Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis

Isil Dillig, Thomas Dillig, Alex Aiken

Stanford University

Scalability and Formula Size

- Many program analysis techniques represent program states as SAT or SMT formulas.
 - Queries about program => Satisfiability and validity queries to the constraint solver

• Scalability of these techniques is often very sensitive to formula size.

Scalability
Formula Size

Techniques to Limit Formula Size

- Many different techniques to control formula size:
 - Basic Predicate abstraction
 - Formulas are over a finite, fixed set of predicates.
 - Predicate abstraction with CEGAR

SLAM, BLAST

- Iteratively discover "relevant" predicates.
- Property simulation

- Track only those path conditions where property differs along arms of the branch.
- and many others...

Our Approach

- Afore-mentioned approaches control formula size by restricting the set of facts that are tracked by the analysis.
- We attack the problem from a different angle:

Instead of aggressively restricting which facts to track a-priori, our focus is to guarantee non-redundancy of formulas via constraint simplification.

Goal #1: Non-redundancy

- Given formula F, we want to find formula F' such that:
 - F' is equivalent to F
 - F' has no redundant subparts
 - F' is no larger than F

Such a formula is in simplified form

- If **F** is a formula characterizing program property **P**, then predicates **irrelevant** to **P** are not mentioned in **F**'.
 - No need to guess in advance which facts/predicates may be needed later to prove P.

Goal #2: On-line

- Simplification should be *on-line*:
 - Formulas are continuously simplified and reused throughout the analysis.

- Important because program analyses construct new formulas from existing formulas.
- Simplification prevents incremental build-up of massive, redundant formulas.
- In our system, formulas are simplified at every satisfiability or validity query.

```
enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};
int perform_op op_type op, int x, int y) {
  int res;
  if(op == ADD) res = x+y;
  else if(op == SUBTRACT) res = x-y;
  else if(op == MULTIPLY) res = x*y;
  else if(op == DIV) { assert(y!=0); res = x/y; }
  else res = UNDEFINED;
  return res;
}
```

Suppose we are interested in the condition under which perform_op successfully returns, i.e., does not abort.

```
enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};
int perform_op(op_type op, int x, int y) {
  int res;
  if(op == ADD) res = x+y;
  else if(op == SUBTRACT) res = x-y;
  else if(op == MULTIPLY) res = x*y;
  else if(op == DIV) { assert(y!=0); res = x/y; }
  else res = UNDEFINED;
```

Branch	Success Condition
op = 0	true
$op \neq 0 \land op = 1$	true
$op \neq 0 \land op \neq 1 \land op = 2$	true
$op \neq 0 \land op \neq 1 \land op \neq 2 \land op = 3$	$y \neq 0$
$op \neq \land op \neq 1 \land op \neq 2 \land op \neq 3$	true

return res;

Program analysis tool examines every branch and computes condition under which each branch succeeds.

```
enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};
int perform_op(op_type op, int x, int y) {
   int res;
   if(op == ADD) res = x+y;
   else if(op == SUBTRACT) res = x-y;
   else if(op == MULTIPLY) res = x*y;
   else if(op == DIV) { assert(y!=0); res = x/y; }
   else res = UNDEFINED;
   return res;
}
```

```
op = 0 \lor (op \neq 0 \land op = 1) \lor (op \neq 0 \land op \neq 1 \land op = 2) \lor (op \neq 0 \land op \neq 1 \land op \neq 2 \land op = 3 \land y \neq 0) \lor (op \neq 0 \land op \neq 1 \land op \neq 2 \land op \neq 3)
```

```
enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};
int perform_op(op_type op, int x, int y) {
   int res;
   if(op == ADD) res = x+y;
   else if(op == SUBTRACT) res = x-y;
   else if(op == MULTIPLY) res = x*y;
   else if(op == DIV) { assert(y!=0); res = x/y; }
   else res = UNDEFINED;
   return res;
}
```

In simplified form:

 $op \neq 3 \lor y \neq 0$

much more concise

Now that this example has convinced you simplification is a good idea, how do we actually do it?

Leaves of a Formula

- We consider quantifier-free formulas using the boolean connectives AND, OR, and NOT over *any decidable theory* .
- We assume formulas are in NNF.
- A formula that does not contain conjunction or disjunction is an atomic formula.
- Each *syntactic occurrence* of an atomic formula is a leaf.
- Example: $\neg f(x) = 1 \lor (\neg f(x) = 1 \land x + y \le 1)$

3 distinct leaves

Redundant Leaves

- A leaf L is *non-constraining* in formula F if replacing L with true in F yields an equivalent formula.
- L is *non-relaxing* in F if replacing L with false is equivalent to F.
- L is *redundant* if it is non-constraining or non-relaxing.

$$\underbrace{x = y}_{\mathsf{L}_0} \land \underbrace{(f(x) = 1)}_{\mathsf{L}_1} \lor \underbrace{(f(y) = 1)}_{\mathsf{L}_2} \land \underbrace{x + y \leq 1}_{\mathsf{L}_3})$$

Non-relaxing because formula is equivalent when it is replaced by false.

Both non-constraining and non-relaxing.

Simplified Form

• A formula **F** is in *simplified form* if no leaf in **F** is redundant.

Important Fact:

If a formula is in simplified form, we cannot obtain a smaller, equivalent formula by replacing any subset of the leaves by true or false.

This means that we only need to check one leaf at a time for redundancy, not subsets of leaves.

Properties of Simplified Forms

- A formula in simplified form is satisfiable if and only if it is *not syntactically false*, and it is valid iff it is *syntactically true*.
- Simplified forms are *preserved under negation*.
- Simplified forms are *not unique*.
 - Consider formula $x = 1 \lor x = 2 \lor (1 \le x \land x \le 2)$ in linear integer arithmetic. Both $x = 1 \lor x = 2$ and $1 \le x \land x \le 2$ are simplified forms.

Equivalence of simplified forms cannot be determined syntactically.

Algorithm

- Definition of simplified form suggests trivial algorithm:
 - Pick any leaf, replace it by true/false.
 - Check if formula is equivalent.
 - Repeat until no leaf can be replaced.
- Requires repeatedly checking satisfiability of formulas
 twice as large as the original formula.
- But we can do better than this naïve algorithm!

Critical Constraint

Idea:

Compute a constraint C, called critical constraint, for each leaf L such that:

- (i) L is non-constraining iff $C \Rightarrow L$
- (ii) L is non- relaxing iff $C \Rightarrow \neg L$

Intuitively, C describes the condition under which L determines whether an assignment satisfies the formula.

C is **no larger than** original formula F, so redundancy is checked using formulas at most as large as F.

Constructing Critical Constraint

- Assume we represent formula as a tree.
- The critical constraint for root is true.
- Let N be any non-root node with parent P and i'th sibling S(i).
 - If P is an AND connective:

$$C(N) = C(P) \wedge \bigwedge_{i} S(i)$$

• If P is an OR connective:

$$C(N) = C(P) \wedge \bigwedge_{i} \neg S(i)$$

Example

Consider again the formula:

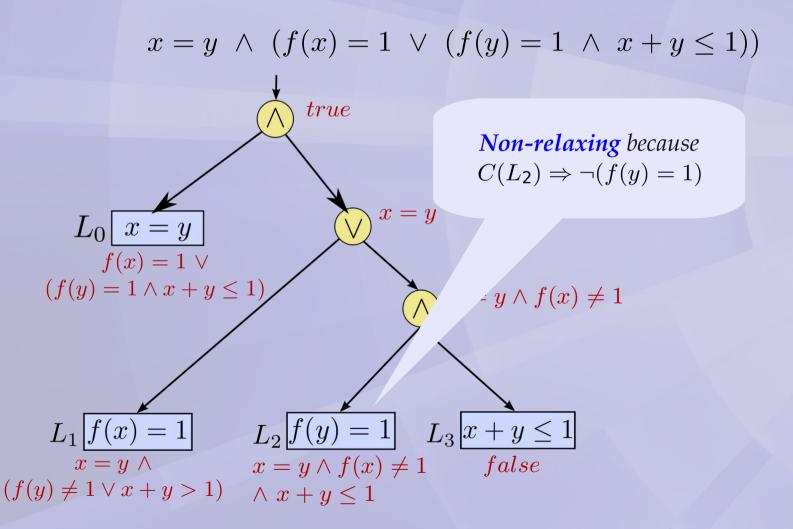
$$x = y \land (f(x) = 1 \lor (f(y) = 1 \land x + y \le 1))$$

$$L_0 \underbrace{x = y}_{f(x) = 1 \lor (f(y) = 1 \land x + y \le 1)}$$

$$x = y \land f(x) \neq 1$$

Example

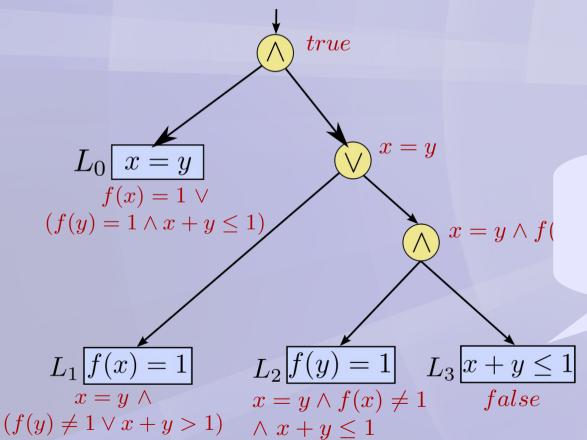
Consider again the formula:



Example

Consider again the formula:

$$x = y \land (f(x) = 1 \lor (f(y) = 1 \land x + y \le 1))$$



Both non-constraining and non-relaxing because false implies leaf and its negation.

The Full Algorithm

```
* Recursive algorithm to compute simplified form.
 * N: current subformula, C: critical constraint of N.
simplify(N, C)
 - If N is a leaf:
          - If C => N return true /* Non-constraining */
          - If C=> ¬N return false/* Non-relaxing */
          - Otherwise, return N /* Neither */
 - If N is a connective, for each child X of N:
                                                      Critical constraint is
                                                       recomputed because
                                                      siblings may change.
          - Compute critical constraint C(X)
          -X = simplify(X, C(X))
          - Repeat until no child of N can be further simplified.
```

Making it Practical

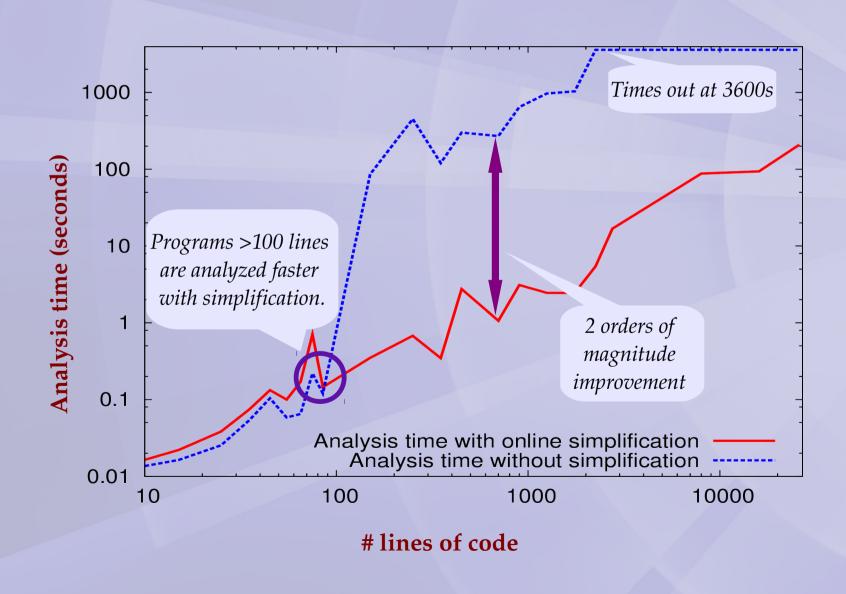
- Worst case: Requires $2n^2$ validity checks. (n = # leaves)
- Important Optimization:
 - Insight: The leaves of the formulas whose validity is checked are always the same.
 - For simplifying SMT formulas, we can gainfully reuse the *same conflict clauses* throughout simplification
- Empirical Result: Overhead of simplification over solving *sub-linear (logarithmic)* in practice for constraints generated by our program analysis system.

Impact on Analysis Scalability

- To evaluate impact of on-line simplification on *analysis* scalability, we ran our program analysis system,
 Compass, on 811 benchmarks.
 - 173,000 LOC
 - Programs ranging from 20 to 30,000 lines
 - Checked for assertions and various memory safety properties.

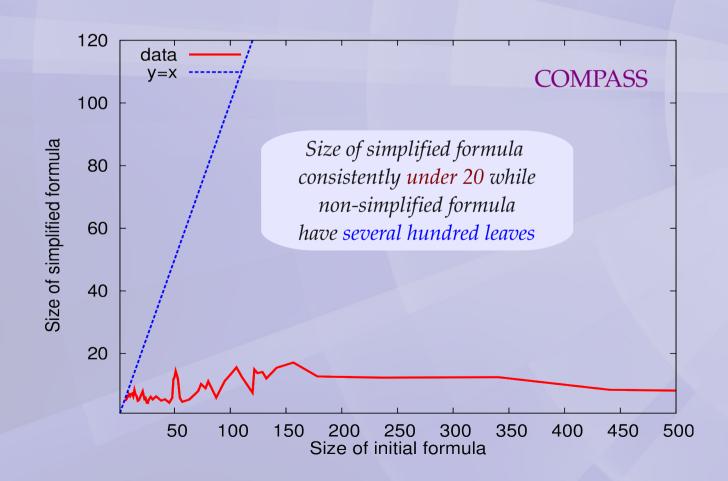
• Compared running time of runs that *use on-line simplification* with runs that *do not*.

Impact on Analysis Scalability



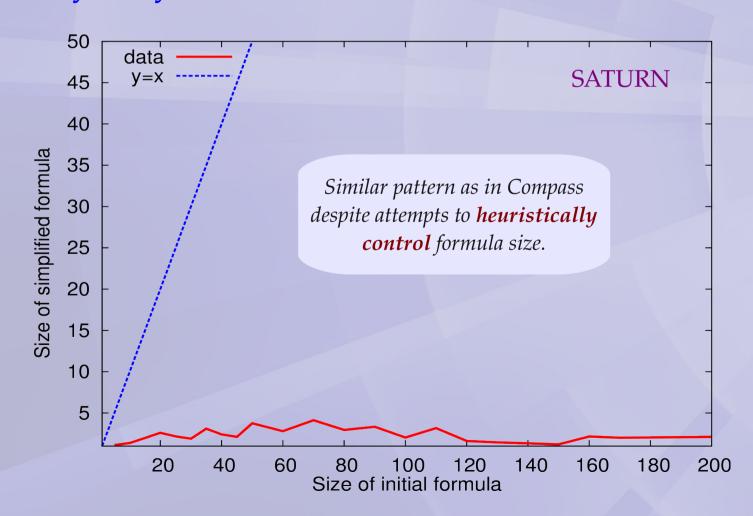
Why Such a Difference?

 Because program analysis systems typically generate highly redundant constraints!



It's not just Compass

• Measured redundancy of constraints in a different analysis system, SATURN.



Related Work

Contextual Rewriting

- Lucas, S. Fundamentals of Contex-Sensitive Rewriting. LNCS 1995
- Armando, A., Ranise, S. Constraint contextual rewriting. Journal of Symbolic Computation 2003

Logic Synthesis and ATPG

- Mishchenko, A., Chatterjee, S., Brayton, R. DAG-aware AIG rewriting: A fresh look at combinational logic synthesis. DAC 2006
- Mishchenko, A., Brayton, R., Jiang, J., Jang, S. SAT-based logic optimization and resynthesis IWLS 2007

• And many others:

 BDDs and BMDs, vacuity detection in CTL, term rewrite systems, optimizing CLP compilers ...

