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Enabling more concise and modular proofs is essential for advancing formal reasoning using interactive
theorem provers (ITPs). Since many ITPs, such as Rocq and Lean, use tactic-style proofs, learning higher-level
custom tactics is crucial for proof modularity and automation. This paper presents a novel approach to
tactic discovery, which leverages Tactic Dependence Graphs (TDGs) to identify reusable proof strategies
across multiple proofs. TDGs capture logical dependencies between tactic applications while abstracting away
irrelevant syntactic details, allowing for both the discovery of new tactics and the refactoring of existing
proofs into more modular forms. We have implemented this technique in a tool called TacMiner and compare
it against an anti-unification-based approach (Peano) to tactic discovery. Our evaluation demonstrates that
TacMiner can learn 3× as many tactics as Peano and reduces the size of proofs by 26% across all benchmarks.
Furthermore, our evaluation demonstrates the benefits of learning custom tactics for proof automation,
allowing a state-of-the-art proof automation tool to achieve a relative increase of 172% in terms of success rate.
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1 Introduction
Tactics are essential in interactive theorem proving, particularly for facilitating reuse andmodularity
in proof development. By encapsulating common proof strategies into reusable components, tactics
allow users to apply previously developed solutions to new problems, reducing the effort required
to construct proofs from scratch. Tactics also facilitate proof automation, as shorter proofs are
typically easier to discover using automated techniques.
While interactive theorem provers (ITPs) such as Rocq (formerly known as Coq) and Lean

provide a rich library of built-in tactics, proof engineers typically need to devise custom tactics

Authors’ Contact Information: Yutong Xin, maxryeery@utexas.edu, University of Texas at Austin, Austin, Texas, USA; Jimmy
Xin, jxin31415@utexas.edu, University of Texas at Austin, Austin, Texas, USA; Gabriel Poesia, poesia@stanford.edu, Stanford
University, Stanford, California, USA; Noah D. Goodman, ngoodman@stanford.edu, Stanford University, Stanford, California,
USA; Qiaochu Chen, qc1127@cs.nyu.edu, New York University, New York, New York, USA; Işıl Dillig, isil@cs.utexas.edu,
University of Texas at Austin, Austin, Texas, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART343
https://doi.org/10.1145/3763121

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 343. Publication date: October 2025.

https://doi.org/10.1145/3763121
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763121


343:2 Yutong Xin, Jimmy Xin, Gabriel Poesia, Noah D. Goodman, Qiaochu Chen, and Işıl Dillig

Fig. 1. Syntactically different proofs w/ same TDG in Figure 2,

for Lemma (𝑃 ∧𝑄) → (𝑃 → 𝑅) → (𝑄 = 𝑇 ) → (𝑅∧𝑇 →𝑊 ) →𝑊 .
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Fig. 2. TDG for Figure 1.

by composing existing tactics into higher-level domain-specific building blocks [14]. For example,
the mathlib library in Lean contains useful tactics for mathematical proofs, and the flocq library
in Rocq provides tactics that facilitate proofs about floating point computation. But even if proof
assistants enable users to write their own tactics, learning to do so adds an extra layer on top of
the already steep learning curve of ITPs.

In this paper, we address the problem of automatically learning custom tactics (i.e., compositions
of existing tactics) from a given proof corpus. Learning such tactic libraries can uncover reusable
patterns in proofs, making it easier to construct similar proofs within the same domain. Furthermore,
tactic discovery can enhance proof automation by facilitating a form of curriculum learning [32],
where more complex proofs are synthesized using custom tactics discovered in simpler proofs.

While there has been prior work [8, 10, 18] on learning software libraries from a given corpus
of programs, these methods do not readily apply to tactic-based proofs. Such proofs are written
in an imperative style, with frequent reference to implicit, mutating objects such as the current
goal, which is typically not present in the source, but rather visualized interactively. However,
existing work on library learning typically assumes functional programs and focuses on generalizing
concrete program expressions into lambda abstractions. In contrast, tactic discovery requires an
understanding of the logical relationships between different proof steps and the ability to construct
higher-level tactics that capture these relationships.
In this paper, we address this problem by proposing a new proof abstraction called tactic de-

pendence graph (TDG) that hides irrelevant syntactic variations between different proofs, while
focusing on important logical dependencies. In a TDG, nodes represent tactic applications, while
edges represent proof state dependencies between them. For example, Figure 1 shows two syntacti-
cally different proofs of the same theorem, which have exactly the same TDG abstraction shown
in Figure 2. In essence, the TDG abstraction hides minor syntactic variations in the proof, such
as how sub-goals are named or in what order tactics are applied, and instead focuses on semantic
dependencies in between different tactic applications.
Given a corpus of proofs from the same domain, our approach leverages the TDG abstraction

to discover tactics that maximize compression of the proof corpus—a metric widely used in prior
work on library learning [8, 10, 18, 41]. Intuitively, the greater the compression rate of existing
proofs, the more broadly applicable the resulting tactics. To achieve this goal, our method identifies
isomorphic subgraphs within the TDGs that exhibit a special property called collapsibility. This
property guarantees that (1) each common subgraph can be translated into a valid tactic and (2)
the resulting tactics can be applied to refactor the original proofs while preserving their validity.
Our tactic discovery algorithm is inspired by ideas from top-down enumerative program syn-

thesis [8, 21, 23, 38]; however, it needs to address additional challenges that are not present in
the program synthesis setting. First, since our goal is to discover common isomorphic subgraphs
of existing TDGs, we need to perform enumerative search over graphs as opposed to abstract
syntax trees. Second, unlike program synthesis, there is no pre-determined grammar for tactic
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dependence graphs. Finally, since our goal is to maximize an optimization objective, the synthesizer
cannot stop as soon as it finds an isomorphic embedding but must keep going until it identifies
the highest-scoring tactic. Our proposed tactic discovery algorithm effectively addresses these
challenges using two key ideas. First, it extracts a graph grammar from the TDGs of existing proofs.
Second, it substantially prunes the search space by deriving upper bounds on the compression
power of candidate tactics.
We have implemented our proposed tactic discovery method in a tool called TacMiner and

evaluate it on several Rocq projects, including CompCert [35] and proofs involving program logics.
We compare our approach against an anti-unification baseline from prior work (Peano) [41] and
show that TacMiner can learn 3× as many tactics compared to Peano. Furthermore, the tactics
learned by TacMiner make proofs 26% shorter across all benchmarks, reducing the corpus size to
63% of its original size in some cases. Finally, our evaluation also demonstrates the benefits of our
approach for proof automation, allowing a state-of-the-art tool (Copra) [50] to achieve a relative
increase of 172% in the number of theorems proved.

To summarize, this paper makes the following contributions:

• We introduce tactic dependence graphs (TDG), a new abstraction that facilitates proof refactoring
and tactic discovery.
• We define the semantic proof refactoring problem and show how to use the TDG abstraction to
refactor proofs in a way that preserves their validity.
• We propose a new tactic discovery algorithm for assembling a library of tactics from a corpus.
• We implement these ideas in a tool called TacMiner targeting Rocq proofs and compare it against
a baseline [41] that uses anti-unification for tactic discovery. Our method learns around 3× as
many tactics compared to the baseline, reducing the size of the proof corpus by 26% (compared
to 9% for the baseline). Furthermore, the tactics learned by our method enabled Copra, a proof
automation tool, to increase the number of theorems it can prove by 172% on a corpus of 50
proofs, providing preliminary evidence of these tactics’ utility in automated theorem proving.

2 Motivating Example

Lemma eq_trans: forall x y z: res eqs, 

eq x y -> eq y z -> eq x z.


Proof.

unfold eq. intros. destruct x. 

- destruct y.

  + destruct z.

    * red in H. red in H0.

      unfold EqSet.Equal.intros. 

      rewrite H. rewrite H0. tauto.

    * auto.

  + tauto. 

- destruct y.

  + destruct z. 

    * auto.

    * auto.

  + auto.

Qed.

Lemma eq_sym: forall x y, 

eq x y -> eq y x.


Proof.

red. intros. destruct x.

- destruct y. 

  + red in H.

    unfold EqSet.Equal. 

    intros. 

    rewrite H. 

    reflexivity.

  + auto.

- auto.

Qed.

Fig. 3. Input Rocq Proofs.

In this section, we demonstrate our
approach through a simple motivat-
ing example shown in Figure 3. This
figure shows two simple Rocq proofs,
eq_sym and eq_trans, taken from
CompCert [35] for establishing the
symmetry and transitivity of a pred-
icate defining a suitable notion of
equality for dataflow analysis re-
sults. As standard in Rocq and many
other interactive theorem provers,
these are tactic-style proofs, where
pre-defined tactics such as intros, destruct, rewrite, etc. are used to transform proof goals
into simpler sub-goals. Our goal in this paper is to learn higher-level (custom) tactics that can be
used to further simplify proof engineering in a specific domain.

While the two proofs shown in Figure 3 have salient differences, they also have many similarities,
as highlighted in color in the figure. In fact, given these two proofs, we can extract the following
custom tactics that may be used to simplify several other proofs:
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Ltac simplRewrite H := red in H; rewrite H.
Ltac destructUnfold n H := destruct n; [unfold H; intros | auto].

The first custom tactic called simplRewrite is useful in hypothesis H which contains a function
or expression that requires some reduction before rewriting. In particular, this tactic first simplifies
the hypothesis H by performing one step of reduction, and then uses that simplified hypothesis
to rewrite the goal. The second tactic, called destructUnfold, is useful in scenarios that require
handling different cases of an inductive type through unfolding and proof automation, respectively.
Figure 4 shows the refactored version of the proofs from Figure 3 using these custom tactics.

Lemma eq_trans_compr: forall x y z:  
res eqs, eq x y -> eq y z -> eq x z. 
Proof. 
unfold eq. intros. destruct x. 
- destruct y.  
  + destructUnfold z EqSet.Equal. 
    simplRewrite H. simplRewrite H0. 
    tauto. 
  + contradiction.  
- destruct y. 
  + destruct z.  
    * auto. 
    * auto. 
  + auto. 
Qed.

Lemma eq_sym_compr: forall x y: 
res eqs, eq x y -> eq y x. 
Proof. 
red. intros. destruct x. 
destructUnfold y EqSet.Equal. 
- simplRewrite H. 
reflexivity. 
- auto. 
Qed.

Fig. 4. Refactored proofs from Figure 3 using the custom tactics.

Proof Refactoring. As a first step
towards tactic discovery, we pose
the question “Can we, and, if so how
do we, refactor proofs using a given
custom tactic?”. At first glance, it is
unclear how to refactor the proofs
from Figure 3 to use our custom tac-
tics. First, the pre-defined tactics com-
prising the custom tactic do not ap-
pear consecutively in either of the
proofs. Second, the destructUnfold
tactic spans multiple cases of the
original proof, but its first branch
does not exactly correspond to either of the branches of the original tactic. Third, even
if a proof uses the same pre-defined tactics as a custom tactic, this does not necessarily
mean that a proof can be refactored using that tactic. In particular, because tactic-style
proofs are stateful objects with implicit sub-goals, there can be subtle dependencies between
tactic applications that make it impossible to refactor the proof using a given tactic even
when the proof and the tactic are syntactically similar. All of these considerations highlight
the need for a suitable abstraction that can facilitate proof refactoring and tactic discovery.

(p′￼, g) (g′￼, g) (g′￼, g)
(h, h) (h, h)

(h1, p)

(g2, g)

(g1, p) (g2, g)
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EqSet . Equal
(EqSet . Equal, h)
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Fig. 5. TDG for eq_sym.

Tactic Dependence Graph. To address these
problems, we propose representing tactic-style
proofs using an abstraction called the tactic de-
pendence graph (TDG) that elucidates dependen-
cies between different tactic applications in a
proof. Specifically, nodes in a TDG correspond
to tactic applications, and edges encode how
the “outputs” of one tactic feed as “inputs” to an-
other tactic. For instance, consider the TDG rep-
resentation of the proof for the eq_sym lemma
shown in Figure 5. Here, an edge from a node
𝑛 to 𝑛′ indicates that the tactic application represented by 𝑛′ depends on the tactic application
represented by 𝑛. For example, looking at this TDG, we see that there is no logical dependence
between the second application of red (node 𝑢) and unfold (node 𝑤 ) even though they appear
consecutively in the syntax of the proof. On the other hand, the TDG also makes it clear that
there is an immediate dependency between the second application of red (𝑢) and rewrite (𝑣) even
though they are separated in syntax by two other tactic applications. Also, note that TDG edges
elucidate not only whether there exists a dependency between two tactic applications but also how
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Fig. 6. TDG for eq_trans.

they are dependent. In particular, an edge labeled (𝛼, 𝛽) indicates that the “formal” output 𝛼 of the
source tactic application is supplied as the “formal” parameter 𝛽 of the target tactic application. As
a matter of convention, we use the symbols ℎ,ℎ𝑖 to denote hypotheses, 𝑔,𝑔𝑖 to denote goals, and
𝑝, 𝑝𝑖 to denote propositions that can be either goals or hypotheses. For instance, looking at the same
TDG, we see that destruct (node𝑚) produces two goals (labeled 𝑔1, 𝑔2) and a new hypothesis
(labeled ℎ1). We also notice that the formal outputs 𝑔1, 𝑔2 of destruct (node𝑚) are used by unfold
(node𝑤 ) and auto respectively, and that the output hypothesis ℎ1 is used by red (node 𝑢).
TDG for Proof Refactoring. Next, let’s consider how we might use the TDG for refactoring the
eq_sym proof from Figure 3 into the form shown in Figure 4. First, observe that the subgraph
encircled using solid (green) lines in Figure 5 corresponds to the TDG representation of the
destructUnfold tactic and the subgraph surrounded by orange dashed lines corresponds to that
of simplRewrite. Hence, we can refactor the original proof by replacing this sequence of tactic
invocations with the destructUnfold and simplRewrite tactics. Next, there is the question of
where in the proof these custom tactic invocations belong. Looking at the TDG, we see that an
input of red (now part of simplRewrite) relies on an output of destruct (which is now a part of
destructUnfold); hence, we deduce that destructUnfold must occur before simplRewrite in
the refactored proof. Using this type of reasoning, we can refactor the original proof from Figure 3
to the version shown in Figure 4 while maintaining its syntactic and semantic validity.
Tactic Discovery. In addition to being useful for proof refactoring, the TDG abstraction is also
beneficial for tactic discovery: Given a corpus of proofs, we can identify common proof patterns by
looking for common isomorphic subgraphs of the TDGs. For instance, comparing the TDGs shown
in Figure 5 and Figure 6 immediately reveals two common isomorphic subgraphs, highlighted in
solid (green) and dashed (orange) lines. Hence, the idea behind our tactic discovery algorithm is to
find isomorphic common subgraphs in the corpus and use them to refactor the proofs. However,
when learning tactics, there is often a trade-off between the generality of the tactic and its size:
On one hand, the more frequently a proof pattern appears, the more generally applicable it is.
On the other hand, the larger the tactic, the more useful it is — intuitively, large tactics allow us
to skip many steps in the proof. To balance this trade-off, our tactic discovery algorithm looks
for common isomorphic subgraphs that maximize the total reduction in corpus size, a metric
that has also been used in prior work on library learning [8, 10]. For instance, going back to our
running example, the destructUnfold tactic reduces the size of the two proofs by 20% whereas the
simplRewrite tactic reduces size by 10%. Thus, our learning algorithm first refactors the corpus
using the destructUnfold tactic and then looks for a different tactic that maximizes compression,
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such as the simplRewrite tactic in our example. This process continues until no new tactics can
be discovered.

3 Preliminaries
This section provides necessary background on interactive theorem proving by developing a formal
model of tactic-style proofs.

3.1 Proof States
A central concept in tactic-style proofs is the notion of proof state, which represents the current
status of an ongoing proof, including the goals that remain to be established and the hypotheses
available at each step.
Definition 3.1 (Proof state). A proof state 𝜎 is a mapping from identifiers (i.e., names like H1) to
proof elements, which correspond to hypotheses and goals. A hypothesis is a proposition 𝜑 expressed
in the formal language of the prover. A goal 𝑔 is a pair (𝜑, C) where 𝜑 is a proposition to be proven
and the context C is a set of hypothesis identifiers that are in scope when proving 𝑔.

Given an identifier 𝑣 , we write 𝑔(𝑣) to indicate that it represents a proof goal and ℎ(𝑣) to denote
that it corresponds to a hypothesis. We use the notation Goals(𝜎) to denote the set of goals in the
proof state 𝜎 . Also, given a proof state 𝜎 and a set of identifiers 𝐼 , we write 𝜎\𝐼 to denote the new
proof state obtained by removing identifiers 𝐼 from 𝜎 .
For readability, we omit the context associated with a goal unless necessary. Thus, in most

examples, we represent the proof state as a mapping from identifiers to propositions, assuming
that all hypotheses are available when proving a goal unless explicitly stated. Additionally, while
many ITPs do not explicitly name proof goals—typically operating on a single implicit goal at each
step—we choose to explicitly name goals to facilitate disambiguation in multi-goal scenarios.

3.2 Tactics
In interactive theorem provers, theorems are typically proven by applying tactics to manipulate
proof states. For example, Table 1 lists our representation of some of the built-in tactics in the Rocq
theorem prover, along with an (informal) description of their semantics.1 For instance, consider the
intro tactic shown in Table 1 which is listed as having “signature” 𝑔→ ℎ × 𝑔′. This means that
this tactic operates over a specific goal 𝑔 that is part of the current proof state 𝜎 and transforms the
proof state if 𝑔 is of the form 𝑝1 → 𝑝2. In particular, the new proof state is obtained by removing
goal 𝑔 from the current proof state and introducing 𝑝1 as a new hypothesis and 𝑝2 as a new goal.
Note that some tactics, such as split and destruct, can also introduce multiple new goals, where
each goal can have its own unique context (such as in the case of destruct).

In addition to using built-in tactics, proof engineers can also define their own custom tactics, for
example, via the Ltac construct in Rocq. We represent both built-in and custom tactics through the
following formalization:
Definition 3.2 (Tactic definition). A tactic definition is a quadruple (𝜂, 𝐼,𝑂, E) where 𝜂 is the
name of the tactic, 𝐼 and 𝑂 are lists of identifiers representing formal tactic inputs and outputs
respectively, and E is an expression that manipulates a proof state.
Example 3.1. Consider the following simple tactic in Rocq: Ltac MyTac h := intro h; simpl.
This custom tactic first applies the built-in intro tactic to introduce a hypothesis ℎ and then
simplifies the resulting proof goal using simpl. In our representation, this tactic is formalized as:

(MyTac, [𝑔], [ℎ,𝑔′′], intros [𝑔] [ℎ,𝑔′]; simpl [𝑔′] [𝑔′′])
1Note that Table 1 only provides examples; our implementation supports many more, as explained in Section 7.
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Table 1. Our internal representation of some commonly used Rocq tactics, where ℎ denotes a hypothesis, 𝑔

denotes a goal, and 𝑝 is any proposition (either goal or hypothesis).

Tactic name Signature Semantics
intro 𝑔→ ℎ × 𝑔′ If 𝑔 matches 𝑝1 → 𝑝2, produces 𝑝1 as hypothesis ℎ

and 𝑝2 as goal 𝑔′
apply .. (in) ℎ × 𝑝 → 𝑝1 (×... × 𝑝𝑛) If ℎ matches 𝑝 → 𝑝1 and 𝑝 is a hypothesis, produces 𝑝1

as a new hypothesis; if ℎ matches 𝑝1 → .. → 𝑝𝑛 → 𝑝

and 𝑝 is a goal, produces 𝑝1 × .. × 𝑝𝑛 as new goals
exact ℎ × 𝑔→ ⊥ If ℎ matches 𝑔, discharges the goal

(i.e., no new goal is produced)
split 𝑔→ 𝑔1 × 𝑔2 If 𝑔 is of the form (𝑝1 ∧ 𝑝2), produces 𝑝1 and 𝑝2

as two new goals 𝑔1 and 𝑔2, respectively
destruct∨ ℎ × 𝑔→ If ℎ matches (ℎ1 ∨ ℎ2), produces two goals 𝑔1 and 𝑔2,

ℎ1 × ℎ2 × 𝑔1 × 𝑔2 derived from 𝑔, with corresponding hypotheses ℎ1 and ℎ2
rewrite ℎ × 𝑝 → 𝑝′ If ℎ matches 𝑥 = 𝑦 and 𝑝 is of the form 𝑝 (𝑥),

produces 𝑝 (𝑦) as the new proposition 𝑝′

left / right 𝑔→ 𝑔′ If 𝑔 matches 𝑝1 ∨ 𝑝2, produces 𝑝1 (resp. 𝑝2 for right)
as a new goal 𝑔′

Here, the formal input 𝐼 consists of a single goal 𝑔, and the formal output is [ℎ,𝑔′′], indicating that
the resulting proof state includes a new hypothesis ℎ and a new goal 𝑔′′. This explicit representation
captures which parts of the proof state are modified by a given tactic. Similarly, when specifying
tactic applications (as in the body of the custom tactic), we explicitly define their inputs and outputs.
In this case, intros takes the initial goal 𝑔, introduces a hypothesis ℎ, and produces an updated goal
𝑔′, which is then further transformed by simpl into 𝑔′′. This formalization clarifies the sequential
modifications to the proof state.

In the remainder of this paper, we assume uniqueness of tactic names, and, given a tactic name 𝜂,
we write In(𝜂) and Out(𝜂) to denote its formal inputs and outputs, and Body(𝜂) to denote its body.

3.3 Tactic Applications
A tactic application modifies the proof state by taking a set of actual proof elements as inputs
and producing new proof elements as outputs. Formally, a tactic application is represented as
a tuple (𝜂,𝑋,𝑌 ) where 𝜂 is the name of the applied tactic, 𝑋 is the list of actual inputs (e.g.,
goals, hypotheses), 𝑌 is the list of actual outputs (e.g., new hypotheses, transformed goals). In
our representation, a tactic application is exactly akin to function invocation with call-by-value
semantics: Given a tactic definition (𝜂, 𝐼,𝑂, E) where 𝐼 and𝑂 denote the formal inputs and outputs,
respectively, applying 𝜂 involves replacing formal inputs with actual proof elements and executing
E. More formally, each tactic invocation 𝑡 = (𝜂,𝑋,𝑌 ) defines a transition relation between proof
states, denoted J𝑡K(𝜎) = 𝜎 ′, where 𝜎 ′ = (𝜎\Goals(𝑋 )) ⊎ [𝑌 ↦→

(
JEK( [In(𝜂) ↦→ 𝜎 (𝑋 )]

)
(Out(𝜂))] .

In particular, J𝑡K(𝜎) modifies the proof state 𝜎 according to body expression E, subject to the usual
formal-to-actual renamings. Note that inputs of 𝑡 that correspond to proof goals are transformed
by the tactic invocation; hence, identifiers that refer to “stale” proof goals are removed when
constructing the new input state 𝜎 ′. Importantly, we assume tactics are deterministic with respect
to the inputs (i.e., goals, hypotheses, and hint databases) they consume. That is, tactic invocations
will always produce the same outputs as long as their inputs in the initial proof state are the same,
even if the rest of the state is different. Given proof state 𝜎 and expression E, we write JEK(𝜎) to
denote the resulting state 𝜎 ′ after applying E to 𝜎 .
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Example 3.2. Consider the following tactic application (apply, [H0, g3], [g4, g5]) (where the
semantics of the built-in apply tactic is given in Table 1) and the proof state 𝜎 :

[h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3), g3 ↦→ P3]

This tactic application results in the following modified proof state 𝜎 ′:

[h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3), g4 ↦→ P1, g5 ↦→ P2]

Observe that the hypotheses are still the same, but previous goal g3 is removed from the old proof
state and two new goals, g4 and g5, are added to 𝜎 ′.

3.4 Proof Scripts and Proofs
We conclude this section by defining proof scripts: programs defined by a sequence of tactic
invocations. A proof corresponds to a successful execution of that program on some initial state.

Definition 3.3 (Proof script). A proof script 𝜋 is a sequence of tactic invocations.

Example 3.3. Consider the following lemma:

Lemma implication: (P1 ∧ P2) -> (P1 -> P2 -> P3) -> P3.

and its corresponding proof script:
intros H. destruct H as [h1 h2]. intros H0. apply H0.
- exact h1.
- exact h2.

In our representation, this proof script corresponds to the following sequence of tactic invocations:
intro [g0] [H, g1]; destruct [H, g1] [h1, h2, g2];
intro [g2] [H0, g3]; apply [H0, g3] [g4, g5];
exact [h1, g4] []; exact [h2, g5] [].

Although the original Rocq script uses bullets (“-”) to indicate a structured proof with multiple
subgoals, our proof script representation explicitly encodes the logical dependencies between tactics
as a linear sequence of invocations. In particular, the apply H0 tactic introduces two subgoals,
labeled g4 and g5, which are subsequently solved by exact h1 and exact h2, respectively.

Finally, we define a proof as a successful execution of a proof script on some initial state:

Definition 3.4 (Proof). Let 𝜎0 be a proof state and 𝜋 = 𝑡1; . . . ; 𝑡𝑛 be a proof script. Executing 𝜋 on
𝜎0 yields a sequence of states (i.e., trace) 𝜎1, . . . 𝜎𝑛 where 𝜎𝑖+1 = J𝑡𝑖K(𝜎𝑖 ). We say that 𝜋 is a proof of
𝜎0 if 𝜎𝑛 does not contain any goal identifiers in its domain.

Example 3.4. Consider the initial proof state, which corresponds to our lemma to be proven from
Example 3.3: 𝜎0 : [g0 ↦→ ((P1 ∧ P2) → (P1→ P2→ P3) → P3)]. Executing the proof script from
Example 3.3 results in the following trace:

𝜎1 : [H ↦→ (P1 ∧ P2), g1 ↦→ ( (P1→ P2→ P3) → P3) ]
𝜎2 : [h1 ↦→ P1, h2 ↦→ P2, g2 ↦→ ( (P1→ P2→ P3) → P3) ]
𝜎3 : [h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3), g3 ↦→ P3]
𝜎4 : [h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3), g4 ↦→ P1, g5 ↦→ P2]
𝜎5 : [h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3), g5 ↦→ P2]
𝜎6 : [h1 ↦→ P1, h2 ↦→ P2, H0 ↦→ (P1→ P2→ P3) ]

Since 𝜎6 does not contain any goals, this constitutes a proof of our lemma.
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4 Semantic Proof Refactoring
To define our tactic discovery problem, we first consider: “What makes a custom tactic useful?” In
our setting, a necessary requirement is that the tactic can be applied to refactor existing proofs
in a way that yields a desirable outcome—be it reduced proof size, improved maintainability, or
some other benefit. In this section, we formally introduce the concept of proof refactoring. Instead
of relying on brittle, syntactic notions, our approach takes a semantic perspective by representing
tactic-style proofs with tactic dependency graphs (TDG).

Definition 4.1 (TDG of proof script). Let 𝜋 be a proof script. A tactic dependence graph for 𝜋 ,
denoted TDG(𝜋), is a directed acyclic graph 𝐺 = (𝑉 , 𝐸) where each node 𝑣 (𝜂) ∈ 𝑉 corresponds to
a tactic invocation 𝑡 = (𝜂,𝑋,𝑌 ) ∈ 𝜋 and each arc (𝑠 (𝜂), 𝑡 (𝜂′), 𝛽, 𝛼) indicates that the formal input
𝛼 for tactic invocation 𝑡 (𝜂′) corresponds to the formal output 𝛽 for tactic invocation 𝑠 (𝜂).

Example 4.1. Figure 7 shows the TDG for the proof script from Example 3.3. Here, an edge labeled
(𝑎, 𝑏) indicates the formal output 𝑎 of the source node corresponds to the formal input 𝑏 of the
target node. We use the signatures shown in Table 1 to refer to the formal inputs and outputs of
Rocq’s built-in tactics. For example, the edge from 𝜈3 to 𝜈4 labeled (𝑔′, 𝑝) indicates that formal
output 𝑔′ of the intro tactic becomes the formal input 𝑝 of the apply tactic.

(g′￼, g)

(H, 𝚑𝟶)
(g′￼, p) (h, h)

(g′￼, g)

(h, h)
v1(𝚒𝚗𝚝𝚛𝚘)

v4(𝚊𝚙𝚙𝚕𝚢)

v5(𝚎𝚡𝚊𝚌𝚝) v6(𝚎𝚡𝚊𝚌𝚝)
(p1, g) (p2, g)

(h1, h) (h2, h)
v3(𝚒𝚗𝚝𝚛𝚘)

v2(𝚍𝚎𝚜𝚝𝚛𝚞𝚌𝚝)

Fig. 7. TDG for Ex 3.3.

In general, multiple syntactically different proof scripts can have the
same TDG. Given a graph 𝐺 , we use InducedProofs(𝐺) to denote the set
of all proof scripts Π = {𝜋1, . . . , 𝜋𝑘 } such that 𝐺 is isomorphic to TDG(𝜋 𝑗 ).
Thus, we can view a TDG as representing a combinatorially large class of
syntactically different, but semantically equivalent, proof scripts. We can
obtain all induced proofs of𝐺 by considering all topological sorts of𝐺 that
satisfy branching constraints of the original proof (see Section 7 for more
details).

Note that we can also represent a tactic definition as a TDG as long as its
body expression can be expressed as a sequence of other tactic invocations.
However, to simplify the presentation of our algorithms, we augment the
TDG for each tactic definition with two special nodes to represent their
formal inputs and outputs.

Definition 4.2 (Tactic TDG). Let 𝜏 = (𝜂, 𝐼,𝑂, 𝜋) be a tactic definition where 𝜋 is a sequence of
tactic invocations, and let 𝐺𝜋 = (𝑉𝜋 , 𝐸𝜋 ) be the TDG of 𝜋 . The TDG of 𝜏 is a directed acyclic graph
𝐺 = (𝑉 , 𝐸) such that 𝑉 = 𝑉𝜋 ∪ {𝑣in, 𝑣out} where 𝑣in, 𝑣out represent the formal inputs and outputs of
𝜏 respectively. Furthermore, let 𝐼𝛼𝑖 ,𝛽 𝑗

denote the set of all tactic invocations of the form (𝜂′, _, _)
where the formal input 𝛼𝑖 of 𝜏 corresponds to formal input 𝛽 𝑗 of 𝜂′, and let 𝑂𝛼𝑘 ,𝛽𝑙 denote the set of
all tactic invocations of the form (𝜂′, _, _) where the formal output 𝛼𝑘 of 𝜏 corresponds to formal
output 𝛽𝑙 of 𝜂′. Then, 𝐺 contains edges:

𝐸 = 𝐸𝜋 ∪
⋃
𝑖 𝑗

𝐼𝛼𝑖 ,𝛽 𝑗
∪
⋃
𝑘𝑙

𝑂𝛼𝑘 ,𝛽𝑙

u(𝚒𝚗𝚝𝚛𝚘)

in

w(𝚎𝚡𝚊𝚌𝚝)

out

(𝚐, g) (𝚑, h)
(h, p)

(g′￼, g) (p1, h)

(h, 𝚑𝟶) (p1, 𝚑𝟷)

(𝚑, H)
v(𝚊𝚙𝚙𝚕𝚢)

Fig. 8. Tactic TDG for Ex. 4.2.

In other words, the TDG for a tactic contains special nodes and
edges that connect formal inputs and outputs in the tactic defini-
tion to the formal inputs and outputs of other tactic invocations.

Example 4.2. Consider the following tactic definition in Rocq:

Ltac myTac h h0 h1:= intro h0; apply h0 in h as h1; exact h1.
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In our internal representation, this tactic takes two formal argu-
ments, namely goal g and hypothesis h, and has two formal outputs h0 and h1. The body expression
of this tactic is represented using the following sequence of tactic invocations:
intro [g] [h0, g1]; apply [h, h0] [h1]; exact [h1, g1] []

Figure 8 shows the TDG representation of this tactic. Note that there is an edge from node 𝑢 to the
special exit node labeled (ℎ, h0) since the formal output ℎ of the intro tactic becomes the formal
output h0 of the custom tactic. The edge between 𝜈 and the exit node is labeled (𝑝1, h1) similarly.

Intuitively, a proof script 𝜋 could be refactored using a tactic 𝜏 if 𝜏 is a subgraph of 𝜋 modulo
isomorphism, subject to some extra restrictions. To make this more precise, we define isomorphic
embedding in the context of TDG.

Definition 4.3 (Isomorphic embedding). A tactic TDG 𝐺 = (𝑉 , 𝐸) is an isomorphic embedding
into a proof TDG𝐺 ′ = (𝑉 ′, 𝐸′) iff there exists an injective function 𝑓 : 𝑉 \{𝑣in, 𝑣out} → 𝑉 ′ such that:
(1) Every vertex in 𝑉 \{𝑣in, 𝑣out} is mapped to a vertex of 𝐺 ′ with the same tactic name, i.e.,

∀𝑣 ∈ 𝑉 .∃𝑣 ′ ∈ 𝑉 ′ .𝑓 (𝑣 (𝜂)) = 𝑣 ′ (𝜂)
(2) Every non-special edge in 𝐺 is mapped to a corresponding edge of 𝐺 ′ with the same edge label:

∀(𝑠, 𝑡, 𝛽, 𝛼) ∈ 𝐸. (𝑠 ≠ 𝑣in ∧ 𝑡 ≠ 𝑣out) → ∃(𝑠′, 𝑡 ′, 𝛽, 𝛼) ∈ 𝐸′ .𝑓 (𝑠) = 𝑓 (𝑠′) ∧ 𝑓 (𝑡) = 𝑓 (𝑡 ′)
We refer to this injective function 𝑓 as the witness.

(g′￼, p) (h, h)

(p1, g)

(𝚑, h)

u(𝚒𝚗𝚝𝚛𝚘)

v(𝚊𝚙𝚙𝚕𝚢)

w(𝚎𝚡𝚊𝚌𝚝)

in
(𝚐, g)

out

(h, 𝚑′￼)

Fig. 9. TDG for Ex 4.3.

The two conditions in the above definition ensure agreement between
labels of nodes and edges between the tactic TDG 𝐺 and the proof TDG 𝐺 ′

that 𝐺 is embedded into. However, it turns out that finding an isomorphic
embedding between a tactic 𝜏 and a proof script 𝜋 is a necessary but not
sufficient condition for refactoring 𝜋 using 𝜏 . To see why this is the case,
consider two TDGs, one with edges {a � b, b � c, a � c}, and another
with edges {a � d, d � c, a � c}. While the subgraph consisting of nodes
a and c appears in both proofs, it is not possible to extract a valid tactic that
isolates these two steps. This is because node c depends on a node outside
the tactic, which in turn relies on an intermediate result produced by the
tactic, preventing it from being used as a standalone argument. To avoid this
issue, we must additionally ensure that the subgraph of 𝜋 that is isomorphic to 𝜏 is collapsible into
a single node, meaning that we can replace all incoming edges into the subgraph with the special
entry node of the tactic and all outgoing edges with the special exit node. We formalize this using
the definition below:

Definition 4.4 (Collapsible embedding). Let 𝐺 = (𝑉 , 𝐸), 𝐺 ′ = (𝑉 ′, 𝐸′) be the TDG’s for a tactic
definition 𝜏 and proof script 𝜋 respectively such that 𝐺 is an isomorphic embedding into 𝐺 ′ with
witness function 𝑓 . Let 𝐺 ⊢ 𝑢 { 𝑣 denote that node 𝑣 is reachable from node 𝑢 in graph 𝐺 . We say
that 𝐺 ′ is 𝑓 -collapsible iff both of the following conditions hold:
(1) ∀𝑢, 𝑣 ∈ Range(𝑓 ) .∀𝑤 ∈ 𝑉 ′ . (𝐺 ′ ⊢ 𝑢 { 𝑤 ∧𝐺 ′ ⊢ 𝑤 { 𝑣) ⇒ 𝑤 ∈ Range(𝑓 )
(2) ∀𝑢, 𝑣 ∈ Dom(𝑓 ).∀𝑒 ∈ 𝐸′ . 𝑒 = (𝑓 (𝑢), 𝑓 (𝑣), 𝛼, 𝛽) ⇒ (𝑢, 𝑣, 𝛼, 𝛽) ∈ 𝐸

Here, the first condition states that, if we have 𝑓 (𝑎) = 𝑢 and 𝑓 (𝑏) = 𝑣 and there is a path from 𝑢

to 𝑣 that includes𝑤 in the middle, then 𝑓 must also map some node 𝑐 ∈ 𝑉 to𝑤 . On the other hand,
the second condition states that if 𝐺 ′ includes an edge between any pair of vertices that are in the
range of 𝑓 , then the corresponding edge must also exist in 𝐺 .
To see why we require the first property, note that any valid proof script induced by 𝐺 ′ must

include tactic invocations in the order 𝑢,𝑤, 𝑣 since 𝑤 depends on an output of 𝑢 and 𝑣 depends
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on an output of𝑤 . Thus, if 𝑓 had only 𝑢, 𝑣 in its range but not𝑤 , the refactored proof could not
allow the tactic invocations 𝑢, 𝑣,𝑤 in the required order, thereby resulting in an invalid proof script.
Additionally, we need the second property because a candidate tactic 𝐺 is not a valid embedding
unless it includes all required dependencies between a pair of tactic invocations. Intuitively, these
conditions enforce that, if we replace the subgraph of𝐺 ′ that is isomorphic to𝐺 with a single node
representing a new tactic invocation, then the resulting proof is still valid.

Example 4.3. Consider the proof script and its corresponding TDG from Figure 7.We give examples
and non-examples of collapsible isomorphic embeddings.
(1) Consider the tactic from Example 4.2 and its TDG in Figure 8. Note that both the proof script

and the tactic contain the sequence of tactic invocations intro, apply, exact. However, the
function [𝑢 ↦→ 𝑣2, 𝑣 ↦→ 𝑣3,𝑤 ↦→ 𝑣4] does not define an isomorphic embedding because it does
not satisfy condition (2) from Definition 4.3.

(2) Now consider the following tactic definition, whose TDG is shown in Figure 9.
Ltac myTac2 h0 h := intro h0. apply h0. exact h.

In our representation, this tactic has formal inputs g and h and output h’. The TDG from Figure 9
is an isomorphic embedding into Figure 7 with the witness function [𝑢 ↦→ 𝑣3, 𝑣 ↦→ 𝑣4,𝑤 ↦→ 𝑣5].

(3) Now, consider a subgraph 𝐺1 of the
TDG in Figure 9 that does not contain
node 𝑣 as well as its incoming and out-
going edges. Then, the witness func-
tion 𝑓 from part (2) of this example
is an isomorphic embedding but it is
not collapsible, as it violates part (1)
of Definition 4.4.

(4) Next, consider a modified version𝐺2
of Figure 9 that does not contain the
edge labeled (ℎ,ℎ) between𝑢, 𝑣 . Then,
the same witness function 𝑓 still de-
fines an isomorphic embedding but it
violates part (2) of Definition 4.4. Intu-
itively,𝐺2 is not a valid tactic modulo
the original proof because it omits a
required dependency between intro
and apply.

Our proof refactoring procedure is pre-
sented in Algorithm 10: It takes as input
a proof script 𝜋 and a tactic definition 𝜏 ,
and returns a refactored proof script of 𝜋 .
The algorithm first constructs the TDG’s
𝐺,𝐺𝑐 for the tactic 𝜏 and proof script 𝜋
respectively (line 2) and then it repeat-
edly contracts𝐺𝑐 in the while loop (lines
3–12) by finding a collapsible

1: procedure Refactor(𝜏, 𝜋 )
input: A tactic definition 𝜏 and a proof script 𝜋 .
output: A refactored proof script of 𝜋 ′

2: 𝐺,𝐺𝑐 ← ConstructTDG(𝜏),ConstructTDG(𝜋)
3: while true do
4: 𝑓 ← FindEmbedding(𝐺,𝐺𝑐 )
5: if 𝑓 ≡ ⊥ then break
6: 𝑉 ← {𝑣 | 𝑣 ∈ Nodes(𝐺𝑐 ) ∧ 𝑣 ∈ Range(𝑓 )}
7: for all 𝑣 ∈ 𝑉 do
8: for all 𝑢 ∈ Parents(𝑣) \ Range(𝑓 ) do
9: 𝐺𝑐 ← RewireIn(𝑢, 𝑣,𝐺,𝐺𝑐 )
10: for all 𝑢 ∈ Children(𝑣) \ Range(𝑓 ) do
11: 𝐺𝑐 ← RewireOut(𝑢, 𝑣,𝐺,𝐺𝑐 )
12: 𝐺𝑐 ← Contract(𝐺𝑐 ,𝑉 , 𝑣 (𝜏 .𝜂))
13: return 𝜋 ′ ∈ (InducedProofs(𝐺𝑐 ))

Fig. 10. Procedure for refactoring a proof script 𝜋 using

tactic 𝜏 . This procedure uses auxiliary procedures RewireIn

(resp. RewireOut) to change the labels of the incoming (resp.

outgoing) edges of 𝑣 . Given edge (𝑣 ′, 𝑣, 𝛼, 𝛽) in the TDG

𝐺𝑐 of 𝜋 with corresponding edge (𝑣in, 𝑓 −1 (𝑣), 𝛾, 𝛽) in the

TDG 𝐺 of 𝜏 , RewireIn replaces that edge with (𝑣 ′, 𝑣, 𝛼,𝛾).
Similarly, given edge (𝑣 ′, 𝑣, 𝛼, 𝛽) in 𝐺𝑐 with corresponding

edge (𝑓 −1 (𝑣 ′), 𝑣out, 𝛼,𝛾) in𝐺 , RewireOut replaces that edge

with (𝑣 ′, 𝑣, 𝛾, 𝛽). Also, FindEmbedding finds a collapsible iso-

morphic embedding of 𝐺 into 𝐺𝑐 and Contract performs

standard graph contraction.

isomorphic embedding of 𝐺 into 𝐺𝑐 (line 4). If FindEmbedding does not return a witness (line 5),
further refactoring is not possible, so the algorithm returns any one of the induced proofs associated
with 𝐺𝑐 (line 13). Otherwise, the algorithm proceeds in two steps. First, recall that the identifiers
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used in the tactic definition 𝜏 are different from those used in the original tactic invocation, so we
need to change the edge labels to ensure that the refactoring is correct. This is done in lines 8-11
using functions called RewireIn and RewireOut. In particular, given a node 𝑣 whose parent 𝑢 is not
part of the embedding, we need to change the incoming edges to 𝑣 to use the correct identifier for
𝜏 using the special entry edges in 𝐺 from 𝑣in to 𝑓 −1 (𝑣). RewireOut does something very similar
but for “exit” edges whose children are not part of the embedding. Finally, the second step (call to
Contract at line 12) replaces the subgraph of 𝐺𝑐 induced by vertices 𝑉 with a single fresh node
𝑣 (𝜏 .𝜂) where 𝜏 .𝜂 is the name of tactic 𝜏 . Since the replacement of a subgraph with a single node is
the standard graph contraction operation [16], we do not provide the implementation of Contract.

u2(𝚊𝚙𝚙𝚕𝚢)u1(𝚊𝚙𝚙𝚕𝚢)
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Fig. 11. Refactoring a proof using a new tactic.

Example 4.4. Consider the following Rocq proof and its TDG shown in Figure 11(a):
Lemma example: (A -> D) -> (B -> C) -> ((A \/ B) -> (C \/ D)).
Proof. intro. intro. intro. destruct H1.

- apply H in H1. right. exact H1.
- apply H0 in H1. left. exact H1.

Also, consider the following tactic whose TDG is shown in Figure 11(b):
Ltac newTac h h' := apply h in h'. exact h'.

This tactic can be embedded into the proof using the witness functions 𝑓1 : [𝑢 ↦→ 𝑢1, 𝑣 ↦→ 𝑣1] and
𝑓2 : [𝑢 ↦→ 𝑢2, 𝑣 ↦→ 𝑣2], and Figure 11(c) shows the refactored TDG representing the following proof:
Proof. intro. intro. intro. destruct H1.

- right. newTac H H1.
- left. newTac H0 H1.

Remark. If there are multiple collapsible embeddings of a tactic 𝜏 into a proof 𝜋 such that these
embeddings overlap, then the result of Refactor may not be unique, depending on which embed-
ding is discovered first. For simplicity, the rest of the paper assumes that collapsible embeddings do
not overlap; however, our implementation handles this situation (see Section 7).

5 Tactic Library Synthesis Problem
In this section, we formalize the tactic discovery problem addressed in the rest of this paper.
Definition 5.1 (Tactic discovery problem). Let Π be a corpus of proof scripts, and let O : (𝜏 ×
Π) → R be an objective function that evaluates the quality of a tactic 𝜏 on Π. The goal of the tactic
discovery problem is to find a tactic 𝜏 that maximizes O (i.e., argmax𝜏 O(𝜏,Π)).
While the optimization objective O could be defined in a number of ways, we mainly consider

compression power as our primary objective, even though our learning algorithm can also be adapted
to handle other types of measures, as long as O(𝜏,Π) can be defined as:

O(𝜏,Π) = 𝑓
(
Π, Refactor(Π, 𝜏)

)
,
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where 𝑓 is some function Π × Π′ → R and Refactor is the refactoring operation defined in the
previous section. In particular, prior work on library learning in the program synthesis literature [8,
10, 18] has argued that reducing the overall size of a corpus—i.e., maximizing how much a learned
abstraction “compresses” existing code—is an effective proxy for identifying broadly applicable
patterns. Hence, we define an adaptation of compression power to the ITP setting.

Definition 5.2 (Compression power). Given proof corpus and tactic 𝜏 , let Π′ = {𝜋 ′ | 𝜋 ∈ Π∧𝜋 ′ =
Refactor(𝜋, 𝜏)}. Then, the compression power of 𝜏 modulo Π, denoted CP(𝜏,Π), is:

CP(𝜏,Π) =
( ∑

𝜋∈Π Size(𝜋)∑
𝜋 ′∈Π′ Size(𝜋 ′)

)
Intuitively, the larger the compression power, the more effective the tactic is in reducing the

corpus size. Finally, we can define the tactic library discovery problem as follows:

Definition 5.3 (Library synthesis problem). Let Π1 be a corpus of proof scripts. The tactic
library synthesis problem is to find a sequence of tactics 𝜏1, . . . , 𝜏𝑛 such that each 𝜏𝑖 is a solution to
the tactic discovery problem for corpus Π𝑖 = Refactor(𝜏𝑖−1,Π𝑖−1).

Remark. One might consider defining the library synthesis problem as finding a set of tactics
that collectively achieve the maximum compression power for the proof corpus. However, the
compression power of a set of tactics depends on the order in which those tactics are applied. This
makes such a definition either ill-formed or necessitates evaluating all possible permutations of
tactic application orders, which is computationally infeasible and, in our small-scale experiments,
yields no meaningful gain in compression. Consequently, we mirror prior library-learning works
[8, 41] and formulate the library synthesis problem as finding a sequence of tactics that achieve
maximal compression at each step.

6 Learning Tactic Libraries
We now describe our learning technique for discovering useful tactics from a given corpus.

6.1 Preliminary Definitions
We start this section by presenting some definitions that are useful for describing our algorithm.

Definition 6.1 (Witness set). Let 𝐺,𝐺 ′ be the TDG’s of a tactic and proof script respectively. A
witness set of𝐺 and 𝐺 ′, denoted Υ(𝐺,𝐺 ′), is the set of all witness functions proving that 𝐺 is an
isomorphic embedding into 𝐺 ′.

In this definition, we deliberately do not require a collapsible isomorphic embedding; specifically,
𝑓 only needs to satisfy Definition 4.3. As we will demonstrate later in this section, our algorithm
incrementally constructs the witness set and subsequently filters out non-collapsible candidates.
This approach is necessary because the collapsibility criterion cannot be enforced incrementally.

Definition 6.2 (Embedding vector). An embedding vector Λ for a tactic 𝜏 and a proof corpus Π
is a mapping from each proof 𝜋 ∈ Π to the witness set Υ(TDG(𝜏), TDG(𝜋)).

That is, an embedding vector for 𝜏 maps each proof 𝜋 to the witness set between 𝜏 and 𝜋 .

Definition 6.3 (Tactic candidate). A tactic candidate Ψ for a proof corpus Π is a pair (𝐺,Λ)
where 𝐺 is a TDG and Λ is an embedding vector of 𝐺 for Π.

Given a tactic candidate Ψ = (𝐺,Λ), we write Ψ.𝐺 to denote 𝐺 and Ψ.Λ to denote Λ. Intuitively,
𝐺 represents a TDG that could be used to refactor some proofs in the corpus, and its embedding
vector Λ allows us to efficiently compute witnesses for TDG’s that are extensions of 𝐺 . As we will
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see in the next section, our tactic discovery algorithm uses the tactic candidate data structure as a
key building block when searching for valid tactics.

Definition 6.4 (Frequency). Let Ψ = (𝐺,Λ) be a tactic candidate and Π a proof corpus. The
frequency of Ψ in Π, denoted 𭟋(Ψ,Π), is defined as follows:

𭟋(Ψ,Π) =
∑︁
𝜋∈Π

∑︁
𝑓 ∈Υ (𝐺,TDG(𝜋 ) )

1[IsCollapsible(𝑓 ,𝐺, TDG(𝜋))]

where 1[·] is the standard indicator function and IsCollapsible(𝑓 ,𝐺,𝐺 ′) evaluates to true iff 𝑓

defines a collapsible isomorphic embedding of 𝐺 ′ into 𝐺 .

Intuitively, the frequency of a tactic candidate Ψ counts the number of times that Ψ can be
used in refactoring the proofs in the corpus. The higher the frequency of a tactic candidate,
the more frequently it can be applied when refactoring proofs in the corpus. However, to eval-
uate how useful a tactic is in compressing the corpus size, we also need to take into account
the size of the tactic. To this end, we define the effectiveness of a tactic candidate as follows:

1: procedure LearnTactic(Π)
input: A proof corpus Π
output: A tactic 𝜏 that achieves maximum compression of Π

2: G ← ConstructTDGs(Π)
3: 𝑅 ← LearnGraphGrammar(G)
4: W ← InitWorklist(𝑅,Π)
5: 𝑟 ← {Candidate = ⊥, Eff = 0}
6: whileW ≠ ∅ do
7: Ψ←W .dequeue()
8: if UpperBound(Ψ,Π) < 𝑟 .Eff then continue
9: if E (Ψ,Π) > 𝑟 .Eff then
10: 𝑟 ← {Candidate = Ψ, Eff = E (Ψ,Π)}
11: W .enqueue(Expand(Ψ, 𝑅,Π))
12: returnMakeTactic(𝑟 .Candidate)

Fig. 12. Procedure for learning a tactic that results in maximum

compression of proof corpus Π. Procedure names that are in Small-
Caps font are defined in separate algorithms and explained in the

rest of this section. On the other hand, procedure names that are

written in Sans Serif font are only explained in text. At a high level,

this algorithm iteratively explores tactic candidates, pruning those

whose expansions cannot yield a higher compression power than a

previously encountered tactic.

Definition 6.5 (Effectiveness).
Let Ψ = (𝐺,Λ) be a tactic candi-
date and Π a proof corpus. The
effectiveness of Ψ in Π, denoted
E (Ψ,Π), is defined as E (Ψ,Π) =
(Size(𝐺) − 1) × 𭟋(Ψ,Π).

In other words, effectiveness
takes into account both the fre-
quency and the size of the tactic.
In this definition, we subtract 1
from the size of 𝐺 , because when
an embedding of the tactic is used
for contracting the proof, the size
of the proof shrinks by Size(𝐺)−1.
Intuitively, E (Ψ,Π) can be used to
accurately characterize the com-
pression power of a tactic – the
higher the value of E (Ψ,Π), the
more effective Ψ is for compress-
ing the proof corpus Π.
As we will see in the next sec-

tion, our algorithm uses this met-
ric as a pruning criterion during
search.2

6.2 Tactic Discovery Algorithm
In this section, we describe our algorithm for learning a single tactic that maximizes the desired
objective. Our top-level algorithm, called LearnTactic, is presented in Figure 12: It takes in a proof
corpus Π and returns a single tactic 𝜏 that maximizes CP(𝜏,Π). The algorithm starts by constructing
TDG’s for each proof in the corpus and then calls the LearnGraphGrammar procedure (described
2To adapt our learning algorithm in Section 6.2 to optimization objectives other than compression power, one needs to
define a suitable instantiation of function E for the corresponding objective.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 343. Publication date: October 2025.



Automated Discovery of Tactic Libraries for Interactive Theorem Proving 343:15

later), for learning a graph grammar 𝑅 that can be used to construct TDG’s of tactic candidates.
Intuitively, 𝑅 encapsulates recurring patterns within the proof corpus and provides a set of rules to
guide the exploration of potential tactic candidates.
Lines 4-11 of LearnTactic systematically explore different tactic candidates. Specifically, the

algorithm initializes the worklistW with all the single-node tactics from the grammar 𝑅 and
initializes a record 𝑟 to track the best tactic discovered so far. In each iteration of the loop (lines
6–11), the algorithm dequeues an existing tactic candidate Ψ and decides whether or not to continue
expanding it. In particular, if it can prove that no expansion of Ψ will result in a higher compression
power than the best discovered tactic, it discards Ψ from the search space. Otherwise, it proceeds
to compute the actual effectiveness of Ψ using the function E (Ψ,Π) from Definition 6.5. If E (Ψ,Π)
exceeds that of the previous best tactic, the result 𝑟 is updated to Ψ. Additionally, since expansions
of Ψ might have even higher compression power, the algorithm invokes the Expand procedure to
obtain other candidate tactics that can be produced by expanding Ψ using the productions in 𝑅.
Upon termination, 𝑟 contains a tactic that maximizes compression power for the entire corpus. In
the remainder of this section, we elaborate on the auxiliary procedures used in LearnTactic.
Learning Graph Grammar. While our tactic learning algorithm is inspired by top-down enumer-
ative program synthesis [23, 38], a key difference is that we do not have a context-free grammar
defining the space of possible TDGs. Hence, our algorithm first learns a graph grammar that can be
used to construct TDG’s of possible tactics by analyzing the proof corpus.

𝐺 ∈ G 𝑣 (𝜂) ∈ Nodes(𝐺) 𝑣 ′ (𝜂′) ∈ Nodes(𝐺) 𝜃 = {(𝛼, 𝛽) | (𝑣 (𝜂), 𝑣 ′ (𝜂′), 𝛼, 𝛽) ∈ Edges(𝐺)}}
G ⊢ 𝜂 � (𝜂′, 𝜃 )

Fig. 13. Inference rule defining the LearnGraphGrammar procedure

Definition 6.6 (TDG grammar). A TDG grammar is defined by a set of production rules of
the form 𝜂 � (𝜂′, 𝜃 ), where each rule specifies that a single-node graph 𝐺 = ({𝑣 (𝜂)}) can be
transformed into a new graph 𝐺 ′ = ({𝑣 (𝜂), 𝑣 (𝜂′)}, {(𝑣 (𝜂), 𝑣 (𝜂′), 𝛼, 𝛽) | (𝛼, 𝛽) ∈ 𝜃 }).

Intuitively, each production 𝜂 → (𝜂′, 𝜃 ) states that a node labeled 𝜂 in a TDG can be connected
to other nodes labeled 𝜂′ via arcs whose labels are specified by 𝜃 . These productions are mined
from the proof corpus based on the following observations:
(1) If a certain tactic never occurs in the proof corpus, it also cannot appear in any learned tactic.
(2) If there is no dependency between a pair of tactics in the corpus, there is no point in learning a

tactic that involves a spurious dependency between them.
(3) If there exists a dependency between a pair of tactics in a proof 𝜋 in the corpus, then the tactic

TDG should either not include that dependency or, else, it should include all the input-output
dependencies — otherwise, we cannot find a collapsible isomorphic embedding.
Based on these ideas, Figure 13 presents the graph grammar learning procedure as a single

inference rule deriving a judgment of the form: G ⊢ 𝜂 → (𝜂′, 𝜃 ) The productions 𝑅 used in the
LearnTactic algorithm include the set of all rewrite rules 𝑟 such that G ⊢ 𝑟 according to Figure 13.
Worklist Initialization. Next, we consider the InitWorklist procedure presented in Figure 14.
The idea behind this procedure is very simple: It constructs a set of single node TDG’s based on the
non-terminals in graph grammar 𝑅. Then, for each such single node TDG, it computes the tactic’s
embedding vector by going over each proof in the corpus. Hence, the worklist is initialized to tactic
candidates that consist of single node TDG’s and their corresponding embedding vector.
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1: procedure InitWorklist(𝑅,Π)
input: Graph grammar 𝑅, proof corpus Π
output: A worklist of tactic candidatesW

2: 𝑆 = {𝜂 | (𝜂 � (𝜂′, 𝐸)) ∈ 𝑅};W ← ∅
3: for all 𝜂 ∈ 𝑆 do
4: 𝐺 = ({𝑣 (𝜂)},∅)
5: Λ← [𝜋 ↦→ ⊥ | 𝜋 ∈ Π]
6: for all 𝜋 ∈ Π do
7: Λ[𝜋] ← GetWitness(𝐺, TDG(𝜋))
8: W .enqueue((𝐺,Λ))
9: returnW

Fig. 14. The InitWorklist procedure for constru-

cting the initial worklist used in LearnTactic.

1: procedure Expand(Ψ, 𝑅,Π)
input: A tactic candidate Ψ = (𝐺,Λ), graph
grammar 𝑅, corpus Π
output: A new set of tactic candidates

2: Θ← ∅
3: for all 𝜂 � (𝜂′, 𝜃 ) ∈ 𝑅 do
4: for all 𝑣 ∈ FindNodes(𝐺,𝜂) do
5: 𝑣 ′ ← Fresh(𝜂′)
6: Θ← Θ ∪ Apply(Ψ, 𝑣, 𝑣 ′, 𝜃,Π)
7: for all 𝑣𝑖 ∈ FindNodes(𝐺,𝜂′) do
8: Θ← Θ ∪ Apply(Ψ, 𝑣, 𝑣𝑖 , 𝜃,Π)
9: return Θ

Fig. 15. Procedure for expanding a given tactic

candidate Ψ using graph grammar 𝑅.

Generating New Tactic Candidates. Recall that the LearnTactic procedure generates new tactic
candidates by calling the Expand procedure, which is presented in Figure 15. This algorithm takes
as input an existing tactic candidate Ψ = (𝐺,Λ) and the learned graph grammar 𝑅 and produces a
new setΘ of tactic candidates, where each Ψ𝑖 ∈ Θ is an expansion of Ψ. Specifically, let Ψ𝑖 = (𝐺𝑖 ,Λ𝑖 )
be one of the new tactic candidates produced by Expand. Here, every𝐺𝑖 is a strict supergraph of𝐺
and always contains additional edges that are not in 𝐺 . Additionally, some of these 𝐺𝑖 ’s may also
contain a single additional node that is not in 𝐺 .
As shown in Figure 15, the Expand procedure considers each production 𝜂 → (𝜂′, 𝜃 ) ∈ 𝑅 (line

3) and locates all nodes 𝑣 ∈ 𝐺 with 𝜂. Then, at line 6, it calls Apply (discussed later) to produce a
new tactic candidate 𝐺 ′ that includes a fresh node 𝑣 ′ labeled 𝜂′, along with arcs labeled (𝛼, 𝛽) ∈ 𝜃
between 𝑣 and 𝑣 ′. Additionally, since there may be existing nodes labeled 𝜂′ in 𝐺 , the inner loop at
lines 7–8 also adds additional edges from 𝑣 to each existing node 𝑣𝑖 labeled 𝜂′.
We now also briefly explain the auxiliary Apply procedure defined in Algorithm 16. Given a

tactic candidate Ψ = (𝐺,Λ) where 𝐺 contains a node 𝑣 , Apply first constructs a new TDG 𝐺 ′ that
includes a (possibly new) node 𝑣 ′ as well as edges between 𝑣 and 𝑣 ′ with labels 𝜃 . However, since a
tactic candidate also contains the embedding vector for the tactic, the loop in lines 7–10 constructs
a new embedding vector for 𝐺 ′ by extending the existing witness functions in Λ. Finally, if the
frequency of the resulting tactic candidate is less than two, this means that the new tactic candidate
(or any of its future expansions) are not useful for compressing the proof corpus; hence, Apply
returns the new tactic candidate Ψ′ only if 𭟋(Ψ′,Π) is at least 2.
Pruning Non-Optimal Tactic Candidates. Finally, we consider the UpperBound procedure,
presented in Figure 17, for deriving an upper bound on the effectiveness of a given tactic candidate
Ψ on compressing the size of the proof corpus Π. The idea behind UpperBound is fairly straight-
forward: For every embedding of 𝐺 in a proof script 𝜋 , we compute the maximum extension of 𝐺
that can still be embedded in 𝜋 :

Definition 6.7. (Maximum extension) The maximum extension of𝐺 in𝐺 ′ is a graph𝐺𝑒 with the
following properties: (1) 𝐺 is a subgraph of 𝐺𝑒 ; (2) 𝐺𝑒 is a subgraph of 𝐺 ′; (3) root(𝐺𝑒 ) = root(𝐺);
and (4) For any other graph 𝐺 ′𝑒 satisfying (1) (2) and (3), we have size(𝐺 ′𝑒 ) ≤ size(𝐺𝑒 ).

The idea is that, by summing up the sizes of all these extensions across all embeddings into the
proof corpus, we can obtain an upper bound E (Ψ′,Π) for any Ψ′ that is an extension of Ψ. This is
precisely what the UpperBound procedure in Figure 17 computes.
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1: procedure Apply(Ψ, 𝑣, 𝑣 ′, 𝜃,Π)
input: A tactic candidate Ψ = (𝐺 = (𝑉 , 𝐸),Λ),
nodes 𝑣, 𝑣 ′, edge labels 𝜃 , and proof corpus Π
output: Empty set or singleton tactic candi-
date

2: 𝑉 ′ ← (𝑉 ∪ {𝑣 ′})
3: 𝐸′ ← {𝐸 ∪ {(𝑣, 𝑣 ′, 𝛼, 𝛽) | (𝛼, 𝛽) ∈ 𝜃 })
4: 𝐺 ′ ← (𝑉 ′, 𝐸′)
5: Λ′ ← [𝜋 ↦→ ∅ | 𝜋 ∈ Dom(Λ)];
6: Ψ′ ← (𝐺 ′,Λ′)
7: for all 𝜋 ∈ Dom(Λ) do
8: for all 𝑓 ∈ Λ[𝜋] do
9: 𝐹 ← Extend(𝑓 ,𝐺 ′, TDG(𝜋))
10: Λ′ [𝜋] ← Λ′ [𝜋] ∪ 𝐹
11: if 𭟋(Ψ′,Π) ≥ 2 then return {Ψ′}
12: else return ∅

Fig. 16. Procedure for applying a production from

the graph grammar on nodes 𝑣, 𝑣 ′.

1: procedure UpperBound(Ψ, Π)
input: A tactic candidate Ψ = (𝐺,Λ) and a
proof corpus Π
output: Upper bound on the effectiveness of
Ψ

2: ub← 0
3: for all 𝜋 ∈ Dom(Λ) do
4: for all 𝑓 ∈ Λ[𝜋] do
5: 𝐺 ′ ← ApplyWitness(𝐺, 𝑓 )
6: 𝐺𝑒 ← MaxExtend(𝐺 ′, TDG(𝜋))
7: ub← ub + size(𝐺𝑒 ) − 1
8: return ub

Fig. 17. Computes upper bound on the compres-

sion power of any extension of Ψ. ApplyWitness

applies function 𝑓 to𝐺 to obtain a graph𝐺 ′. Max-

Extend(𝐺,𝐺 ′) finds a graph 𝐺𝑒 such that (1) 𝐺𝑒

is subgraph of 𝑇𝐷𝐺 (𝜋) and supergraph of 𝐺 ′, (2)
root(𝐺𝑒 ) = root(𝐺 ′) and (3)𝐺𝑒 has maximum size

among all graphs that satisfy (1) and (2).

Tactic Library Synthesis. Finally, to generate a library of tactics, our algorithm synthesizes a
single tactic by calling LearnTactic, then refactors the corpus using this tactic, and repeats this
process until no more tactics can be learned.
Discussion: Learning with Other Objectives.While our algorithm follows standard practice in
optimizing compression power [8, 10, 18], it naturally generalizes to other objectives. For example,
one can consider a broader optimization function of the form 𝛼 × CP(𝜏,Π) − 𝛽 × 𝐹 (𝜏), where 𝐹
penalizes tactics that do not satisfy certain syntactic or semantic criteria, such as requiring too
many arguments or being too narrowly applicable. Adapting our method to alternative objectives
requires modifying two aspects of the learning algorithm: (1) the objective function itself, captured
by E , and (2) the UpperBound procedure, which estimates an upper bound on the objective value.
For instance, for an objective of the form 𝛼 ×CP(𝜏,Π) − 𝛽 × 𝐹 (𝜏), a straightforward implementation
of UpperBound could reuse our existing technique for over-approximating compression power
while conservatively assuming that the penalty term is zero.

7 Implementation
We have implemented the proposed algorithm as a new tool called TacMiner, which consists of
about 5000 lines of Java code and utilizes the external Coq-SerAPI library [3] to parse proof scripts
and extract any information necessary for constructing TDGs. The current version of TacMiner
only supports Ltac [15], as it remains the dominant tactic language in existing Rocq developments.
Handling Overlapping Embeddings. In the technical presentation, we assume that, if there are
multiple isomorphic collapsible embeddings of a tactic into a proof, then they are non-overlapping;
however, our implementation does not make this assumption. In particular, when computing an
upper bound on effectiveness during the tactic discovery process, we assume that all embeddings
can be used for refactoring, giving a conservative upper bound on the effectiveness of a given tactic
candidate. Similarly, when computing the actual effectiveness of a tactic, we perform backtracking
search to find a disjoint subset of embeddings that maximizes the effectiveness score.
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Converting TDGs to Proof Scripts. Since our approach refactors a proof at the TDG level, we
need to convert it back to a valid Rocq proof script. As discussed in Section 4, we can do this by
performing a topological sort of the TDG. However, if a tactic produces multiple sub-goals as its
output, we need to ensure that each sub-goal is processed as a separate branch. Our algorithm for
converting TDGs to proof scripts performs additional analysis to keep track of this information
and ensures that tactics that are used for discharging the same sub-goal appear in the same branch,
subject to the topological sorting constraints within that branch.
Supported Tactics. Our method places no restrictions on the tactics used in the input proof
scripts. Any tactic that can be parsed using SerAPI, including advanced tactics like match goal and
eapply, as well as user-defined custom tactics, is supported. Constructs that bundle combinators
(e.g., try, first, repeat) with tactics are treated an atomic tactics, whereas tactics connected by
the sequencing operator ; are explicitly decomposed into their individual invocations. There are,
however, restrictions on what our system can learn. We do not synthesize tactics whose control
flow depends on inspecting the current proof state (e.g., match goal)3, because a TDG records
only the executed trace and omits unexecuted branches. Similarly, while our approach can learn
tactics involving existential variables (evars), it does so only when their effects remain localized
within the proof states that arise from their instantiation.

Table 2. Summary of Benchmarks. “Total size” reports total number of pre-defined tactic applications within

the domain, and “Avg. size / proof” reports average proof size in terms of the number of tactic applications.

Domain Topic Description # of Proof Total size Avg size / proof
IndPred Inductive Predicates 61 620 10

CoqArt SearchTree Search Trees 48 781 16
Reflection Proof by Reflection 33 668 20

Hoare Hoare logic 65 1479 23
Program Separation Heap properties 58 592 10
Logics Seplog Separation logic 70 1111 16

CSL Concurrent separation logic 47 1282 27
RegAlloc Register allocation with validation 31 467 15

Comp- LiveRange Proofs for live ranges computation 32 903 28
Cert Needness Abstract domain for needness analysis 103 1759 17

RTLSpec Abstract specification for RTL generation 55 1413 26
NMake Big natural numbers 105 1465 14

BigNums ZMake Big integers 43 801 19
QMake Big rational numbers 68 1392 20

8 Evaluation
We now describe our experimental evaluation that is designed to answer the following questions:

• RQ1: How effective is our proposed technique in learning tactics compared to a prior ap-
proach [41] that learns tactics using anti-unification?
• RQ2: How useful are the learned tactics in terms of compression rate?
• RQ3: Can our learned tactics help with proof automation?
• RQ4: How data efficient is our learning algorithm?
• RQ5: What impact do the key ingredients of our learning algorithm have on running time?

3In contrast, tactics such as intros, simpl, or auto are supported: although their effects depend on the proof state, their
execution does not require branching on it.
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8.1 Experimental Setup
Benchmarks. To evaluate our approach, we collected 918 proofs across four different sources:
a textbook called “Interactive Theorem Proving and Program Development”[5] (also known as
CoqArt[12]), the formally verified C compiler CompCert [35], the BigNums arbitrary-precision
arithmetic library [52], and formalizations of various program logics [34]. For each of these sources,
we choose these sub-domains that satisfy certain criteria, such as containing a threshold number
of proofs (≥ 30 across all sources). Table 2 provides a summary of our experimental benchmarks,
including a description of the sub-domain that the proofs pertain to and the number of proofs in
each sub-domain. The last two columns in the table show the total number of tactic applications
in each domain and the average number of tactics per proof. Overall, these benchmarks span a
wide spectrum of proof domains, ranging from introductory proofs in CoqArt to expert-level devel-
opments in large-scale systems like CompCert. Furthermore, they include a mix of programming
languages (PL)-specific benchmarks—such as those involving program logics—and formalizations
with broader mathematical utility, such as those for infinite-precision arithmetic.
Baseline. Because no prior work exists on tactic library learning for Rocq proofs, we will address
our first two research questions and compare our approach against a baseline by adapting the
closest relevant prior work: tactic discovery via anti-unification, proposed in Peano, a system
designed to automate K12 math proofs. In particular, Peano represents proofs as sequences of

Table 3. Results for evaluating the effectiveness of the tactic learning algorithm

Topic Tool # Tactics Avg Tactic Max Tactic Tactic Usage
Learned Size Size Count

C
oq

A
rt

IndPred TacMiner 31 2.8 14 83
Peano 16 2 2 48

SearchTree TacMiner 54 3.4 17 161
Peano 20 2.4 6 31

Reflection TacMiner 38 3.3 11 100
Peano 20 2.6 9 62

Pr
og

ra
m

Lo
gi
cs

Hoare TacMiner 87 3.2 15 231
Peano 18 2.2 4 55

Separation TacMiner 36 3.1 8 93
Peano 26 2.5 7 68

Seplog TacMiner 69 3.4 13 188
Peano 16 2.3 4 56

CSL TacMiner 82 3.6 19 214
Peano 14 2.1 3 44

C
om

pC
er
t

RegAlloc TacMiner 18 8.8 34 50
Peano 8 7 18 13

LiveRange TacMiner 61 3.8 16 162
Peano 17 2.2 5 42

AbsDomain TacMiner 100 4.3 23 243
Peano 39 2.1 3 135

RTLSpec TacMiner 93 3.4 13 260
Peano 25 2 4 58

B
ig
N
um

s NMake TacMiner 91 2.9 9 263
Peano 29 2.3 5 84

ZMake TacMiner 56 4.8 19 132
Peano 23 3.4 10 48

QMake TacMiner 95 3.6 21 250
Peano 36 2.2 4 98

Overall TacMiner 918 3.6 34 2430
Peano 310 2.4 10 842
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actions, and, for each pair of subsequences from different proofs, Peano applies anti-unification to
find the least general generalization between them. If the two sequences invoke the same actions
but on different inputs, anti-unification identifies the shared structure while introducing variables
for the differing parts. Similar to our approach, Peano also aims to maximally compress the existing
proofs.
Since the implementation of the tactic induction method in Peano does not work on Rocq

proofs, we re-implemented their technique to extract tactics from a corpus of Rocq proof scripts.
Towards this goal, we represent Rocq proof scripts as a sequence of tactics (i.e., “actions” in Peano
terminology) and use the same anti-unification approach to learn custom tactics. However, this
syntactic approach does not guarantee that an extracted tactic can be successfully used to refactor
the proof from which it was derived. Hence, given a tactic library learned using this baseline, we
perform post-processing to discard tactics that cannot be used to re-factor any proof in the corpus.
Computational Resources All of our experiments are conducted on a machine with an Apple M2
CPU and 24 GB of physical memory, running on the macOS operating system.

8.2 Evaluation of Learned Tactics
To answer our first research question, we use both TacMiner and Peano to extract tactics from each
domain. This evaluation, summarized in Table 3, treats the entire proof corpus of each benchmark
as the training data. The figure provides statistics about the number of tactics learned by each
technique and quantitative metrics to assess their quality, including average size of learned tactics,
the maximum size among all learned tactics, and the total number of times the learned tactics can be
applied in the proof corpus. As shown in this table, our proposed method learns substantially more
tactics compared to Peano (around 3× more across all benchmarks) and the learned tactics tend to
be larger on average (1.5×). Furthermore, across all benchmarks, the tactics learned by Peano can
be applied a total of 842 times, whereas those learned by TacMiner can be used 2430 times. We
believe these results demonstrate that our proposed TDG abstraction and learning algorithm allow
for more effective tactic discovery compared to a baseline that extracts tactics from a syntactic
representation of proofs.

Results forRQ1:TacMiner extracts around 3×more tactics compared to Peano. Furthermore,
the tactics learned by TacMiner are both larger and more frequently applicable in the corpus.

8.3 Effectiveness of the Learned Tactics for Proof Refactoring

Ind
Pre

d

Sea
rch

Tre
e

Refl
ect
ion

Ho
are
Sep

ara
tio
n

Sep
logCS

L
Reg

All
oc

Liv
eRa

ng
e

Ab
sD
om
ain

RT
LSp

ec

NM
ake
QM

ake
ZM

ake
1

1.2

1.4

1.6

TacMiner

Peano

Co
m
pr
es
si
on

Ra
te

pe
rT

op
ic

Peano TacMiner

Fig. 18. Average compression power per topic. The dotted lines

denote the total across topics for each tool.

To answer our second research ques-
tion, we evaluate how useful the
learned tactics are in refactoring previ-
ously unseen proofs. To perform this ex-
periment, we split the benchmarks into
two separate training and test sets. We
use the training set for tactic discovery
but evaluate the usefulness of learned
tactics only on the test set. For this
experiment, we use 65% of the proofs
for training (selected via an automated
sampling script), and the remaining 35%
as the test set. We further evaluate the effectiveness of our approach for different training vs. test
set ratios in Section 8.5.
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The results of this evaluation are presented in Figure 18 where the y-axis shows the compression
power (Def 5.2) of the learned tactics on the test set. For each category of benchmarks, we show
the compression power achieved by both TacMiner and Peano. As we can see from this figure,
TacMiner results in significantly higher compression power compared to Peano in all categories.
Across all benchmarks, the compression power of TacMiner is 1.35 for TacMiner vs 1.1 for Peano—
this means that, using the tactics learned by TacMiner, the size of the proof corpus can be reduced
by 26%, whereas the tactics learned by Peano result in a reduction of only 9%. Furthermore, for
the Hoare logic proofs, TacMiner achieves the maximum compression of 1.6, indicating that the
learned tactics for this domain are particularly effective at simplifying other proofs in the same
domain. That is, for this domain, the refactored proofs are approximately 63% of their old size.

Results for RQ2: Using the tactics learned by TacMiner, the size of the proof corpus can be
reduced by 26%. In contrast, Peano’s tactics can reduce the corpus size by only 9%.

8.4 Using Learned Tactics for Proof Automation

Table 4. Comparison of theorem proving success rates.

Method Theorems proved
Copra with built-in tactics 11/50 (22%)
Copra with Peano tactics 18/50 (36%)
Copra with TacMiner tactics 30/50 (60%)

Next, we evaluate whether our learned cus-
tom tactics can help a proof automation tool.
To perform this investigation, we modify Co-
pra [50], a state-of-the-art proof automation
tool based on Large Language Models (LLMs),
to leverage our learned tactics. To adapt Co-
pra to use custom tactics, we modify the
prompt provided to the LLM for in-context learning [9]. Specifically, for each custom tactic learned
by TacMiner, we add the tactic definition as Copra’s context as well as one example showing
a proof state where that tactic was used (after being refactored by TacMiner) along with the
tactic’s invocation (i.e., its arguments) that took place in the refactored proof. These two pieces of
information should, in principle, allow Copra to leverage custom tactics. For this experiment, we
use OpenAI’s gpt-4o-2024-10-06 [27] as the underlying LLM.
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Fig. 19. Data efficiency for TacMiner. The
error bar reflects the standard error.

To evaluate the utility of learned tactics for down-
stream proof automation, we selected a set of 50 theorems
from the same sources listed in Table 2. These theorems
were chosen based on two criteria. First, they are the-
orems for which Copra, with a smaller computational
budget than our official evaluation, was able to make
partial progress—successfully solving some sub-goals but
failing to complete the entire proof. This ensures that the
benchmarks are neither trivial nor intractable, providing
a meaningful setting for evaluating the added value of tac-
tic learning. Second, we required that the corresponding
refactored proof makes use of at least one tactic discov-
ered by our system, ensuring that the learned tactics are relevant and can plausibly aid automation.
Together, these criteria yield a benchmark set well-suited for measuring the practical benefits of
tactic reuse in proof automation workflows.
The results of this evaluation are presented in Table 4. The vanilla Copra baseline using only

built-in tactics can prove 11 out of the 50 theorems, resulting in a success rate of 22%. We then
independently evaluate Copra augmented with learned tactics from Peano and TacMiner on
the same 50 theorems. Copra supplied with the tactics learned by Peano can prove 7 additional
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theorems, increasing success rate to 36%. Finally, using the custom tactics learned by our method,
Copra can prove 19 additional theorems over the baseline, increasing the success rate to 60%. These
results demonstrate that (1) custom tactics can be useful for improving proof automation, and (2)
tactics learned by our method are more useful for proof automation compared to the Peano baseline.

Results for RQ3: Using the custom tactics learned by TacMiner, we are able to increase the
success rate of an LLM-based proof automation tool from 22% to 60%.

8.5 Data efficiency of proposed tactic learning technique
The results of this evaluation are presented in Figure 19. As expected, the larger the number of
training benchmarks, the more effective the learning technique. However, even if we only use 25%
of the benchmarks for training, TacMiner still achieves a compression power of around 1.13, which
is higher than that achieved by Peano with a much larger training set.

Results for RQ4: While TacMiner benefits from a larger training corpus, it can still achieve
significant compression on the test set as we decrease the size of the training data.

8.6 Ablation Studies for Tactic Discovery Algorithm
To answer our final research question, we present the results of an ablation study in which we
disable some of the key components of our tactic learning algorithm. In particular, we consider the
following two ablations of TacMiner:

• GrammarABL: This ablation performs a limited form of grammar learning.4 In particular, it
learns graph grammar rules of the form 𝜂 → 𝜂′ instead of 𝜂 → (𝜂′, 𝜃 ), meaning that it does not
have prior knowledge about the argument dependencies between tactics.
• PruningABL: This ablation does not use the pruning procedure (UpperBound) from Section 6.2.

The results of this ablation study are presented in Figures 20 (for Program Logics), 21 (for Com-
pCert), 22 (for CoqArt), and 23 (for BigNums). Here, the 𝑥-axis shows the number of total tactics
learned, and the 𝑦-axis shows the cumulative learning time in seconds. Note that the 𝑦-axis uses
log scale. As we can see from these plots, both graph grammar learning and pruning via upper
bound estimation have a huge impact on the running time of the tactic discovery algorithm. While
TacMiner can terminate on the entire corpus in about 13 minutes, both of the ablations fail to
terminate within a 30-minute time limit.

Results for RQ5: Both of our algorithmic optimizations (namely, grammar learning and
pruning method) significantly reduce the learning algorithm’s running time.

4We also tried switching off grammar learning entirely, but since it performs extremely poorly, we only report the results of
a limited form of grammar learning.
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Fig. 21. Learning curve for CompCert.
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Fig. 22. Learning curve for CoqArt.
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Fig. 23. Learning curve for BigNums.

9 Related Work
In this section, we survey work that is most closely related to our proposed tactic discovery method.

Tactic Learning. Previous work, particularly Peano [41], has focused on learning tactic libraries
through anti-unification [40]. This method is syntactic in nature: proofs are modeled as sequences
of operations, and new tactics are derived when repeated sub-sequences are identified across
multiple proofs. While effective in identifying recurring patterns, this approach is limited by its
inability to capture deeper semantic relationships between proof steps or perform meaningful proof
refactoring. Additionally, Peano operates within a restricted, custom tactic language.

Proof Automation Through Tactic Prediction. A significant body of recent work has used
neural models for tactic prediction: given the current proof state, predict a tactic invocation to make
progress in the proof [4, 6, 7, 13, 26, 45, 51, 55]. These models can either fully automate proofs
or collaborate with human users [48]. Typically, the underlying prediction models are trained on
human-written proof steps in the language of interest, and then used to guide a search algorithm
interacting with the theorem proving environment. More recent works also explore using LLMs
for proof automation [24, 37, 50], finding that broad pre-training also makes current LLMs capable
of predicting tactics. Our work complements these methods by alleviating the burden on the tactic
predictor: since proofs using higher-level tactics are shorter, they can be generated with fewer calls
to the predictor. Systems based on LLMs that are capable of in-context learning, such as Copra [50],
make this integration particularly convenient, since they can attempt to use custom tactics without
having prior knowledge about them, as long as they are given to the LLM in their context window.

Library Learning. Library learning in code-related domains aims to automatically discover reusable
components in both programs and formal proofs. In the context of code reuse, researchers have
explored various methods for code library learning, including anti-unification techniques [17, 28],
program synthesis algorithms [8, 18], and e-graphs [10]. For theorem proving, library learning has
primarily focused on extracting reusable lemmas. Kaliszyk and Urban [29] introduced a method for
automatically extracting lemmas from the Mizar system to assist in proving additional theorems.
This idea was expanded by REFACTOR [59], which applied similar lemma extraction techniques
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to the Metamath system. More recently, Xin et al. [56] integrated lemma proposals from large
language models (LLMs) into neural theorem proving for the Lean prover. Our work on tactic
learning provides a complementary addition to these approaches, as tactics represent imperative,
untyped proof construction steps rather than specific mathematical facts. While lemma learning
focuses on identifying reusable truths, tactic learning captures and generalizes common proof
strategies, allowing proofs to be written more concisely and at a higher level of abstraction.

Semantic Code Refactoring Several approaches have been developed for semantic code refac-
toring across various domains. Revamp [39] focuses on refactoring Abstract Data Types (ADTs)
using relational constraints. In other areas, researchers have explored different techniques: using
program invariants to detect refactoring candidates [30], employing type constraints to refactor
class hierarchies [49, 53], and applying program analysis techniques to refactor Java generics [2].
Additionally, Migrator [54] addresses the refactoring of database programs in response to schema
updates. However, these approaches target code refactoring rather than proof refactoring.

Guided Enumerative Synthesis. Our tactic candidate enumeration procedure shares similarities
with guided enumerative synthesis techniques from program synthesis literature [8, 11, 18, 23, 33,
42, 46, 58]. While most of these works aim to synthesize complete programs based on input/output
examples or other specifications, Stitch [8] also employs a corpus-guided top-down approach to
learn library abstractions for programs. However, as noted in our introduction, Stitch primarily
focuses on generalizing concrete expressions to lambda abstractions. In contrast, our work empha-
sizes leveraging the semantics of tactic execution to discover new usable patterns.

Graph-Based Program Abstractions. Tactic Dependence Graphs (TDGs) are inspired by graph-
based program abstractions [1, 22, 31, 44, 47], such as control-flow and data-flow graphs, commonly
used in program analysis. Broadly, such abstractions represent either the program’s control flow
(e.g., call graph) or dependencies between data (e.g., points-to graph) and are widely employed for
tasks like optimization and security analysis (e.g., malware detection, code clone identification [19,
20, 25, 36, 43, 60]). However, TDGs differ in their purpose and design, focusing on logical proof
dependencies between tactics rather than control or data dependencies. Notably, TDGs abstract
away irrelevant syntactic differences between proofs (e.g., subgoal naming or tactic order) and
concentrate on the semantic relationships between tactic applications.

10 Discussion
The proof refactoring and tactic discovery framework presented in this paper enables multiple
applications in interactive theorem proving. In this section, we discuss three possible use cases of
our approach in the overall proof engineering workflow.
Improving Proof Automation. By encapsulating recurring proof patterns into higher-level tactics,
our approach helps automated tools operate at amore abstract level. Instead of repeatedly generating
low-level proof steps, proof automation tools can leverage learned tactics as higher-level building
blocks. This strategy can improve scalability, since the search space at a higher level of abstraction
is smaller. This approach also facilitates a form of curriculum learning, where newly discovered
tactics serve as building blocks for more advanced proofs. As shown in our evaluation in Section 8.4,
the tactics learned by TacMiner already significantly improve the success rate of a state-of-the-art
proof automation tool. Notably, this improvement is observed even though current automation
tools are not explicitly trained to exploit custom tactics. As proof automation methods evolve to
take better advantage of custom tactics, we expect these gains to become even more pronounced.
Interactive Tactic Suggestion. Our method can also assist proof engineers by suggesting potential
tactics, highlighting repeated patterns in their proofs that might otherwise go unnoticed. In this
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interactive mode, we expect users to take inspiration from the suggested tactics while refining
them to fit their domain expertise and personal style. For instance, if a learned tactic appears too
general—such as requiring an excessive number of arguments—users can specialize it with concrete
parameters to make it more practical. Likewise, multiple tactics proposed by TacMiner can be
merged into a single tactic that dynamically selects which one to apply based on the structure
of the proof goal. Rather than prescribing a fixed way to restructure proofs, the system provides
flexible recommendations that users can adapt as needed.
Proof Refactoring. A third use case of our tool is automatically or interactively refactoring existing
proofs, particularly in large projects that require long-term maintenance. As definitions change or
new lemmas are introduced, proof engineers often need to define new tactics and restructure existing
proofs to incorporate them. However, manually refactoring proofs in this way is labor-intensive.
Our method simplifies this process by identifying where a given tactic—whether user-defined or
adapted from a tactic discovered by TacMiner —can replace existing sequences of proof steps.

11 Conclusion
We introduced a new approach to tactic discovery using Tactic Dependency Graphs (TDGs),
which abstract away syntactic variations while capturing the logical dependencies between tactic
applications. TDGs facilitate both the learning of custom tactics and the refactoring of existing proofs
into more concise, modular forms. We implemented this method in a tool called TacMiner and
evaluated it on several domains, including various program logics, arbitrary-precision arithmetic,
and compiler transformations. We also compared our approach against an anti-unification-based
tactic discovery method from prior work (Peano) and demonstrated the advantages of our approach
in terms of the number and quality of the learned tactics: TacMiner learns around 3× as many
tactics compared to Peano and achieves an compression rate of 1.35 on the test set, reducing the size
of the corpus by 26%. We also showed that the tactics learned by TacMiner are useful for improving
proof automation: When Copra, a state-of-the-art proof automation tool, is supplied with the
custom tactics learned by TacMiner, its success rate yields a relative increase of 172%. Overall,
our work shows that tactic discovery provides a promising avenue for both proof refactoring and
automation.

Data-Availability Statement
Our artifact, along with the benchmark suite used for evaluation, is available on Zenodo [57].
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