
SAIL: Static Analysis Intermediate Language
with a Two-Level Representation

Isil Dillig Thomas Dillig Alex Aiken
{isil, tdillig, aiken}@cs.stanford.edu

Department of Computer Science
Stanford University

Abstract. In this paper, we present Sail (Static Analysis Intermedi-
ate Language), a front-end which provides both a high- and a low-level
representation of programs and maintains a precise mapping from the
low-level instructions to the high-level expressions and statements in the
original source code. This two-level representation makes it easy to per-
form semantic analysis of programs on the low-level representation while
having the ability to relate this low-level reasoning back to the source
code, allowing precise feedback in terms of the original program. Sail’s
two-level representation is specifically targeted for program analysis, pro-
vides extensive support for control flow graphs and serialization, is built
on GCC 4.3.4, and is currently targeted for C code. Sail is freely available
under the BSD license from http://www.stanford.edu/~isil/sail.

1 Introduction

When choosing an intermediate language for program analysis, there are two or-
thogonal, and often competing, considerations: Low-level representations, such
as Java bytecode [1] and the LLVM instruction set [2], provide a small number
of basic instructions, greatly simplifying the task of performing semantic static
analyses. On the other hand, such low-level representations are notoriously diffi-
cult to relate back to the original program and lose many of the syntactic clues
present in source code. For this reason, high-level intermediate languages, such as
CIL [3], are preferable in some contexts, as they enable accurate error-reporting
as well as extracting information from high-level program constructs.

However, in many situations, neither only the high-level nor the low-level
representation is ideal, and choosing one language over the other compromises a
potential benefit of the representation that was not chosen. For example, consider
a program analysis framework that performs a semantic analysis (e.g., a pointer
analysis), but also wants to check for properties that are definable only through
high-level syntactic constructs, such as “Are expressions with mutual side effects
used as arguments to function calls in C?” or “Can the lack of a break statement
in some branch of a switch construct lead to an error?”. While a low-level
representation may greatly simplify the task of performing a semantic analysis,
it not only makes error reporting cumbersome but also makes certain properties,
such as the ones mentioned above, very difficult, if not impossible, to check.

Therefore, neither only a high-level nor only a low-level representation is ideal
for any static analysis task.

In this paper, we present a two-level representation, called Sail (Static Anal-
ysis Intermediate Language), that bridges the gap between high- and low-level
intermediate representations. Sail provides both a high-level intermediate lan-
guage that preserves source-level constructs and a low-level language that pro-
vides a language-independent representation suitable for semantic analysis. Each
instruction in the low-level language allows at most one load or store and has a
well-defined mapping to the statement or expression in the high-level language
from which it originates. Sail therefore makes it possible to utilize the bene-
fits of both the high- and the low-level representations simultaneously, without
needing to switch to a different front-end for different program analysis tasks.

Our current implementation of Sail integrates with GCC 4.3.4, can parse
any C program that GCC parses, and is itself written in C++. While Sail’s
low-level language is expressive enough to model both safe and unsafe impera-
tive languages, it currently only parses C code, with C++ support being under
development. In addition to providing a two-level intermediate representation,
Sail also provides specialized kinds of control flow graphs, suitable for different
styles of program analysis tasks, such as summary-based analysis. In addition,
Sail provides a robust and fast serialization framework that allows the inter-
mediate representations and control flow graphs to be efficiently and compactly
written to and read from disk. Sail is freely available under the BSD license
from http://www.stanford.edu/~isil/sail.

The rest of this paper is organized as follows: In Section 2, we describe our
low-level intermediate language and discuss why this representation is conve-
nient for semantic analysis tasks. In Section 3, we highlight some aspects of our
high-level intermediate language for C and describe benefits and disadvantages
of using GCC as a front-end for generating the high-level intermediate represen-
tation. In Section 4, we describe stylized variations of control flow graphs that
make it easier or more efficient to perform summary-based and path-sensitive
analyses. In Section 5, we describe the serialization support Sail provides. Fi-
nally, Section 6 reports on our experience using Sail in the Compass program
verification framework, and Section 7 surveys related work.

To summarize, this paper makes the following contributions:

– We propose a two-level intermediate language as a way to bridge the gap
between high-level and low-level intermediate representations.

– We describe a low-level intermediate language conducive for performing se-
mantic program analysis.

– We describe variations on control flow graphs useful for performing summary-
based and path-sensitive program analyses.

2 The Low-Level Representation

As mentioned in Section 1, the main goal of our low-level representation is
to simplify semantic analysis by having only a few instructions involving no

more than one load, store, or arithmetic computation per instruction, similar
to three-address code. Figure 1 shows the basic instructions of Sail’s low-level
language that do not modify control flow. In this figure, we use the notation
v, v1, . . . to denote variables, and s, s1, . . . to denote symbols, which can be vari-
ables or constants. We use f to denote a non-empty vector of field selectors. A
binop represents any element in the set {+,−, ∗, /,%, <,≤, >,≥,=, 6=, <<,>>
, |,&, ,̂&&, ||}, and a unop denotes any element of {!, ˜,−}. Note that the +
operator can operate on integers, pointers, and floating point numbers.

Assignment : v = s
Address : v = &s
Load : v = ∗s
Store : ∗s1 = s2
Field Read : v1 = v2.f
Field Write : v1.f = v2
Array Read : v1 = v[s]
Array Write : v[s1] = s2
Cast : v1 = (τ) s
Binop : v = s1 binop s2
Unop : v = unop s
Function Call : v = f(s1, . . . , sn)
Function Pointer Call : v1 = (∗v2)(s1, . . . , sn)

Fig. 1: Basic low-level instructions not modifying control flow.

The instructions presented in Figure 1 are similar to Java bytecode [1], how-
ever to model unsafe languages like C, instructions such as Address become
necessary. In Field Read and Field Write instructions, we use a sequence of
field selectors rather than a single field selector since the aggregate offset is al-
ways known at compile time. In fact, a sequence of field selectors is internally
represented as the selectors’ net byte offset. In the Address, Load, and Store
instructions, observe that symbols rather than variables are used as operands
because taking the address of integer and string constants as well as storing into
and loading from constants is legal in C.

In the Array Read and Array Write instructions, the variable v always refers
to a non-pointer array. If the variable a in the program statement x = a[2] refers
to a pointer array of integers, the following sequence of low-level instructions is
generated:

t1 = a + 8;

x = *t1;

We believe such a representation is desirable because it disambiguates syntacti-
cally identical expressions that have very different semantics. Observe that this
low-level representation forces us to generate many binop instructions involving

pointer arithmetic that did not appear syntactically in the original source code.
Pointer arithmetic arises not only from the use of pointer arrays, but also from
many uses of the “address of” operator. For example, the C statement

y = &b->f;

is translated into the low-level language as:

y = b + offset(f)

One consequence of such a low-level language from the perspective of a pro-
gram analysis system is that pointer arithmetic cannot be ignored when rea-
soning about programs. We believe this to be a benefit since pointer arithmetic
is common enough in real C code that it cannot realistically be ignored when
performing program analysis, and this low-level representation allows many syn-
tactically distinct high-level constructs to be treated uniformly. Another advan-
tage of this representation is that it relieves the program analysis designer from
the burden of correctly interpreting the semantics of complex expressions such
as &a[3].x->g since the semantics of the corresponding low-level instructions
are straightforward and unambiguous. In our experience, this low-level uniform
representation is instrumental in avoiding soundness holes in static analyses that
result from incorrectly interpreting the semantics of C constructs while imple-
menting an analysis.

The low-level language of Sail is typed, and types τ are defined according
to the following grammar:

τ := void | α | ptr(τ) | array(τ)
| struct(o1 : τ1, . . . ok : τk)
| union(τ1, . . . τk)
| (τ1 × . . .× τn)→ τret

α := κ× size× σ
κ := IEEE | binary
σ := signed | unsigned

In this grammar, a base type α is a triple consisting of a kind κ, a size specifying
the number of bytes, and a sign value σ indicating whether this value is to be
interpreted as signed or unsigned. The kind κ determines whether the bit pattern
of this value is to be interpreted as an IEEE floating point number or as binary
(integer) encoding. A type τ can be void, a base type α, a pointer to a type
τ , a (non-pointer) array whose elements are of type τ , a struct mapping offsets
to types τi, a union with possible types τ1, . . . τk, or a function type mapping
arguments with types τ1, . . . τn to return type τret. Accessing a union is modeled
by casting the union type to its selected element type, and vararg functions are
identified by a qualifier on the function type.

Typing rules for the instructions from Figure 1 are given in Figure 2. Here,
we use the notation offset(τ, f) to denote the offset of field f in type τ . We also
use Int as an abbreviation for any base type that has kind binary, and Float for
any base type with kind IEEE.

Assign
Γ ` v : τ
Γ ` s : τ

Γ ` v = s

Address
Γ ` v : ptr(τ)
Γ ` s : τ

Γ ` v = &s

Load
Γ ` v : τ
Γ ` s : ptr(τ)

Γ ` v = ∗s

Store
Γ ` s1 : ptr(τ)
Γ ` s2 : τ

Γ ` ∗s1 = s2

Cast

Γ ` v : τ

Γ ` v = (τ)s

FieldRead
Γ ` v1 : τi

Γ ` v2 : τ
τ = struct(o1 : τ1, . . . oi : τi . . . ok : τk)
oi = offset(τ, f)

Γ ` v1 = v2.f

FieldWrite
Γ ` s : τi

Γ ` v1 : τ
τ = struct(o1 : τ1, . . . oi : τi . . . ok : τk)
oi = offset(τ, f)

Γ ` v.f = s

ArrayRead
Γ ` v1 : τ
Γ ` s : Int
Γ ` v2 : array(τ)

Γ ` v1 = v2[s]

ArrayWrite
Γ ` v : array(τ)
Γ ` s1 : Int
Γ ` s2 : τ

Γ ` v[s1] = s2

Unop
Γ ` v : τ
Γ ` s : τ

τ ∈
{
{Int,Float} if unop is -
{Int} otherwise

Γ ` v = unop s

Binop
Γ ` v : τ
Γ ` s1 : τ

Γ ` s2 :

{
Int if τ = ptr(τ ′)
τ otherwise

τ ∈

{ {Int,Float, ptr(τ ′)} if binop is +
{Int} if binop is %, <<,>>, |,&,̂,&&, ||
{Int,Float} otherwise

Γ ` v = s1 binop s2

FunctionCall
Γ ` f : (τ1 × . . .× τn)→ τret
Γ ` s1 : τ1, . . . , sn : τn

Γ ` v : τret
Γ ` v = f(s1, . . . , sn)

Function Pointer Call
Γ ` v2 : ptr((τ1 × . . .× τn)→ τret)
Γ ` s1 : τ1, . . . , sn : τn

Γ ` v : τret
Γ ` v1 = (∗v2)(s1, . . . , sn)

Fig. 2: Typing Rules for the Low-Level Intermediate Language

The low-level types mirror the low-level intermediate language by exclusively
focusing on the physical layout of data in memory. We believe this to be an
advantage in performing sound program analysis of unsafe languages such as
C, which treat types as polite suggestions, making it unrealistic to rely on the
type safety of the original program for verification. However, our low-level type
representation makes it easy to check forms of type consistency, for example,
using techniques like physical subtyping [4].

Figure 3 presents the three control instructions in the low-level language.
Here, the only unusual feature is the branch instruction, which allows for arbi-
trary fan-out. Sail guarantees that exactly one of the si’s is non-zero in any
evaluation, i.e., si 6= 0 and sj 6= 0 are mutually exclusive for any i 6= j, and∨

i si 6= 0 = true. We discuss the usefulness of this representation in Section 4.2.

Branch : {(s1 6= 0 ? l1), (s2 6= 0 ? l2), . . . (sn 6= 0 ? ln)}
Jump : goto l
Label : l

Fig. 3: Low-level instructions modifying control flow.

In total, the low-level language contains 22 instructions, including one for
inline assembly, one needed for the GCC address of label extension as well as an
assume and static assert instruction useful for program analysis. Observe that
Sail has no declarations; all variables are implicitly declared the first time they
are used. There is also no notion of nested scope within a function; all variable
names are syntactically disambiguated by renaming them where necessary.

3 The High-Level Representation

The high-level intermediate representation of Sail is effectively a disambiguated
and type-checked abstract syntax tree. The high-level representation aims to pre-
serve all relevant syntactic information present in the original source code and
is therefore language-specific. Figures 4 and 5 present the grammar for state-
ments and expressions in the high-level language for C. Since most constructs in
this grammar are standard for C, we do not discuss the grammar in detail. Ob-
serve that this grammar preserves high-level constructs like the post-increment
unop expression (e.g., i++) or the expression list expression (e.g., i++, j--).
While this language is not conducive for performing program analysis, it retains
a close and direct connection to the source code and allows for meaningful error
reporting as well as checking for particular constructs used in the original source
code.

stmt := SetStmt(exp, exp)
| IfStmt(exp, stmt, stmt)
| ReturnStmt(exp option)
| SwitchStmt(exp, stmt)
| ExpStmt(exp)
| ForLoop(exp option, exp option, exp option, stmt)
| WhileLoop(exp, stmt)
| DoWhileLoop(exp, stmt)
| BreakStmt
| Continue
| Label(id)
| GotoStmt(id)
| AssemblyStmt(string, exp list, exp list)
| BlockStmt(var decl list, stmt list)

Fig. 4: Statements in the High Level Intermediate Language

exp := AddressExp(exp, type)
| ArrayRefExp(exp, exp, type)
| BinopExp(exp, exp, binop type, type)
| UnopExp(exp, unop type, type)
| BlockExp(BlockStmt, type)
| CastExp(exp, type)
| ConditionalExp(exp, exp, exp, type)
| DerefExp(exp, type)
| ExpListExp(exp list, type)
| FieldRefExp(exp, name, offset, type)
| FunctionAddressExp(id, type)
| FunctionCallExp(id, exp list, type)
| FunctionPtrCallExp(exp, exp list, type)
| ModifyExp(SetStmt, type)
| VariableExp(id, type)
| IntConstExp(int, type)
| RealConstExp(float, type)
| StringConstExp(string, type)

Fig. 5: Expressions in the High-Level Intermediate Language

key.c:key_to_blob {

__temp1 = 0 == key;

__temp2 = !__temp1;

if(__temp1) then goto __label1 else goto __label2;

__label1;

__temp3 = &\"key_to_blob: key == NULL\";

__temp4 = (u_char*) __temp3;

__temp5 = error(__temp4);

__return = 0;

goto __return_label;

goto __label2;

__label2;

__temp6 = & (b);

__temp7 = buffer_init(__temp6);

__temp8 = key->type;

__temp9 = __temp8 == 2;

__temp10 = __temp8 == 1;

__temp11 = 1 <= __temp8;

__temp12 = __temp8 <= 2;

__temp13 = __temp11 && __temp12;

__temp14 = !__temp13;

switch (<__temp9 => case 2: >

<__temp10 => case 1: >

<__temp14 => default: >);

case 2: ;

__temp15 = & (b);

__temp16 = key_ssh_name(key);

__temp17 = buffer_put_cstring(__temp15, __temp16);

__temp18 = & (b);

__temp19 = key->dsa;

__temp20 = __temp19->p;

__temp21 = buffer_put_bignum2(__temp18, __temp20);

__temp22 = & (b);

__temp23 = key->dsa;

__temp24 = __temp23->q;

__temp25 = buffer_put_bignum2(__temp22, __temp24);

__temp26 = & (b);

__temp27 = key->dsa;

__temp28 = __temp27->g;

__temp29 = buffer_put_bignum2(__temp26, __temp28);

__temp30 = & (b);

__temp31 = key->dsa;

__temp32 = __temp31->pub_key;

__temp33 = buffer_put_bignum2(__temp30, __temp32);

goto __label1;

case 1: ;

__temp34 = & (b);

__temp35 = key_ssh_name(key);

__temp36 = buffer_put_cstring(__temp34, __temp35);

__temp37 = & (b);

__temp38 = key->rsa;

__temp39 = __temp38->e;

__temp40 = buffer_put_bignum2(__temp37, __temp39);

__temp41 = & (b);

__temp42 = key->rsa;

__temp43 = __temp42->n;

__temp44 = buffer_put_bignum2(__temp41, __temp43);

goto __label1;

default: ;

__temp45 = &\"key_to_blob: unsupported key type %d\";

__temp46 = (u_char*) __temp45;

__temp47 = key->type;

__temp48 = error(__temp46, __temp47);

__temp49 = & (b);

__temp50 = buffer_free(__temp49);

__return = 0;

goto __return_label;

__label1;

__temp51 = & (b);

__temp52 = buffer_len(__temp51);

len = __temp52;

__temp53 = lenp != 0;

__temp54 = !__temp53;

if(__temp53) then goto __label3 else goto __label4;

__label3;

*lenp = len;

goto __label4;

__label4;

__temp55 = blobp != 0;

__temp56 = !__temp55;

if(__temp55) then goto __label5 else goto __label6;

__label5;

__temp57 = xmalloc(len);

__temp58 = (long int) __temp57;

__temp59 = (u_char*) __temp58;

*blobp = __temp59;

__temp60 = *blobp;

__temp61 = (void*) __temp60;

__temp62 = & (b);

__temp63 = buffer_ptr(__temp62);

__temp64 = (long int) __temp63;

__temp65 = (void*) __temp64;

__temp66 = (long unsigned int) len;

__temp67 = memcpy(__temp61, __temp65, __temp66);

goto __label6;

__label6;

__temp68 = & (b);

__temp69 = buffer_ptr(__temp68);

__temp70 = (long int) __temp69;

__temp71 = (void*) __temp70;

__temp72 = (long unsigned int) len;

__temp73 = memset(__temp71, 0, __temp72);

__temp74 = & (b);

__temp75 = buffer_free(__temp74);

__return = len;

goto __return_label;

__return_label;

}

Fig. 6: The low-level representation of the key to blob function from OpenSSH. Ob-
serve that, in contrast to the presentation in Section 2, the load and store instructions
are allowed to use an optional offset. The reason for this extension is discussed later in
Section 6.

static int key_to_blob(struct Key* key, u_char** blobp, int* lenp, ...)

{

struct Buffer b;

int len;

if((key)==(0)) {

error((u_char*)&"key_to_blob: key == NULL");

return 0;

}

buffer_init(&b);

switch(*(key).type) {

case 2:

buffer_put_cstring(&b, key_ssh_name(key));

buffer_put_bignum2(&b, *(*(key).dsa).p);

buffer_put_bignum2(&b, *(*(key).dsa).q);

buffer_put_bignum2(&b, *(*(key).dsa).g);

buffer_put_bignum2(&b, *(*(key).dsa).pub_key);

break;

case 1:

buffer_put_cstring(&b, key_ssh_name(key));

buffer_put_bignum2(&b, *(*(key).rsa).e);

buffer_put_bignum2(&b, *(*(key).rsa).n);

break;

default:

error((u_char*)&"key_to_blob: unsupported key type %d", *(key).type);

buffer_free(&b);

return 0;

}

len = buffer_len(&b);

if((lenp)!=(0)) *(lenp) = len; ;

if((blobp)!=(0)) {

(blobp) = (u_char)(long int)xmalloc(len);

memcpy((void*)*(blobp), (void*)(long int)buffer_ptr(&b), (long unsigned int)len);

}

memset((void*)(long int)buffer_ptr(&b), 0, (long unsigned int)len);

buffer_free(&b);

return len;

}

Fig. 7: The mapping from the low-level representation back to the high-level representa-
tion is illustrated by printing the high-level representation from the low-level language.
This is done by going through each instruction in the low-level language and printing
the corresponding high-level statement; low-level instructions that are associated with
an expression are skipped.

Every statement in the high-level language corresponds to at least one in-
struction in the low-level language. Furthermore, an expression used in the high-
level language may also generate additional instructions using temporary vari-
ables in the low-level language. For instance, an expression such as **x which
involves two loads, requires the introduction of a temporary variable used to
capture the result of the first memory access. When translating the high-level
language to the low-level representation, each instruction in the low-level repre-
sentation is associated with the original expression or statement that generated
it. For example, if a=f(**x) is a statement appearing in the high-level language,
then the generated low-level instructions t1 = *x, t2 = *t1, and a=f(t2) are
associated with the expressions *x, **x, and the statement a=f(**x) respec-
tively.

To illustrate the mapping between the low- and high-level representations,
Figure 6 shows the low-level representation of a function called key to blob
from OpenSSH, and Figure 7 illustrates how the mapping between the two rep-
resentations allows for printing the high-level representation from the low-level
instructions. As is evident from the code in Figure 6, while the low-level rep-
resentation may be very convenient for doing analysis, it is extremely unwieldy
for relating the analysis back to the source code. The precise mapping between
the two representations makes it possible to reason about the program using
the low-level language while still being able to relate this reasoning back to the
original source code.

3.1 Using GCC to Generate the High-Level Representation

In this section, we report on our experience using GCC as a front-end for Sail.
Our search for a front-end was guided by the following considerations:

– The front-end should be able to preprocess, parse, and type-check all avail-
able open-source programs.

– It should expose a representation that is high-level enough to construct
Sail’s high-level intermediate language.

– Parsing the source code should be fast, i.e., it should not take longer than
compilation.

– The front-end should support multiple imperative languages, such as C,
C++, and Java, to make Sail easily extensible.

– The front-end should be open-source and under active development.

These design constraints led us directly to use GCC 4.3.4 as a front-end for
Sail. Since almost all C-based open-source projects use GCC as their compiler,
GCC is able to preprocess and parse all applications we are interested in ana-
lyzing. Furthermore, while not ideal, GCC does expose a reasonably high-level
representation, and since GCC is an industrial-strength compiler, parsing and
type-checking are very fast. In addition, to the best of our knowledge, GCC is
the only open-source front-end that parses a wide variety of languages, such as
C, C++, FORTRAN, Java, Objective C etc.

In our experience, interfacing with GCC is a relatively straightforward task,
and Sail adds less than three thousand lines of code to GCC to generate its
high-level language. While the internal representation of GCC is not particularly
well-documented, perusing the source files reveals a reasonably clean and usable
internal representation. In our experience, the only real disadvantage of using
GCC as a front-end is that some program transformations are performed during
parsing, making it very difficult to recover as high-level a representation as we
would like. Specifically, GCC replaces all looping constructs with goto statements
and labels during parsing. As a result, while our high-level representation is
designed to preserve syntactic looping constructs, it currently does not. However,
we feel that the benefits of using GCC outweigh this disadvantage.

In addition to fulfilling our initial design goals, using GCC has other valuable
benefits for performing program analysis. These include automatic and accurate
identification of memory allocators and exit functions, i.e., functions that abort
execution. Furthermore, GCC provides byte offsets for struct fields, making it
easy to construct Sail’s low-level type representation.

4 Stylized Control Flow Graphs

Since control flow graphs are fundamental to many program analyses, Sail pro-
vides extensive support for CFG construction. Although rare, irreducible control
flow graphs do arise in some applications, such as the Linux kernel; therefore,
Sail supports transforming irreducible control flow graphs to reducible ones us-
ing node-splitting based on T1-T2 transformations [5]. Since Sail knows which
functions abort execution, calls to exit functions modify control flow. If a basic
block B contains a call to an exit function, the successor of B is always a special
block, called the exception block. In addition, Sail provides two extensions to the
standard control flow graph that aid summary-based analysis and path-sensitive
analysis respectively.

4.1 Summary CFG

The goal of summary-based analysis is to generate summaries of functions and
loop bodies that encode the relevant behavior of these summary units with re-
spect to some property and independent of the context in which they appear.
When a function call or loop is encountered during the analysis, the summary
associated with this summary unit is retrieved and instantiated (i.e., applied),
potentially to a fixed-point. Polymorphic summary-based analysis has the ben-
efit of being naturally context-sensitive and allows irrelevant information to be
discarded at summarization points. Furthermore, summary-based analysis al-
lows for local one-function (or one-loop) at a time reasoning and is often key to
scalability [6–9].

To perform summary-based analysis, it is necessary to identify an entry and
exit point in the control flow graph, delimiting each summary unit. While this
task is easy for functions by connecting all exit blocks to a single exit block,

this task is more involved for loops. To be concrete, consider the following code
example from Figure 8. The standard control flow graph associated with foo

void foo(int* a, int size, int elem)

{

int i;

int found = 0;

for(i=0; i<size; i++) {

if(a[i] == elem) {

found = 1;

break;

}

}

}

Fig. 8: Example illustrating multiple exit points for loops

is shown in Figure 9a. Here, observe that the natural loop in foo has two exit
points reaching two different blocks in the body of foo because the statement
found = 1 is not part of the natural loop (as the loop header is unreachable
from the statement), even though it is part of the syntactic looping construct.
Such control flow makes it difficult to generate and instantiate summaries since
there is no unique point where the summary associated with the loop can be
generated or instantiated.

To make summary-based analysis easier, Sail generates summary CFG’s
where all loops are explicitly marked as summary units using superblocks which
always have unique entry and exit points and have no explicit back-edges. Fig-
ure 9b shows the summary CFG for foo. Here, observe that the summary unit
associated with the loop is explicitly marked as a superblock, indicated by the
rectangular box. This superblock has exactly one exit block marking where the
loop summary should be generated. To make this transformation possible, Sail
introduces a temporary variable, called exit pt1 in Figure 9b, that encodes
which exit point was taken. The basic block following the superblock branches
on the value of exit pt1 to faithfully encode the semantics of the original func-
tion. Also, note that, while the superblock no longer has a back edge, a loop
invocation instruction models the loop as a tail recursive function. In our expe-
rience, this summary CFG representation makes implementing summary-based
analyses significantly easier.

4.2 Multi-branch CFG

Sail generates multi-branch control flow graphs that allow a basic block to
have an arbitrary number of successors. This representation allows for a much
more compact encoding of switch statements and can be very beneficial in path-
sensitive analyses by dramatically reducing the size of constraints used to encode

ENTRY BLOCK
found = 0

i = 0

__temp10 = i < size
__temp11 = !__temp10

true

__temp1 = (long unsigned int) i
__temp2 = __temp1 * 4

__temp3 = (long unsigned int) __temp2
__temp4 = a + __temp3

__temp5 = *__temp4
__temp6 = elem == __temp5

__temp7 = !__temp6

found = 1

__temp6

__temp8 = i
__temp9 = i + 1

i = __temp9

__temp7

EXIT BLOCK

true

true

__temp10

__temp11

(a)

Superblock 1

EXIT BLOCK

found = 1

true

__temp12 = exit_pt1 == 1
__temp13 = exit_pt1 == 0

__temp13

__temp12

__temp8 = i
__temp9 = i + 1

i = __temp9
<LoopInvocation>1

__temp1 = (long unsigned int) i
__temp2 = __temp1 * 4

__temp3 = (long unsigned int) __temp2
__temp4 = a + __temp3

__temp5 = *__temp4
__temp6 = elem == __temp5

__temp7 = !__temp6

__temp7

exit_pt1 = 1

__temp6

Superblock 1 exit

true

true

exit_pt1 = 0

true

__temp10 = i < size
__temp11 = !__temp10

__temp10 __temp11

ENTRY BLOCK
found = 0

i = 0

true

(b)

Fig. 9: The standard CFG (on the left) and the summary CFG (on the right)

path conditions. This is the case because the conditions in a switch statement
are, by construction, disjoint, and restricting basic blocks to have at most two
successors is equivalent to enumerating a redundant if-then-else structure.

To be concrete, consider the function from Figure 10 which uses a switch
statement. Figure 11a shows the standard control flow graph with at most two
successors per block, while Figure 11b shows the multi-branch CFG. Observe
that the multi-branch CFG is much more compact than the standard CFG, and
this difference becomes more pronounced as the number of case labels increases.
To understand the potential impact of this representation for a path-sensitive
analysis, consider computing the statement guard for program point (*) in Fig-
ure 10, which encodes the constraint under which this program point is reached.
Using the standard CFG shown in Figure 11a, the statement guard at point (*)

void bar(unsigned int x)

{

int a;

switch(x)

{

case 0: a = 0; break; case 1: a = 1; break;

case 2: a = 2; break; case 3: a = 3; break;

case 4: a = 4; break; case 5: a = 5; (*) break;

default: a = -1;

}

}

Fig. 10: Example illustrating benefit of multi-branch CFGs.

a = 0

EXIT BLOCK

true

a = 4

true

__temp3 = 1 == x
__temp4 = !__temp3

__temp5 = 2 == x
__temp6 = !__temp5

__temp4

a = 1

__temp3

a = 2

__temp5

__temp7 = 3 == x
__temp8 = !__temp7

__temp6

true

true

a = -1

true

__temp11 = 5 == x
__temp12 = !__temp11

__temp12

a = 5

__temp11

true

a = 3

true

__temp7

__temp9 = 4 == x
__temp10 = !__temp9

__temp8

__temp9 __temp10

ENTRY BLOCK
__temp1 = 0 == x

__temp2 = !__temp1

__temp1 __temp2

(a)

ENTRY BLOCK
__temp1 = x == 0
__temp2 = x == 1
__temp3 = x == 2
__temp4 = x == 3
__temp5 = x == 4
__temp6 = x == 5
__temp7 = x >= 6

a = 0

__temp1

a = 1

__temp2

a = 2

__temp3

a = 3

__temp4

a = 4

__temp5

a = 5

__temp6

a = -1

__temp7

EXIT BLOCK

true true true true true true true

(b)

Fig. 11: Multi-branch CFG (on the right) and the standard CFG with only two branches
(on the left)

is computed as:

x 6= 0 ∧ x 6= 1 ∧ x 6= 2 ∧ x 6= 3 ∧ x 6= 4 ∧ x = 5

whereas the statement guard using the CFG from Figure 11b is just x = 5. In
the authors’ previous experience using the Saturn program analysis system [10],

restricting the control flow graph to have at most two successors can be a source
of scalability problems when performing some kinds of path-sensitive analysis.

5 Serialization Support

Sail supports writing and reading the intermediate language representations
and control flow graphs to and from disk. This serialization mechanism allows
for analyzing more than one translation unit at a time, which is not possible
without serialization since Sail is invoked on one translation unit. Sail creates
one file on disk per function encountered during parsing. Since some functions
may appear in many translation units, e.g., functions implemented in header
files, Sail automatically detects functions that have already been parsed and
does not create duplicate files.

The ability to serialize one function at a time has two important advantages:
First, if a source file is edited, the entire intermediate representation of the pro-
gram can be updated by recompiling only the translation units this file belongs
to. This is beneficial when performing program analysis on a large application
because local changes, such as adding an annotation or commenting out state-
ments for debugging, do not require reparsing the entire application. The second
advantage of serializing one function at a time is that analyses can load only
those functions into memory that are currently being analyzed and does not re-
quire keeping the intermediate representation of the entire application resident
in memory.

For speed and space efficiency, Sail uses a binary format to serialize data.
Earlier versions of Sail that utilized an XML-based encoding resulted in much
larger data sets (even after compression) as well as much slower reading from
and writing to disk, making binary encoding a more practical alternative. Using
the binary encoding, all the intermediate representation files (including control
flow graphs) of OpenSSH take less than 20 MB and can be reconstructed into
memory in their entirety in less than one tenth of a second.

6 Experience using SAIL

Sail was developed as a front-end for the Compass program verification frame-
work for analyzing C programs. Compass performs a very precise, path- and
context-sensitive pointer and value analysis and also tracks contents of arrays.
The low-level intermediate language of Sail was extremely beneficial in develop-
ing these analyses for two reasons: First, since the low-level language only allows
for basic instructions that involve no more than one load, store, or arithmetic
operation, there is no need to reason about complex expressions when imple-
menting an analysis. Second, the low-level type representation of Sail makes it
possible to easily check for type consistency without relying on the type safety
of the original program.

One disadvantage of the low-level language presented in Section 2 is that
it generates temporaries that correspond to deep copies of structs that are not

present in the original source code. For instance, consider the following C state-
ment:

int x = a->f;

The translation of this statement to the low-level language presented in Section 2
is as follows:

t1 = *a

x = t1.f

Here, notice that t1 is a deep copy of the struct pointed to by a even though
no copies are made in the original code. Since our analysis precisely models
struct fields, making large numbers of deep copies of structs can adversely affect
analysis performance. For this reason, Sail supports optional offsets for load,
store, array read, and array write instructions, and we use Sail with this option
enabled when performing program analysis.

7 Related Work

Many high- and low-level intermediate representations have been proposed for
compilers and interpreters. Examples include the SIMPLE intermediate lan-
guage in the McCAT compiler framework [11], GENERIC and GIMPLE repre-
sentations used in GCC [12], Jave Bytecode [1] and Microsoft’s CIL (Common
Intermediate Language), formerly known as MSIL [13]. However, all of these rep-
resentations are either too low-level to relate back to source code or too high-level
to be suitable for analyzing semantic properties of programs.

A series of front-ends have been recently developed to aid program analysis.
The CIL (C Intermediate Language) tool developed by Necula et al. provides
a high-level yet disambiguated representation of C programs [3]. In contrast to
CIL, Sail provides both a high and a low-level representation; however, Sail’s
high-level representation is much higher than CIL whereas its low-level represen-
tation is much lower. While CIL allows for intricate program transformations,
Sail is exclusively targeted for performing static analysis. In contrast to CIL
which uses its own parser, Sail builds on GCC and therefore parses any program
that GCC parses. Furthermore, by building on GCC, Sail does not interfere
with the build process of applications, does not require manual preprocessing of
files, and does not require the entire program to be reparsed when a source file is
edited. In addition, while CIL can be significantly slower than a full compilation,
Sail adds less than 10% overhead to compilation.

The SUIF compiler infrastructure [14] provides a series of intermediate rep-
resentations suitable for different levels of program optimization and transfor-
mations for C and C++. Unlike Sail, the main focus of the SUIF compiler
infrastructure is not an accurate mapping between different levels of interme-
diate representations. The SUIF infrastructure does not support many GNU
C extensions that appear in several open source applications, and to the best
knowledge of the authors, it is not under active development since 1999.

The Microsoft Phoenix compiler framework [15] is based on the Microsoft
MSVC compiler and provides an intermediate language for program analysis. In
contrast to Sail, it does not maintain high and low-level representations with
a well-defined mapping between the two languages. Furthermore, the Phoenix
framework only parses programs that MSVC can parse, and is therefore not
suitable for analyzing many open source programs.

The LLVM compilation framework [2] aims to develop a new backend for
compiler optimizations. LLVM provides a very low-level intermediate language,
similar in spirit to the low-level language of Sail. However, LLVM does not
provide any higher level representation, making it impossible to relate reasoning
at the low-level back to the original source code. Like Sail, LLVM also provides
a front-end based on GCC.

References

1. Yellin, F., Lindholm, T.: The JavaTM Virtual Machine Specification. Addison-
Wesley (1999)

2. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, IEEE
Computer Society Washington, DC, USA (2004)

3. Necula, G.C., Mcpeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language and
tools for analysis and transformation of c programs. In: International Conference
on Compiler Construction. (2002) 213–228

4. Chandra, S., Reps, T.: Physical Type Checking for C. SIGSOFT Softw. Eng.
Notes 24(5) (1999) 66–75

5. Hecht, M., Ullman, J.: Flow graph reducibility. In: Proceedings of the fourth
annual ACM symposium on Theory of computing, ACM New York, NY, USA
(1972) 238–250

6. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. Volume 40., ACM New York, NY, USA (2005) 351–363

7. Dillig, I., Dillig, T., Aiken, A.: Sound, complete and scalable path-sensitive analysis.
In: PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, New York, NY, USA, ACM (2008) 270–280

8. Nystrom, E., Kim, H., Hwu, W.: Bottom-up and top-down context-sensitive
summary-based pointer analysis. In: Static Analysis Symposium, Springer (2004)
165–180

9. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, New York, NY, USA, ACM
(2008) 221–234

10. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the Saturn project. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT work-
shop on program analysis for software tools and engineering, ACM New York, NY,
USA (2007) 43–48

11. Hendren, L., Gao, G., Sridharan, B.: Designing the McCAT compiler based on a
family of structured intermediate representations. In: Proceedings of the 5th Inter-
national Workshop on Languages and Compilers for Parallel Computing, number
757 in Lecture Notes in Computer Science. (1992)

12. GCC: http://gcc.gnu.org/
13. Microsoft: Common Language Infrastructure (CLI): Partition III: CIL Instruction

Set. Technical report, ECMA (2002)
14. Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J., Tjiang, S., Liao,

S., Tseng, C., Hall, M., Lam, M., et al.: SUIF: An infrastructure for research on
parallelizing and optimizing compilers. ACM Sigplan Notices 29(12) (1994) 31–37

15. Phoenix: https://connect.microsoft.com/phoenix

