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Scalability and Formul

* Many program analysis techniques represent program
states as SAT or SMT formulas.

* Queries about program => Satisfiability and validity
queries to the constraint solver

* Scalability of these techniques is often very sensitive to

formula size.

Scalability

Formula Size



* Many different techniques to control formula size:

 Basic Predicate abstraction

- Formulas are over a finite, fixed set of predicates.
Predicate abstraction with CEGAR

- Iteratively discover “relevant” predicates.

* Property simulation

- Track only those path conditions where property differs
along arms of the branch.

* and many others...



* Afore-mentioned approaches control formula size by
restricting the set of facts that are tracked by the analysis.

* We attack the problem from a different angle:

Instead of aggressively restricting
which facts to track a-priori,
our focus is to guarantee

non-redundancy of formulas via
constraint simplification.




Goal #1: Non-red

e Given formula F, we want to find formula F' such that:

* F'is equivalent to F

| Such a formula is
* F hasno redundant subparts in simplified form

* F'isno larger than F

 If Fis a formula characterizing program property D,
then predicates irrelevant to I’ are not mentioned in F'.

- No need to guess in advance which facts/predicates may
be needed later to prove I.



Goal #2: On-le

» Simplification should be on-line:
* Formulas are continuously simplified ( l
and reused throughout the analysis. |

- Important because program analyses construct new
formulas from existing formulas.

- Simplification prevents incremental build-up of massive,
redundant formulas.

* In our system, formulas are simplified at every
satisfiability or validity query.



An Example

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type oppy int x, int y) {

int res; Performs op
if(op == ADD) res = X+y; on v and
else if(op == SUBTRACT) res = X-Yy;

else if(op == MULTIPLY) res = X*y;

else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;

return res;

Suppose we are interested in the
condition under which perform_op

successfully returns,
i.e., does not abort.




enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;

return res; Program analysis tool

} examines every branch
Branch Success Condition and computes
op =20 true condition under which
op#0Aop=1 true each branch succeeds.
op£~O0ANop#1Aop=2 true
op#O0ANop#1ANop#2ANop=3 y #£0

op# Nop#1ANop#2ANop# 3 oo



An Examplé

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;
return res;

op=0V(op£EO0Nop=1)V(op#£O0Aop#1Aop=2)V
(op#O0Nop#1ANop#2Nop=3ANy#0)V
(op£=0Nop#1ANop=#2Aop#3)



enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3},

int perform_op(op_type op, int x, int y) {
int res;
if(op == ADD) res = Xx+y;
else if(op == SUBTRACT) res = X-Yy;
else if(op == MULTIPLY) res = X*y;
else if(op == DIV) { assert(y!=0); res = x/y; }
else res = UNDEFINED;
return res;

h No irrelevant predicates,
much more concise

In simplified form:

op#3Vy#0



Now that this example has
convinced you simplification is a
good idea, how do we actually do it?




Leaves of a Formt

We consider quantifier-free formulas using the boolean
connectives AND, OR, and NOT over any decidable theory .

We assume formulas are in NNF.

A formula that does not contain conjunction or disjunction is
an atomic formula.

Each syntactic occurrence of an atomic formula is a leaf.

Example: —f(zx)=1V (f(x)=1Nz+y<1)

3 distinct leaves




Redundant Leav

* Aleaf L is non-constraining in formula F if replacing L
with true in F yields an equivalent formula.

* L is non-relaxing in F if replacing L with false is
equivalent to F.

* L is redundant if it is non-constraining or non-relaxing.

Non-relaxing because
formula is equivalent
when it is replaced

by false.

Both non-constraining
and non-relaxing.




Simplified Form 4

* A formula F is in simplified form if no leaf in F is
redundant.

Important Fact:

If a formula is in simplified form, This means that we
we cannot obtain a smaller, only need to check

equivalent formula by one le‘;f “tda time for
reaundancy,

not subsets of leaves.

replacing any subset of
the leaves by true or false.




Properties of Simplified£orms:

* A formula in simplified form is satisfiable if and only
if it is not syntactically false, and it is valid itf it is
syntactically true.

» Simplified forms are preserved under negation.

» Simplified forms are not unique.

e Consider formula z=1vVz=2V(1<zAz<2)in
linear integer arithmetic. Both x=1Vz =2 and

I <z Ax <2 are simplified forms.

Equivalence of simplified
forms cannot be

determined syntactically.



Algorithm

* Detinition of simplified form suggests trivial
algorithm:
- Pick any leaf, replace it by true/false.
- Check if formula is equivalent.
- Repeat until no leaf can be replaced.

* Requires repeatedly checking satistiability of formulas
twice as large as the original formula.
O

e But we can do better than this —ny

naive algorithm! &



Compute a constraint C, called critical
constraint, for each leaf L such that:

(i) L is non-constraining iff C' = L
(ii) L is non- relaxing iff C' = — [

Intuitively, C describes the condition C is no larger than original
under which L determines whether formula F, so redundancy
an assignment satisfies the formula. is checked using formulas

at most as large as F.



Constructing Critical CorStr.

* Assume we represent formula as a tree.
* The critical constraint for root is true.

* Let N be any non-root node with parent P and i1'th
sibling S(i).

e [fPisan AND connective;
C(N)=C(P)ANN,;S(i)
e If Pisan OR connective:

C(N) = C(P) AN\ —5()



* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Lol x =y

fl@)=1vV
(f(y):1/\£€—|—y§1) gj:y/\f(x)#l

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1




* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Non-relaxing because
C(L2) = ~(f(y) =1)

Lol x =y

flx)=1V
(fly)=1hz+y<1)

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1




* Consider again the formula:

r=y A (fl)=1V (fly) =1 A z+y<1))

Lol x =y

flx)=1V
(fly)=1Az+y<1) z=yA fl

Both non-constraining
and non-relaxing because
false implies leaf and its

negation.

Llf(ilf):l Lgf(y)zl L3£U+y§1
xr=y AN r=yA f(x)#1 false
(fy)#1Ve+y>1) Az4y<l1




/ *
* Recursive algorithm to compute simplified form.
* N: current subformula, C: critical constraint of N.
*/

simplify(N, C)

{

- If N is a leaf:

- If C => N return true /* Non-constraining */
- If C=> =N return false /* Non-relaxing */
- Otherwise, return N /* Neither */

- If N is a connective, for each child X of N: Critical constraint is
recomputed because

- Compute critical constraint C(X) siblings may change.

- X = simplify (X, C(X))

- Repeat until no child of N can be further simplified.



Worst case: Requires 2n? validity checks. (n = # leaves)

* Important Optimization:

-« Insight: The leaves of the formulas whose validity is
checked are always the same.

- For simplitying SMT formulas, we can gainfully reuse the
same conflict clauses throughout simplification

* Empirical Result: Overhead of simplification over solving
sub-linear (logarithmic) in practice for constraints
generated by our program analysis system.



* To evaluate impact of on-line simplification on analysis
scalability, we ran our program analysis system,
Compass, on 811 benchmarks.

* 173,000 LOC
* Programs ranging from 20 to 30,000 lines

* Checked for assertions and various memory safety
properties.

* Compared running time of runs that use on-line
simplification with runs that do not.
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* Because program analysis systems typically generate

highly redundant constraints!
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Size of simplified formula
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Related Work

« Contextual Rewriting

e Lucas, S. Fundamentals of Contex-Sensitive Rewriting. LNCS 1995

» Armando, A., Ranise, S. Constraint contextual rewriting. Journal of Symbolic Computation 2003

« Logic Synthesis and ATPG

e Mishchenko, A., Chatterjee, S., Brayton, R. DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. DAC 2006

« Mishchenko, A., Brayton, R., Jiang, J., Jang, S. SAT-based logic optimization and resynthesis IWLS
2007

« And many others:

« BDDs and BMDs, vacuity detection in CTL, term rewrite systems,

optimizing CLP compilers ...
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