jﬁoﬂ

-

-
= ‘
et

Scalability and Formul

* Many program analysis techniques represent program
states as SAT or SMT formulas.

* Queries about program => Satisfiability and validity
queries to the constraint solver

* Scalability of these techniques is often very sensitive to

formula size.

Scalability

Formula Size

* Many different techniques to control formula size:

 Basic Predicate abstraction

- Formulas are over a finite, fixed set of predicates.
Predicate abstraction with CEGAR

- Iteratively discover “relevant” predicates.

* Property simulation

- Track only those path conditions where property differs
along arms of the branch.

* and many others...

* Afore-mentioned approaches control formula size by
restricting the set of facts that are tracked by the analysis.

* We attack the problem from a different angle:

Instead of aggressively restricting
which facts to track a-priori,
our focus is to guarantee

non-redundancy of formulas via
constraint simplification.

Goal #1: Non-red

e Given formula F, we want to find formula F' such that:

* F'is equivalent to F

| Such a formula is
* F hasno redundant subparts in simplified form

* F'isno larger than F

 If Fis a formula characterizing program property D,
then predicates irrelevant to I’ are not mentioned in F'.

- No need to guess in advance which facts/predicates may
be needed later to prove I.

Goal #2: On-le

» Simplification should be on-line:
* Formulas are continuously simplified (l
and reused throughout the analysis. |

- Important because program analyses construct new
formulas from existing formulas.

- Simplification prevents incremental build-up of massive,
redundant formulas.

* In our system, formulas are simplified at every
satisfiability or validity query.

An Example

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type oppy int x, int y) {

int res; Performs op
if(op == ADD) res = X+y; on v and
else if(op == SUBTRACT) res = X-Yy;

else if(op == MULTIPLY) res = X*y;

else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;

return res;

Suppose we are interested in the
condition under which perform_op

successfully returns,
i.e., does not abort.

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;

return res; Program analysis tool

} examines every branch
Branch Success Condition and computes
op =20 true condition under which
op#0Aop=1 true each branch succeeds.
op£~O0ANop#1Aop=2 true
op#O0ANop#1ANop#2ANop=3 y #£0

op# Nop#1ANop#2ANop# 3 oo

An Examplé

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;
return res;

op=0V(op£EO0Nop=1)V(op#£O0Aop#1Aop=2)V
(op#O0Nop#1ANop#2Nop=3ANy#0)V
(op£=0Nop#1ANop=#2Aop#3)

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;
return res;

h No irrelevant predicates,
much more concise

In simplified form:

op#3Vy#0

Now that this example has
convinced you simplification is a
good idea, how do we actually do it?

Leaves of a Formt

We consider quantifier-free formulas using the boolean
connectives AND, OR, and NOT over any decidable theory .

We assume formulas are in NNF.

A formula that does not contain conjunction or disjunction is
an atomic formula.

Each syntactic occurrence of an atomic formula is a leaf.

Example: —f(zx)=1V (f(x)=1Nz+y<1)

3 distinct leaves

Redundant Leav

* Aleaf L is non-constraining in formula F if replacing L
with true in F yields an equivalent formula.

* L is non-relaxing in F if replacing L with false is
equivalent to F.

* L is redundant if it is non-constraining or non-relaxing.

Non-relaxing because
formula is equivalent
when it is replaced

by false.

Both non-constraining
and non-relaxing.

Simplified Form 4

* A formula F is in simplified form if no leaf in F is
redundant.

Important Fact:

If a formula is in simplified form, This means that we
we cannot obtain a smaller, only need to check

equivalent formula by one le‘;f “tda time for
reaundancy,

not subsets of leaves.

replacing any subset of
the leaves by true or false.

Properties of Simplified£orms:

* A formula in simplified form is satisfiable if and only
if it is not syntactically false, and it is valid itf it is
syntactically true.

» Simplified forms are preserved under negation.

» Simplified forms are not unique.

e Consider formula z=1vVz=2V(1<zAz<2)in
linear integer arithmetic. Both x=1Vz =2 and

I <z Ax <2 are simplified forms.

Equivalence of simplified
forms cannot be

determined syntactically.

Algorithm

* Detinition of simplified form suggests trivial
algorithm:
- Pick any leaf, replace it by true/false.
- Check if formula is equivalent.
- Repeat until no leaf can be replaced.

* Requires repeatedly checking satistiability of formulas
twice as large as the original formula.
O

e But we can do better than this —ny

naive algorithm! &

Compute a constraint C, called critical
constraint, for each leaf L such that:

(i) L is non-constraining iff C' = L
(ii) L is non- relaxing iff C' = — [

Intuitively, C describes the condition C is no larger than original
under which L determines whether formula F, so redundancy
an assignment satisfies the formula. is checked using formulas

at most as large as F.

Constructing Critical CorStr.

* Assume we represent formula as a tree.
* The critical constraint for root is true.

* Let N be any non-root node with parent P and i1'th
sibling S(i).

e [fPisan AND connective;
C(N)=C(P)ANN,;S(i)
e If Pisan OR connective:

C(N) = C(P) AN\ —5()

* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Lol x =y

fl@)=1vV
(f(y):1/\£€—|—y§1) gj:y/\f(x)#l

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1

* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Non-relaxing because
C(L2) = ~(f(y) =1)

Lol x =y

flx)=1V
(fly)=1hz+y<1)

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1

* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Lol x =y

flx)=1V
(fly)=1Az+y<1) z=yA fl

Both non-constraining
and non-relaxing because
false implies leaf and its

negation.

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1

/ *
* Recursive algorithm to compute simplified form.
* N: current subformula, C: critical constraint of N.
*/

simplify(N, C)

{

- If N is a leaf:

- If C => N return true /* Non-constraining */
- If C=> =N return false /* Non-relaxing */
- Otherwise, return N /* Neither */

- If N is a connective, for each child X of N: Critical constraint is
recomputed because

- Compute critical constraint C(X) siblings may change.

- X = simplify (X, C(X))

- Repeat until no child of N can be further simplified.

Worst case: Requires 2n? validity checks. (n = # leaves)

* Important Optimization:

-« Insight: The leaves of the formulas whose validity is
checked are always the same.

- For simplitying SMT formulas, we can gainfully reuse the
same conflict clauses throughout simplification

* Empirical Result: Overhead of simplification over solving
sub-linear (logarithmic) in practice for constraints
generated by our program analysis system.

* To evaluate impact of on-line simplification on analysis
scalability, we ran our program analysis system,
Compass, on 811 benchmarks.

* 173,000 LOC
* Programs ranging from 20 to 30,000 lines

* Checked for assertions and various memory safety
properties.

* Compared running time of runs that use on-line
simplification with runs that do not.

10

Analysis time (seconds)

0.1

0.01

Programs >100 lines
are analyzed faster
with simplification.

-
-
-
- -
-'.‘
-
. = =

. Analysis time with online simplification
_ Analysis time without simplification -

2 orders of
magnitude
improvement

100

1000 10000

lines of code

* Because program analysis systems typically generate

highly redundant constraints!

120 . 1
data £
o 7 COMPASS
100 | .
= - Size of simplified formula
g consistently under 20 while
3 non-simplified formula
£ 60 have several hundred leaves 1
= /
.a ""
S 40 |
(D) y
N /
7y i
20 | /]

50 100 150 200 250 300 350 400 450 500

Size of initial formula

Size of simplified formula

50
45
40
35
30
25
20
15
10

Measured redundancy of constraints in a different
analysis system, SATURN.

5 r
[
r

dataI. I : I I I I 1 1 |
VK et SATURN -
Similar pattern as in Compass
despite attempts to heuristically |
control formula size. |
20 40 60 80 100 120 140 160 180 200

Size of initial formula

Related Work

« Contextual Rewriting

e Lucas, S. Fundamentals of Contex-Sensitive Rewriting. LNCS 1995

» Armando, A., Ranise, S. Constraint contextual rewriting. Journal of Symbolic Computation 2003

« Logic Synthesis and ATPG

e Mishchenko, A., Chatterjee, S., Brayton, R. DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. DAC 2006

« Mishchenko, A., Brayton, R., Jiang, J., Jang, S. SAT-based logic optimization and resynthesis IWLS
2007

« And many others:

« BDDs and BMDs, vacuity detection in CTL, term rewrite systems,

optimizing CLP compilers ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

