) [Chasins et al. 2018; Lau et al. 2003]. Existing PbD techniques generalize
programs either from sequences of user actions [Chasins et al. 2018; Dong et al. 2022] or sequences
of program states [Lau et al. 2003]. Our approach is similar to the former, specifically similar to
WebRobot [Dong et al. 2022], which can synthesize challenging programs with multiple nested loops
from sequences of user actions. However, WebRobot cannot synthesize programs with conditional
blocks, which are essential for successfully performing our tasks. Moreover, WebRobot is targeted at
web process automation tasks and does not address robotics-related challenges, such as perception
and environment complexity, that play a big role in this work.
Synthesis of Control Structures. A main focus of this paper is on the problem of inferring
control structures from demonstration traces [Bar-David and Taubenfeld 2003; Barthe et al. 2013;
Biermann et al. 1975]. This is a recognized and challenging problem that is studied in various
synthesis methodologies, including approaches for code synthesis from black-box reference imple-
mentations [Heule et al. 2015; Jha et al. 2010b; Ji et al. 2023] and human-in-the-loop approaches
for program learning [Ferdowsifard et al. 2021; Newcomb and Bodík 2019; Pu et al. 2022]. For
instance, LooPy [Ferdowsifard et al. 2021] is a recent human-in-the-loop method that relies on the
programmer to act as an oracle and identify properties of consecutive iterations within the body of
the target loop. Unlike these approaches, prolex only requires a small number of demonstrations
with no additional hints from the end-user.

There are relatively few synthesis algorithms that can infer nested loops with branching, and they
typically rely on domain-specific simplifying assumptions to address these challenges. For instance,
Rousillon [Chasins et al. 2018] is a recent synthesizer that deals with loops and is specifically
designed for extracting tabular data from web pages. While Rousillon supports nested loops, it can
only generate side-effect-free programs intended for information retrieval purposes. FrAngel [Shi
et al. 2019] is a component-based synthesizer that also handles nested control structures but
necessitates users to provide numerous examples, including base and corner cases. Lastly, there
is a line of work focusing on loop unrolling and rerolling for low-level hardware and software

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:25

optimization [Ge et al. 2022; Rocha et al. 2022; Sisco et al. 2023], using techniques such as term-
rewriting [Nandi et al. 2020]. We believe that our proposed sketch generation and unrealizability
proving technique could be generally useful in any setting that (a) requires synthesizing complex
control flow structures and (b) where the algorithm has access to execution traces.
Reactive Program Synthesis. This paper is also related to a long line of work on reactive
synthesis, where the typical goal is to synthesize finite state machines (FSM) from temporal specifi-
cations [Baumeister et al. 2020; Choi 2021; Finkbeiner et al. 2019; He et al. 2017; Krogmeier et al.
2020]. Traditionally, reactive synthesis has been viewed as a game between two players – the
controlled system and its environment – and solving the reactive synthesis problem boils down to
finding a winning strategy for the controlled system. The reactive synthesis problem is computa-
tionally intractable for general classes of specifications, such as monadic second order logic or full
linear temporal logic [Pnueli and Rosner 1989], but work by Bloem et al. [2012] has shown that this
problem can be made tractable by restricting the logic to a subclass known as GR(1) specifications.
Another successful approach to enhance reactive synthesizers is bounded synthesis, where the
number of states of the synthesized implementation is bounded by a constant [Finkbeiner and Klein
2018; Finkbeiner and Schewe 2013]. Generally speaking, existing reactive synthesis method differ
from our work in three major ways: First, they take as input temporal logic specifications rather
than demonstrations, and, second, they are based on deductive rather than inductive synthesis.
Third, the focus of reactive synthesis is on synthesizing reactive systems represented as finite state
machines that take some input from the environment and respond with an output (e.g., action)
for a single time step. Thus, while reactive synthesis is well-suited to low-level motor controllers
(e.g., robot social navigation), they are a poor fit for long-horizon tasks, where programs need to
reason about actions that may take many time-steps to complete and where the program must
relate properties of the initial state to the chosen sequence of long action sequences (e.g., when a
shelf has limited access, deciding to put away the groceries that go at the back of the shelf first,
before those in the front).

Recent work has expanded the scope of reactive synthesis in several ways. For example, recent
work by Choi [2021] proposes to combine reactive synthesis with SyGuS (syntax-guided synthesis)
to synthesize a broader class of programs that both interact with the environment (i.e., are reactive)
and that can also perform data processing. This technique, however, takes as input temporal stream
logic (TSL) specifications modulo some background first-order theory. Furthermore, the algorithmic
focus of that work is very different in that they show how to combine classical reactive synthesis
with SyGuS, whereas our focus is on inductive synthesis for learning generalizable long horizon
policies from a small number of demonstrations.

Another recent related work is [Das et al. 2023], which introduces a functional reactive synthesis
algorithm for learning programs that match a sequence of observed grid frames and corresponding
user actions. This work is similar to ours in that it also learns programs from observed traces
rather than temporal specifications. They perform synthesis by combining standard functional
synthesis techniques with an automata synthesis approach to discover time-varying latent state
in the program. However, the focus of that work is to discover causal mechanisms in Atari-style,
time-varying grid worlds. As such, their Autumn DSL is used for specifying how the next state
should be computed upon the occurrence of relevant events, whereas our DSL is used to express a
sequence of robot actions over a time horizon. As a result, the underlying synthesis techniques are
also different: For example, they use automata learning to discover latent state, whereas we employ
automata learning for the entirely different purpose of learning complex control structures.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

18:26 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Finally, reactive functional programs have also been integrated with probabilistic programming
features to design simulators for human-robot interaction, enabling the sampling of test scenar-
ios [Chung and Cakmak 2022]. These simulators generate complex event streams of human actions
based on distributions learned from demonstrations. The synthesis strategy employed in this
work involves providing a sketch of the target program as input and using probabilistic inference
techniques, such as MCMC, to complete the unknown parameters.
Enhancing Synthesis using ML Models. Machine learning has proven to be highly effective for
improving time and accuracy of synthesis [Cambronero et al. 2023; Kalyan et al. 2018; Pailoor et al.
2021; Rahmani et al. 2021; Verbruggen et al. 2021; Ye et al. 2020]. For example, neural generators
trained on partial programs (i.e., sketches) have been shown to accurately predict the full body of a
method from just a few API calls or data types [Chen et al. 2020; Murali et al. 2017; Nye et al. 2019].
In addition, LLMs have been utilized to guide program search [Jain et al. 2022]. For example, the
GPT-3 language model has been applied to mine program components and their distributions for
multi-modal program synthesis tasks [Rahmani et al. 2021]. Our work is similar in approach and
leverages an LLM to improve program synthesis. However, to the best of knowledge, prolex is the
first approach to leverage the LLM’s prior knowledge of the semantic relations between real-world
entities and actions to guide the search towards reasonable completions.

A related field of research, neurosymbolic programming, seeks to combine advances in end-to-end
machine learning techniques with program synthesis by leveraging compositional programming
abstractions as a means of reusing learned modules across various tasks [Bowers et al. 2023;
Chaudhuri et al. 2021; Chen et al. 2021a; Huang et al. 2020; Inala et al. 2020; Mao et al. 2019; Sun
et al. 2022; Verma et al. 2019; Witt et al. 2023; Zhan et al. 2021]. Because our current approach is
based on a symbolic environment representation, it does not require a neurosymbolic DSL.
Program Sketching. Program sketches have been introduced as a syntactic framework to guide
the generation of candidate programs during a search process. This approach was initially presented
in [Solar-Lezama 2008] and has since been widely used [Bornholt et al. 2016; Dong et al. 2022;
Solar-Lezama 2008; Solar-Lezama 2009; Solar-Lezama et al. 2006; Wang et al. 2019b; Yaghmazadeh
et al. 2017]. While some approaches utilize program sketches that are crafted by the user, others
automatically generate a sketch based on natural language [Chen et al. 2020; Yaghmazadeh et al.
2017] or reference implementation [Wang et al. 2019b]. Our method also decomposes the synthesis
task into two separate sketch generation and sketch completion step but utilizes regex learning to
find a sketch that is likely to be a consistent generalization of the user demonstrations.
Unrealizability of Program Synthesis. Many prior techniques enhance program synthesis by
establishing that a synthesis sub-problem is unrealizable [Feng et al. 2018b; Hu et al. 2019; Lee et al.
2016; Mechtaev et al. 2018; Tiwari et al. 2015; Vechev et al. 2010; Wang et al. 2018a]. Existing methods
typically rely on domain-specific static analysis and logical reasoning to establish unrealizability
for the task of Programming by Example (PbE). For instance, various approaches have reduced this
problem to a SMT instance and leveraged external solvers to find a proof of unrealizability [Farzan
et al. 2022; Feng et al. 2018b, 2017; Hu et al. 2019; Kim et al. 2021; Polikarpova et al. 2016]. While the
general problem of unrealizability is undecidable [Madhusudan et al. 2018], some recent approaches
have used abstract interpretation techniques to establish unrealizability more effectively [Chen
et al. 2020; Lee et al. 2016; Wang et al. 2018a]. Recently, Kim et al. [2023] proposed a Hoare-style
reasoning system to formally define, establish, and explain the unrealizability of a problem, aiming
to unify existing methods in this domain. Our synthesis technique also utilizes program abstractions
to establish the unrealizability of a search path and prune partial programs. However, to the best of
our knowledge, our approach is the first to check compatibility between user demonstrations and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:27

partial programs in order to establish unrealizability in the PbD setting. A different notion of trace
compatibility has been proposed for synthesis-based transpilation [Mariano et al. 2022]; however,
that work differs from ours in several ways. First, they define compatibility between traces of two
different programs, while ours is defined between a program and user demonstration. Second, their
technique for checking compatibility between traces is very different from ours and relies on a
collecting semantics [Cousot and Cousot 1977] of the programming language.

8 CONCLUSIONS AND FUTUREWORK
We proposed a new programmatic LfD approach, based on program synthesis, for learning robot
execution policies for long-horizon tasks in complex environments. Our approach first gener-
ates a program sketch capturing control flow structure by generating a string abstraction of the
given demonstrations and inferring a regular expression that matches those strings. In the second
sketch completion phase, our algorithm performs LLM-guided top down search and utilizes a
novel procedure for proving unrealizability of partial programs. The latter algorithm for proving
unrealizability can be easily adapted to other PBD settings: the key idea is to generate, via static
analysis, a regular expression that captures all traces of a partial program and then check whether
the string representation of the demonstrations belongs to this language.

We have evaluated our implementation, prolex, on 120 benchmarks and show that prolex is
able to synthesize complex policies with several (nested) loops and conditionals and that it scales
to large environments containing thousands of objects and dozens of distinct objects types. Overall,
given a 120 second time limit, prolex is able to find a program consistent with the demonstrations
for 80% of the benchmarks. Furthermore, for 81% of the completed tasks, prolex can learn the
ground truth program from a single demonstration. To put these numbers in context, we also
compare prolex against two baselines, including a state-of-the-art SyGuS solver and a neural
LLM-based synthesizer, and show that prolex significantly outperforms both of them.

In future work, we are interested in deploying this technique on real robots in physical environ-
ments. To this end, we plan to integrate a semantic-aware perception frontend like Kimera [Rosinol
et al. 2021] to extract the symbolic state of the world as a semantic scene graph, as such a rep-
resentation would be directly compatible with the prolex DSL. We are interested in building
a web-based graphical interface to our robots to gather user demonstrations for deployments,
building on existing robot deployment management systems like RoboFleet [Sikand et al. 2021].

ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers for their helpful and insightful feedback. This
work was supported in part by NSF Awards #1762299, #1918889, #1901376, #2046955, and #2319471,
as well as Google, Facebook, Amazon, Intel, and RelationalAI fellowships.

DATA AVAILABILITY STATEMENT

The artifact for this work can be found at [Patton et al. 2023b], and the source code is available in our
GitHub repository. Moreover, the extended version of this paper, including additional definitions
and proofs can be found in [Patton et al. 2023a].

REFERENCES
Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel

Weld, David Wilkins SRI, Anthony Barrett, Dave Christianson, et al. 1998. Pddl| the planning domain definition language.
Technical Report, Tech. Rep. (1998).

Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan,
Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2015a. Syntax-Guided Synthesis. In Dependable Software Systems Engineering. 1–25.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://github.com/ut-amrl/Prolex

18:28 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. 2015b. Synthesis Through Unification. In Computer Aided Verification,
Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham, 163–179.

Brenna D. Argall, Brett Browning, and Manuela Veloso. 2008. Learning robot motion control with demonstration and
advice-operators. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 399–404. https://doi.org/10.
1109/IROS.2008.4651020

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57, 5 (2009), 469–483. https://doi.org/10.1016/j.robot.2008.10.024

Kumar Ashutosh, Rohit Girdhar, Lorenzo Torresani, and Kristen Grauman. 2023. HierVL: Learning Hierarchical Video-
Language Embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23066–
23078.

Yoah Bar-David and Gadi Taubenfeld. 2003. Automatic Discovery of Mutual Exclusion Algorithms. In Proceedings of the
Twenty-Second Annual Symposium on Principles of Distributed Computing (Boston, Massachusetts) (PODC ’03). Association
for Computing Machinery, New York, NY, USA, 305. https://doi.org/10.1145/872035.872080

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron. 2013. From Relational Verification
to SIMD Loop Synthesis. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Shenzhen, China) (PPoPP ’13). Association for Computing Machinery, New York, NY, USA, 123–134.
https://doi.org/10.1145/2442516.2442529

Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah. 2020. Explainable Reactive Synthesis. In Automated Technology for
Verification and Analysis, Dang Van Hung and Oleg Sokolsky (Eds.). Springer International Publishing, Cham, 413–428.

A.W. Biermann, R.I. Baum, and F.E. Petry. 1975. Speeding up the Synthesis of Programs from Traces. IEEE Trans. Comput.
C-24, 2 (1975), 122–136. https://doi.org/10.1109/T-C.1975.224180

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Saar. 2012. Synthesis of Reactive(1) designs. J.
Comput. System Sci. 78, 3 (2012), 911–938. https://doi.org/10.1016/j.jcss.2011.08.007 In Commemoration of Amir Pnueli.

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing synthesis with metasketches. In ACM
SIGPLAN Notices, Vol. 51. ACM, 775–788.

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and Armando Solar-
Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7, POPL, Article 41 (jan 2023),
32 pages. https://doi.org/10.1145/3571234

José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun Radhakrishna, Clint Simon, and Ashish Tiwari. 2023.
FlashFill++: Scaling Programming by Example by Cutting to the Chase. Proc. ACM Program. Lang. 7, POPL, Article 33
(jan 2023), 30 pages. https://doi.org/10.1145/3571226

Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web Data. In
Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
Association for Computing Machinery, New York, NY, USA, 963–975. https://doi.org/10.1145/3242587.3242661

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, and Yisong Yue. 2021. Neu-
rosymbolic Programming. Found. Trends Program. Lang. 7 (2021), 158–243.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021b. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig. 2021a. Web Question
Answering with Neurosymbolic Program Synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 328–343. https://doi.org/10.1145/3453483.3454047

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.1109/IROS.2008.4651020
https://doi.org/10.1109/IROS.2008.4651020
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1145/872035.872080
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2442516.2442529
https://doi.org/10.1109/T-C.1975.224180
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3242587.3242661
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3453483.3454047

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:29

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-modal synthesis of regular expressions. In
Proceedings of the 41st ACM SIGPLAN conference on programming language design and implementation. 487–502.

Wonhyuk Choi. 2021. Can Reactive Synthesis and Syntax-Guided Synthesis Be Friends?. In Companion Proceedings of
the 2021 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (Chicago, IL, USA) (SPLASH Companion 2021). Association for Computing Machinery, New York, NY, USA,
3–5. https://doi.org/10.1145/3484271.3484972

Michael Jae-Yoon Chung and Maya Cakmak. 2022. Authoring Human Simulators via Probabilistic Functional Reactive
Program Synthesis. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 727–730. https:
//doi.org/10.1109/HRI53351.2022.9889630

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. 238–252.

Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares. 2023. Combining Functional and Automata
Synthesis to Discover Causal Reactive Programs. Proc. ACM Program. Lang. 7, POPL, Article 56 (jan 2023), 31 pages.
https://doi.org/10.1145/3571249

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for
Computational Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022. WebRobot: Web Robotic Process Automation
Using Interactive Programming-by-Demonstration. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing
Machinery, New York, NY, USA, 152–167. https://doi.org/10.1145/3519939.3523711

Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion Synthesis with Unrealizability Witnesses. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA,
USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 244–259. https://doi.org/10.1145/3519939.
3523726

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018a. Program Synthesis Using Conflict-Driven Learning. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,
PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 420–435. https://doi.org/10.1145/
3192366.3192382

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018b. Program synthesis using conflict-driven learning. In ACM
SIGPLAN Notices, Vol. 53. ACM, 420–435.

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of table
consolidation and transformation tasks from examples. In Proc. of PLDI. 422–436.

Kasra Ferdowsifard, Shraddha Barke, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2021. LooPy: Interactive Program
Synthesis with Control Structures. Proc. ACM Program. Lang. 5, OOPSLA, Article 153 (oct 2021), 29 pages. https:
//doi.org/10.1145/3485530

John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output
examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239.

Bernd Finkbeiner and Felix Klein. 2018. Reactive Synthesis: Towards Output-Sensitive Algorithms. arXiv:1803.10104 [cs.LO]
Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2019. Synthesizing Functional Reactive Programs. In

Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (Berlin, Germany) (Haskell 2019). Association
for Computing Machinery, New York, NY, USA, 162–175. https://doi.org/10.1145/3331545.3342601

Bernd Finkbeiner and Sven Schewe. 2013. Bounded synthesis. International Journal on Software Tools for Technology Transfer
15, 5-6 (2013), 519–539.

Maria Fox and Derek Long. 2003. PDDL2. 1: An extension to PDDL for expressing temporal planning domains. Journal of
artificial intelligence research 20 (2003), 61–124.

Kevin French, Shiyu Wu, Tianyang Pan, Zheming Zhou, and Odest Chadwicke Jenkins. 2019. Learning Behavior Trees
From Demonstration. In 2019 International Conference on Robotics and Automation (ICRA). 7791–7797. https://doi.org/10.
1109/ICRA.2019.8794104

Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu. 2022. RollBin: Reducing Code-Size via Loop Rerolling at
Binary Level. In Proceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems (San Diego, CA, USA) (LCTES 2022). Association for Computing Machinery, New York, NY,
USA, 99–110. https://doi.org/10.1145/3519941.3535072

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu. 2021. A Survey on
Interpretable Reinforcement Learning. https://doi.org/10.48550/ARXIV.2112.13112

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.1145/3484271.3484972
https://doi.org/10.1109/HRI53351.2022.9889630
https://doi.org/10.1109/HRI53351.2022.9889630
https://doi.org/10.1145/3571249
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3485530
https://doi.org/10.1145/3485530
https://arxiv.org/abs/1803.10104
https://doi.org/10.1145/3331545.3342601
https://doi.org/10.1109/ICRA.2019.8794104
https://doi.org/10.1109/ICRA.2019.8794104
https://doi.org/10.1145/3519941.3535072
https://doi.org/10.48550/ARXIV.2112.13112

18:30 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proc. of POPL. 317–330.
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Programming

Languages 4, 1-2, 1–119.
Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. 2017. Reactive synthesis for finite tasks under

resource constraints. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 5326–5332.
https://doi.org/10.1109/IROS.2017.8206426

Stefan Heule, Manu Sridharan, and Satish Chandra. 2015. Mimic: Computing Models for Opaque Code. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for
Computing Machinery, New York, NY, USA, 710–720. https://doi.org/10.1145/2786805.2786875

Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning. In Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf

Jarrett Holtz, Simon Andrews, Arjun Guha, and Joydeep Biswas. 2021. Iterative Program Synthesis for Adaptable Social
Navigation. In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on. 6256–6261. https://doi.org/10.
1109/IROS51168.2021.9636540

Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2018. Interactive Robot Transition Repair With SMT. In International Joint
Conference on Artificial Intelligence (IJCAI). 4905–4911. https://doi.org/10.24963/ijcai.2018/681

Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2020a. Robot Action Selection Learning via Layered Dimension Informed
Program Synthesis. In Conference on Robot Learning. 1471–1480. https://joydeepb.com/Publications/corl2020_ldips.pdf

Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2020b. Robot Action Selection Learning via Layered Dimension Informed
Program Synthesis. In Conference on Robot Learning.

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. 2019. Proving Unrealizability for Syntax-
Guided Synthesis. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing,
Cham, 335–352.

Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, and Mayur Naik. 2020. Generating Pro-
grammatic Referring Expressions via Program Synthesis. In Proceedings of the 37th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 4495–4506.
https://proceedings.mlr.press/v119/huang20h.html

Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen Pu, Osbert Bastani, Vijay Kumar, Martin Rinard, and Armando Solar-
Lezama. 2020. Neurosymbolic Transformers for Multi-Agent Communication. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red
Hook, NY, USA, Article 1141, 12 pages.

iRobot. 2023. iRobot Home App. https://www.irobot.com/en_US/irobot-home-app.html Accessed on March 30, 2023.
Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma.

2022. Jigsaw: Large Language Models Meet Program Synthesis. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
1219–1231. https://doi.org/10.1145/3510003.3510203

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010a. Oracle-guided component-based program synthesis.
In 2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1. IEEE, 215–224.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010b. Oracle-Guided Component-Based Program Synthesis.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape Town, South Africa)
(ICSE ’10). Association for Computing Machinery, New York, NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

Ruyi Ji, Chaozhe Kong, Yingfei Xiong, and Zhenjiang Hu. 2023. Improving Oracle-Guided Inductive Synthesis by Efficient
Question Selection. Proc. ACM Program. Lang. 7, OOPSLA1, Article 103 (apr 2023), 29 pages. https://doi.org/10.1145/
3586055

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018. Neural-Guided
Deductive Search for Real-Time Program Synthesis from Examples. https://doi.org/10.48550/ARXIV.1804.01186

Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2023. Unrealizability Logic. Proc. ACM Program. Lang. 7, POPL, Article 23
(jan 2023), 30 pages. https://doi.org/10.1145/3571216

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-Guided Synthesis. Proc. ACM Program.
Lang. 5, POPL, Article 30 (jan 2021), 32 pages. https://doi.org/10.1145/3434311

Jens Kober, J. Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in robotics: A survey. The In-
ternational Journal of Robotics Research 32, 11 (2013), 1238–1274. https://doi.org/10.1177/0278364913495721
arXiv:https://doi.org/10.1177/0278364913495721

Agneza Krajna, Mario Brcic, Tomislav Lipic, and Juraj Doncevic. 2022. Explainability in reinforcement learning: perspective
and position. https://doi.org/10.48550/ARXIV.2203.11547

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.1109/IROS.2017.8206426
https://doi.org/10.1145/2786805.2786875
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://doi.org/10.1109/IROS51168.2021.9636540
https://doi.org/10.1109/IROS51168.2021.9636540
https://doi.org/10.24963/ijcai.2018/681
https://joydeepb.com/Publications/corl2020_ldips.pdf
https://proceedings.mlr.press/v119/huang20h.html
https://www.irobot.com/en_US/irobot-home-app.html
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3586055
https://doi.org/10.1145/3586055
https://doi.org/10.48550/ARXIV.1804.01186
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3434311
https://doi.org/10.1177/0278364913495721
https://arxiv.org/abs/https://doi.org/10.1177/0278364913495721
https://doi.org/10.48550/ARXIV.2203.11547

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:31

Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan. 2020. Decidable Synthesis
of Programs with Uninterpreted Functions. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.).
Springer International Publishing, Cham, 634–657.

Tessa A. Lau, Steven A. Wolfman, Pedro M. Domingos, and Daniel S. Weld. 2003. Programming by Demonstration Using
Version Space Algebra. Machine Learning 53 (2003), 111–156.

Jin Joo Lee, Amin Atrash, Dylan Glas, and Hanxiao Fu. 2023. Developing autonomous behaviors for a consumer robot to
hang out near people in the home. In AAAI 2023 Spring Symposium Series. https://www.amazon.science/publications/
developing-autonomous-behaviors-for-a-consumer-robot-to-hang-out-near-people-in-the-home

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions from Examples for Introductory Automata
Assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (Amsterdam, Netherlands) (GPCE 2016). Association for Computing Machinery, New York, NY, USA,
70–80. https://doi.org/10.1145/2993236.2993244

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-Martín, Chen Wang, Gabrael
Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari, Minjune Hwang, Manasi Sharma, Arman Aydin, Dhruva Bansal,
Samuel Hunter, Kyu-Young Kim, Alan Lou, Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang,
Fei Xia, Silvio Savarese, Hyowon Gweon, Karen Liu, Jiajun Wu, and Li Fei-Fei. 2023. BEHAVIOR-1K: A Benchmark for
Embodied AI with 1,000 Everyday Activities and Realistic Simulation. In Proceedings of The 6th Conference on Robot
Learning (Proceedings of Machine Learning Research, Vol. 205), Karen Liu, Dana Kulic, and Jeff Ichnowski (Eds.). PMLR,
80–93. https://proceedings.mlr.press/v205/li23a.html

Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. 2019. A formal methods approach to interpretable reinforcement
learning for robotic planning. Science Robotics 4, 37 (2019), eaay6276. https://doi.org/10.1126/scirobotics.aay6276
arXiv:https://www.science.org/doi/pdf/10.1126/scirobotics.aay6276

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. 2022. Code as
policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753 (2022).

Zachary C. Lipton. 2018. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is
Both Important and Slippery. Queue 16, 3 (jun 2018), 31–57. https://doi.org/10.1145/3236386.3241340

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-Train, Prompt, and
Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9, Article
195 (jan 2023), 35 pages. https://doi.org/10.1145/3560815

Abdoulaye O. Ly and Moulay Akhloufi. 2021. Learning to Drive by Imitation: An Overview of Deep Behavior Cloning
Methods. IEEE Transactions on Intelligent Vehicles 6, 2 (2021), 195–209. https://doi.org/10.1109/TIV.2020.3002505

P. Madhusudan, Umang Mathur, Shambwaditya Saha, and Mahesh Viswanathan. 2018. A Decidable Fragment of Second
Order Logic With Applications to Synthesis. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 119), Dan Ghica and Achim Jung (Eds.). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–31:19. https://doi.org/10.4230/LIPIcs.CSL.2018.31

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. 2023.
Dissociating language and thought in large language models: a cognitive perspective. arXiv preprint arXiv:2301.06627
(2023).

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. 2019. The Neuro-Symbolic Concept
Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. In International Conference on Learning
Representations. https://openreview.net/forum?id=rJgMlhRctm

Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig. 2022. Automated Transpilation of Imperative to
Functional Code Using Neural-Guided Program Synthesis. Proc. ACM Program. Lang. 6, OOPSLA1, Article 71 (apr 2022),
27 pages. https://doi.org/10.1145/3527315

Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury. 2018. Symbolic Execution with Existential
Second-Order Constraints. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for
Computing Machinery, New York, NY, USA, 389–399. https://doi.org/10.1145/3236024.3236049

Michael Lee Michael L. Scott. 2000. Programming language pragmatics. Morgan Kaufmann.
Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of Recursive

Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022), 29 pages.
https://doi.org/10.1145/3498682

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. 2017. Neural Sketch Learning for Conditional
Program Generation. https://doi.org/10.48550/ARXIV.1703.05698

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, and Zachary Tatlock.
2020. Synthesizing Structured CAD Models with Equality Saturation and Inverse Transformations. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://www.amazon.science/publications/developing-autonomous-behaviors-for-a-consumer-robot-to-hang-out-near-people-in-the-home
https://www.amazon.science/publications/developing-autonomous-behaviors-for-a-consumer-robot-to-hang-out-near-people-in-the-home
https://doi.org/10.1145/2993236.2993244
https://proceedings.mlr.press/v205/li23a.html
https://doi.org/10.1126/scirobotics.aay6276
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scirobotics.aay6276
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3560815
https://doi.org/10.1109/TIV.2020.3002505
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://openreview.net/forum?id=rJgMlhRctm
https://doi.org/10.1145/3527315
https://doi.org/10.1145/3236024.3236049
https://doi.org/10.1145/3498682
https://doi.org/10.48550/ARXIV.1703.05698

18:32 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Association for Computing Machinery, New York, NY, USA, 31–44. https://doi.org/10.1145/3385412.3386012
Michal Nazarczuk and Krystian Mikolajczyk. 2020. V2A-Vision to Action: Learning robotic arm actions based on vision and

language. In Proceedings of the Asian Conference on Computer Vision.
Daniel Neider. 2014. Applications of automata learning in verification and synthesis.
Julie L. Newcomb and Rastislav Bodík. 2019. Using human-in-the-loop synthesis to author functional reactive programs.

ArXiv abs/1909.11206 (2019). https://d-nb.info/1059276062/34
Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, and Andrew G. Barto. 2015. Learning

grounded finite-state representations from unstructured demonstrations. The International Journal of Robotics Research
34, 2 (2015), 131–157. https://doi.org/10.1177/0278364914554471 arXiv:https://doi.org/10.1177/0278364914554471

Kore Nordmann. 2014. XML-Schema-learner. https://github.com/kore/XML-Schema-learner.
Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. 2019. Learning to Infer Program Sketches.

https://doi.org/10.48550/ARXIV.1902.06349
Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2021. Synthesizing Data Structure Refinements from Integrity

Constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3453483.3454063

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering
22 (2010), 1345–1359.

Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Işil Dillig. 2023a. Program Synthesis for Robot Learning
from Demonstrations. arXiv:2305.03129 [cs.PL]

Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Isil Dillig. 2023b. Programming-by-Demonstration for
Long-Horizon Robot Tasks. https://doi.org/10.5281/zenodo.8423505

A. Pnueli and R. Rosner. 1989. On the Synthesis of a Reactive Module. In Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association for Computing Machinery,
New York, NY, USA, 179–190. https://doi.org/10.1145/75277.75293

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types.
In Proc. of PLDI. 522–538.

David Porfirio, Evan Fisher, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2019. Bodystorming Human-Robot
Interactions. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 479–491. https://doi.org/10.1145/
3332165.3347957

David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2023. Sketching Robot
Programs On the Fly. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (Stockholm,
Sweden) (HRI ’23). Association for Computing Machinery, New York, NY, USA, 584–593. https://doi.org/10.1145/3568162.
3576991

Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman. 2022. SemanticOn: Specifying Content-Based
Semantic Conditions for Web Automation Programs. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology (Bend, OR, USA) (UIST ’22). Association for Computing Machinery, New York, NY, USA, Article
63, 16 pages. https://doi.org/10.1145/3526113.3545691

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna, Gustavo Soares, and Ashish
Tiwari. 2021. Multi-Modal Program Inference: A Marriage of Pre-Trained Language Models and Component-Based
Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 158 (oct 2021), 29 pages. https://doi.org/10.1145/3485535

Rodrigo C. O. Rocha, Pavlos Petoumenos, Björn Franke, Pramod Bhatotia, and Michael O’Boyle. 2022. Loop Rolling for
Code Size Reduction. In Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization
(Virtual Event, Republic of Korea) (CGO ’22). IEEE Press, 217–229. https://doi.org/10.1109/CGO53902.2022.9741256

Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jingnan Shi, Arjun Gupta, and Luca Carlone.
2021. Kimera: From SLAM to spatial perception with 3D dynamic scene graphs. The International Journal of Robotics
Research 40, 12-14 (2021), 1510–1546.

Andrei A. Rusu, Matej Vecerík, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell. 2017. Sim-to-Real Robot
Learning from Pixels with Progressive Nets. In 1st Annual Conference on Robot Learning, CoRL 2017, Mountain View,
California, USA, November 13-15, 2017, Proceedings (Proceedings of Machine Learning Research, Vol. 78). PMLR, 262–270.
http://proceedings.mlr.press/v78/rusu17a.html

Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: Component-Based Synthesis with Control Structures. Proc.
ACM Program. Lang. 3, POPL, Article 73 (jan 2019), 29 pages. https://doi.org/10.1145/3290386

Kavan Singh Sikand, Logan Zartman, Sadegh Rabiee, and Joydeep Biswas. 2021. Robofleet: Open source communication
and management for fleets of autonomous robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 406–412.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.1145/3385412.3386012
https://d-nb.info/1059276062/34
https://doi.org/10.1177/0278364914554471
https://arxiv.org/abs/https://doi.org/10.1177/0278364914554471
https://github.com/kore/XML-Schema-learner
https://doi.org/10.48550/ARXIV.1902.06349
https://doi.org/10.1145/3453483.3454063
https://arxiv.org/abs/2305.03129
https://doi.org/10.5281/zenodo.8423505
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3568162.3576991
https://doi.org/10.1145/3568162.3576991
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3485535
https://doi.org/10.1109/CGO53902.2022.9741256
http://proceedings.mlr.press/v78/rusu17a.html
https://doi.org/10.1145/3290386

Programming-by-Demonstration for Long-Horizon Robot Tasks 18:33

Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben Hardekopf. 2023. Loop Rerolling for Hardware Decompi-
lation. Proc. ACM Program. Lang. 7, PLDI, Article 123 (jun 2023), 23 pages. https://doi.org/10.1145/3591237

Armando Solar-Lezama. 2008. Program synthesis by sketching. Citeseer.
Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthesis. In Proc. of APLAS. 4–13.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In Proc. of ASPLOS. 404–415.
Arturo Daniel Sosa-Ceron, Hugo Gustavo Gonzalez-Hernandez, and Jorge Antonio Reyes-Avendaño. 2022. Learning from

Demonstrations in Human and Robot Collaborative Scenarios: A Survey. Robotics 11, 6 (2022). https://doi.org/10.3390/
robotics11060126

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martín-Martín, Fei Xia, Kent Elliott Vainio, Zheng Lian,
Cem Gokmen, Shyamal Buch, Karen Liu, Silvio Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei. 2022. BEHAVIOR:
Benchmark for Everyday Household Activities in Virtual, Interactive, and Ecological Environments. In Proceedings of the
5th Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 164), Aleksandra Faust, David Hsu, and
Gerhard Neumann (Eds.). PMLR, 477–490. https://proceedings.mlr.press/v164/srivastava22a.html

Jennifer J. Sun, Megan Tjandrasuwita, Atharva Sehgal, Armando Solar-Lezama, Swarat Chaudhuri, Yisong Yue, and Omar
Costilla-Reyes. 2022. Neurosymbolic Programming for Science. https://doi.org/10.48550/ARXIV.2210.05050

Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel,
Wolfram Burgard, Michael Milford, and Peter Corke. 2018. The limits and potentials of deep learning for robot-
ics. The International Journal of Robotics Research 37, 4-5 (2018), 405–420. https://doi.org/10.1177/0278364918770733
arXiv:https://doi.org/10.1177/0278364918770733

Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement Learning Domains: A Survey. J. Mach. Learn.
Res. 10 (dec 2009), 1633–1685.

Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. 2015. Program Synthesis Using Dual Interpretation. In Automated
Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer International Publishing, Cham, 482–497.

Nicholay Topin and Manuela Veloso. 2019. Generation of Policy-Level Explanations for Reinforcement Learning. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of
Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (Honolulu,
Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 310, 8 pages. https://doi.org/10.1609/aaai.v33i01.33012514

Martin Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-Guided Synthesis of Synchronization. SIGPLAN Not. 45, 1
(jan 2010), 327–338. https://doi.org/10.1145/1707801.1706338

Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic Programming by Example with Pre-Trained Models. Proc.
ACM Program. Lang. 5, OOPSLA, Article 100 (oct 2021), 25 pages. https://doi.org/10.1145/3485477

Abhinav Verma, Hoang M. Le, Yisong Yue, and Swarat Chaudhuri. 2019. Imitation-Projected Programmatic Reinforcement
Learning. Curran Associates Inc., Red Hook, NY, USA.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. 2018. Programmatically
Interpretable Reinforcement Learning. (2018). https://doi.org/10.48550/ARXIV.1804.02477

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018a. Program synthesis using abstraction refinement. PACMPL 2, POPL (2018),
63:1–63:30.

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019a. Synthesizing Database Programs for Schema Refactoring. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). ACM, New York, NY, USA, 286–300. https://doi.org/10.1145/3314221.3314588

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019b. Synthesizing database programs for schema refactoring. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI.

Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data migration using datalog program synthesis.
VLDB (2020).

Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018b. Relational Program Synthesis. PACMPL 2, OOPSLA (2018), 155:1–155:27.
Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-

Smith, and Douglas C. Schmidt. 2023. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

Jonas Witt, Stef Rasing, Sebastijan Dumančić, Tias Guns, and Claus-Christian Carbon. 2023. A Divide-Align-Conquer
Strategy for Program Synthesis. https://doi.org/10.48550/ARXIV.2301.03094

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Linguistics, Online, 38–45. https://doi.org/
10.18653/v1/2020.emnlp-demos.6

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.1145/3591237
https://doi.org/10.3390/robotics11060126
https://doi.org/10.3390/robotics11060126
https://proceedings.mlr.press/v164/srivastava22a.html
https://doi.org/10.48550/ARXIV.2210.05050
https://doi.org/10.1177/0278364918770733
https://arxiv.org/abs/https://doi.org/10.1177/0278364918770733
https://doi.org/10.1609/aaai.v33i01.33012514
https://doi.org/10.1145/1707801.1706338
https://doi.org/10.1145/3485477
https://doi.org/10.48550/ARXIV.1804.02477
https://doi.org/10.1145/3314221.3314588
https://arxiv.org/abs/2302.11382
https://doi.org/10.48550/ARXIV.2301.03094
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

18:34 N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig

Xuesu Xiao, Joydeep Biswas, and Peter Stone. 2021. Learning Inverse Kinodynamics for Accurate High-Speed Off-Road
Navigation on Unstructured Terrain. https://doi.org/10.48550/ARXIV.2102.12667

Jimmy Xin, Linus Zheng, Jiayi Wei, Kia Rahmani, Jarrett Holtz, Isil Dillig, and Joydeep Biswas. 2023. PLUNDER: Probabilistic
Program Synthesis for Learning from Unlabeled and Noisy Demonstrations. https://doi.org/10.48550/ARXIV.2303.01440

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer: query synthesis from natural language.
PACMPL 1, OOPSLA (2017), 63:1–63:26.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2020. Optimal Neural Program Synthesis from Multimodal Specifications.
arXiv preprint arXiv:2010.01678 (2020).

Eric Zhan, Jennifer J. Sun, Ann Kennedy, Yisong Yue, and Swarat Chaudhuri. 2021. Unsupervised Learning of Neurosymbolic
Encoders. https://doi.org/10.48550/ARXIV.2107.13132

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008. Maximum Entropy Inverse Reinforcement
Learning. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3 (Chicago, Illinois) (AAAI’08).
AAAI Press, 1433–1438.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 18. Publication date: January 2024.

https://doi.org/10.48550/ARXIV.2102.12667
https://doi.org/10.48550/ARXIV.2303.01440
https://doi.org/10.48550/ARXIV.2107.13132

	Abstract
	1 INTRODUCTION
	2 MOTIVATING EXAMPLE
	3 ROBOT EXECUTION POLICIES
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Problem Statement

	4 SYNTHESIS ALGORITHM
	4.1 Top-Level Algorithm
	4.2 Sketch Inference
	4.3 Sketch Completion

	5 IMPLEMENTATION
	6 Evaluation
	6.1 Benchmarks and Experimental Set-up
	6.2 Main Results for Prolex
	6.3 Ablation Studies
	6.4 Comparison with Alternative Approaches

	7 RELATED WORK
	8 CONCLUSIONS AND FUTURE WORK
	REFERENCES

