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Abstract
In this paper, we propose a new technique based on program
synthesis for extracting information from webpages. Given
a natural language query and a few labeled webpages, our
method synthesizes a program that can be used to extract
similar types of information from other unlabeled webpages.
To handle websites with diverse structure, our approach em-
ploys a neurosymbolic DSL that incorporates both neural
NLP models as well as standard language constructs for tree
navigation and string manipulation. We also propose an opti-
mal synthesis algorithm that generates all DSL programs that
achieve optimal 𝐹1 score on the training examples. Our syn-
thesis technique is compositional, prunes the search space
by exploiting a monotonicity property of the DSL, and uses
transductive learning to select programs with good general-
ization power. We have implemented these ideas in a new
tool calledWebQA and evaluate it on 25 different tasks across
multiple domains. Our experiments show that WebQA sig-
nificantly outperforms existing tools such as state-of-the-art
question answering models and wrapper induction systems.

CCS Concepts: • Software and its engineering→ Auto-
matic programming; • Information systems→ Data ex-
traction and integration.

Keywords: Program Synthesis, Programming by Example,
Web Information Extraction
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1 Introduction
As the amount of information available on the web prolif-
erates, there is a growing need for tools that can extract
relevant information from websites. Due to the importance
of this problem, there has been a flurry of research activ-
ity on information extraction [39, 44] and wrapper induc-
tion [5, 10, 18, 27, 32, 37, 42, 50]. In particular, most recent
research from the natural language processing (NLP) com-
munity focuses on unstructured text documents and employs
powerful neural models to automate information extraction
and question answering (QA) tasks. On the other hand, most
wrapper induction work focuses on semi-structured docu-
ments and aims to synthesize programs (e.g., XPath queries)
to extract relevant nodes from the DOM tree. While such
wrapper induction techniques work well when the target
webpages have a shared global schema (e.g., Yelp pages or
LinkedIn profiles), they are not as effective on structurally
heterogeneous websites such as faculty webpages. On the
other hand, ML-based techniques from the NLP community
are, in principal, applicable to heterogeneous websites; how-
ever, by treating the entire webpage as unstructured text,
they fail to take advantage of the inherent tree structure of
HTML documents.
In this paper, we propose a new information extraction

approach —based on neurosymbolic program synthesis — that
combines the relative strengths of wrapper induction tech-
niques for webpages with the flexibility of neural models for
unstructured documents. Our approach targets structurally
heterogeneous websites with no shared global schema and

https://doi.org/10.1145/3453483.3454047
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https://doi.org/10.1145/3453483.3454047
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Figure 1. Schematic overview of our approach

can be used to automate many different types of informa-
tion extraction tasks. Similar to prior program synthesis
approaches[37, 57], our approach can learn useful extractors
from a small number of labeled webpages.

As illustrated in Figure 1, our approach takes three inputs,
including (1) a natural language query, (2) a small number
of labeled webpages, and (3) a much bigger set of unlabeled
webpages from which to extract information. For instance,
if the task is to extract PhD students from faculty webpages,
the input might consist of a question such as “Who are the
PhD students?" as well as keywords like "advisees” and "PhD
students”. In addition, the user would also provide a set of
target faculty webpages, together with labels (i.e., names of
PhD students) for a few of these. Given this input, the goal
of our technique is to generate a program that can be used
to extract the desired information from all target webpages.
To solve this challenging problem, we employ a multi-

pronged solution that incorporates three key ingredients:
• Neurosymbolic DSL: To combine the relative strengths
of wrapper induction techniques with the flexibility of
language models, we design a new neurosymbolic domain-
specific language targeted for web question answering.
Our DSL combines pre-trained neural modules for natural
language processingwith standard programming language
constructs for string processing and tree traversal.
• Optimal program synthesis: To utilize this DSL for au-
tomated web information extraction, we describe a new
program synthesis technique for finding DSL programs
that best fit the labeled webpages. However, since it is
often impossible to find programs that exactly fit the pro-
vided labels, we instead search for programs that optimize
𝐹1 score1. Our proposed optimal synthesis method is com-
positional and leverages a monotonicity property of the
DSL to aggressively prune parts of the search space that
are guaranteed not to contain an optimal program.
• Transductive programselection:During synthesis, there
are oftenmany (e.g., hundreds of) DSL programs with opti-
mal 𝐹1 score on the labeled data. However, not all of these
candidate programs perform well on test data, and stan-
dard heuristics (e.g., based on program size) are not effec-
tive at distinguishing between these programs. We address

1 𝐹1 score is computed as 2 · precision·recall
precision+recall . It is a common evaluation

metric in information extraction.

this challenge using transductive learning: it generates soft
labels for the test data based on all candidate programs
and then chooses the “consensus” program whose output
most closely matches the soft labels.
We have implemented our proposed approach in a tool

called WebQA and evaluate it across several different tasks
and many webpages. Our evaluation demonstrates that We-
bQA yields significantly better results compared to existing
baselines, including both question answering models and
wrapper induction systems. We also perform ablation studies
to evaluate the relative importance of our proposed tech-
niques and show that all of these ideas are important for
making this approach practical.

In summary, this paper makes the following contributions:
• We propose a new technique for web question answering
that is based on optimal neurosymbolic program synthesis.
• We present a DSL for web information extraction that com-
bines pre-trained NLP models with traditional language
constructs for string manipulation and tree traversal.
• We describe a compositional program synthesis technique
for finding all programs that achieve optimal 𝐹1 score on
the labeled webpages. Our synthesis algorithm prunes the
search space by exploiting a monotonicity property of the
DSL with respect to recall.
• We present a transductive learning technique for choosing
a good program for labeling the target webpages.
• We implement our approach in a tool called WebQA and
evaluate it on 25 different tasks spanning four domains
and 160 webpages.

2 Motivating Example
In this section, we present a motivating scenario for WebQA
and highlight salient features of our approach.

Usage scenario. Suppose that the PC chair for a confer-
ence needs to form a program committee, and she has access
to the websites of many researchers. To help her form a
good committee, she wants to extract program committees
that each researcher has served on (which is often avail-
able on their websites). Since there are too many websites,
extracting this information manually is too laborious. Our
proposed system, WebQA, is useful in scenarios like this
that require collecting information from many structurally
heterogeneous websites.
To use WebQA, the user starts by providing a question

(e.g., “Which program committees has this researcher served
on?”) and a set of keywords (e.g., “PC”, “ProgramCommittee”,
“Service”). Then, given a target set of websites, WebQA asks
the user to provide labels for a small number of webpages. For
instance, Figure 2 presents two (hypothetical) websites that
WebQA may show to the user, with the user-provided labels
highlighted in blue. Observe that both of these webpages
are semi-structured in the sense that they contain clearly-
delineated sections (e.g., Students, Service); however, they
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Figure 3. The synthesized program
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differ both in terms of their high-level structure and what
information they contain.

Limitations of existing approaches. We now use this
simple motivating example to illustrate why existing ap-
proaches are not effective for this type of tasks. Asmentioned
in Section 1, there are two classes of techniques, namely pro-
gram induction and question answering, that could potentially
be useful in this setting.

Like our approach, program induction techniques aim to
extract information from webpages based on a small num-
ber of user-provided training examples [35, 50]. Specifically,
given a few labeled webpages, these techniques learn XPath
expressions to locate relevant nodes in the DOM tree. How-
ever, as illustrated in Figure 2, researcher webpages typically
do not have a uniform structure. Furthermore, even for web-
pages that are structurally somewhat similar, they exhibit
minor variations (e.g., different section names, relative or-
dering of sections etc.) that make it very difficult to learn
XPath expressions that generalize well to unseen websites.
In addition, almost all existing techniques in this space focus
on extracting relevant nodes in the DOM tree; however, they
do not attempt to perform any further text processing within
that node. As illustrated by both webpages in Figure 2, ex-
tracting the desired information requires further processing
at the text level, such as extracting relevant substrings.

An alternative approach for automating this task is to use
a state-of-the-art question answering (QA) system that treats
the entire webpage as a raw sequence of words. However, in
practice, such approaches perform poorly since they are not
designed to leverage the tree structure of the document. Fur-
thermore, because they treat text across different DOMnodes
as natural language, they have difficulty dealing with more
structured information like long comma-delineated lists or
formatting with parentheticals. For instance, for the two
webpages from Figure 2 and the question “Which program
committees has this researcher served on?”, a BERT-based
QA system [19] yields the suboptimal answers underlined
in red in Figure 2. In particular, it either outputs incorrect

spans or includes text that should not be part of the answer
(e.g. “POPL’20 (SRC)” in the second webpage).

Key idea #1: Neurosymbolic DSL. Our approach com-
bines the relative strengths of machine learning and pro-
gram induction techniques by synthesizing programs in a
neurosymbolic DSL for web information extraction. In par-
ticular, our proposed DSL incorporates both pre-trained neu-
ral models for question answering, keyword matching, and
entity extraction with standard programming language con-
structs for string processing and tree navigation. The tree
navigation constructs allow taking advantage of webpage
structure, while making it possible to handle minor varia-
tions (e.g., exact section names) using pre-trained neural
models. Furthermore, the presence of string processing con-
structs in the DSL allows our method to extract fine-grained
information within individual tree nodes.

In more detail, a program in our DSL is structured to first
locate relevant nodes in the tree representation of a web-
page (see Figure 4) and then perform additional information
extraction from each tree node. For example, the following
code snippet in our DSL can be used to locate the relevant
parts of the webpages from Figure 2:

GetLeaves(GetDescendents(𝑟, 𝜆𝑧.matchKeyword(𝑧, 𝐾))) (1)

Here, 𝑟 is the root node of the input webpage, and the con-
struct GetDescendants(𝑟, 𝜙) returns all tree nodes whose
content satisfies predicate 𝜙 . In the code snippet above, the
predicate 𝜆𝑧.matchKeyword(𝑧, 𝐾) is implemented by a neu-
ral network that has been pre-trained for keyword matching.
Thus, this program first locates all tree nodes whose content
matches any of the provided keywords 𝐾 and returns all of
their leaf nodes. For example, given the tree in Figure 4 repre-
senting the top webpage from Figure 2, the GetDescendants
sub-program will match node 11, and GetLeaves2 will re-
turn nodes 14 and 15, which are leaf nodes of the subtree

2Actually, there is no explicit GetLeaves(v) construct in our DSL; this is
just syntactic sugar for GetDescendants(v, 𝜆 n. isLeaf(n)).
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Figure 4. Tree representation of top webpage from Figure 2.
Each node contains the node id, type and its content.

rooted at node 11. For the webpages in Figure 2, this program
yields the tree nodes annotated using black boxes.
Next, given the tree nodes returned by the above code

snippet, we can extract the desired information from these
nodes using the following code snippet in our DSL:
𝜆𝑥 .GetEntity(Filter(Split(ExtractContent(𝑥), COMMA),

𝜆𝑧.matchKeyword(𝑧, 𝐾)), ORG) (2)

In particular, this code snippet first retrieves the content of
tree node 𝑥 using ExtractContent and then splits it into a
set of (comma-separated) strings using Split. Then, it filters
those elements that do not match the provided keywords and
finally extracts substrings that correspond to an organization
entity3. Thus, assuming sufficiently good neural models for
keyword matching and entity recognition, the output of
this program would be exactly the highlighted text for the
webpages from Figure 2.

It is worth noting that the extraction logic described above
generalizes fairly well across websites with quite different
layouts. In particular, the same DSL program can be used to
extract the desired information from Figure 3 even though
this webpage looks quite different from those in Figure 2.

Key idea #2: Allowing imperfect solutions. In our ex-
ample so far, we were able to find a DSL program that pro-
duces exactly the highlighted text from examples in Figure 2.
However, suppose that the pre-trained network for entity
extraction is unable to recognize computer science confer-
ence names as organizations. In that case, the output of the
extraction program from Eq. 2 would not exactly match the
user-provided labels. In fact, there is no program in our DSL
that would produce exactly the desired output.

To deal with this difficulty, our synthesis algorithm aims to
find programs that maximize 𝐹1 score rather than looking for
solutions that exactly match the user-provided labels. Thus,
we frame our problem as optimal program synthesis, where
the goal is to find programs that maximize some optimization
3Note that there is no explicit GetEntity on our DSL; this is a syntactic
sugar for Substring(𝑒, 𝜆𝑧.hasEntity(𝑧, ORG), 1) .

objective (𝐹1 score in our case). This optimality requirement
makes the synthesis problem harder because we need to
exhaustively explore the search space.

Key idea #3: Transductive learning. An additional dif-
ficulty in our context is that there may be hundreds or even
thousands of optimal solutions for a synthesis task. In partic-
ular, given the scarcity of training examples, many different
DSL programs yield the same 𝐹1 score on the labeled web-
pages. For instance, for the two webpages from Figure 2,
there are actually 85 optimal DSL programs that achieve the
same 𝐹1 score. Existing techniques in the synthesis literature
deal with the under-constrained nature of input-output ex-
amples by using heuristics to distinguish different candidate
solutions. However, standard heuristics (e.g., based on AST
size) do not work well in our setting because there are still
many programs that are tied with respect to such heuristics.

Our approach deals with this challenge using transductive
learning. In particular, given all programs that yield optimal
𝐹1 score on the labeled data, it generates soft labels for unla-
beled webpages by running these programs on the unlabeled
webpages and aggregating their outputs. Then, among these
programs, we choose the one whose outputs most closely
match the soft labels for the unlabeled webpages. In other
words, transductive learning allows our method to utilize
the unlabeled data to choose a most promising program and
obviates the need for complex hand-crafted heuristics.

3 Preliminaries
In this section, we discuss how we represent webpages as
trees. Our representation is different from the standard Doc-
ument Object Model (DOM) and represents the nesting rela-
tionship between text elements on the rendered webpage to
better facilitate web question answering.

Definition 3.1. (Webpage) A webpage is a tree (𝑁, 𝐸, 𝑛0)
with root node 𝑛0 ∈ 𝑁 , nodes 𝑁 and edges 𝐸. An edge is
a pair (𝑛, 𝑛′) where 𝑛 is the parent of 𝑛′, and each node is
a triple (id, text, type) where text is the string content of
that node and type ∈ {list, table, none} indicates whether the
node corresponds to an HTML list, table, or neither.

Intuitively, an edge (𝑛, 𝑛′) indicates that the text of node
𝑛 is the header for that of node 𝑛′ — i.e., text of 𝑛′ is nested
inside that of 𝑛 on the rendered version of the webpage.
For instance, given an HTML document with title “Title"
and body text “Text", our representation introduces an edge
(𝑛, 𝑛′) where 𝑛 has text “Title” and 𝑛′ contains “Text".
In our representation, internal nodes can represent struc-

tured HTML elements like lists (both ordered and unordered)
as well as tables. For a node 𝑛 representing an HTML list
(resp. table), 𝑛’s children correspond to elements in the list
(resp. rows of the table).

Example 3.2. Our method represents the first webpage in
Figure 2 as the tree shown in Figure 4.
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Program 𝑝 ::= 𝜆𝑄,𝐾,𝑊 .{𝜓1 → 𝜆𝑥.𝑒1, . . . ,𝜓𝑛 → 𝜆𝑥.𝑒𝑛 }
Guard𝜓 ::= Sat(𝜈, 𝜆𝑧.𝜙) | IsSingleton(𝜈)

Extractor 𝑒 ::= ExtractContent(𝑥)
| Substring(𝑒, 𝜆𝑧.𝜙, 𝑘)
| Filter(𝑒, 𝜆𝑧.𝜙)
| Split(𝑒, 𝑐)

Section locator 𝜈 ::= GetRoot(𝑊 )
| GetChildren(𝜈, 𝜆𝑛.𝜑)
| GetDescendants(𝜈, 𝜆𝑛.𝜑)

Node filter 𝜑 ::= isLeaf(𝑛) | isElem(𝑛)
| matchText(𝑛, 𝜆𝑧.𝜙,𝑏)
| ⊤ | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑

NLP predicate 𝜙 ::= matchKeyword(𝑧, 𝐾, 𝑡 )
| hasAnswer(𝑧,𝑄)
| hasEntity(𝑧, 𝑙)
| ⊤ | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙

Figure 5. DSL for WebQA. Here, 𝑐 denotes a character (e.g.,
a delimiter like comma), and 𝑙 is an entity type (e.g. Person).
Also, 𝑘 ∈ Z, 𝑏 is a boolean, 𝑡 ∈ [0, 1] is a threshold.
4 DSL for Web Question Answering
In this section, we describe our domain-specific language
called WebQA for web information extraction. At a high
level, this DSL combines pre-trained neural models for stan-
dard NLP tasks (i.e., question answering, entity extraction,
and keyword matching) with symbolic constructs for ma-
nipulating strings and navigating the tree structure of the
webpage. As shown in Figure 5, a program in this DSL takes
as input a question𝑄 , keyword(s)𝐾 , and a webpage𝑊 , and it
returns a set of strings that collectively answer the question.

As shown in Figure 5, eachWebQA program is a sequence
of guarded expressions of the form 𝜓𝑖 → 𝜆𝑥.𝑒𝑖 where the
guard 𝜓𝑖 locates relevant tree nodes and checks whether
they satisfy some property, and the extractor takes as input
a set of tree nodes (computed by the guard) and returns a set
of strings (see Figure 6 for their types). The program returns
the result of expression 𝑒𝑖 if the corresponding guard 𝜓𝑖 is
true and all previous guards 𝜓1, . . . ,𝜓𝑖−1 evaluate to false.
Intuitively, the guards are used to determine the webpage
“schema” and locate the relevant tree nodes from which to
extract information. Then, the corresponding expression 𝑒𝑖
extracts the relevant text from those nodes.

In more detail, guards𝜓 in a WebQA program locate the
relevant sections 𝑁 of the webpage using so-called section
locators and check whether nodes 𝑁 satisfy some predicate.
If they do, the located sections 𝑁 are bound to variable 𝑥 of
the corresponding extractor expression 𝑒 , and the result of
evaluating 𝑒 on 𝑁 is returned. On the other hand, if a guard
evaluates to false, then the next guard is evaluated, and this
process continues until one of the guards evaluates to true. If
all guards evaluate to false, the return value of the program
is ∅. Next, we explain the WebQA constructs in more detail.

Pre-trained NLP Models. Our DSL contains three pre-
trained neural models for extracting information from web-
pages. These pre-trained models are used inside predicates
𝜙 and include the following primitives:

𝑝 :: Question × Keywords × Webpage→ Set<String>
𝜓 :: Bool × Set<Node>
𝑒 :: Set<String> 𝑧 :: String
𝑥 :: Set<Node> 𝑛 :: Node
𝜈 :: Set<Node> 𝜑,𝜙 :: Bool

Figure 6. Types of different symbols in theWebQA grammar

• Keywordmatch:Given string 𝑧, the matchKeyword(𝑧, 𝐾, 𝑡)
predicate evaluates to true if the semantic similarity be-
tween 𝑧 and keyword 𝑘 exceeds threshold 𝑡 ∈ [0, 1] for
some keyword 𝑘 ∈ 𝐾 .
• Question answering: The hasAnswer(𝑧,𝑄) predicate re-
turns true if a pre-trained neural network for textual ques-
tion answering can find the answer to the given question
𝑄 in input string 𝑧.
• Entity matching: Given string 𝑧, hasEntity(𝑧, 𝑙) returns
true if a neural model for entity matching decides that 𝑧
contains an entity of type 𝑙 (e.g., person, location).

These neural primitives draw on standard NLP modeling
tools for each of their respective tasks. By using standard
tools, we can exploit not only pre-trained vectors [47] and
models such as BERT [19], but we can take advantage of
training sets created for other tasks like question answer-
ing [49]. This design choice allows us to leverage neural
components despite the lack of substantial training data.

Section locators. OurWebQA DSL includes so-called sec-
tion locator constructs 𝜈 for identifying tree nodes from
which to extract information. Section locators allow nav-
igating the tree structure and identifying nodes that sat-
isfy a given predicate. In particular, given a webpage 𝑊 ,
getRoot(𝑊 ) returns the root node of the webpage, and the
recursive getChildren and getDescendants constructs re-
turn respectively the children and descendant nodes satisfy-
ing a certain predicate 𝜑 . Predicates on nodes allow test-
ing whether a given node is a leaf (isLeaf), whether it
is a list/table element (isElem), or whether the text con-
tained in that node matches NLP predicate 𝜙 (matchText).
Note that the third boolean argument of matchText specifies
whether to consider only text within that node (𝑏 = false) or
whether to consider the text in the entire subtree (𝑏 = true).

Guards. Asmentioned earlier, guards in our DSL are used
for locating relevant sections within a webpage and testing
their properties. In particular, a guard𝜓 uses section locators
to identify relevant nodes 𝑁 and then checks their properties
via the IsSingleton and Sat predicates. As its name indi-
cates, IsSingleton tests whether 𝑁 contains a single node.
Intuitively, this predicate is useful because existing textual
question answering systems like hasAnswer are more likely
to be effective if the desired information can be found within
a single block of text. On the other hand, the Sat predicate
is used to test whether any of the nodes 𝑛 ∈ 𝑁 satisfy some
neural classifier 𝜙 — i.e., Sat(𝑁, 𝜆𝑧.𝜙) checks whether text
𝑧 of node 𝑛 satisfies 𝜙 for some 𝑛 ∈ 𝑁 .
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1: procedure Synthesize(E, 𝑄, 𝐾 )
input: training examples E, question 𝑄 , and keywords 𝐾 .
output: all WebQA programs with optimal 𝐹1 score.

2: 𝑅 ← ⊥; 𝑜𝑝𝑡 ← 0;
3: for all 𝑃 ∈ Partitions(E) do
4: 𝑏𝑠 ← [];
5: for all E𝑖 ∈ 𝑃 do
6: 𝐵 ← SynthesizeBranch(E𝑖 , 𝑃 \ ∪𝑖𝑗=1E 𝑗 , 𝑄, 𝐾);
7: bs.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐵);
8: if 𝐹1 (𝑏𝑠, E) > 𝑜𝑝𝑡 then
9: 𝑜𝑝𝑡 = 𝐹1 (𝑏𝑠, E); 𝑅 ← {𝑏𝑠};
10: else if 𝐹1 (𝑏𝑠, E) = 𝑜𝑝𝑡 then
11: 𝑅 ← 𝑅 ∪ {𝑏𝑠};
12: return 𝑅;

Figure 7. Top-level synthesis algorithm.

Extractors. The extractor constructs are used to extract
text from relevant sections 𝑁 of a webpage. Note that these
relevant sections are determined by the corresponding guard
and bound to variable 𝑥 referenced in the extraction con-
struct. In the simplest case, the ExtractContent function
returns the string content of each node𝑛 ∈ 𝑁 . The remaining
constructs are recursive and allow (a) extracting substrings,
(b) filtering elements from a set, and (c) splitting a string into
multiple strings. In particular, Substring(𝑛, 𝜆𝑧.𝜙, 𝑘) returns
the top-k substrings satisfying neural classifier 𝜙 on 𝑛’s con-
tents. Similarly, Filter(𝑁, 𝜆𝑧.𝜙) filters those nodes 𝑛 whose
content does not satisfy 𝜙 from set 𝑁 . Finally, Split(𝑛, 𝑐)
generates multiple new substrings by splitting 𝑛’s content
based on the provided delimiter 𝑐 (e.g., comma).

5 Optimal Neurosymbolic Synthesis
In this section, we describe our algorithm for synthesizing
all programs that achieve optimal 𝐹1 score on a given set
of training examples. At a high level, our method is based
on enumerative search but employs two ideas that allow it
to scale better: First, we decompose the task of synthesizing
extractors from that of synthesizing guards; this decomposi-
tion significantly reduces the space of programs we need to
consider. Second, we exploit a certain monotonicity property
of our DSL to prune programs that are guaranteed to be
sub-optimal in terms of their 𝐹1 score.

Our top-level synthesis algorithm is presented in Figure 7.
Given a few training examples E, a question 𝑄 , and key-
words 𝐾 , Synthesize returns a set of programs that achieve
optimal 𝐹1 score on E. At a high level, the algorithm consid-
ers all possible ways of partitioning the training examples
and synthesizes optimal programs for each partition.4 In-
tuitively, each partition corresponds to a different way of
assigning guards to webpages in the training set, and the
overall synthesis algorithm chooses a partition that yields
the best 𝐹1 score among all partitions.

4Since our technique only requires a small set of labeled examples, consid-
ering all partitions of E is computationally tractable.

In more detail, the Synthesize procedure works as fol-
lows. It first generates all possible partitions of the training
examples, and then, for each partition 𝑃 = [E1, . . . , E𝑛], it
generates a set of (optimal) programs of the form:

𝜓1 → 𝜆𝑥 .𝑒1, . . . ,𝜓𝑛 → 𝜆𝑥.𝑒𝑛

such that examples E𝑖 satisfy the 𝑖’th guard𝜓𝑖 and the cor-
responding extractor 𝑒𝑖 achieves optimal 𝐹1 score for E𝑖 . We
represent the set of optimal programs for partition 𝑃 as a list
𝑏𝑠 = [𝐵1, . . . , 𝐵𝑛], where each 𝐵𝑖 represents an optimal set
of programs for the 𝑖’th branch.
In particular, a branch program 𝑏 ∈ 𝐵𝑖 is a pair (𝜓, 𝑒) con-

sisting of a guard and an extractor, and we represent a set
of branch programs as a mapping 𝐵𝑖 from guards to a set of
extractors 𝐸. Thus, 𝐵𝑖 represents all branch programs (𝜓, 𝑒)
satisfying the following three properties:
1. The guard𝜓 evaluates to true for all examples in E𝑖 .
2. The guard𝜓 evaluates to false for E\(E1 ∪ . . . ∪ E𝑖 ).5
3. The extractor 𝑒 achieves optimal 𝐹1 score for examples E𝑖 .

Synthesizing branch programs. Next, we consider the
SynthesizeBranch procedure (Figure 8) for generating op-
timal branch programs for a given set of examples. As men-
tioned earlier, there are two important ideas underlying this
algorithm: First, we decompose the branch synthesis problem
into two separate sub-problems (one for synthesizing guards,
and one for synthesizing extractors). Second, we prune the
search space by inferring an upper bound on the optimal 𝐹1
score that can be achieved by partial branch programs.
In more detail, the SynthesizeBranch procedure works

as follows. For a given set of positive examples E+ and nega-
tive examples E−, it first synthesizes a guard𝜓 that separates
E+ from E− (line 4) and then generates the set of all optimal
extractors using𝜓 (line 8). Note that there may be multiple
guards in our DSL that distinguish E+ from E−. While our
algorithm considers all possible guards (loop in lines 3–12),
it does so lazily — i.e., it only synthesizes the next guard
after synthesizing optimal extractors for the previous guards.
As we will see shortly, such lazy enumeration strategy is
useful because it improves the pruning power of the guard
synthesis algorithm.
Now, let us consider each iteration of loop in lines 3–12.

First, given a guard 𝜓 separating E+ and E− (line 4), our
technique infers an upper bound on the 𝐹1 score of any branch
program using𝜓 as its guard. In particular, we can do this
because the extractors in our DSL aremonotonic with respect
to recall: If extractor 𝑒 ′ appears as a sub-expression of 𝑒 , then
the recall that can be achieved by extractor 𝑒 cannot be more
than that of 𝑒 ′. Furthermore, since the extractor operates
over the tree nodes 𝑁 returned by its corresponding guard,
the recall can only decrease with respect to 𝑁 ’s contents.
5Since a guard is only evaluated if previous guards evaluate to false, we
only require𝜓 to differentiate between the current set of examples and the
examples that have not yet been considered.
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1: procedure SynthesizeBranch(E+, E−, 𝑄, 𝐾 )
input: Pos/neg examples E+, E−; question 𝑄 ; keywords 𝐾
output: Branch programs represented as a mapping 𝑅 from
guards to extractors such that for each (𝜓, 𝐸) ∈ 𝑅 (1)𝜓 classifies
E+, E− and (2) 𝐸 achieves maximum 𝐹1 score for E+.

2: 𝑅 ← ⊥; 𝑜𝑝𝑡 ← 0;
3: while true do
4: 𝜓 ← GetNextGuard(E+, E−, 𝑄, 𝐾, 𝑜𝑝𝑡);
5: if 𝜓 = ⊥ then break;
6: if UB(𝜓 .𝜈, E+) < 𝑜𝑝𝑡 then continue;
7: E ′ ← PropogateExamples(E+,𝜓,𝑄, 𝐾);
8: (𝐸,F1)← SynthesizeExtractors(E ′, 𝑄, 𝐾, 𝑜𝑝𝑡);
9: if 𝐹1 > 𝑜𝑝𝑡 then
10: 𝑜𝑝𝑡 ← 𝐹1; 𝑅 ← {(𝜓, 𝐸)};
11: else if 𝐹1 = 𝑜𝑝𝑡 then
12: 𝑅 [𝜓 ] ← 𝐸

13: return R

Figure 8. Algorithm for synthesizing branch programs.

Our algorithm uses this observation at line 6 of Synthe-
sizeBranch by using the UB function for computing an
upper bound on branch programs using guard𝜓 . In partic-
ular, let 𝜈 denote the section locator used in guard𝜓 . Then,
we can obtain an upper bound for any branch program over
𝜓 using the following formula:

UB(𝜈, E) = 2 · Recall(𝜈, E)
1 + Recall(𝜈, E) (3)

where Recall(𝜈, E) for a section locator 𝜈 and examples E is
defined as follows:
{𝑡 | 𝑡 ∈ ExtractContent(𝜈 (𝑊 )),𝑊 ∈ Ein} ∩ {𝑡 | 𝑡 ∈ Eout}

{𝑡 | 𝑡 ∈ Eout}
where 𝑡 represents a token.

That is, our upper bound computation assumes maximum
possible precision (i.e., 1) and maximum recall for any ex-
tractor using section locator 𝜈 . Since UB(𝜈) gives an upper
bound on the 𝐹1 score of any branch program with guard𝜓 ,
we do not need to consider extractors for𝜓 if UB(𝜈) is less
than the maximum 𝐹1 score encountered so far (line 6).
Assuming 𝜓 is not provably sub-optimal, Synthesize-

Branch proceeds to construct optimal extractors for the
synthesized guard 𝜓 (lines 7–12). To decompose extractor
synthesis from guard inference, we first compute separate
input-output examples for the extractor by calling Propaga-
teExamples at line 7. In particular, this procedure executes
the synthesized section locator 𝜈 on the input webpages to
obtain new input-output examples E ′ for the extractor and
invokes SynthesizeExtractors on E ′. Finally, if the branch
programs associated with guard 𝜓 improve upon (or yield
the same) 𝐹1 score, the result set 𝑅 is updated.6

6Since branches that use guards with the same section locator have the
same set of optimal extractors, the calls to SynthesizeExtractors can
be memoized across different iterations within the SynthesizeBranch
procedure. We omit this to simplify presentation.

1: procedure SynthesizeExtractors(E, 𝑄, 𝐾, 𝑜𝑝𝑡 )
input: Examples E;question 𝑄 ; keywords 𝐾
input: Lower bound 𝑜𝑝𝑡 on 𝐹1
output: Extractors 𝐸𝑜 with optimal 𝐹1 score 𝑠𝑜 on E.

2: 𝐸𝑜 ← ∅; 𝑠𝑜 ← 𝑜𝑝𝑡 ;
3: W ← {ExtractContent(𝑥)};
4: whileW ≠ ∅ do
5: 𝑒 ←W .𝑟𝑒𝑚𝑜𝑣𝑒 (); 𝑠 ← 𝐹1 (𝑒, E);
6: if 𝑠 > 𝑠𝑜 then 𝐸𝑜 ← {𝑒}; 𝑠𝑜 ← 𝑠;
7: else if 𝑠 = 𝑠𝑜 then 𝐸𝑜 .𝑎𝑑𝑑 (𝑒);
8: for all 𝑒 ′ ∈ ApplyProduction(𝑒) do
9: if UB(𝑒 ′, E) ≥ 𝑠𝑜 thenW .𝑎𝑑𝑑 (𝑒 ′);
10: return (𝐸𝑜 , 𝑠𝑜 );

Figure 9. Optimal extractor synthesis.

Extractor synthesis. Next, we describe the Synthesize-
Extractors procedure (Figure 9) for finding extractors with
optimal 𝐹1 score for a given set of input-output examples.
This procedure uses bottom-up enumeration with pruning
based on 𝐹1 scores to reduce the search space. In particu-
lar, we use bottom-up rather than top-down enumeration
because doing so allows us to more easily exploit the mono-
tonicity property of the DSL with respect to recall.

In more detail, SynthesizeExtractors maintains a work-
listW of complete extractors; and, in each iteration, it de-
queues one extractor and expands it by applying all possible
grammar productions for Substring, Filter, and Split
(line 8). A new extractor 𝑒 ′ is added to the worklist only if
UB(𝑒 ′, E) (i.e., 𝐹1 score upper bound for 𝑒 ′) is greater than or
equal to the previous upper bound 𝑠𝑜 (line 9). As described
earlier, we compute an upper bound on extractors gener-
ated from 𝑒 ′ by using 1 for precision and the recall of 𝑒 ′
on the given set of examples. As before, this pruning strat-
egy exploits the fact that if 𝑒1 is a subprogram of 𝑒2, then
Recall(𝑒1, E) ≥ Recall(𝑒2, E) for any set of examples E.

Lazy synthesis of guards. The final missing piece of our
synthesis algorithm is the GetNextGuard procedure (Fig-
ure 10) for lazy guard synthesis. In particular, this algorithm
is lazy in the sense that it yields a single guard at a time
rather than returning the set of all guards separating E+
from E−. Since the guard synthesis algorithm also prunes its
search space by computing an upper bound on 𝐹1 scores, this
lazy enumeration strategy improves pruning power as the
optimal 𝐹1 score improves over time. However, despite the
lazy nature of the guard synthesis algorithm, our technique
is still guaranteed to return all optimal programs.

The guard synthesis algorithm (Figure 10) is similar to Syn-
thesizeExtractors and also performs bottom-up search
with pruning. In particular, it maintains a worklistW of
section locators. In each iteration, it dequeues one of the
section locators 𝜈 and generates all possible guards using
𝜈 (up to some bound). If any of the resulting guards 𝜓 is a
classifier between E+ and E−, then it is returned as the next



PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

1: procedure GetNextGuard(E+, E−, 𝑄, 𝐾, 𝑜𝑝𝑡 )
input: Pos/neg examples E+, E−
input: Question 𝑄 ; keywords 𝐾 ; lower bound 𝑜𝑝𝑡 on 𝐹1 score
output: Next guard that classifies E+ and E−.

2: W ← {GetRoot(𝑊 )};
3: whileW ≠ ∅ do
4: 𝜈 ←W .𝑟𝑒𝑚𝑜𝑣𝑒 ();
5: for all𝜓 ∈ GenGuards(𝜈) do
6: if ∀𝑒𝑖𝑛 ∈ E+ .J𝜓 (𝑒𝑖𝑛, 𝑄, 𝐾)K ∧

∀𝑒𝑖𝑛 ∈ E− .¬J𝜓 (𝑒𝑖𝑛, 𝑄, 𝐾)K then yield𝜓 ;
7: for all 𝜈 ′ ∈ ApplyProduction(𝜈) do
8: if UB(𝜈 ′, E+) ≥ 𝑜𝑝𝑡 thenW .𝑎𝑑𝑑 (𝜈 ′);
9: return ⊥;

Figure 10. Lazy enumeration of guards.

viable guard. Once the algorithm enumerates all possible
classifiers using the section locator 𝜈 , it then generates all
possible section locators derived from 𝜈 by using the produc-
tions GetChildren and GetDescendants (lines 7-8). As in
the previous algorithms, GetNextGuard also computes an
upper bound on 𝐹1 score and adds a new section locator 𝜈 ′
to the worklist if UB(𝜈 ′, E+) is no worse than the previous
optimal 𝐹1 score 𝑜𝑝𝑡 (line 8).

Theorem 5.1. Let E, 𝑄, 𝐾 be inputs to the Synthesize proce-
dure and let 𝑝 be aWebQA program. Then, the set of programs
returned by Synthesize(E, 𝑄, 𝐾) includes 𝑝 if and only if, for
any other WebQA program 𝑝 ′, 𝐹1 (𝑝) ≥ 𝐹1 (𝑝 ′).

6 Program Selection via Transductive
Learning

Our optimal synthesis algorithm outputs all programs that
have optimal 𝐹1 score on the labeled training data. However,
not all of these programs generalize well to new inputs. In
this section, we present a technique based on transductive
learning [61] that selects a program that generalizes well
beyond the training examples.

We describe our algorithm (summarized in Figure 11) for
selecting a program that generalizes well to the test set. At a
high level, our selection method must satisfy two objectives.
First, it should select a program that generalizes well in terms
of 𝐹1 score. Empirically, we observe that a large fraction of
optimal programs achieve good 𝐹1 score on the test set, so
a randomly chosen program has good 𝐹1 score on average.
However, we also want to minimize variance—in many cases,
a sizable fraction of programs perform quite poorly, so a
randomly chosen program may have poor 𝐹1 score. Our
selection method is designed to select a good program while
avoiding these poorly performing programs.
The key concept underlying our approach is to use an

ensemble of the optimal programs Π∗ generated by our syn-
thesis algorithm; that is, we aggregate predictions over a

1: procedure Select(E,I,Π∗)
input: training examples E, unlabeled input examples I, opti-
mal programs Π∗.
output: optimal program 𝜋∗ on the transductive learning ob-
jective.

2: draw i.i.d. samples 𝜋1, ..., 𝜋N ∼ Π∗;
3: construct ensemble Π𝐸 = {𝜋1, ..., 𝜋N};
4: compute the output O𝑗 ∈ Π𝐸 for 𝜋 𝑗 according to Eq. 8;
5: compute 𝐿(𝜋) = ∑N

𝑗=1 𝐿(𝜋 ;I,O𝑗 ) for each 𝜋 ∈ Π𝐸 ;
6: return 𝜋∗ = argmax𝜋 ∈Π𝐸

𝐿(𝜋);
Figure 11. Program Selection Algorithm.

large random sample of optimal programs. Such an ensem-
ble would address both of the above points. Ensembles of
multiple models typically generalize better than the individ-
ual models since the errors made by individual models tend
to average out [43]. For the same reason, they also tend to
reduce the variance in performance [20]. However, directly
using an ensemble instead of an individual program has a
few drawbacks. First, an ensemble is significantly less inter-
pretable than an individual model. Second, since an ensemble
includes many programs, there is a large computational cost
to using the ensemble if the learned model is to be used over
and over again.
Thus, our algorithm first builds the ensemble and then

compresses it into a single program by leveraging the unla-
beled training data. In particular, it constructs an ensemble
Π𝐸 by sampling N optimal programs returned by the syn-
thesis algorithm (lines 2–3). Then, it uses the ensemble to
generate soft labels for the unlabeled webpages and returns
the program 𝜋∗ that minimizes loss 𝐿(𝜋∗) with respect to
these soft labels. We describe our approach in more detail
below. For conciseness, we give a high-level sketch of our
derivations, and provide details in the Appendix.

Transductive learning objective. Given (i) labeled ex-
amples E, (ii) unlabeled inputs I, and (iii) optimal programs
Π∗ returned by Synthesize, our algorithm finds a program
𝜋 ∈ Π∗ that minimizes the following objective:

𝐿̃(𝜋 ; E,I) = E𝑝 (O |I,E) [𝐿(𝜋 ;I,O)] . (4)
The expression 𝐿(𝜋 ;I,O) is a loss function we wish to mini-
mize in a standard supervised learning fashion using (I,O)
as the training dataset—e.g., we could take it to be the nega-
tive 𝐹1 score. However, the difficulty is that we do not know
the labels O for the inputs I. Thus, we take the expectation
with respect to a distribution 𝑝 (O | I, E) that leverages in-
formation from the labeled examples. As described in detail
below, this distribution is constructed by using an ensemble
of programs synthesized based on E to assign soft “pseudo-
labels” to I.

Generating labels via program ensembling. Next, we
describe how to construct the distribution 𝑝 (O | I, E). We
do this in two steps: first, by defining a distribution 𝑝 (𝜋 ′ |



WebQuestion Answering with Neurosymbolic Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

E) over (optimal) programs conditioned on the input data,
then using the fact that these programs are deterministic to
compute 𝑝 (O | 𝜋 ′,I).

We define our distribution 𝑝 (𝜋 ′ | E) to assign probability
mass only to programs in Π∗, those that best satisfy the given
examples E.7 Ideally, we could use the uniform distribution
over optimal programs Π∗. However, a key difficulty is that
summing over all programs 𝜋 ∈ Π∗ is intractable since the
cardinality of Π∗ is too large in practice. Thus, we instead
approximate this distribution by constructing an ensemble
Π𝐸 = {𝜋1, ..., 𝜋N}, where 𝜋𝑖 ∼ Uniform(Π∗) are i.i.d. samples
and where N ∈ N is a hyperparameter, and then using

𝑝 (𝜋 | E) = 1(𝜋 ∈ Π𝐸 )
N (5)

Finally, given this distribution, we have
𝑝 (O | I, E) =

∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) · 𝑝 (O | 𝜋 ′,I) (6)

=
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) ·
𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘 ))

where the second step follows from the fact that our pro-
grams are deterministic and each place probability 1 over a
single output.

Program selection. Finally, our algorithm aims to select
𝜋∗ = argmin

𝜋 ∈Π𝐸

𝐿̃(𝜋 ; E,I) . (7)

i.e., the program that minimizes the loss with respect to the
ensemble. We now describe how to evaluate 𝐿̃(𝜋 ; E,I).
First, we precompute the possible outputs

O𝑗 = (𝜋 𝑗 (𝑖1), ..., 𝜋 𝑗 (𝑖𝐾 )) (∀𝜋 𝑗 ∈ Π𝐸 ), (8)

in which case we have

𝑝 (O | I, E) = 1
N

∑
𝜋 ′∈Π𝐸

𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘 )) =
1
N

N∑
𝑗=1

1(O = O𝑗 ).

In other words, when evaluating 𝑝 (O | I, E), we only need
to account for outputs O𝑗 according to programs 𝜋 𝑗 ∈ Π𝐸 .
Thus, we have:

𝐿̃(𝜋 ; E,I) =
∑
O
𝑝 (O | I, E) · 𝐿(𝜋 ;I,O) = 1

N

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗 ) .

(9)

Substituting into Eq. 7, our algorithm selects the program

𝜋∗ = argmin
𝜋 ∈Π𝐸

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗 ), (10)

which is equivalent to Eq. 7 since N is a positive constant.

7 Implementation
In this section, we provide implementation details about
different components of WebQA.
7We note that other choices are possible (e.g., prioritizing smaller programs,
including some probability on erroneous programs, etc.); we found this
choice to work well empirically.

Parsing. As explained in Section 3, WebQA represents
each webpage as a tree that captures relationships between
text elements on the renderd version of the webpage. Thus,
WebQA first parses a given HTML document into our inter-
nal representation. To do this, we first extract the DOM tree
representation using the BeautifulSoup4 HTML parser and
remove unnecessary elements such as images and scripts.
Then, when converting to our tree representation, we follow
the standard HTML header hierarchy. In particular, the H1
header corresponds to the root node, and 𝐻𝑖+1 headers are
represented as children nodes of the 𝐻𝑖 headers.

Interactive labeling. Rather than asking users to directly
provide labeled webpages, WebQA actually interacts with
users and suggests webpages to label. The goal here is to
minimize the number of user annotations while ensuring
that the labels achieve good coverage of different schemas
in the test set. To do so, WebQA clusters webpages based on
various features, including which section locator constructs
in our DSL yield non-empty answers, the type of entities
contained in the extracted sections, the layout of extracted
sections etc. We then identify webpages that are similar
to and different from the webpages labeled so far and ask
the user to label these additional webpages. In practice, we
restrict the number of user queries to at most five.

Neural modules in the DSL. Our tool leverages several
existing natural language processing frameworks andmodels
to implement the neural modules. For QA-related constructs,
we use the BERT QA system [19] as the underlying model.
Specifically, we use the version that has been fine-tuned
on the SQUAD dataset8[49]. We use Sentence-BERT [52]
to generate sentence embeddings for keyword similarity,
and we employ Spacy9[31] for named entity extraction and
sentence segmentation. Since the keyword matching module
requires a real-valued threshold 𝑡 ∈ [0, 1], our synthesis
algorithm discretizes it using a step size of 0.05.

Transductive learning loss. Recall that our transduc-
tive program selection technique from Section 6 is parametrized
over a loss function 𝐿(𝜋 ;I,O). In our implementation, we
take our loss function to be the Hamming distance between
the sets of words extracted by each program. In particular,
our loss function is: 𝐿(𝜋 ;I,O) = Hamming(𝜋 (I),O) .

Hyperparameters. TheWebQA systemhas certain hyper-
parameters that control the maximum depth of synthesized
programs. By default, the hyper-parameter for guard depth is
set to 7 and the one for extractor depth is set to be 5. There is
also another hyper-parameter (with a default value of 1000)
that controls the number of programs used to construct an
ensemble during transductive learning.

8The link to the model: https://huggingface.co/bert-large-uncased-whole-
word-masking-finetuned-squad.
9https://spacy.io/. Specifically, we use the “en_core_web_md” model.
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Table 1. Description of the tasks used in evaluation.

Domain Description

Faculty

Extract current PhD students
Extract conference publications at PLDI
Extract courses they have taught
Extract those papers that received a Best Paper Award
Extract program committees they have served on
Extract conference papers they published in 2012
Extract co-authors among all papers published at PLDI
Extract formerly advised students

Conference

Extract program committee members
Extract program chairs
Extract the topics of interest
Extract the paper submission deadlines
Extract whether the conference is single-blind or double-blind
Extract institutions PC members are from

Class

Extract the name of instructors
Extract the time of the lectures
Extract the name of teaching assistants
Extract the date of the exams
Extract information about textbooks
Extract information on how grades are assigned

Clinic

Extract the doctors or providers
Extract the provided services
Extract the types of treatments they specialize in
Extract the accepted insurances
Extract the locations

8 Evaluation
In this section, we describe a series of experiments that are
designed to answer the following research questions:
• RQ1. How does WebQA’s performance compare against
other question answering and information extraction tools?
• RQ2. How important are the synthesis techniques pro-
posed in Section 5?
• RQ3. Is the program selection technique based on trans-
ductive learning (Section 6) useful in practice?

Benchmarks. To answer these questions, we evaluate
WebQA on 25 different tasks across four different domains,
namely faculty profiles, computer science conferences, uni-
versity courses, and clinic websites. For each domain, we
collect approximately 40 webpages and evaluate the perfor-
mance of each tool in terms of 𝐹1 score, precision, and recall.
For each task, out of around 40 webpages, around 5 of them
are used for training (i.e. synthesis) and the remaining is the
test set. Table 1 describes the 25 tasks used in our evaluation.

Experimental Setup. All of our experiments are conducted
on a machine with Intel Xeon(R) W-3275 2.50 GHz CPU and
16GB of physical memory, running the Ubuntu 18.04 operat-
ing system with a NVIDIA Quadro RTX8000 GPU.

8.1 Comparison with Other Tools
To answer our first research question, we compare WebQA
against the following baselines:
• BERTQA [19]: This is a state-of-the-art textual question
answering system that takes as input an entire webpage
and a question and outputs the answer. 10.

10We also tried fine-tuning this model using the labels in our training
examples; however, we do not report results for the fine-tuned model since
its result is actually worse compared to [19].
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Figure 12. Comparison between WebQA and other tools

• HYB [50]: This is a programming-by-example system that
takes a set of webpages as input and synthesizes XPath
programs for data extraction.
• EntExtract [44]: This is a zero-shot entity extraction
tool for webpages using a natural language query as input.
Note that these baselines do not address exactly the same

problem addressed by WebQA in that they take fewer inputs.
Thus, while our comparison is not completely apples-to-
apples, these systems are the closest ones to WebQA for
performing a comparison.

Our main results are summarized in Figure 12, and Table 2
shows a more detailed breakdown of results across our four
domains. As we can see from Figure 12, WebQA outperforms
all three baselines in terms of average 𝐹1 score, precision,
and recall, and, accoring to Table 2, these results hold across
all four domains. Among the three other tools, BertQA has
the best performance; however, it has significantly worse
recall and 𝐹1 score compared to WebQA.

Failure analysis for the baselines. We briefly explain
why the baseline systems perform poorly in our evaluation.
As mentioned earlier, a textual QA system like BERTQA fails
to take advantage of the inherent structure in webpages and
performs particularly poorly on tasks that require extracting
multiple different spans from the input webpage. On the
other hand, EntExtract does leverage the tree structure
of the webpage but we found that it often returns irrelevant
answers (e.g., publications instead of students). We believe
this is because EntExtract generates extraction predicates
based on XPath queries, but most of our tasks are difficult
to solve using simple XPath programs. Finally, HYB tries to
synthesize programs that exactly match the provided labels
(i.e., perfect 𝐹1 score); however, since such programs do not
exist for many tasks, synthesis fails in several cases.

Failure analysis for WebQA. There are two tasks on
whichWebQAdoes not significantly outperform the BERTQA
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Table 2. Evaluation results for each baseline per domain. P stands for Precision and R means Recall.

Domain WebQA BERTQA HYB EntExtract
P R 𝐹1 P R 𝐹1 P R 𝐹1 P R 𝐹1

Faculty 0.72 0.80 0.75 0.44 0.08 0.18 0.48 0.02 0.04 0.02 0.14 0.04
Conference 0.71 0.69 0.70 0.58 0.31 0.32 0.26 0.02 0.03 0.07 0.20 0.09

Class 0.63 0.77 0.68 0.55 0.26 0.31 0.18 0.04 0.04 0.04 0.09 0.05
Clinic 0.71 0.62 0.66 0.31 0.02 0.04 0.42 0.06 0.09 0.14 0.20 0.16

Table 3. Results of the ablation study. This table shows the
average training time and the average speedup that WebQA
achieves compared to the other two techniques.

Technique Avg time (s) Avg Speedup
WebQA 419 -

WebQA-NoPrune 1351 3.6
WebQA-NoDecomp 931 2.4

baseline. One of these tasks is extracting conference submis-
sion deadlines, and the other one is determining whether a
conference is double-blind or not. For these two tasks, the
program synthesized by WebQA essentially returns the out-
put of the QA model; hence, it does not outperform BERTQA.

8.2 Evaluation of the Synthesis Engine
In this section, we describe an ablation study that quanti-
fies the impact of the proposed synthesis techniques from
Section 5. In particular, recall that our synthesis algorithm in-
corporates two key ideas–decomposition and pruning based
on 𝐹1 score. To evaluate the relative importance of these
ideas, we consider the following two ablations of WebQA:
• WebQA-NoDecomp: This is a variant of WebQA that syn-
thesizes guards and extractors jointly. In other words, it
does not decompose the synthesis problem into two sepa-
rate guard synthesis and extractor synthesis sub-tasks.
• WebQA-NoPrune: This variant does not compute an up-
per bound on the 𝐹1 score of partial programs. Thus, it is
unable to prune partial programs from the search space.
The results of this ablation study are presented in Figure 3.

Here, the first column shows average synthesis time (in sec-
onds) for all three variants, and the second column shows
the average speedup of WebQA over its two ablations. As
we can see, both decomposition and 𝐹1-based pruning play
a significant role in improving synthesis time. In particular,
pruning improves synthesis time by a factor of 3.6 and de-
composition improves it by a factor of 2.4. Note that we do
not report 𝐹1 scores in Table 3 since all variants synthesize
the same programs but differ in how long they take to do so.

8.3 Effectiveness of the Transductive Learning
In this section, we investigate the usefulness of the transduc-
tive learning technique from Section 6 by comparing against
two simpler baselines:

Table 4. Evaluation of transductive learning. This table
shows the % of improvement in 𝐹1 and the reduction in
variance of WebQA compared to the other two techniques.

Technique % Improvement in 𝐹1 Reduction in Variance
Random 6.0% 1550×
Shortest 6.3% 1570×

• Random: This baseline chooses uniformly at random one
of the optimal programs for the training examples.
• Shortest: This baseline chooses uniformly at random
one of the smallest programs (in terms of AST size) that
optimize 𝐹1 score on the training examples.
Recall that the transductive learning technique from Sec-

tion 6 is both intended to reduce variance and produce better-
quality results on the test set. Thus, we compared WebQA
against two baselines in terms of the following two metrics11.
• Mean: We report percentage improvement of the transduc-
tive learning technique in terms of average 𝐹1 score over
the two baselines.
• Variance: We also report the average reduction in variance.

As we can see from Table 4, the transductive learning tech-
nique dramatically reduces variance and modestly improves
average 𝐹1 score. Thus, by using our proposed transduc-
tive learning technique, WebQA achieves much more stable
performance (in terms of the quality of the synthesized pro-
grams) compared to these other approaches.

Remark. Appendix B presents additional ablation studies
evaluating the impact of the different input modalities as
well as the number of training examples.

9 Related Work
Program synthesis for webpages. There is a large body

of prior research on learning extraction rules from HTML
documents. In data mining, this problem is known as wrap-
per induction [36], and there is a wide spectrum of proposed
solutions [5, 10, 18, 27, 32, 37, 42, 50]. For instance, Ver-
tex [27] uses an apriori style algorithm [1] to learn XPath-
based rules from human annotated sample pages, and [5]
also learns XPath-compatible wrappers. While these tech-
niques can extract HTML elements, they cannot perform
finer-grained string processing inside HTML elements. In
11In the experiment, these two metrics are computed based on 20 runs.
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contrast, FlashExtract [37] can perform some text manip-
ulation inside HTML elements12; however, unlike our ap-
proach, it does not use neural constructs, making it difficult
to apply this technique to structurally heterogeneous web-
sites. Recent work [35] targets data extraction from hetero-
geneous sources by combining ideas from program synthesis
and machine learning. However, this approach requires sig-
nificant number of manually labeled samples since it relies
on first training an ML model. In contrast, our technique
uses pre-trained models and a small amount of training data.
Recent work by Raza and Gulwani [50] proposes HYB, a

synthesis-driven web data extraction technique that is now
deployed in the Microsoft Power BI product. This technique
is also based on program synthesis and uses a combination of
top-down and bottom-up search. As shown in our evaluation,
WebQA performs significantly better than their approach;
we believe this is due to the fact that our method is based on
a neurosymbolic DSL.
There is also a line of work [8, 11–13] for learning web

automation macros using a programming-by-demonstration
approach. These techniques perform scraper synthesis by
recording user interactions with a few webpages and then
generalize these interactions into a programmatic webpage
scraper. In contrast to our approach, these techniques target
structurally similar pages (e.g., different Amazon products)
and use a different type of input, namely demonstrations.

Information extraction from text. Much of the IE liter-
ature (e.g., relation extraction [41]) is confined to a given
database schema. Among IE frameworks, “slot-filling” ap-
proaches [24, 46] typically require at least medium-sized
training sets to work on specific schemas, and most few-shot
approaches [7, 30] use a pre-trained model and perform fur-
ther training on text that expresses the desired relations in a
similar fashion to the target domain. In contrast, open infor-
mation extraction techniques[23] aim to retrieve data in an
ontology-free way that can theoretically be used for down-
stream tasks like question answering [17]. However, this in-
formation is extracted primarily from textual relations rather
than structured formatting; even graph-based approaches
use graphs over textual relations only [48]. Therefore, these
approaches do not work well in settings (such as ours) that
involve a combination of tree structure and free-form text.

Information extraction from semi-structured data. Re-
cent work has begun to tackle the problem of semi-structured
data, particularly interactions between tables and natural
language. Prior work looks at extracting lists from the web
[44], answering questions from tables [45], verifying facts
from tables [15], or generally extracting information from

12We were not able to experimentally compare against FlashExtract
because their released implementation in Prose does not support text ma-
nipulation in HTML elements.

tables [58]. However, much of this work assumes access to
large training sets or relies heavily on the structure of tables.
Two recent efforts have tackled the problem of IE from

semi-structured data in a setting similar to ours [38, 39].
However, to use these techniques in our setting, we would
have to first run their tools to extract a knowledge base,
and then interpret our questions into some kind of semantic
representation that we can execute against the extracted
knowledge base. In contrast to such an approach, our work
instead dynamically learns the relation to extract from the
question, specified keywords, and examples.

Question answering. Beyond the table-based question
answering approaches listed above, there is little work on
question answering over text that can be directly applied to
our setting. BERT-based [19] models applied to datasets such
as SQuAD [49] only work well on input that is completely
unstructured text. While there are some recent efforts on
question answering with more programmatic structures [29]
for tasks like DROP [21], these systems are highly specialized
to applications like answering numerical questions.

Quantitative program synthesis. There has also been
recent work on optimal program synthesis with respect to
a quantitative objective. For example, Bornholt et al. [9] in-
troduce a general framework for optimal program synthesis
where the search space is represented by a set of sketches.
Their technique uses the objective function together with a
gradient function to direct the search. In contrast to Born-
holt et al. [9], our work specifically targets the web question
answering domain, uses a neurosymbolic DSL, and employs
an objective function that is based on program semantics.
While Bornholt et al. [9], in principle, also support semantic
objective functions, they require the objective function to
be reducible to a decidable theory, which does not hold in
our case due to the use of neural primitives. QuaSi [33] also
considers the problem of synthesis with quantitative objec-
tives, but it requires the objectives to be syntactic. Other
existing synthesis techniques [28, 55, 56], are mostly quali-
tative, although they implicitly use a ranking function as an
inductive bias to help with generalization. However, such
ranking functions are quite restricted and mostly syntactic
(e.g., based on program size).

Neurosymbolic DSLs. There has been recent interest in
neurosymbolic DSLs that include both logical and neural
components. For instance, neural module networks [3, 4]
dynamically compose DNNs for tasks like predicting object
attributes in images [40] or identifying numbers in text [29].
However, these techniques use purely neural components
(even for operations like filtering and counting), which signif-
icantly increases sample complexity. Recent approaches have
trained combinations of neural and logical components by
backpropagating through such programs [25, 53, 54]. There
has also been work on synthesizing neurosymbolic programs
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to represent structure in images [22, 59] and reinforcement
learning policies [2, 34]. Overall, existing approaches largely
focus on simultaneously learning the program structure and
the DNN parameters. Hence, they are limited to very simple
programs and neural components, as they need to optimize
neural network parameters using backpropagation. In con-
trast, our work is designed to incorporate state-of-the-art
DNNs such as BERT, which take significant time to train. In
addition, we search over tens of thousands of programs by
relying on pretrained DNN models and by developing novel
deduction techniques for optimal synthesis.

Multi-modal program synthesis. There has been grow-
ing interest in program synthesis from multiple modalities
of specifications. For instance, several works have used a
combination of natural language and input-output examples
to synthesize regular expressions, data wrangling and string
manipulation programs, SQL queries, and temporal logic
formulas [6, 14, 16, 26, 51]. Our technique can also be viewed
as an instance of multi-modal synthesis that is based on a
neurosymbolic programming language.

10 Conclusion
We have presented WebQA, a new synthesis-powered sys-
tem for extracting information from webpages. We have
evaluated WebQA on 25 different tasks spanning four dif-
ferent domains and 160 different webpages and show that
WebQA significantly outperforms competing approaches in
terms of 𝐹1 score, precision, and recall.
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A Detailed Derivation of Section 6
In this section, we describe in more detail how we derive
Eq. 9 from Eq. 4, including the key step Eq. 6.

Assumptions. Weassume the standard probabilisticmodel
from the semi-supervised learning literature [60]:

𝑝 (𝑖, 𝑜, 𝜋) = 𝑝 (𝑜 | 𝜋, 𝑖) · 𝑝 (𝜋) · 𝑝 (𝑖),

where 𝑖 is an input, 𝑜 is an output, and 𝜋 is a program. In
addition, we assume that

𝑝 (𝑜 | 𝜋, 𝑖) = 1(𝑜 = 𝜋 ′(𝑖))
𝑝 (𝜋) = |Π |−1,

where Π is the space of all possible programs (which is finite
since we consider programs of bounded depth). In other
words, we assume 𝑝 (𝑜 | 𝜋, 𝑖) is only non-zero when 𝑜 is the
output of 𝜋 . Next, we note that 𝑝 (𝑖) is the data distribution, so
we do not need to model it. In addition, we also assume that

two different examples (𝑖, 𝑜) and (𝑖 ′, 𝑜 ′) are conditionally
independent given 𝜋—i.e.,

𝑝 (𝑖, 𝑜, 𝑖 ′, 𝑜 ′, 𝜋) = 𝑝 (𝑜 | 𝜋, 𝑖) · 𝑝 (𝑜 ′ | 𝜋, 𝑖 ′) · 𝑝 (𝜋) .

Finally, we let Π∗ denote the set of programs that are correct
for all examples (𝑖 ′, 𝑜 ′) ∈ E—i.e.,

Π∗ = {𝜋 ∈ Π | ∀(𝑖 ′, 𝑜 ′) ∈ E . 𝑜 ′ = 𝜋 (𝑖 ′)}.

In practice Π∗ may be empty (i.e., if there are no programs
that satisfy all the given examples (𝑖 ′, 𝑜 ′) ∈ E), so we ap-
proximate it using the set of programs that achieve optimal
loss (e.g., according to the 𝐹1 score). This set might be very
large, so we additionally approximate it using samples Π𝐸 .
This approximation is implicitly used in Section 6.

Theoretical analysis. We show the following result:

Theorem A.1. Letting

𝐿̃(𝜋 ; E,I) =
∑
O
𝑝 (O | I, E) · 𝐿(𝜋 ;I,O),

then

𝐿̃(𝜋 ; E,I) = 1
N

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗 ), (11)

where N = |Π∗ |, and where
O𝑗 = (𝜋 𝑗 (𝑖1), ..., 𝜋 𝑗 (𝑖𝐾 )) (∀𝜋 𝑗 ∈ Π∗) .

We note that Eq. 11 is identical to Eq. 9, except in Eq. 9
we have taken Π∗ to be the set of programs with optimal
𝐹1 score on E, and have furthermore approximated this set
using samples Π𝐸 from Π∗.

Proof. First, by our conditional independence assumption,
given program 𝜋 , unlabeled input examples I, candidate
output labels O, and labeled examples E, we have
𝑝 (I,O, E, 𝜋)
= 𝑝 (O, 𝜋 | I) · 𝑝 (I) · 𝑝 (E | 𝜋) · 𝑝 (𝜋)

=

(
𝐾∏
𝑘=1

𝑝 (𝑜𝑘 | 𝜋, 𝑖𝑘 ) · 𝑝 (𝑖𝑘 )
)
·
(
𝐻∏
ℎ=1

𝑝 (𝑜 ′
ℎ
| 𝜋, 𝑖 ′

ℎ
) · 𝑝 (𝑖 ′

ℎ
)
)
· 𝑝 (𝜋),

where I = (𝑖1, ..., 𝑖𝐾 ), O = (𝑜1, ..., 𝑜𝐾 ), and E = (I ′,O ′), and
where I ′ = (𝑖 ′1, ..., 𝑖 ′𝐻 ), and O ′ = (𝑜 ′1, ..., 𝑜 ′𝐻 ). In other words,
E is conditionally independent of (I,O) given 𝜋 .
Now, we proceed with our proof. First, by the law of total

probability, we have

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | I, E) · 𝑝 (O | 𝜋 ′,I, E). (12)

To simplify Eq. 12, we show that 𝑝 (O | I, E, 𝜋 ′) = 𝑝 (O |
I, 𝜋 ′), and that 𝑝 (𝜋 ′ | I, E) = 𝑝 (𝜋 ′ | E). First, to show the
former, note that

𝑝 (𝜋 ′ | I, E) = 𝑝 (I, E | 𝜋 ′) · 𝑝 (𝜋 ′)
𝑝 (I, E) =

𝑝 (I) · 𝑝 (E | 𝜋 ′) · 𝑝 (𝜋 ′)
𝑝 (I) · 𝑝 (E)

=
𝑝 (E | 𝜋 ′) · 𝑝 (𝜋 ′)

𝑝 (E) = 𝑝 (𝜋 ′ | E).



PLDI ’21, June 20–25, 2021, Virtual, Canada Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig

Similarly, to show the latter, we have

𝑝 (O | I, E, 𝜋 ′) = 𝑝 (O, E,I, 𝜋 ′)
𝑝 (I, E, 𝜋 ′)

=
𝑝 (O | I, 𝜋 ′) · 𝑝 (I) · 𝑝 (E, 𝜋 ′)

𝑝 (I) · 𝑝 (E, 𝜋 ′) = 𝑝 (O | I, 𝜋 ′) .

Thus, plugging into Eq. 12, we have

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) · 𝑝 (O | 𝜋 ′,I) .

Note that this equation is identical to Eq. 6. Next, by defini-
tion of 𝑝 (𝑜 | 𝜋, 𝑖), we have

𝑝 (O | I, 𝜋 ′) =
𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘 )),

so it follows that

𝑝 (O | I, E) =
∑
𝜋 ′∈Π

𝑝 (𝜋 ′ | E) ·
𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘 )) . (13)

It remains to compute 𝑝 (𝜋 ′ | E). To this end, we have

𝑝 (𝜋 ′ | E) = 𝑝 (I ′,O′, 𝜋 ′)
𝑝 (E) =

𝑝 (O′ | 𝜋 ′,I ′) · 𝑝 (𝜋 ′) · 𝑝 (I)
𝑝 (E)

=

(∏𝐻
ℎ=1 1(𝑜

′
ℎ
= 𝜋 ′(𝑖 ′

ℎ
))

)
· 𝑝 (I)

|Π | · 𝑝 (E) =
1(𝜋 ′ ∈ Π∗) · 𝑝 (I)
|Π∗ | · |Π | · 𝑝 (E) .

Thus, letting N = |Π | · |Π∗ | · 𝑝 (E)/𝑝 (I), we have

𝑝 (𝜋 ′ | E) = 1(𝜋 ′ ∈ Π∗)
N . (14)

Note that since
∑
𝜋 ′∈Π 𝑝 (𝜋 ′ | E) = 1, we must haveN = |Π∗ |.

Plugging Eq. 14 into Eq. 13, we have

𝑝 (O | I, E) = 1
N

∑
𝜋 ′∈Π∗

𝐾∏
𝑘=1

1(𝑜𝑘 = 𝜋 ′(𝑖𝑘 )) .

The remaining steps follow Section 6. In particular, by the
definition of O𝑗 , we have

𝑝 (O | I, E) = 1
N

N∑
𝑗=1

1(O = O𝑗 ),

from which it follows that

𝐿̃(𝜋 ;E,I) =
∑
O
𝑝 (O | I, E) · 𝐿(𝜋 ;I,O) = 1

N

N∑
𝑗=1

𝐿(𝜋 ;I,O𝑗 ),

as claimed. □

B Additional ablation studies
To help readers better understand the design choices behind
WebQA, we present additional ablation studies evaluating
the impact of the different input modalities used by WebQA
as well as its sensitivity to the number of labeled webpages.
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Figure 13. Comparison be-
tweenWebQA and its variants
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Figure 14. 𝐹1 score achieved
in each task of the Conference
domains with respect to the
number of labeled examples.

B.1 Evaluation on the types of input
Recall that WebQA takes two types of queries as input: a
question and a set of keywords. In this section, we evaluate
the impact of these two types of inputs on the end-to-end
performance of the tool. Specifically, Figure 13 shows the
average 𝐹1 score for each evaluation domain for the following
two variants of WebQA:
• WebQA-NL: This variant only uses the question but
not the keywords.
• WebQA-KW: This variant only uses the keywords but
not the question.

As we can see from Figure 13, the system works the best
when both modalities of inputs are utilized. We also per-
formed 1-tailed 𝑡-tests to check whether the differences in
performance are significant and obtained p-values less than
0.01 in the comparison to the two variants. Thus, these re-
sults provide evidence that using a combination of questions
and keywords as inputs leads to more accurate results.

B.2 Evaluation on the number of labeled webpages
In this section, we evaluate WebQA’s sensitivity to the num-
ber of labeled examples. For this evaluation, we focus on all
6 tasks in the conference domain and vary the number of
training examples from one to five. Specifically, we obtain
these examples by removing a subset of the labeled webpages
used in our evaluation from Section 8.

Our results are presented in Figure 14. This graph shows
the 𝐹1 score (y-axis) with respect to the number of labeled
examples (x-axis). As shown in Figure 14, while performance
generally gets worse as we reduce the number of examples,
sensitivity to the number of examples varies from task to
task. For example, for the conf𝑡5 task, WebQA is able to
synthesize programs that achieve high 𝐹1 with only a single
labeled example, whereas 𝐹1 score drops significantly for
conf𝑡4 if we remove even one of the examples.
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