
Synthesis of Circular Compositional
Program Proofs via Abduction

Boyang Li, Işıl Dillig, Tom Dillig (College of William & Mary)
Ken McMillan (Microsoft Research)

Mooly Sagiv (Tel Aviv University)

1 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

Motivation

Different verification approaches have various
strengths and weaknesses

Examples:

Polyhedra domain is good at inferring linear
invariants

CEGAR based model checking good at
separating paths in programs

Interval analysis scales to very large programs

. . .

Difficult, if not impossible, to design one approach
that is good at everything

2 / 22

This Talk

New technique for circular
compositional program verification

Decompose the program proofs into
small lemmas using logical abduction

Represent lemmas as code fragments
annotated with assertions and
assumptions

Use portfolio of verification techniques
to discharge fragments

Use circular compositional reasoning to
turn some assertions into assumptions

Program

3 / 22

This Talk

New technique for circular
compositional program verification

Decompose the program proofs into
small lemmas using logical abduction

Represent lemmas as code fragments
annotated with assertions and
assumptions

Use portfolio of verification techniques
to discharge fragments

Use circular compositional reasoning to
turn some assertions into assumptions

Fragment
+ assumptions
+ assertions

Abduction

Program

3 / 22

This Talk

New technique for circular
compositional program verification

Decompose the program proofs into
small lemmas using logical abduction

Represent lemmas as code fragments
annotated with assertions and
assumptions

Use portfolio of verification techniques
to discharge fragments

Use circular compositional reasoning to
turn some assertions into assumptions

Fragment
+ assumptions
+ assertions

Abduction

Program

3 / 22

This Talk

New technique for circular
compositional program verification

Decompose the program proofs into
small lemmas using logical abduction

Represent lemmas as code fragments
annotated with assertions and
assumptions

Use portfolio of verification techniques
to discharge fragments

Use circular compositional reasoning to
turn some assertions into assumptions

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

3 / 22

This Talk

New technique for circular
compositional program verification

Decompose the program proofs into
small lemmas using logical abduction

Represent lemmas as code fragments
annotated with assertions and
assumptions

Use portfolio of verification techniques
to discharge fragments

Use circular compositional reasoning to
turn some assertions into assumptions

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

3 / 22

Proof Decomposition

Program

Fragment

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form φ1 ⇒ φ2 that is not
valid, find ψ such that (ψ ∧ φ1)⇒ φ2 is valid
using abduction.

Now, introduce ψ as new assertion in
program

And eliminate old assertion by proving it
assuming ψ and converting it to an
assumption

4 / 22

Proof Decomposition

Program

Fragment

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form φ1 ⇒ φ2 that is not
valid, find ψ such that (ψ ∧ φ1)⇒ φ2 is valid
using abduction.

Now, introduce ψ as new assertion in
program

And eliminate old assertion by proving it
assuming ψ and converting it to an
assumption

4 / 22

Proof Decomposition

Program

Fragment

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form φ1 ⇒ φ2 that is not
valid, find ψ such that (ψ ∧ φ1)⇒ φ2 is valid
using abduction.

Now, introduce ψ as new assertion in
program

And eliminate old assertion by proving it
assuming ψ and converting it to an
assumption

4 / 22

Proof Decomposition

Program

Fragment

VC1, VC2,...

Compute VCs of assertion on program
fragment

For any VC of the form φ1 ⇒ φ2 that is not
valid, find ψ such that (ψ ∧ φ1)⇒ φ2 is valid
using abduction.

Now, introduce ψ as new assertion in
program

And eliminate old assertion by proving it
assuming ψ and converting it to an
assumption

4 / 22

Example

Consider the following code
snippet

Code contains assertion in
second loop

Goal: Discharge assertion
using portfolio of analyses
on fragments of this code

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

5 / 22

Example

Consider the following code
snippet

Code contains assertion in
second loop

Goal: Discharge assertion
using portfolio of analyses
on fragments of this code

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

5 / 22

Example

Consider the following code
snippet

Code contains assertion in
second loop

Goal: Discharge assertion
using portfolio of analyses
on fragments of this code

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

5 / 22

Decomposition

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

Want to verify assertion only
using highlighted fragment

But not possible since
precondition “z is odd” is
missing

Want to solve for
missing assumptions

required to prove x = y

6 / 22

Decomposition

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

Want to verify assertion only
using highlighted fragment

But not possible since
precondition “z is odd” is
missing

Want to solve for
missing assumptions

required to prove x = y

6 / 22

Decomposition

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}

Want to verify assertion only
using highlighted fragment

But not possible since
precondition “z is odd” is
missing

Want to solve for
missing assumptions

required to prove x = y

6 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1:

VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1:

VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1:

VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1:

VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1: VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Parametric VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume();

while(*) {
 assert(x==y);

 z+=x+y+w;

 y++;

 x+=z%2;
 w+=2;

}

assume();

Use φ1 and φ2 to represent
unknown assumptions that
make the assertion valid

Compute VCs of x = y
parametric on φ1 and φ2

VC 1: VALID

(z = i − j ∧ x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2: NOT VALID

(φ2∧x = y)⇒ wp(σ, x = y)

7 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Finding Auxiliary Lemmas

First, use definition of wp to expand VC 2

(φ2 ∧ x = y)⇒ x + (z + x + y + w)%2 = y + 1

To prove VC 2, we need to find a φ2 that makes it valid

But φ2 should not contradict x = y (lemma we want to prove)

Therefore, want φ2 ∧ x = y to be satisfiable

Insight: This is an instance of logical abduction

8 / 22

Abductive Inference

F E

abduce

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

Use abduction to generate simple assumptions
that make verification condition valid

Known facts F is verification condition,
desired outcome is true

Abductive solution becomes lemma in proof
and can now be established separately

9 / 22

Abductive Inference

F E

abduce

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

Use abduction to generate simple assumptions
that make verification condition valid

Known facts F is verification condition,
desired outcome is true

Abductive solution becomes lemma in proof
and can now be established separately

9 / 22

Abductive Inference

F E

abduce

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

Use abduction to generate simple assumptions
that make verification condition valid

Known facts F is verification condition,
desired outcome is true

Abductive solution becomes lemma in proof
and can now be established separately

9 / 22

Abductive Inference

F E

abduce

Given known facts F and desired outcome O ,
abductive inference finds simple explanatory
hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

Use abduction to generate simple assumptions
that make verification condition valid

Known facts F is verification condition,
desired outcome is true

Abductive solution becomes lemma in proof
and can now be established separately

9 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
assume();

while(*) {
 assert(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume();

10 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assert(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume((w+z)%2==1);

10 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assert(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume((w+z)%2==1);

10 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume((w+z)%2==1);

10 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

10 / 22

Abductive Inference in Example

Here, for

(φ2 ∧ x = y)⇒
x + (z + x + y + w)%2 = y + 1

we compute the solution
φ2 : (w + z)%2 = 1

Can now show x = y , which
turns into an assumption

But still need to prove φ2 ⇒
add as assertion

Circular compositional
reasoning at work!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

10 / 22

Next Step

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

New assertion still not provable
since value of z unconstrained

Again generate parametric VCs

First VC introduces assertion
before loop

(φ1 ∧ z − i − j ∧ x = 0
∧y = 0 ∧ w = 0 ∧ x = y)⇒
(w + z%2 = 1)

Solution computed via
abduction φ1 : z%2 = 1

11 / 22

Next Step

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

New assertion still not provable
since value of z unconstrained

Again generate parametric VCs

First VC introduces assertion
before loop

(φ1 ∧ z − i − j ∧ x = 0
∧y = 0 ∧ w = 0 ∧ x = y)⇒
(w + z%2 = 1)

Solution computed via
abduction φ1 : z%2 = 1

11 / 22

Next Step

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert();

New assertion still not provable
since value of z unconstrained

Again generate parametric VCs

First VC introduces assertion
before loop

(φ1 ∧ z − i − j ∧ x = 0
∧y = 0 ∧ w = 0 ∧ x = y)⇒
(w + z%2 = 1)

Solution computed via
abduction φ1 : z%2 = 1

11 / 22

Next Step

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert();

New assertion still not provable
since value of z unconstrained

Again generate parametric VCs

First VC introduces assertion
before loop

(φ1 ∧ z − i − j ∧ x = 0
∧y = 0 ∧ w = 0 ∧ x = y)⇒
(w + z%2 = 1)

Solution computed via
abduction φ1 : z%2 = 1

11 / 22

Next Step

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert();

New assertion still not provable
since value of z unconstrained

Again generate parametric VCs

First VC introduces assertion
before loop

(φ1 ∧ z − i − j ∧ x = 0
∧y = 0 ∧ w = 0 ∧ x = y)⇒
(w + z%2 = 1)

Solution computed via
abduction φ1 : z%2 = 1

11 / 22

Invoking Client Analyses

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert(z%2==1);

Now left with two assertions
in the code fragment

Convert first assertion to
assumption and invoke our
client analyses

Again, circular compositional
reasoning at work

12 / 22

Invoking Client Analyses

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert(z%2==1);

Now left with two assertions
in the code fragment

Convert first assertion to
assumption and invoke our
client analyses

Again, circular compositional
reasoning at work

12 / 22

Invoking Client Analyses

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

assert(z%2==1);

Now left with two assertions
in the code fragment

Convert first assertion to
assumption and invoke our
client analyses

Again, circular compositional
reasoning at work

12 / 22

Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {

 assume(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;
}

assert((w+z)%2==1);

assume(z%2==1);

Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

Give fragment with assumptions and assertions to clients

Fragment can be locally verified by divisibility analysis

13 / 22

Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {

 assume(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;
}

assert((w+z)%2==1);

assume(z%2==1);

Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

YES

Give fragment with assumptions and assertions to clients

Fragment can be locally verified by divisibility analysis

13 / 22

Remaining Code

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume((w+z)%2==1);

assert(z%2==1);
Now, only one assertion left
in our program

Extract next fragment for
this assertion and give to
client analyses

14 / 22

Remaining Code

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assume((w+z)%2==1);

assert(z%2==1);
Now, only one assertion left
in our program

Extract next fragment for
this assertion and give to
client analyses

14 / 22

Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}

int z = i-j;
int x=0, y=0, w=0;

while(*) {

 assume(x==y);

 z+=x+y+w;

assert((w+z)%2==1);

assert(z%2==1);
Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

Invoke clients on current fragment

This assertion can be shown by any client analysis that can
establish i = 3j + 1

We have now proven the original assertion

15 / 22

Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}

int z = i-j;
int x=0, y=0, w=0;

while(*) {

 assume(x==y);

 z+=x+y+w;

assert((w+z)%2==1);

assert(z%2==1);
Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

YES

Invoke clients on current fragment

This assertion can be shown by any client analysis that can
establish i = 3j + 1

We have now proven the original assertion

15 / 22

Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}

int z = i-j;
int x=0, y=0, w=0;

while(*) {

 assume(x==y);

 z+=x+y+w;

assert((w+z)%2==1);

assert(z%2==1);
Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

YES

Invoke clients on current fragment

This assertion can be shown by any client analysis that can
establish i = 3j + 1

We have now proven the original assertion

15 / 22

Our Technique at a High Level

Technique decomposes proof of program
into subgoals on syntactic fragments

While we show one subgoal, we can safely
assume the others ⇒ circular reasoning

If a subgoal cannot be shown by any
client analysis, we backtrack and generate
new subgoals using abductive inference

16 / 22

Our Technique at a High Level

Technique decomposes proof of program
into subgoals on syntactic fragments

While we show one subgoal, we can safely
assume the others ⇒ circular reasoning

If a subgoal cannot be shown by any
client analysis, we backtrack and generate
new subgoals using abductive inference

16 / 22

Our Technique at a High Level

Technique decomposes proof of program
into subgoals on syntactic fragments

While we show one subgoal, we can safely
assume the others ⇒ circular reasoning

If a subgoal cannot be shown by any
client analysis, we backtrack and generate
new subgoals using abductive inference

16 / 22

Advantages of this Approach

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

Clients only analyze (typically) small
fragments

Interaction is demand-driven (i.e., lazy)

Analyses with complementary strengths
can help each other

Can prove properties no client analysis or
eager combination can prove alone

17 / 22

Advantages of this Approach

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

Clients only analyze (typically) small
fragments

Interaction is demand-driven (i.e., lazy)

Analyses with complementary strengths
can help each other

Can prove properties no client analysis or
eager combination can prove alone

17 / 22

Advantages of this Approach

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

Clients only analyze (typically) small
fragments

Interaction is demand-driven (i.e., lazy)

Analyses with complementary strengths
can help each other

Can prove properties no client analysis or
eager combination can prove alone

17 / 22

Advantages of this Approach

Analysis 1

Analysis 2

Analysis 3

Fragment
+ assumptions
+ assertions

Abduction

Program

Analysis Portfolio

Clients only analyze (typically) small
fragments

Interaction is demand-driven (i.e., lazy)

Analyses with complementary strengths
can help each other

Can prove properties no client analysis or
eager combination can prove alone

17 / 22

Analogy to SMT Solver

SAT Solver

Can view client analyses as theory solvers

Proving assertion on program invokes clients on fragments
and speculated subgoals, backtracks when needed

18 / 22

Analogy to SMT Solver

SAT Solver

Can view client analyses as theory solvers

Proving assertion on program invokes clients on fragments
and speculated subgoals, backtracks when needed

18 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

Experiments

Implemented this techique and used four client tools:

Interproc Polyhedra

Interproc Linear Congruence

Blast

Compass

These tools have very different strengths and weaknesses

19 / 22

First Experiment

10 challenging micro-benchmarks with one assertion each

No tool can individually prove any benchmark

But all benchmarks can be proven when analyses
are combined using our technique

20 / 22

First Experiment

10 challenging micro-benchmarks with one assertion each

No tool can individually prove any benchmark

But all benchmarks can be proven when analyses
are combined using our technique

20 / 22

First Experiment

10 challenging micro-benchmarks with one assertion each

No tool can individually prove any benchmark

But all benchmarks can be proven when analyses
are combined using our technique

20 / 22

First Experiment

10 challenging micro-benchmarks with one assertion each

No tool can individually prove any benchmark

But all benchmarks can be proven when analyses
are combined using our technique

20 / 22

Second Experiment

We also verified a complicated assertion each on five real programs

Fragments extracted for queries small in practice

21 / 22

Second Experiment

We also verified a complicated assertion each on five real programs

Fragments extracted for queries small in practice

21 / 22

Second Experiment

We also verified a complicated assertion each on five real programs

Fragments extracted for queries small in practice

21 / 22

Summary

New technique to decompose
program’s correctness proof into
small lemmas

Allows a portfolio of diverse analyses
with different strengths to cooperate

Interaction is goal-directed and
effective in practice

22 / 22

Summary

New technique to decompose
program’s correctness proof into
small lemmas

Allows a portfolio of diverse analyses
with different strengths to cooperate

Interaction is goal-directed and
effective in practice

22 / 22

Summary

New technique to decompose
program’s correctness proof into
small lemmas

Allows a portfolio of diverse analyses
with different strengths to cooperate

Interaction is goal-directed and
effective in practice

22 / 22

Summary

New technique to decompose
program’s correctness proof into
small lemmas

Allows a portfolio of diverse analyses
with different strengths to cooperate

Interaction is goal-directed and
effective in practice

22 / 22

