
Multi-modal Synthesis of Regular Expressions
Qiaochu Chen

University of Texas at Austin
Austin, Texas, USA

qchen@cs.utexas.edu

Xinyu Wang
University of Michigan, Ann Arbor

Ann Arbor, Michigan, USA
xwangsd@umich.edu

Xi Ye
University of Texas at Austin

Austin, Texas, USA
xiye@cs.utexas.edu

Greg Durrett
University of Texas at Austin

Austin, Texas, USA
gdurrett@cs.utexas.edu

Isil Dillig
University of Texas at Austin

Austin, Texas, USA
isil@cs.utexas.edu

Abstract
In this paper, we propose a multi-modal synthesis technique
for automatically constructing regular expressions (regexes)
from a combination of examples and natural language. Using
multiple modalities is useful in this context because natural
language alone is often highly ambiguous, whereas exam-
ples in isolation are often not sufficient for conveying user
intent. Our proposed technique first parses the English de-
scription into a so-called hierarchical sketch that guides our
programming-by-example (PBE) engine. Since the hierarchi-
cal sketch captures crucial hints, the PBE engine can leverage
this information to both prioritize the search as well as make
useful deductions for pruning the search space.
We have implemented the proposed technique in a tool

called Regel and evaluate it on over three hundred regexes.
Our evaluation shows that Regel achieves 80% accuracy
whereas the NLP-only and PBE-only baselines achieve 43%
and 26% respectively. We also compare our proposed PBE
engine against an adaptation of AlphaRegex, a state-of-the-
art regex synthesis tool, and show that our proposed PBE
engine is an order of magnitude faster, even if we adapt
the search algorithm of AlphaRegex to leverage the sketch.
Finally, we conduct a user study involving 20 participants
and show that users are twice as likely to successfully come
up with the desired regex using Regel compared to without
it.

CCS Concepts: • Software and its engineering→ Auto-
matic programming; • Theory of computation→ Reg-
ular languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06· ·$15.00
https://doi.org/10.1145/3385412.3385988

Keywords: Program Synthesis, Programming by Natural
Languages, Programming by Example, Regular Expression
ACM Reference Format:
Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig.
2020. Multi-modal Synthesis of Regular Expressions. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’20), June 15–20, 2020,
London, United Kingdom. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3385412.3385988

1 Introduction
As a convenient mechanism for matching patterns in text
data, regular expressions (or regexes, for short) have found
numerous applications ranging from search and replacement
to input validation. In addition to being heavily used by pro-
grammers, regular expressions have also gained popularity
among computer end-users. For example, many text editors,
word processing programs, and spreadsheet applications
now provide support for performing search and replacement
using regexes. However, despite their potential to dramati-
cally simplify various tasks, regular expressions have a repu-
tation for being quite difficult to master.

Due to the practical importance of regexes, prior research
has proposed methods to automatically generate regular
expressions from high-level user guidance. For example, sev-
eral techniques generate regexes from natural language de-
scriptions [25, 30, 49], while others synthesize regexes from
positive and negative examples [18, 27, 44]. While these tech-
niques have made some headway in regex synthesis, existing
NLP-based techniques have relatively low accuracy even for
stylized English descriptions [30], whereas example-based
synthesizers impose severe restrictions on the kinds of regu-
lar expressions they can synthesize (e.g., restrict the use of
Kleene star [18, 44] or consider only a binary alphabet [27]).
A central premise of this work is that both modalities

of information, namely examples and natural language, are
complementary and simultaneously useful for synthesizing
regular expressions. As evidenced by numerous regex-related
questions posted on online forums, most users communicate
their intent using a combination of natural language and pos-
itive/negative examples. In particular, a common pattern is
that users typically describe the high-level task using natural

https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3385412.3385988

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

language, but they also give positive and negative examples
to clarify any ambiguities present in that description.

Motivated by this observation, this paper presents a new
multi-modal synthesis algorithm that utilizes both examples
and English text to generate the target regex. The key idea
underlying our method is to parse the natural language de-
scription into a hierarchical sketch (or h-sketch for short) that
is used to guide a programming-by-example (PBE) engine.
Since hierarchical sketches capture key hints present in the
English description, they make it much easier for our PBE
technique to find regexes that match the user’s intent. Fur-
thermore, because the hierarchical nature of these sketches
closely reflects the compositional structure of the natural
language they are derived from, it is feasible to obtain the
basic scaffolding of the target regex using non-data-hungry
NLP techniques like semantic parsing [47, 48].
In order to effectively use the hints derived from natural

language, our technique leverages a new PBE algorithm for
the regex domain. In particular, our PBE technique uses the
hints provided by the h-sketch to both prioritize its search
and also perform useful deductive reasoning. In addition, our
PBE technique leverages so-called symbolic regular expres-
sions to group similar regexes during the search process and
uses an SMT solver to concretize them.
We have implemented the proposed approach in a tool

called Regel1 and compare it against relevant baselines on
over 300 regexes collected from two different sources. Our
evaluation demonstrates the advantages of multi-modal syn-
thesis compared to both DeepRegex, a state-of-the-art NLP
tool, as well as a pure PBE approach. In particular, Regel
can find the intended regex in 80% of the cases, whereas the
pure PBE and NLP baselines can synthesize only 26% and
43% of the benchmarks respectively. In our evaluation, we
also compare Regel’s PBE engine against an adaptation of
AlphaRegex, a state-of-the-art PBE tool for regex synthe-
sis, and demonstrate an order of magnitude improvement
in terms of sketch completion time. Finally, we perform a
user study targeting real-world regex construction tasks and
show that users are twice as likely to construct the intended
regex using Regel than without it.

In summary, this paper makes the following contributions:
• We describe a new multi-modal synthesis technique for
generating regexes from examples and natural language.
• We introduce hierarchical sketches and develop a semantic
parser to generate h-sketches from English descriptions.
• We present a new PBE engine for regular expression syn-
thesis that (1) leverages hints in the h-sketch to guide both
the search and deduction, and (2) utilizes the concept of
symbolic regexes to further prune the search space.

1Stands for Regular Expression Generation from Examples and Lan-
guage.

• We evaluate our technique on over 300 regexes and empiri-
cally demonstrate its advantages against multiple baselines
on two different data sets.
• We conduct a user study and run statistical significance
tests to evaluate the benefits of Regel to prospective users.

2 Overview
In this section, we give a high-level overview of our tech-
nique with the aid of a motivating example. Consider the
task of writing a regular expression to match strings that cor-
respond to decimal numbers of the form x .y where x (resp.
y) is an integer with at most 15 (resp. 3) digits. Furthermore,
this regex should accept strings that correspond to 15 digit
integers (i.e., where the .y part is missing).

As posted in a StackOverflow post,2 the user explains this
task using the following English description L: “I need a
regular expression that validates Decimal(18, 3), which means
the max number of digits before comma is 15 then accept at
max 3 numbers after the comma.” The user also provides
some positive examples E+ and negative examples E−:

Positive Examples Negative Examples
123456789.123 1234567891234567

123456789123456.12 123.1234
12345.1 1.12345

123456789123456 .1234

Here, the user’s English description is not only ambiguous,
but also somewhat misleading. First, the user means to say
“period” instead of “comma”, and, second, it is not clear from
the description whether a pure integer such as “123” should
be allowed. On the other hand, the string examples alone are
also not sufficient for completely understanding user intent.
For instance, by looking at the examples in isolation, it is
difficult to tell whether digit 0 is allowed or not.
To synthesize the target regex based on the user’s de-

scription and examples, our method first uses a semantic
parser [7] to “translate” the natural language description
into a hierarchical sketch (h-sketch) that captures the high-
level structure of the target regex. Given the English descrip-
tion L, our semantic parser generates a ranked list of such
h-sketches, one of which is given below:

Concat
(
□{<num>, <,>},□{RepeatRange(<num>,1,3), <,>}

)
(1)

In this h-sketch, the symbol□ denotes an unknown regex,
and the notation □{S1, ··,Sn } indicates that the unknown
regex □ should contain at least one of the components
(“hints”) S1, ··,Sn as a leaf node. Thus, looking at this h-
sketch, we can make the following observations:
1. Since the top-level operator is Concat, the regular expres-

sion is of the form Concat(R1,R2).
2. R1 should contain either a digit (i.e., <num>) or a comma

(i.e., <,>) as a component.

2https://stackoverflow.com/questions/19076566/need-regular-
expression-that-validate-decimal-18-3

PLDI ’20, June 15–20, 2020, London, United Kingdom

Concat

<num>

Figure 1. A partial regex example
where S represents the h-sketch
□2 {<,>, RepeatRange(<num>,1,3) }.

Concat

Not<num>

Figure 2. A partial regex expanded from Figure 1 where S′
stands for□1 {<,>, RepeatRange(<num>,1,3) }.

Concat

RepeatAtLeast

Or

<num> <.>

RepeatRange

<num> 1 3

Figure 3. A symbolic regex example.

3. R2 should contain either a 1-3 digit number (i.e.,
RepeatRange(<num>,1,3)) or a comma.

While this sketch is far from perfect, it still contains useful
sub-regexes that do indeed occur in the target regex.

Given a hierarchical sketch S like the one from Eq. 1, our
PBE engine tries to find a regex that is both a valid comple-
tion of S and also consistent with the provided examples.
From a high level, the synthesizer performs top-down sketch-
guided enumerative search over partial regexes represented
as abstract syntax trees (ASTs). For instance, Figure 1 shows
an example partial regex where nodes are labeled with h-
sketches, operators, or character classes. At every step, the
synthesizer picks a node labeled with a sketch and decides
how to expand that node. For instance, Figure 2 shows an
expansion of the partial regex from Figure 1 where the node
v2 has been instantiated with the Not operator which now
has a new child v3 labeled with a new h-sketch S′. 3
The synthesis engine underlying Regel leverages two

ideas that helpmake it practical. First, similar to priorwork [27],
Regel uses lightweight deductive reasoning to prune away
infeasible partial regexes by constructing over- and under-
approximations. However, with our h-sketches, we are able
to construct these approximations using hints obtained from
the natural language and therefore perform more precise rea-
soning. Specifically, given a partial regex P , our PBE engine
uses the h-sketch to construct a pair of regular expressions
⟨o,u⟩ such that (1) o accepts every string that any comple-
tion of P can match, and (2) u accepts only those strings
that every completion of P accepts. For instance, the under-
approximation for the partial regex from Figure 2 is:

Concat
(
<num>, Not

(
Or(<,>, RepeatRange(<num>,1,3))

))
(2)

Since this regex recognizes the negative example “123456789
12345467”, any completion of the partial regex from Figure 2
must also recognize this negative example. Thus, we can
reject this partial regex without compromising completeness.

The second idea underlying our synthesis algorithm is to
introduce symbolic regexes to prune large parts of the search
space. In particular, our regex DSL has several constructs
(e.g., RepeatRange) that take integer constants as arguments,
but explicitly enumerating possible values of these integer
constants during synthesis can be quite inefficient. To deal

3In Figure 1 and Figure 2, the notation □k indicates that the depth of
the unknown regex is at most k . Thus, when we derive the new sketch for
node v3, we use the same sketch labeling v2 but with depth 1 instead of 2.

r := c | ϵ | ∅
| StartsWith(r) | EndsWith(r) | Contains(r) | Not(r)
| Optional(r) | KleeneStar(r)
| Concat(r1, r2) | Or(r1, r2) | And(r1, r2)
| Repeat(r ,k) | RepeatAtLeast(r ,k) | RepeatRange(r ,k1,k2)

Figure 4. Regex DSL. Here, k ∈ Z+ and c is a character class
with this challenge, our algorithm introduces a so-called sym-
bolic integer κ that represents any integer value. Now, given a
symbolic regex with symbolic integers, our method generates
an SMT formula ϕ over the symbolic integers κ1, ··,κn such
that κi can be instantiated with constant ci only if c1, ··, cn is
a model of ϕ. For instance, consider the symbolic regex from
Figure 3. By looking at each of the sub-regexes of Figure 3,
we can make the following deductions:
• Since v3’s arguments (an Or node) are both single charac-
ters, any string matched by v3 must have length 1.
• Because RepeatAtLeast concatenates at least κ copies of
its first argument, the length of any string matched by v1
is at least κ.
• Finally, the length of any string matched by v0 must be at
least κ + 1 because v0’s first (resp. second) argument has
length at least κ (resp. 1).
Now, since there is a positive example (namely, 12345.1)

of length 7, this gives us the constraint κ + 1 ≤ 7 (i.e., κ ≤ 6)
on the symbolic integer κ. Thus, rather than enumerating
all possible integers, our approach instead generates an SMT
formula and solves for possible values of the symbolic inte-
gers. However, because the generated SMT formula Φ over-
approximates —rather than precisely encodes— regex seman-
tics, not every model of ϕ corresponds to a regex that is
consistent with the examples. Thus, our approach uses SMT
solving to prune infeasible symbolic regexes rather than di-
rectly solving for the unknown constants (e.g., as is done in
Sketch [28] and its variants [8, 19, 24, 43]).
Using these ideas, our synthesis algorithm is able to syn-

thesize the following correct regex:
Concat

(
RepeatRange(<num>,1,15),

Optional
(
Concat(<.>, RepeatRange(<num>,1,3))

))
3 Regex Language
Following prior work [30], we express regular expressions in
the simple DSL shown in Figure 4. 4 While most constructs in

4The precise semantics of this DSL are provided in the Appendix under
the extended version of this paper[10].

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

S := □d {S} (constrained hole)
| f(S) (operator without symbolic integer)
| g(S,κ) (operator with symbolic integer)
| r (regex)

Figure 5. Syntax of hierarchical sketch language where r is
a concrete regex and κi is a symbolic integer.

this DSL are just syntactic sugar for standard regular expres-
sions, the And and Not operators may require performing
intersection and complement at the automaton level. How-
ever, any “program” in our DSL is expressible as a standard
regex, and, furthermore, several regex libraries [1, 2] already
directly support some forms of And and Not. In what follows,
we briefly go over the regex constructs shown in Figure 4.

Character class. A character class c is either a single
character (e.g., <a>, <1>, <,>) or a predefined family of char-
acters. For instance, the character class <num> matches any
digit [0-9], <let> matches any letter [a-zA-Z], and <cap>
and <low> match upper and lower case letters respectively.
We also have a character class <any> that matches any char-
acter, <alphanum> matches alphanumeric characters, and
<hex> matches hexadecimal characters.

Containment. The DSL operator StartsWith(r) (resp.
EndsWith(r)) evaluates to true on string s if there is a pre-
fix (resp. suffix) of s that matches r . Similarly, Contains(r)
evaluates to true on s if any substring of s matches r .
Concatenation. The operator Concat(r1, r2) evaluates to

true on string s if s is a concatenation of two strings s1, s2
that match r1, r2 respectively.
Logical operators. The operator Not(r) matches a string

s if s does not match r . Similarly, And(r1, r2) (resp. Or(r1, r2))
matches s if s matches both (resp. either) s1 and (resp. or) s2.
The construct Optional(r) is syntactic sugar for Or(ϵ, r).

Repetition. The construct Repeat(r ,k) matches string s
if s is a concatenation of exactly k strings s1, ··, sk where
each si matches r . RepeatRange(r ,k1,k2) matches string s if
there exists some k ∈ [k1,k2] such that Repeat(r ,k) matches
s . Finally, RepeatAtLeast(r ,k) is just syntactic sugar for
RepeatRange(r ,k,∞), and KleeneStar(r) is equivalent to
Or(ϵ , RepeatAtLeast(r , 1))). Note that operators in the Repeat
family require every integer value k to be a positive number.

4 Hierarchical Sketches
In this section, we present the syntax and semantics of hi-
erarchical sketches (h-sketches) that we derive from the
natural language. Intuitively, an h-sketch represents a family
of regexes that conform to a high-level structure.

As shown in Figure 5, our h-sketch language extends our
regex DSL by allowing a “constrained hole” construct. A con-
strained hole, denoted □d {S}, is an unknown regex that is
parametrized with a positive integer d and a set of nested
h-sketches S. Specifically, regex r belongs to the space of

�
r
�
= {r }�

f(S)
�
=
{
f(r) | ∀i∈|S| ri ∈ ⟦Si ⟧

}

�
g(S, κ)

�
=
{
g(r, k) | r ∈ ⟦S⟧, ∀i∈|κ | ki ∈ N

}

�
□d {S }

�
=

⋃
i∈|S|

⟦Si ⟧ d = 1

⋃
i∈|S|

⟦Si ⟧ d > 1

∪
⋃

f∈Fn

⋃
1≤i≤n

�
f(l, · ·, l︸︷︷︸
i−1 times

, □d−1 {S },l, · ·, l︸︷︷︸
n−i times

)
�

where l = □d−1C ∪ {S}

∪
⋃

g∈Gn

�
g(□d−1 {S }, κ)

�
Figure 6. Semantics of h-sketches. g ∈ Gn (resp. f ∈ Fn) is
an n-ary operator in (resp. outside of) the Repeat family.

regexes defined by □d {S} if one of the “leaf” nodes of r con-
forms toSi and r has depth at most d (whenSi is viewed as a
“leaf node”). Observe that constrained holes can be arbitrarily
nested, which is why these sketches are hierarchical.

In addition to constrained holes, h-sketches can also con-
tain operators in our regex DSL. For example, an h-sketch
can be of the form f(S) where f denotes a DSL operator out-
side of the Repeat family (e.g., Concat). Semantically, f(S)
represents the set of regexes f(r) where we have ri ∈ ⟦Si ⟧.
Our h-sketches can also be of the form g(S,κ) where g is a
construct in the Repeat family and κ’s are so-called symbolic
integers. The set of programs defined by g(S,κ) includes all
programs of the form g(r ,k) where we have r ∈ ⟦S⟧ and ki
is any positive integer. Finally, our h-sketch language also in-
cludes concrete regular expressions (without holes), and the
semantics provided in Figure 6 summarize this discussion.

Example 4.1. The program Concat(<num>, Contains(<,>))

is in the language of the h-sketch Concat
(
□1{<,>, <num>},

□2{<,>, RepeatRange(<num>,1,3)}
)
.

Remark. While constrained holes in Figure 5 are explic-
itly parametrized by an integer d to facilitate defining h-
sketch semantics, the sketches produced by our semantic
parser do not have this explicit integer d . Instead, d should
be thought of as a configurable parameter that determines
the depth of the search tree explored by the PBE engine.

5 Regex Synthesis from H-Sketches
In this section, we describe our synthesis algorithm that gen-
erates a regex from an h-sketch S and a set of positive and
negative examples, E+ and E−. The output of the synthe-
sis procedure is either ⊥ which indicates an unsuccessful
synthesis attempt or a regex r such that:
(1) r ∈ ⟦S⟧ (2) ∀s ∈ E+. ⟦r⟧s = true (3) ∀s ∈ E−. ⟦r⟧s = false

Our synthesis procedure is given in Figure 7. At a high-
level, Synthesizemaintains a worklist of partial regexes and

PLDI ’20, June 15–20, 2020, London, United Kingdom

keeps growing this worklist by expanding the abstract syntax
tree (AST) representation of a partial regex.
Definition 5.1. (Partial regex) A partial regex P is a tree
(V ,E,A) where V is a set of vertices, E is a set of directed
edges, and A is a mapping from each node v ∈ V to a label
ℓ, which is either (1) a DSL construct (e.g., character class
or operator), (2) a symbolic integer κ, or (3) a hierarchical
sketch S.
In the remainder of this section, we use the term sym-

bolic regex to denote a partial regex where all of the node
labels are either DSL constructs or symbolic integers (not
an h-sketch), and we use the term concrete regex to denote
a partial regex where all node labels are DSL constructs.
Thus, every concrete regex corresponds to a program writ-
ten in the regex DSL from Figure 4. Given a partial regex
P , we write IsConcrete(P) to denote that P is a concrete
regex and IsSymbolic(P) to indicate that P is a symbolic (but
not concrete) regex. Finally, we refer to any node whose
corresponding label is an h-sketch as an open node.
Example 5.2. The partial regex shown in Figure 3 is a sym-
bolic (but not concrete) regex. On the other hand, the partial
regexes from Figures 1 and 2 are neither symbolic nor con-
crete because the nodes labeled with S are open.

Notation. Given a partial regex P represented as an AST,
we write Edges(P) to denote the set of all edges in P , Root(P)
to denote the root node, and Subtree(P ,v) to denote the
subtree of P rooted at node v . Given a node v , we write
v : ℓ, to denote that the label of v is ℓ. Adding a node v : ℓ
to P is denoted as P[v ◁ ℓ] (in case v already exists in P ,
it updates v’s label to be ℓ). Furthermore, adding multiple
nodes v1 : ℓ1, ··,vn : ℓn is denoted as P[v1 ◁ ℓ1, ··,vn ◁ ℓn],
and we assume that (v1,v2), ··, (v1,vn) are added as edges to
P if it does not already contain them.

With this notation in place, we now explain the Synthe-
size procedure from Figure 7 in more detail. The algorithm
first initializes the worklist to be the singleton {P0}, where
P0 is a partial regex with a single node v0 labeled with the
input sketch S (line 2). The loop in lines 3–15 dequeues one
of the partial regexes P from the worklist and processes it
based on whether it is concrete, symbolic, or neither. If it is
concrete (line 5), we return P as a solution if it is consistent
with the examples (line 6).

On the other hand, if P is symbolic (line 7), we invoke a
procedure called InferConstants (described in Section 5.2)
that instantiates the symbolic integers in P with integer con-
stants (line 8). As mentioned in Section 2, InferConstants
should be viewed as merely a way of pruning infeasible pro-
grams, so the regexes produced by InferConstants are
not guaranteed to satisfy the examples. Thus, the regexes
produced by InferConstants still have to be checked for
consistency with the examples in future iterations.
Lines 10-15 of the Synthesize algorithm deal with the

case where the dequeued partial regex is neither concrete

1: procedure Synthesize(S, E+, E−)
input: an h-sketch S, positive and negative examples E+, E−
output: a regex consistent with S, E+ and E−, or ⊥

2: P0 := (v0, ∅, [v0 ◁ S]); worklist := {P0};
3: while worklist , ∅ do
4: P := worklist.remove();
5: if IsConcrete(P) then
6: if IsCorrect(P , E+, E−) then return P ;
7: else if IsSymbolic(P) then
8: worklist := worklist∪ InferConstants(P , E+, E−);
9: else
10: (v,S) := SelectOpenNode(P);
11: worklist′ := Expand(P ,v,S);
12: for all P ′ ∈ worklist′ do
13: if Infeasible(P ′, E+, E−) then
14: worklist′.remove(P ′);
15: worklist := worklist ∪ worklist′;
16: return ⊥;

Figure 7. Synthesis algorithm for generating a regex from
an h-sketch and a set of positive/negative examples.

n = |S| Π =
⋃n
i=1

{
P[v ◁ Si]

}

v : □1{S} ⊢ P { Π
(1)

Π1 =
⋃ |S |
i=1

{
P[v ◁ Si]

}
ℓ = □d−1{S} ℓ′ = □d−1C ∪ {S}

Π2 =
⋃ |v |
j=1

{
P[v ◁ f,vj ◁ ℓ,∀i,jvi ◁ ℓ′] | f ∈ F|v | ,v fresh

}

Π3 =
{
P[v ◁ g,v0 ◁ ℓ,∀i ∈[1, |v |]vi ◁ κi] | g ∈ G|v | ,v,κ fresh

}

v : □d≥1{S} ⊢ P { Π1 ∪ Π2 ∪ Π3
(2)

v fresh n = |S| Π =
{
P[v ◁ f,∀i ∈[1,n].vi ◁ Si]

}

v : f(S) ⊢ P { Π
(3)

v fresh Π =
{
P[v ◁ g,v0 ◁ S,∀i ∈[1, |κ |].vi ◁ κi]

}

v : g(S,κ) ⊢ P { Π
(4)

Figure 8. Inference rules for Expand. In rule (2), C denotes
all character classes in the DSL, Gi (resp. Fi) denotes Repeat
(resp. non-Repeat) constructs with arity i .

nor symbolic (i.e., P has at least one open node). In this case,
we pick one of the open nodesv in P and expand it according
to the hints contained in the h-sketch labelingv . Specifically,
the Expand function from line 11 is described in Figure 8
using inference rules of the form v : S ⊢ P { Π. The
meaning of this judgement is that we obtain a new set of
partial regexes Π by expanding nodev according to h-sketch
S . Intuitively, given a node v labeled with sketch □d {S},
the inference rules enforce that at least one descendant of v
must correspond to a regex in the languages of S.
Next, given each expansion P ′ of P , we check whether

P ′ is consistent with the provided examples via the call at
line 13 to the Infeasible function (discussed in detail in
Section 5.1). Observe that the worklist only contains partial

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

Root (P) = v : S ⊢ S ↠ ⟨o,u⟩

⊢ P { ⟨o,u⟩
(1)

Root (P) = v : (f ∈ Fn \ {Not})
(v,vi) ∈ Edges(P) ⊢ Subtree(P ,vi) { ⟨oi ,ui ⟩

⊢ P {
〈
f(oN), f(uN)

〉 (2)

Root (P) = v : Not
(v,v1) ∈ Edges(P) ⊢ Subtree(P ,v1) { ⟨o1,u1⟩

⊢ P {
〈
Not(u1), Not(o1)

〉 (3)

Root (P) = v : (g ∈ Gn) (v,vi : ℓi) ∈ Edges(P)
⊢ Subtree(P ,v1) { ⟨o1,u1⟩ ∀i ≥ 2. ℓi ∈ N

⊢ P {
〈
g(o1, ℓ), g(u1, ℓ)

〉 (4)

Root (P) = v : (g ∈ Gn) (v,vi : ℓi) ∈ Edges(P)
⊢ Subtree(P ,v1) { ⟨o1,u1⟩ ∃i ≥ 2. SymInt(ℓi)

⊢ P {
〈
RepeatAtLeast(o1, 1),⊥

〉 (5)

Figure 9. Inference rules for Approximate. Gn (resp. Fn)
denotes arity n operators in (resp. not in) the Repeat family.

regexes that are consistent with the examples according to
the abstract semantics given in Section 5.1.

5.1 Pruning infeasible partial regexes
The high-level idea for pruning infeasible partial regexes is
quite simple and leverages the same observationmade by Lee
et al. [27]: Given a partial regex P , we can generate two con-
crete regexes, o and u, that over- and under-approximate P
respectively. Specifically, o and u have the following proper-
ties:

(1) ∀s . (∃r ∈ ⟦P⟧. Match(r , s)) ⇒ Match(o, s)
(2) ∀s . Match(u, s) ⇒ (∀r ∈ ⟦P⟧. Match(r , s))

Here, we use the notation r ∈ ⟦P⟧ to denote that r is a
valid completion of P . Thus, o matches every string s that
some completion of P can match and u only matches those
strings that all completions of P accept. Then, if there is
any e+ ∈ E+ that o does not match, we know that P cannot
satisfy the examples and can be rejected without sacrificing
completeness of our synthesis algorithm. Conversely, if there
is any e− ∈ E− that u matches, we know that P will also
match it and can thus be rejected safely. The main novelty
of our feasibility checking technique compared to Lee et al.
[27] is to leverage the hints inside the h-sketch to compute
more precise over- and under-approximations.
Figure 9 describes our approximation procedure using

inference rules of the shape ⊢ P { ⟨o,u⟩ indicating that P is
over- (resp. under-) approximated by o (resp. u). These rules
make use of an auxiliary judgment ⊢ S ↠ ⟨o,u⟩ (described
in Figure 10) that generate over- and under-approximations
of hierarchical sketches. In what follows, we explain a subset
of these rules.

Approximating holes. The first three rules in Figure 10
describe how to approximate holes in an h-sketch. We differ-
entiate between two cases: If the depth of the hole is exactly
1, then the hole must be filled with an instantiation of one of
the h-sketches S. Thus, we first recursively compute over-
and under-approximations for each Si as ⟨oi ,ui ⟩. Then, the
over-approximation for the hole is obtained by taking the
union over all the oi ’s and the under-approximation is ob-
tained by intersecting all the ui ’s (rule 3). The intuition for
the latter is that the under-approximation must match only
strings that every instantiation of Si matches; hence, we use
intersection. On the other hand, for holes with depth greater
than 1, we approximate them as ⟨⊤,⊥⟩ (rule 2). In principle,
we could perform a more precise approximation by instanti-
ating the hole with every possible DSL operator and taking
the union/intersection of these regexes. However, since the
resulting regex would be very large, such an alternative ap-
proximation would add a lot of overhead. Furthermore, since
holes can be nested inside one another, we can often obtain
a useful approximation of the top-level sketch even when
we use this less precise approximation for nested holes.

Approximating negation. Rule 3 from Figure 9 and rule
5 from Figure 10 both deal with the negation operator. Be-
cause the negation of an over-approximation yields an under-
approximation and vice versa, Not(S) is approximated as
⟨Not(u), Not(o)⟩ where ⟨o,u⟩ is the approximation for S.
Approximating repetition operators. The last two rules

in Figure 9 deal with operators in the Repeat family, which
take a regex as their first argument and integers for the
remaining arguments. In rule 4, if all of the integer argu-
ments are constants (rather than symbolic integers), then
the over- and under-approximations are computed precisely.
However, if one of the arguments is a symbolic integer (rule
6), the under-approximation is given by ⊥, and the over-
approximation is RepeatAtLeast(o1, 1) where o1 is the over-
approximation of the first argument. (Note that the second
argument is 1 since the integer arguments of all constructs
in the Repeat family require positive integers.)
Example 5.3. Consider the partial regex from Figure 2. Its
over-approximation is Concat(<num>, KleeneStar<any>)
and its under-approximation is shown in Eq. 2.

Theorem 5.4. (Correctness of Approximate in Figure 9)
Given a partial regex P , suppose Approximate(P) yields ⟨o,u⟩.
Then, we have:

(1) ∀s . (∃r ∈ ⟦P⟧. Match(r , s)) ⇒ Match(o, s)
(2) ∀s . Match(u, s) ⇒ (∀r ∈ ⟦P⟧. Match(r , s))

5.2 Solving Symbolic Regexes with SMT
Recall that our method uses symbolic regexes to avoid ex-
plicit enumeration of integer constants that appear inside
Repeat constructs. In this section, we explain how to “solve”
for these symbolic integers using SMT-based reasoning.

PLDI ’20, June 15–20, 2020, London, United Kingdom

⊢ S ↠ ⟨o,u⟩

⊢ □1{S} ↠ ⟨o,u⟩
(1)

d > 1

⊢ □d {S} ↠ ⟨⊤,⊥⟩
(2)

⊢ S1 ↠ ⟨o,u⟩ ⊢ □1{S2, ··,S |S | } ↠ ⟨o
′,u ′⟩

⊢ □1{S} ↠ ⟨Or(o,o′), And(u,u ′)⟩
(3)

f ∈ Fn \ {Not} ⊢ Si ↠ ⟨oi ,ui ⟩

⊢ f(S) ↠ ⟨f(o), f(u)⟩
(4)

⊢ S ↠ ⟨o,u⟩

⊢ Not(S) ↠ ⟨Not(u), Not(o)⟩
(5)

⊢ r ↠ ⟨r , r ⟩
(6)

g ∈ Gn ⊢ S ↠ ⟨o,u⟩

⊢ g(S,κ) ↠ ⟨RepeatAtLeast(o, 1),⊥⟩
(7)

Figure 10. Inference rules for over- and under-
approximating h-sketches. r denotes a concrete regex..

1: procedure InferConstants(P0, E+, E−)
input: a symbolic regex P0, examples E+, E−.
output: a set of concrete regular expressions Π.

2: (ϕ0,x0) := Encode(P0); ψ0 :=
(∧

s ∈E+ ϕ0[len(s)/x0]
)
;

3: worklist := {(P0,ψ0)}; Π := ∅;
4: while worklist , ∅ do
5: (P ,ϕ) := worklist.remove();
6: if UNSAT(ϕ) then continue;
7: σ := Model(ϕ); κ := ChooseSymInt(P);
8: P ′ := P

[
κ ◁ σ [κ]

]
;

9: worklist := worklist ∪ {(P ,ϕ ∧ κ , σ [κ])};
10: if IsConcrete(P ′) then Π := Π ∪ {P ′};
11: else
12: if ¬Infeasible(P , E+, E−) then
13: worklist := worklist ∪ {(P ′,ϕ

[
κ ◁ σ [κ]

]
)};

14: return Π;

Figure 11. Algorithm for InferConstants.

Figure 11 shows the InferConstants procedure for ob-
taining a set of concrete regexes from a given symbolic regex
P . The high-level idea underlying this algorithm is as follows:
We first infer a constraint ϕ on the values of symbolic inte-
gers κ1, ··,κn using the length of the strings that appear in
the examples. However, this constraint is over-approximate
in the sense that every concrete regex must satisfy ϕ but
not every model of ϕ corresponds to a concrete regex that
satisfies the examples. Thus, given a candidate assignment
to one of the κ’s (obtained from a model of ϕ), we use the
Infeasible procedure discussed in the previous section to
check whether this (partial) assignment is feasible. If so, we
then continue and repeat the same process for the remaining
κi ’s until we have found a full assignment for all symbolic
integers that appear in P .
SMT Encoding. Before explaining the InferConstants

algorithm in more detail, we first explain how to generate

a constraint for a given symbolic regex. Our encoding is
described in Figure 12 using inference rules P ↪→ (ϕ,x).
This judgement means, for any instantiation of P to match a
string s , the symbolic integers in P must satisfy ϕ[len(s)/x].
As presented in the first rule, our encoding uses a function
Φ, shown also in Figure 12, that generates a constraint for a
given regex from constraints on its sub-regexes. Specifically,
it takes as input a DSL construct op, a variable x that refers to
the length of the string matched by the top-level regex, and
constraints ϕ1, ··,ϕk for the sub-regexes (where the length
of the string matched by i’th sub-regex is xi).

For instance, consider the encoding for the StartsWith(r)
construct: If the length of the stringmatched by r is x1 (which
is constrained according to ϕ1), then any string matched by
StartsWith(r) will be at least as long as x1. Thus, we have:

Φ(StartsWith,x ,x1,ϕ1) = ∃x1.(x ≥ x1 ∧ ϕ1)

Observe that x1 is existentially quantified in the formula
because it is a “temporary” variable that refers to the length
of the string matched by the sub-regex. Since the other cases
in the definition of the Φ function are similar and follow the
semantics of the DSL operators, we do not discuss them in de-
tail but just highlight two cases for Not and RepeatAtLeast.

The encoding for the Not operator is true regardless of the
sub-regex because inferring anything more precise would
require us to track sufficient (rather than necessary) condi-
tions for accepting a string, which is not feasible to do using
the length of the string alone.
The encoding for the Repeat family of constructs intro-

duces non-linear multiplication. For instance, consider the
symbolic regex RepeatAtLeast(r ,κ) where the constraint
on the sub-regex r is (ϕ1,x1). Since r is repeated at least κ
times, the length of the string matched by this regex is at
least x1 · κ, which introduces non-linear constraints. Thus,
while the formulas generated by the Encode procedure are
technically in Peano (rather than Presburger) arithmetic, we
found that the Z3 SMT solver can efficiently handle the type
of non-linear constraints we generate.

Example 5.5. Consider the following symbolic regex:

Concat
(
Repeat

(
Or(< . >, < num >),κ1

)
, (3)

RepeatAtLeast
(
RepeatRange(< num >, 1, 3),κ2

))
Using the rules presented in Figure 12, we generate the

following constraint ϕ:

ϕ = ∃x1,x2. (x0 = x1 + x2) ∧ ϕ1 ∧ ϕ2 (Concat)
ϕ1 = ∃x3,x

′
3. (x1 ≥ x3 ∗ κ1 ∧ x1 ≤ x ′3 ∗ κ1) (Repeat)
∧ ϕ3 ∧ ϕ3[x ′3/x3] ∧ (1 ≤ κ1 ≤ MAX)

ϕ3 = (x3 = 1 ∨ x3 = 1) (Or)
ϕ2 = ∃x4. (x2 ≥ x4 ∗ κ2) ∧ ϕ4 ∧ (1 ≤ κ2 ≤ MAX) (AtLeast)
ϕ4 = 1 ≤ x4 ≤ 3 (Range)

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

Root(P) = v : op arity(op) = n (v,vi) ∈ Edges(P)
Subtree(P ,vi) ↪→ (ϕi ,xi) x fresh

P ↪→ (Φ(op,x ,x ,ϕ), x)
(1)

x fresh Root(P) = v : (c ∈ C)
P ↪→ (x = 1, x)

(2)

Root(P) = v :
(
κ ∈ SymInt(P)

)
P ↪→ (1 ≤ κ ≤ MAX, κ)

(3)5

Φ(StartsWith,x ,x ,ϕ) = ∃x1. (x ≥ x1 ∧ ϕ1)

Φ(EndsWith,x ,x ,ϕ) = ∃x1. (x ≥ x1 ∧ ϕ1)

Φ(Contains,x ,x ,ϕ) = ∃x1. (x ≥ x1 ∧ ϕ1)

Φ(Not,x ,x ,ϕ) = true
Φ(Optional,x ,x ,ϕ) = ∃x1. (x = 0 ∨ x = x1) ∧ ϕ1
Φ(KleeneStar,x ,x ,ϕ) = ∃x1. (x = 0 ∨ x ≥ x1) ∧ ϕ1
Φ(Concat,x ,x ,ϕ) = ∃x1,x2.(x = x1 + x2)

∧ϕ1 ∧ ϕ2
Φ(Or,x ,x ,ϕ) = ∃x1,x2.(x = x1 ∨ x = x2)

∧ϕ1 ∧ ϕ2
Φ(And,x ,x ,ϕ) = ∃x1,x2.(x = x1 ∧ x = x2)

∧ϕ1 ∧ ϕ2
Φ(Repeat,x ,x ,ϕ) = ∃x1,x ′1.(x ≥ x1x2 ∧ x ≤ x ′1x2)

∧ϕ1 ∧ ϕ1[x ′1/x1] ∧ ϕ2
Φ(RepeatAtLeast,x ,x ,ϕ) = ∃x1.(x ≥ x1x2) ∧ ϕ1 ∧ ϕ2
Φ(RepeatRange,x ,x ,ϕ) = ∃x1,x ′1.(x ≥ x1x2 ∧ x ≤ x ′1x3)

∧ϕ1 ∧ ϕ1[x ′1/x1] ∧ ϕ2 ∧ ϕ3
Figure 12. Inference rules for Encode.

Note that the top-level constraint ϕ can be simplified to the
following formula by performing quantifier elimination:

(x0 ≥ κ1 + κ2) ∧ (1 ≤ κ1 ≤ MAX) ∧ (1 ≤ κ2 ≤ MAX) (4)

Using SMT encoding for inference. Now that we have a
way to encode symbolic regexes using SMT, we can describe
the InferConstants algorithm from Figure 11 in more de-
tail. Given a symbolic regex P0, the algorithm first generates
the SMT encoding ϕ0 for P0 using the Encode function (i.e.,
Figure 12). Here, ϕ0 contains free variables κ1, ··,κn as well
as a variable x0 that refers to the length of the input string.
Now, since every s ∈ E+ should match the synthesized regex,
we can obtain a constraint on the symbolic integers by in-
stantiating x0 with len(s) for every s ∈ E+ and taking their
conjunction. Thus, formula ψ0 from line 2 gives us a con-
straint on the symbolic integers used in P .

Next, the loop in lines 5–13 populates a set Π of concrete
regexes that can be obtained by instantiating the symbolic
integers in P0 with constants. Towards this goal, it maintains
a worklist of symbolic regexes that are made increasingly
more concrete in each iteration.

5MAX is the maximum integer constant in the DSL. We setMAX to the
length of the longest example in the implementation.

Specifically, the worklist contains pairs (P ,ϕ) where P is
a symbolic regex and ϕ is a constraint on the symbolic inte-
gers used in P — initially, the worklist just contains (P0,ψ0).
Then, in each iteration, we remove from the worklist a sym-
bolic regex P and its constraint ϕ and make an assignment
to one of the symbolic integers κ used in P . To this end,
we first query the SMT solver to get a model σ of ϕ. How-
ever, since ϕ is over-approximate, instantiating the symbolic
integers in P with σ may not yield a concrete regex that
satisfies the examples. Thus, we pick one of the symbolic
integers κ in P and check whether σ [κ] is infeasible using
the method described in Section 5.1 (line 12). 6 If the result-
ing symbolic regex cannot be proven infeasible, we then add
the partially concretized symbolic program P ′ = P[κ ◁ σ [κ]]
to the worklist, together with its corresponding constraint
ϕ[κ ◁ σ [κ]] (line 13). However, in addition, we also keep
the original symbolic regex P since there may be other valid
assignments to κ beyond just σ [κ] (line 9). Finally, to ensure
that the solver does not keep yielding the same assignment
to κ, we strengthen its constraint by adding the “blocking
clause” κ , σ [κ] (also line 9). Upon termination, the set Π
contains every feasible concrete regex that can be obtained
by instantiating the original symbolic regex P0.
Example 5.6. Consider the simplified constraint ϕ from
Eq. 4. After instantiating x0 with the length of each positive
example from Section 2 and taking their conjunction, we
obtain the following formulaψ0:
(κ1 + κ2 ≤ 13) ∧ (κ1 + κ2 ≤ 7) ∧ (κ1 + κ2 ≤ 18) ∧ (κ1 + κ2 ≤ 15)
∧ (1 ≤ κ1 ≤ MAX) ∧ (1 ≤ κ2 ≤ MAX)

This formula is equivalent to the following much simpler
constraint:

ψ0 = (κ1 + κ2 ≤ 7) ∧ (1 ≤ κ1 ≤ MAX) ∧ (1 ≤ κ2 ≤ MAX) (5)

Now, suppose the solver returns the model [κ1 7→ 1,κ2 7→ 1]
to Eq. 5. Thus, we first assign 1 to κ1 in the partial regex from
Eq. 3, which yields:

Concat
(
Repeat

(
Or(< num >, < . >), 1

)
,

RepeatAtLeast(RepeatRange
(
< num >, 1, 3),κ2

))
We can prove that this partial regex is inconsistent with the
examples from Section 2 because no instantiation ofκ2 yields
a regex that matches the positive example “123456789.123”.
Observe that ignoring the assignment to κ2 allows us to
prune 6 regexes at a time instead of just one.

Theorem 5.7. (Correctness of InferConstants in Fig-
ure 11) Given a partial regex P , positive examples E+ and
negative examples E−, suppose that InferConstants returns
Π. Then, for any concrete regex r ∈ ⟦P⟧ that is consistent with
E+ and E−, we have r ∈ Π.

6Alternatively, we could plug in the whole assignment σ and check
whether the resulting regex is consistent with the examples. However,
our proposed method is preferable over this alternative because a partial
assignment to a subset of the variables often results in an infeasible partial
regex and allows us to prune significantly more programs.

PLDI ’20, June 15–20, 2020, London, United Kingdom

lexical rules: compositional rules:

max number of digits before comma is 15 then accept at max 3 numbers after the comma

$OP.RPTRANGE at maxop.rptrange

$CC number<num>
$CC digit<num>
$CONST comma<,>
$OP.CONCAT beforeop.concat
$OP.CONCAT thenop.concat

$ROOT1 ($SKETCH)(IdentityFn arg:0)
$SKETCH2 ($PROGRAM, $PROGRAM, …)(SketchFn arg:0, arg:1, …)
$SKETCH3 ($SKETCH $OP.CONCAT $SKETCH)(ConcatFn arg:0 arg:2)
$PROGRAM4 ($OP.REPEATRANGE $INT $PROGRAM)(RepeatRangeFn val:1 arg:0 arg:2)
$PROGRAM5 ($INT $PROGRAM)(RepeatFn arg:0 arg:1)
$PROGRAM6 ($CC)(IdentityFn arg:0)
$PROGRAM7 ($CONST)(IdentityFn arg:0)

$CC: <num> $CONST:<,>

$OP.CONCAT

$OP.RPTRANGE

$CC: <num>

$INT:3$PROGRAM: <num> $PROGRAM: <,> $PROGRAM: <num>

$SKETCH: □{<num>,<,>}

$CONST:<,>

$PROGRAM: <,>$PROGRAM: RepeatRange(<num>,1,3)

$SKETCH: □{RepeatRange(<num>,1,3),<,>}

$SKETCH: Concat(□{<num>,<,>},□{RepeatRange(<num>,1,3),<,>})

$ROOT
1

3

2 2

6 7

4 7

6

$INT {Integer}{integer}7

1
2
3
4
5
6

12 3

5

6 7

3

Figure 13. Examples of rules and the parse tree for one possible derivation generated from the given description.
6 From English Text to H-Sketches
In this section, we describe a technique for generating hier-
archical sketches from English text. While there are many
NLP techniques that can be used to solve this problem (in-
cluding currently-popular seq2seq models), we frame it as an
instance of semantic parsing and build our sketch generator
on top of the SEMPRE framework [7]. As mentioned briefly
in Section 1, we choose semantic parsing over deep learning
techniques because it does not require as much labeled train-
ing data. However, our general synthesis methodology and
the PBE algorithm are both agnostic to the NLP technique
used for parsing English text into an h-sketch.

6.1 Background on semantic parsing
Semantic parsing is used for converting natural language
to a formal representation, such as SQL [46, 47], lambda
calculus [9], or natural logic [31]. This formal representation
is often referred to as a logical form, and semantic parsers use
a context-free grammar (CFG) to translate natural language
to the target logical form. However, since natural language
is highly complex and often very ambiguous, there are many
possible logical forms that can be obtained from a given
natural language description. Thus, modern semantic parsers
also incorporate a machine learning model to score different
parses for a given utterance. However, as mentioned earlier,
these techniques still do not require as much labeled training
data as other methods based on deep learning.
In the context of this work, logical forms correspond to

hierarchical sketches, so our CFG needs to parse a given Eng-
lish utterance into an h-sketch. In the remainder of this sec-
tion, we first give an overview of Regel’s CFG (Section 6.2)
and then discuss how to produce a ranked list of h-sketches
using a machine learning model (Section 6.3).

6.2 Grammar-based sketch composition
Following standard convention, we specify our grammar
rules in the following format:

<target category> <target derivation>→ <source sequence>
Such a rule maps <source sequence> to a <target derivation>
with category <target category>. Rules of the semantic parser
can be further categorized into two groups, namely lexical
rules and compositional rules. Examples of both types of
rules are provided in Figure 13. A lexical rule maps a word in
the sentence to base concepts in the DSL, including character
class (e.g., lexical rule 1) and operator (e.g., lexical rule 4). A
compositional rule combines one or more base components
and builds larger h-sketches. For instance, as shown in Fig-
ure 13, compositional rule 2 is applied to generate a sketch
□{<num>,<,>}, labeled with category $SKETCH, from a se-
quence of two derivations, <num> and <,>, both labeled with
$PROGRAM, via the semantic function SketchFn. Here, we
use category $SKETCH to denote sketches containing holes
and category $PROGRAM to mark concrete regexes.
Given a set of pre-defined grammar rules and a natural

language description L, the semantic parser generates a
list of possible derivations for L. Each derivation can be
mapped to an h-sketch deterministically, and, in general,
multiple derivations of the same sentence can map to the
same h-sketch. We construct the derivations for a given
sentence recursively in a bottom-up fashion using dynamic
programming. More specifically, we first apply lexical rules
to generate derivations for any span (i.e., sequence of words)
that they match. Then, the derivations of larger spans are
constructed by applying compositional rules to derivations
built over non-overlapping constituent spans. As the final
output, we take derivations spanning the whole sentence
that are labeled with a designated $ROOT category.

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

Example 6.1. To build intuition, Figure 13 demonstrates
the parsing process for the English phrase “the max number
of digits before comma is 15 then accept at max 3 numbers”.
Note that our parser allows skipping arbitrary words; thus,
not every span in the description is used for building this
derivation. Finally, we do not require applying every rule
from Figure 13 when constructing this derivation, such as
lexical rule 4 and compositional rule 5. Also observe that our
grammar does not uniquely define an h-sketch for a given
sentence. In particular, we can also obtain the following
alternative h-sketch from the same text:

Concat
(
□{<num>},□{<,>, Repeat(<num>,3)}

)
(6)

6.3 Learning feature weights
Since there are many different h-sketches for an given Eng-
lish sentence, we need a way of scoring derivations so that
h-sketches that are more consistent with the utterance are
assigned a higher score. Towards this goal, our parser lever-
ages a discriminative log-linear model using a set of fea-
tures extracted from natural language. Specifically, given a
derivation d from the set of possible derivations D (L) for
a description L, we extract a feature vector ϕ (L,d) ∈ Rb .
The features are local to individual rules and are chosen to
capture lexical, compositional, and semantic characteristics
of the derivation and its sub-derivations. Regel leverages
two feature sets, namely rule features and span features, both
of which are inherited from the SEMPRE framework. Con-
cretely, a rule feature indicates whether a particular rule is
fired during the derivation, and a span feature tracks the
number of consecutive words that are used when generating
a particular category in the derivation.

Given these extracted feature vectors, the probability that
a derivation d is the intended sketch is given by:

P (d |L) =
exp(θ⊤ϕ (L,d))∑

d ′∈D (L) exp(θ⊤ϕ (L,d ′))

where θ ∈ Rb is the vector of parameters to be learned.
We learn these parameters with supervision from labeled
training data, which consists of pairs (Li ,h

∗
i) whereLi is the

English description and h∗ is a corresponding sketch label.
During learning, we maximize the log probability of the
system generating h∗ regardless of derivation. In particular,
given N training samples, our objective function is:

max
θ

log
N∑
i

∑
d :sketch(d)=h∗i

P (d |Li)

Intuitively, the model increases the weight assigned to fea-
tures for derivations that exactly match the annotated sketch.
In practice, D (L) is a very large set of derivations, expo-

nential with respect to the number of active lexical rules in
the span. Therefore, we use beam search to find the approxi-
mate highest-scoring derivation. That is, instead of keeping
all possible derivations for a span, we only keep a set of
top-m derivations Dm (L) according to their probabilities

and discard the rest. During training, we maximize the like-
lihood of the correct derivation with respect to this set; that
is, normalizing over Dm (L) rather than D (L).

7 Implementation
We have implemented our synthesis algorithm in a new tool
called Regel7. In addition to the natural language description
and positive/negative examples, Regel takes two additional
inputs, namely a time budget t and a parameter k that con-
trols how many results to show to the user. The output of
Regel consists of up to k regexes that satisfy the examples.
Note that the actual number of regexes returned by Regel
may be less than k due to the time budget.

Regel is written in Java and leverages a number of other
existing tools. First, our semantic parser is built on top of the
SEMPRE framework [7] and leverages its existing function-
alities, such as the linguistic pre-processor. Second, Regel
makes use of the Z3 SMT solver [12] for inferring possible
values of the symbolic integers (recall Section 5.2). Finally,
Regel uses the Brics automaton library [33] for checking
whether a string is matched by a regex.

The internal workflow of Regel is as follows: First, the
semantic parser generates up to 500 derivations for the given
utterance and ranks them using the machine learning model.
Then, we take the top 25 sketches produced by the parser
and run 25 instances of the PBE engine in parallel to find a
completion of each sketch that is consistent with the given
examples. Then, given a value of k that can be specified by
users, we wait for up to k PBE engine instances to complete
their task and return the synthesized regexes for those tasks
that terminate within the given time budget t .

Eliminating membership queries. For every concrete
regex r explored by our synthesis algorithm, we need to
check whether r matches all positive examples and rejects
all negative ones. Thus, Regel ends up issuing many regu-
lar language membership queries, some of which are quite
expensive in practice. To reduce this overhead, our imple-
mentation uses various heuristics to eliminate unnecessary
membership queries. For example, if we have determined
that the regex Contains(r) does notmatch one of the positive
examples, then we know that StartsWith(r) will also not
match at least one of the examples. Similarly, if we have deter-
mined that the regex RepeatAtLeast(r , 2) does not match a
positive example, we can conclude RepeatAtLeast(r ,k) will
not match the examples for any value of k ≥ 2. Our imple-
mentation uses such “subsumption” heuristics to eliminate
some of the redundant membership queries.

Eliminating redundant sketches. During semantic pars-
ing, duplicate tokens in a span lead to many redundant
derivations. We eliminate these duplicate sketches during
beam search and keep the generated derivations non-identical.

7Regel is publicly available at https://github.com/utopia-group/regel

PLDI ’20, June 15–20, 2020, London, United Kingdom

8 Data Sets for Evaluation
To conduct our experiments, we collected two data sets, one
of which is an adapted version of a data set used in Deep-
Regex [30] and another much more challenging data set
curated from StackOverflow.

DeepRegex data set. As mentioned earlier, DeepRegex
is a tool for generating regexes directly from natural lan-
guage [30]. However, to evaluate our technique on the Deep-
Regex data set, we need positive and negative examples in
addition to the English description. Thus, to adapt this data
set to our setting, we took 200 benchmarks from this data set
and asked users to provide positive and negative examples8.
On average, each benchmark in this adapted DeepRegex
data set contains 4 positive and 5 negative examples.

StackOverflow data set. To evaluate Regel onmore real-
istic string matching tasks encountered by real-world users,
we collected a set ofmuchmore challenging benchmarks from
StackOverflow. Specifically, we searched StackOverflow us-
ing relevant keywords, such as “regex”, “regular expression”,
“text validation” etc. and retained all benchmarks that contain
both an English description as well as positive and negative
examples. Using this methodology, we obtained a total of
122 regex-related tasks and generated the ground-truth by
directly converting the answer on StackOverflow to our DSL.

Training for each data set. As described in Section 6.3,
our semantic parser is parametrized by a vector θ that is used
for assigning scores to each possible derivation. Because
these parameters are learned using supervision from labeled
training data, we need training data for each data set in the
form of pairs of English sentences and their corresponding
h-sketches. However, since the original data sets are not
annotated with hierarchical sketches, we had to construct
the h-sketches used for training ourselves.

In general, the optimal h-sketch to use for training is hard
to determine. On the one extreme, we can write an h-sketch
that is exactly the target regex, but that would lead to poor
performance of the semantic parser on the test set. On the
other extreme, we can use a sketch that is completely uncon-
strained but that would be completely unhelpful for the PBE
engine. To achieve a reasonable trade-off between these two
extremes, we used the following strategy. For theDeepRegex
dataset where the target regexes are relatively small and sim-
ple, we automatically generated the h-sketch by replacing
the top-level (root) operator with a hole. For example, if
the target regex is Concat(<num>, <let>), our h-sketch used
for training would be □{<num>, <let>}. While this strategy
worked well for the DeepRegex dataset, it was not suffi-
ciently fine-grained for the much more difficult StackOver-
flow benchmarks. Therefore, we manually constructed the
h-sketches for the StackOverflow benchmarks by reading

8The details of this data set and the procedure for adapting it to our set-
ting are described in the Appendix of an extended version of this paper[10].

the English description and expressing its high-level struc-
ture as an h-sketch. In many cases, our manually-written
h-sketch faithfully captures the unambiguous parts of the
English description (e.g., letter) but replaces ambiguous (or
difficult to parse) fragments with holes.

Settings for each data set. Recall from Section 7 that
Regel is parametrized by two additional inputs t ,k that
control the time budget and number of results to display. For
the easier DeepRegex data set, we set a time-out limit of
10 seconds and display only a single result. For the much
harder StackOverflow benchmarks, we set the time budget to
be 60 seconds and display the top 5 results. For performing
comparisons, we use the same values of t and k across all
tools and consider the benchmarks to be successfully solved
if the intended regex is within the top k results.

9 Experimental Results
In this section, we describe a series of three experiments that
are designed to answer the following research questions:
• Q1:What is the benefit ofmulti-modal synthesis? Does our
approach work better compared to alternative approaches
that use only examples or only natural language?
• Q2: How effective is our proposed PBE technique? In par-
ticular, how useful is sketch-guided deduction (Sec. 5.1)
and SMT-based solving of symbolic regexes (Sec. 5.2)?
• Q3: Is Regel helpful to users in constructing regular ex-
pressions for a given task?
All experiments are conducted on an Intel Xeon(R) E5-

1620 v3 CPU with 32GB physical memory.
9.1 Benefits of multi-modal synthesis
To evaluate the benefits of leveraging two different specifi-
cation modalities, we compare Regel against two baselines.
Our first baseline is DeepRegexwhich directly translates the
natural language description into a regex using a sequence-
to-sequence model [30]. Our second baseline is a variant of
Regel, henceforth referred to as Regel-Pbe, that only uses
positive and negative examples. In particular, Regel-Pbe
starts with a completely unconstrained sketch (i.e., single
hole) and searches for a regex that satisfies the examples
using the same algorithm described in Section 5. 9

Since PBE tools are meant to be used interactively, we use
the following methodology. First, we run both Regel and
Regel-Pbe on the initial examples in the original data set
and consider synthesis to be successful if the intended regex
is among those returned by the tool. If it is unsuccessful, in
the next iteration, we provide two additional examples that
are guaranteed to rule out the returned incorrect regex. We
continue this process up to a maximum of four iterations.

9As we show in the next subsection, Regel-Pbe outperforms prior
state-of-the-art regex PBE techniques; thus, we take Regel-Pbe as the rep-
resentative state-of-the-art approach for synthesizing regular expressions
purely from examples.

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

0 1 2 3 4

50

100

150

200

of Iterations

#
So
lv
ed

Be
nc
hm

ar
ks

Regel
Regel-Pbe
DeepRegex

(A) DeepRegex data set

0 1 2 3 4

0

20

40

60

80

100

120

of Iterations
#
So
lv
ed

Be
nc
hm

ar
ks

Regel
Regel-Pbe
DeepRegex

(B) StackOverflow data set
Figure 14. Number of solved benchmarks over iterations.

0 1 2 3 4

0

1

2

3

4

of Iterations

Av
g
Ti
m
e
(s
)

Regel
Regel-Pbe

(A) DeepRegex data set

0 1 2 3 4

4

6

8

10

12

14

16

18

20

of Iterations

Av
g
Ti
m
e
(s
)

Regel
Regel-Pbe

(B) StackOverflow data set
Figure 15.Average running time per solved benchmark over
iterations. Time forDeepRegex’s seq2seqmodel is negligible.

Our results are summarized in Figures 14 and 15. For each
figure, the x-axis shows the number of iterations and the
y-axis shows either the number of benchmarks that can be
successfully solved (Figure 14) or the average running time
per benchmark (Figure 15). For each figure, (A) shows results
for the DeepRegex data set and (B) is for StackOverflow. The
green line (with squares) corresponds to Regel, the blue line
(with circles) is Regel-Pbe, and the violet line (with trian-
gles) is DeepRegex. Because DeepRegex only takes natural
language as input, the DeepRegex line in Figure 14 is flat.
Furthermore, since DeepRegex does not involve any search,
its running time is negligible and not shown in Figure 15.

DeepRegex data set. Let us first focus on the results for
theDeepRegex data set, shown in Figure 14 (A) and Figure 15
(A). Given the original examples in this data set, Regel can
produce the intended regexes for 151 out of 200 benchmarks
(75.5% accuracy). Furthermore, Regel solves up to 185 bench-
marks (92.5%) when more examples are available. In com-
parison, DeepRegex solves 134 benchmarks (67%), whereas
Regel-Pbe solves at most 66 benchmarks (33%). Furthermore,
as illustrated in Figure 15 (A), using the natural language
specification also substantially speeds up the PBE engine.

StackOverflow data set. Next, we consider the Stack-
Overflow results shown in Figure 14 (B). As expected, the
accuracy is much lower compared to the DeepRegex data

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

0

0.5

1

1.5

2

2.5

3

3.5 ·10
4

Solved Sketches

Ti
m
e(
s)

AlphaRegex
Regel-Approx
Regel

Figure 16. Number of solved sketches within a given time
budget. For each StackOverflow benchmark, we take the top
25 sketches generated by the parser (or fewer than 25 if the
parser does not generate 25).

set, as the StackOverflow benchmarks are much more chal-
lenging.10 Thus, the two baselines (namely, DeepRegex and
Regel-Pbe) can only solve 3 (2.4%) and 18 benchmarks (14.7%)
respectively, out of 122 benchmarks in total. In contrast,
Regel is able to solve up to 74 benchmarks out of 122 (60.7%).

Failure analysis for StackOverflow. To understand cases
where Regel does not work well, we investigate the Stack-
Overflow benchmarks where Regel fails to synthesize the
intended regex. Among these benchmarks, we notice that
many of the failure cases description rely on high-level con-
cepts such as date, range, etc. that our semantic parser has no
knowledge of; therefore, the generated sketch does not pre-
cisely capture the English description in most failure cases.
Result 1: Among 322 regex tasks, Regel solves 80% of
the benchmarks but DeepRegex solves only 43% and the
PBE-baseline solves only 26%.

9.2 Evaluation of PBE engine
In this section, we describe an ablation study that allows us
to quantify the impact of the pruning techniques described
in Sections 5.1 and 5.2. Specifically, in Figure 16, we plot
the number of solved sketches against cumulative running
time for Regel and two other baselines. In this context, a
sketch is considered as solved if the PBE engine can find
an instantiation of the sketch that is consistent with the
examples. We now evaluate the following PBE engines:
• AlphaRegex: The plot labeled AlphaRegex is a base-
line that implements the pruning techniques described
in AlphaRegex [27]. Specifically, we adapt AlphaRegex
to perform sketch-guided enumerative search (instead of

10In particular, the average number of words in a StackOverflow bench-
mark is 26 whereas DeepRegex benchmarks have 12 words on average.
Furthermore, the average AST node size of the target regex is 13 for the
StackOverflow data set and 5 for the DeepRegex data set.

PLDI ’20, June 15–20, 2020, London, United Kingdom

breadth-first search) but use their pruning technique in-
stead of the ideas proposed in Sections 5.1 and 5.2.
• Regel-Approx: This variant uses the pruning techniques
described in Section 5.1 but does not leverage the symbolic
regex idea introduced in Section 5.2.
• Regel: This corresponds to the full Regel system incorpo-
rating both ideas from Sections 5.1 and 5.2.

As we can see from Figure 16, both pruning techniques
discussed in Sections 5.1 and 5.2 have a significant positive
impact on the running time of the synthesizer.
Result 2: For the first 1000 sketches that can be solved by
all variants, Regel is around 10× faster than AlphaRegex
and 2.5× faster than Regel-Approx.

9.3 User study
To further evaluate whether Regel helps users complete
regex-related tasks, we conducted a user study involving 20
participants, 5 of whom are professional software engineers
and 15 of whom are computer science students. Each par-
ticipant was provided with 6 regex tasks randomly sampled
from the StackOverflow benchmarks, regardless of whether
Regel can that benchmark or not. Then, we provided each
participant with the original task description in the Stack-
Overflow post (including both the English description and
the examples) and asked them to solve exactly a (randomly
selected) half of the examples using Regel and the remaining
half without Regel. For both setups, the users had a total of
15 minutes to work on each setting (with Regel or without
Regel). More details about our user study setup can be found
in the appendix in the extended version of the paper[10].

For the setup involving Regel, participants were just pro-
vided with the tool and educated about how to use it, but
they were not required to use Regel in any specific way.
Furthermore, while the participants were provided with the
original StackOverflow post describing the task, they were
free to modify both the English description and the examples
as they saw fit.

Results. In the setup where participants did not have ac-
cess to Regel, they correctly solved 28.3% of the benchmarks
(i.e., produced the intended regex) in the given time limit. In
contrast, when they had access to Regel, success rate went
up to 73.3%. We ran a standard 1-tailed t-test to evaluate
whether our results are statistically significant. The p-value
for this test is less than 0.0000001. Thus, our user study pro-
vides firm evidence that the proposed technique makes it
easier for users to write regexes.

Failure case analysis. To gain some insight about failure
cases in the user study, we manually inspected those scenar-
ios in which users were not able to successfully use Regel
to derive the correct regex. Overall, we found two main root
causes for failure. First, because our tasks are randomly se-
lected from the StackOverflow benchmarks, Regel times
out on some tasks and is unable to produce any regex. In

such cases, solving the benchmark with Regel is no different
from solving the benchmark without Regel. Another main
reason for failure is the inherent ambiguity in the StackOver-
flow post. That is, even with the provided examples, there
may be multiple ways to interpret the question, so the users
sometimes take one interpretation over the intended one
and therefore select the wrong regex. (Note that users in
our study were not provided with follow-up questions and
discussions in the original StackOverflow post.)

Disclaimers. While we believe that our user study results
provide some preliminary evidence of the potential useful-
ness of a Regel-like approach, our results are not intended
to be a scientific study of the use of Regel“in the wild” for
the following reasons. First, the majority of the participants
in our user study are computer science students from the
same university. Second, in order to allow a fair comparison
between the two approaches across all participants, our tasks
are taken from StackOverflow posts as opposed to real-world
tasks that the participants themselves want to complete.

Result 3: For the particular setup evaluated in our small
user study, Regel users are 2× more likely to construct
the correct regex using Regel within a given time budget.

10 Related Work
In this section, we review prior work on program synthesis
from examples and natural language.

Learning regexes from examples. There is a large body
of prior research on learning regular expressions from posi-
tive and negative examples [4, 5, 16, 17, 38, 39, 42], including
Angluin’s well-known L∗ algorithm for active learning of
regular expressions [6]. In this setting, a regular language
is represented by an oracle that can answer membership
queries, check for equivalence, and provide counterexam-
ples. While these algorithms can learn the target language
in polynomial time (with respect to the minimal DFA), they
tend to require orders of magnitude more examples com-
pared to our approach. For instance, for the simple regex
[A-Za-z]+, an implementation of the L∗ algorithm asked
679 queries (2 equivalence and 677 membership queries) to
synthesize the correct regex whereas Regel-Pbe was able to
synthesize the desired regex using 8 examples without the
natural language description.
More recent work that is closely related to our approach

is AlphaRegex [27] which also performs top-down enumer-
ative search and uses over- and under-approximations to
prune the search space. However, AlphaRegex does not uti-
lize natural language whereas we make use of the natural
language to generate hierarchical sketches for both guiding
the search and pruning infeasible regexes. Additionally, our
method uses symbolic regexes and SMT-based reasoning
to further prune the search space. Another related tool is
RFixer, which performs repair on regular expressions [37].

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

Rather than performing synthesis from scratch, RFixermodi-
fies a given regex to be consistent with the provided examples
and also uses techniques similar to AlphaRegex to prune
the search space.

Learning regexes from language. There has been recent
interest in automatically generating regexes from natural
language. For example, Kushman and Barzilay [25] build a de-
pendency parser for translating natural language text queries
into regular expressions. Their technique is built on top of
a combinatory categorical grammar and utilizes semantic
unification to improve training. Other work in this space
uses seq2seq models to predict regular expressions from Eng-
lish descriptions [30, 49]. However, these techniques do not
utilize examples and attempt to directly translate natural
language into a regex rather than a sketch.

Multi-modal synthesis. There has been recent interest
in synthesizing string manipulation programs from both nat-
ural language and examples. For instance, Manshadi et al.
[32] propose a PBE system that leverages natural language
in order to deduce the correct program more often and
faster. Specifically, they use natural language to construct
a so-called probabilistic version space and apply this idea to
string transformations expressible in a subset of the FlashFill
DSL [18]. Raza et al. [41] also use propose combining natural
language and examples but do so in a very different way.
Specifically, they try to decompose the English description
into constituent concepts and then ask the user to provide
examples for each concept in the decomposition.

Similar to our approach, there have also been recent pro-
posals to combine natural language and examples using
a sketching-based approach. For instance, [35] provides a
framework for generating program sketches from any type
of specification, which can also involve natural language.
Specifically, they first use an LSTM to generate a distribu-
tion over program sketches and then try to complete the
sketch using a generic sketch completion technique based
on breadth-first enumeration. Another related effort in this
space is theMars tool which also utilizes natural language
and examples [11]. In contrast to our technique, they derive
soft constraints from natural language and utilize a MaxSMT
solver to perform synthesis. In addition,Mars targets data
wrangling applications rather than regexes.

PBE and sketching. Similar to this work, several recent
PBE techniques combine top-down enumerative search with
lightweight deductive reasoning to significantly prune the
search space [3, 13–15, 26, 36, 45]. Our method also bears
similarities to sketching-based approaches [28] in two ways:
First, we generate some sort of program sketch from the
natural language description. However, in contrast to prior
work, our sketches are hierarchical in nature, and the holes
in the sketch represent arbitrary regexes rather than con-
stants. Second, we use a constraint-solving approach to infer
constants in a symbolic regex. However, compared to most

existing techniques [8, 19, 24, 43], we use constraint solving
as a way to rule out infeasible integer constants rather than
directly solving for them.

Programsynthesis fromNL. Beyond regexes, there have
also been proposals for performing program synthesis di-
rectly from natural language [23, 29, 34]. Such techniques
have been used to generate SQL queries [23, 46], “if-this-
then-that recipes” [40], spreadsheet formulas [20], bash com-
mands [29], and Java expressions [21]. Our technique is par-
ticularly similar to SQLizer [46] in that we also infer a sketch
from the natural language description. However, unlike our
approach, SQLizer does not utilize examples and populates
the sketch using a different technique called quantitative
type inhabitation [22].

11 Conclusions and Future Work
In this paper, we presented a new method, and its implemen-
tation in a tool called Regel, to synthesize regular expres-
sions from a combination of examples and natural language.
The key idea underlying our approach is to generate a hi-
erarchical sketch from the English description and use the
hints embedded in this sketch to guide both search and de-
duction. We evaluated our approach on 322 regexes obtained
from two different sources and showed that our approach
can successfully synthesize the intended regex in 80% of
the cases within four user interaction steps. In comparison,
a state-of-the-art tool that uses only natural language can
solve 43% of these benchmarks and an example-only baseline
can solve only 26%. We also performed an evaluation of our
PBE engine and showed that Regel is an order of magnitude
faster compared to AlphaRegex, a state-of-the-art PBE tool
for regex synthesis.
In future work, we are interested in exploring a multi-

modal active learning approach to synthesizing regular ex-
pressions. In our current work, Regel produces top-k results
that satisfy the examples, but it is up to the user to inspect
these results and provide more examples as needed. How-
ever, we believe it would be beneficial to develop a regex
synthesis tool that would ask the user membership queries
to disambiguate between multiple different solutions that
are consistent with the examples. We are also interested in
semantic parsing or other NLP techniques that might gener-
ate helpful feedback to users in cases where the generated
sketch is too coarse. Finally, we plan to explore the use of
the proposed synthesis methodology in application domains
beyond regular expressions.

Acknowledgments
We thank our shepherdManu Sridharan as well as our anony-
mous reviewers and members of the UToPiA group for their
helpful feedback. Thismaterial is based uponwork supported
by the National Science Foundation under Grant No. CCF-
1762299, Grant No. CCF-1712067 and Grant No. CCF-1811865.

PLDI ’20, June 15–20, 2020, London, United Kingdom

References
[1] 2016. Class: Regexp (Ruby 2.4.0).

https://ruby-doc.org/core-2.4.0/Regexp.html.
[2] 2019. Pattern (Java Platform SE 8).

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.
[3] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-

sive program synthesis. In International conference on computer aided
verification. Springer, 934–950.

[4] R. Alquezar and A. Sanfeliu. 1994. Incremental Grammatical Inference
From Positive And Negative Data Using Unbiased Finite State Au-
tomata. In In Proceedings of the ACLâĂŹ02 Workshop on Unsupervised
Lexical Acquisition. 291–300.

[5] Dana Angluin. 1978. On the complexity of minimum inference of
regular sets. Information and Control 39, 3 (1978), 337 – 350.

[6] Dana Angluin. 1987. Learning Regular Sets from Queries and Coun-
terexamples. Inf. Comput. 75, 2 (1987), 87–106.

[7] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013.
Semantic Parsing on Freebase from Question-Answer Pairs. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language
Processing. 1533–1544.

[8] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016.
Optimizing synthesis with metasketches. In ACM SIGPLAN Notices,
Vol. 51. ACM, 775–788.

[9] Bob Carpenter. 1998. Type-logical Semantics. MIT Press, Cambridge,
MA, USA.

[10] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2019.
Multi-modal Synthesis of Regular Expressions. arXiv:cs.PL/1908.03316

[11] Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal Multi-layer
Specification Synthesis. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2019). ACM, New
York, NY, USA, 602–612. https://doi.org/10.1145/3338906.3338951

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, 337–340.

[13] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Pro-
gram Synthesis Using Conflict-driven Learning. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2018). ACM, 420–435.

[14] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based Synthesis of Table Consolida-
tion and Transformation Tasks from Examples. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). New York, NY, USA, 422–436.

[15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesiz-
ing Data Structure Transformations from Input-output Examples. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM, 229–239.

[16] Laura Firoiu, Tim Oates, and Paul R. Cohen. 1998. Learning Regular
Languages from Positive Evidence. In Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society. 350–355.

[17] E Mark Gold. 1978. Complexity of automaton identification from given
data. Information and Control 37, 3 (1978), 302 – 320.

[18] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-output Examples. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, 317–330.

[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of Loop-free Programs. SIGPLAN Not. 46, 6 (June
2011), 62–73.

[20] Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Program-
ming by Natural Language for Spreadsheet Data Analysis and Manipu-
lation. In Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data (SIGMOD ’14). ACM, 803–814.
[21] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expres-

sions from Free-form Queries. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2015). ACM, 416–432.

[22] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.
Complete Completion Using Types and Weights. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, New York, NY, USA, 27–38. https:
//doi.org/10.1145/2491956.2462192

[23] Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, and
Xiaodong He. 2018. Natural Language to Structured Query Generation
via Meta-Learning. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers). Association
for Computational Linguistics, 732–738.

[24] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-guided Component-based Program Synthesis. In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1 (ICSE ’10). ACM, New York, NY, USA, 215–224.

[25] Nate Kushman and Regina Barzilay. 2013. Using Semantic Unification
to Generate Regular Expressions from Natural Language. In Proceed-
ings of the 2013 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, 826–836.

[26] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data
Extraction by Examples. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’14). ACM, 542–553. https://doi.org/10.1145/2594291.2594333

[27] Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular
Expressions from Examples for Introductory Automata Assignments.
In Proceedings of the 2016 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 2016). ACM,
70–80.

[28] A Solar Lezama. 2008. Program synthesis by sketching. Ph.D. Disserta-
tion.

[29] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D.
Ernst. 2018. NL2Bash: A Corpus and Semantic Parser for Natural
Language Interface to the Linux Operating System. In Proceedings
of the Eleventh International Conference on Language Resources and
Evaluation (LREC-2018). European Language Resource Association.
http://aclweb.org/anthology/L18-1491

[30] Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kush-
man, and Regina Barzilay. 2016. Neural Generation of Regular Expres-
sions from Natural Language with Minimal Domain Knowledge. In
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. 1918–1923.

[31] Bill Maccartney. 2009. Natural Language Inference. Ph.D. Dissertation.
Stanford, CA, USA. Advisor(s) Manning, Christopher D. AAI3364139.

[32] Mehdi Manshadi, Daniel Gildea, and James Allen. 2013. Integrat-
ing programming by example and natural language programming.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence. AAAI Press, 661–667.

[33] Anders Møller. 2017. dk.brics.automaton – Finite-State Automata and
Regular Expressions for Java. http://www.brics.dk/automaton/.

[34] Arvind Neelakantan, Quoc V. Le, Martín Abadi, Andrew McCallum,
and Dario Amodei. 2016. Learning a Natural Language Interface with
Neural Programmer. CoRR abs/1611.08945 (2016). arXiv:1611.08945
http://arxiv.org/abs/1611.08945

[35] Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando
Solar-Lezama. 2019. Learning to Infer Program Sketches. CoRR
abs/1902.06349 (2019). arXiv:1902.06349 http://arxiv.org/abs/1902.
06349

https://arxiv.org/abs/cs.PL/1908.03316
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/2594291.2594333
http://aclweb.org/anthology/L18-1491
https://arxiv.org/abs/1611.08945
http://arxiv.org/abs/1611.08945
https://arxiv.org/abs/1902.06349
http://arxiv.org/abs/1902.06349
http://arxiv.org/abs/1902.06349

PLDI ’20, June 15–20, 2020, London, United Kingdom Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig

[36] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In ACM SIGPLAN Notices, Vol. 50. ACM,
619–630.

[37] Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Auto-
matic Repair of Regular Expressions. Proc. ACM Program. Lang. 3, OOP-
SLA, Article 139 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360565

[38] Rajesh Parekh and Vasant Honavar. 1996. An incremental interactive
algorithm for regular grammar inference. In Grammatical Interference:
Learning Syntax from Sentences, Laurent Miclet and Colin de la Higuera
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 238–249.

[39] Rajesh Parekh and Vasant Honavar. 2001. Learning DFA from Simple
Examples. Machine Learning 44, 1 (01 Jul 2001), 9–35. https://doi.org/
10.1023/A:1010822518073

[40] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language
to Code: Learning Semantic Parsers for If-This-Then-That Recipes.
In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Association for
Computational Linguistics, 878–888.

[41] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015.
Compositional Program Synthesis from Natural Language and Exam-
ples. In IJCAI.

[42] R. L. Rivest and R. E. Schapire. 1989. Inference of Finite Automata
Using Homing Sequences. In Proceedings of the Twenty-first Annual
ACM Symposium on Theory of Computing (STOC ’89). ACM, 411–420.

[43] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. 2015. Program
Synthesis Using Dual Interpretation. In Automated Deduction - CADE-
25, Amy P. Felty and Aart Middeldorp (Eds.). Springer International
Publishing, 482–497.

[44] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. 2016. FIDEX: Filter-
ing Spreadsheet Data Using Examples. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2016). ACM, 195–213.

[45] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaud-
huri. 2016. Synthesizing transformations on hierarchically structured
data. In ACM SIGPLAN Notices, Vol. 51. ACM, 508–521.

[46] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
2017. SQLizer: Query Synthesis from Natural Language. Proc. ACM
Program. Lang. 1, OOPSLA, Article 63 (Oct. 2017), 26 pages.

[47] John M. Zelle and Raymond J. Mooney. 1996. Learning to Parse Data-
base Queries Using Inductive Logic Programming. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence - Volume 2
(AAAI’96). AAAI Press, 1050–1055.

[48] Luke S. Zettlemoyer and Michael Collins. 2005. Learning to Map
Sentences to Logical Form: Structured Classification with Probabilistic
Categorial Grammars. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

[49] Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang
Lou, Ting Liu, and Dongmei Zhang. 2018. SemRegex: A Semantics-
Based Approach for Generating Regular Expressions from Natural
Language Specifications. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing.

https://doi.org/10.1145/3360565
https://doi.org/10.1023/A:1010822518073
https://doi.org/10.1023/A:1010822518073

	Abstract
	1 Introduction
	2 Overview
	3 Regex Language
	4 Hierarchical Sketches
	5 Regex Synthesis from H-Sketches
	5.1 Pruning infeasible partial regexes
	5.2 Solving Symbolic Regexes with SMT

	6 From English Text to H-Sketches
	6.1 Background on semantic parsing
	6.2 Grammar-based sketch composition
	6.3 Learning feature weights

	7 Implementation
	8 Data Sets for Evaluation
	9 Experimental Results
	9.1 Benefits of multi-modal synthesis
	9.2 Evaluation of PBE engine
	9.3 User study

	10 Related Work
	11 Conclusions and Future Work
	Acknowledgments
	References

