
Copyright

by

Xinyu Wang

2019

The Dissertation Committee for Xinyu Wang
certifies that this is the approved version of the following dissertation:

An Efficient Programming-by-Example Framework

Committee:

Isil Dillig, Supervisor

Greg Durrett

Keshav Pingali

Ranjit Jhala

Mayur Naik

An Efficient Programming-by-Example Framework

by

Xinyu Wang, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2019

Acknowledgments

I will always be in the debt of my advisor, Isil Dillig, for the support

and guidance I have received over the past six years. Isil introduced me to

the field of programming languages and taught me how to conduct scientific

research hand in hand. She taught me how to crystallize a mess of ideas into a

simple and precise solution and everything else to become a good researcher.

Besides teaching me how to do good research, Isil also showed me how to be

a supportive and caring advisor. She always has time for me whenever I need

to talk. I truly feel extremely lucky to be her student and have the privilege

to work with her during the past few years.

I also want to thank Rishabh Singh for helping me throughout my PhD.

Rishabh was my mentor during an internship at Microsoft Research in 2015,

where I did my first project on program synthesis with him. I fell in love with

Rishabh’s passion about research the first time I met him. He is always ready

to listen to me and brainstorm ideas with me no matter how crazy they are.

Thank you Risahbh for always being so encouraging.

I am also extremely grateful to Sumit Gulwani for his guidance during

my PhD career. The first paper on program synthesis that I read thoroughly is

his FlashFill paper, and I was extremely privileged to have him as another

mentor during my MSR internship. This dissertation is largely influenced by

iv

those ideas in FlashFill, and I hope I was able to advance the state-of-the-

art on top of that. Thank you Sumit for encouraging me to always focus on

doing great work.

I would like to thank Mayur Naik and Ranjit Jhala for being on my

dissertation committee and supporting me during my job search. I would also

like to thank Keshav Pingali and Greg Durrett for being on my dissertation

committee as well. I have recently started collaborating with Greg and it has

been quite a refreshing experience. I have learned immensely from him.

I want to thank Yu Feng for teaching me the basics of program analysis

and collaborating with me in a couple of projects during our first couple of

years at UT. I will never forget the days and nights that we have been working

together as well as what Austin looks like at 4 am in the morning. Thank you

my dear friend! I wish you all the best and success one can hope for.

I was fortunate to get to collaborate with many great researchers: Greg

Anderson, Jocelyn Chen, Isil Dillig, Thomas Dillig, Greg Durrett, Yu Feng,

Sumit Gulwani, Calvin Lin, Ken McMillan, Hovav Shacham, Rishabh Singh,

Shankara Pailoor, Yuepeng Wang, Navid Yaghmazadeh, and Xi Ye. I learned

a lot about how to conduct good research and improve myself as a researcher

and presenter while working with them. Thank y’all!

My colleagues in the UToPiA group made this long PhD journey much

shorter and much more enjoyable, and I wholeheartedly thank them for that.

The UToPiA family started with Yu and me (and also Isil, of course). Then,

v

our hacker Oswaldo and awesome Navid joined. After that, we had Yuepeng,

Kostas, Ruben, Valentin, and Jocob join the party. I will always miss the good

old days that we play board games at Isil’s house (and the pool parties). Now,

our UToPiA family has many more members: Jia, Greg, Jiayi, Jocelyn, Jon,

Rong, and Shankara. I really enjoy the past several years with all of you, and

I will miss everyone of you. Ciao Utopians!

Besides Utopians, I also want to thank my many other friends at UT

who made my everyday life full of joy: Bo, Chunzhi, Hangchen, Jian, Jianyu,

Wenguang, Ye, Yuanzhong, Zhiting, and many others.

Finally, I would like to thank my parents who support me all the way

until I finish my PhD. I dedicate this dissertation to you.

vi

An Efficient Programming-by-Example Framework

Publication No.

Xinyu Wang, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Isil Dillig

Due to the ubiquity of computing, programming has started to become

an essential skill for an increasing number of people, including data scientists,

financial analysts, and spreadsheet users. While it is well known that building

any complex and reliable software is difficult, writing even simple scripts is

challenging for novices with no formal programming background. Therefore,

there is an increasing need for technology that can provide basic programming

support to non-expert computer end-users.

Program synthesis, as a technique for generating programs from high-

level specifications such as input-output examples, has been used to automate

many real-world programming tasks in a number of application domains such

as spreadsheet programming and data science. However, developing special-

ized synthesizers for these application domains is notoriously hard.

This dissertation aims to make the development of program synthesizers

easier so that we can expand the applicability of program synthesis to more

vii

application domains. In particular, this dissertation describes a programming-

by-example framework that is both generic and efficient. This framework can

be applied broadly to automating tasks across different application domains.

It is also efficient and achieves orders of magnitude improvement in terms of

the synthesis speed compared to existing state-of-the-art techniques.

viii

Table of Contents

Acknowledgments iv

Abstract vii

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. Program Synthesis using Finite Tree Automata 9

2.1 Background on Finite Tree Automata 9

2.2 Program Synthesis using Finite Tree Automata 11

2.3 Implementation . 16

2.4 Application . 17

2.5 Evaluation . 26

Chapter 3. Improving Efficiency using Abstract Interpretation 35

3.1 Program Synthesis using Abstract Finite Tree Automata . . . 36

3.1.1 Abstractions . 36

3.1.2 Abstract Finite Tree Automata 39

3.2 Program Synthesis using Abstraction Refinement 43

3.2.1 Algorithm Architecture 44

3.2.2 Constructing Incorrectness Proofs 48

3.3 A Working Example . 56

3.4 Implementation . 59

3.5 Applications . 59

3.5.1 String Processing . 60

3.5.2 Tensor Reshaping . 62

ix

3.6 Evaluation . 64

3.6.1 String Processing . 65

3.6.2 Tensor Reshaping . 71

3.6.3 Discussion . 75

Chapter 4. Learning Abstractions for Program Synthesis 76

4.1 Overview . 76

4.2 An Illustrative Example . 78

4.3 Overall Abstraction Learning Algorithm 80

4.4 Synthesis of Predicate Templates 82

4.5 Synthesis of Abstract Transformers 87

4.5.1 Example Generation . 92

4.6 Evaluation . 95

4.6.1 Abstraction Learning 96

4.6.2 Evaluating the Usefulness of Learned Abstractions . . . 98

Chapter 5. Related Work 100

Chapter 6. Conclusion 106

Appendices 107

Appendix A. Proofs of Theorems 108

Bibliography 110

Vita 122

x

List of Tables

xi

List of Figures

1.1 Workflow of our synthesis framework. 4

2.1 A finite tree automaton example. 10

2.2 CFTA construction rules. 13

2.3 A CFTA example. 15

2.4 An example data completion task. 19

2.5 Data completion DSL syntax. 23

2.6 Data completion DSL semantics. 24

2.7 Data completion benchmark statistics. 27

2.8 Blaze vs. Prose in data completion domain. 29

2.9 Blaze vs. Sketch in data completion domain. 33

3.1 AFTA construction rules. 41

3.2 An AFTA example. 42

3.3 Top-level structure of our synthesis algorithm. 45

3.4 An incorrectness proof example. 47

3.5 Incorrectness proof construction algorithm. 49

3.6 Auxiliary EvalAbstract procedure used in Figure 3.5. . . . 49

3.7 Algorithm for finding a strengthening for the root. 51

3.8 Algorithm for finding a strengthening for nodes other than root. 51

3.9 A proof construction example. 54

3.10 An end-to-end working example. 57

3.11 String processing DSL. 60

3.12 Abstract transformers for string processing DSL. 61

3.13 Tensor reshaping DSL. 63

3.14 Abstract transformers for tensor reshaping DSL. 64

3.15 Blaze results for string processing domain. 68

3.16 Blaze vs. existing techniques for string processing domain. . 70

xii

3.17 Blaze results for tensor reshaping domain. 73

3.18 Blaze vs. existing techniques for tensor reshaping domain. . . 74

4.1 Schematic overview of our abstraction learning technique. . . . 77

4.2 Overall learning algorithm. 81

4.3 A tree interpolation problem and a tree interpolant (underlined). 84

4.4 Algorithm for learning abstract domain using tree interpolation. 85

4.5 Algorithm for synthesizing abstract transformers. 90

4.6 Example generation for learning abstract transformers. 93

4.7 Training results of Atlas. 97

4.8 Improvement of Blaze? over Blaze†. 99

xiii

Chapter 1

Introduction

Program synthesis aims to automatically construct a program in a given

programming language that satisfies a given specification. In particular, there

has been significant interest in example-guided program synthesis where the

specification is given as input-output examples. Such programming-by-example

(PBE) techniques have been successfully used to automate many programming

tasks that non-expert computer end-users struggle with, such as various data

wrangling tasks [21, 56, 58, 15, 70, 8, 33] that arise in the context of data science

and spreadsheets. Due to its potential to automate many programming tasks

encountered by non-expert users, programming-by-example has now become

a burgeoning research area.

Program synthesis is effectively a search problem: it searches for a pro-

gram in the given programming language that satisfies the given specification.

A key challenge in this area is how to deal with the enormous search space.

Even if we restrict ourselves to small programs up to a fixed size over a small

domain-specific language, the synthesizer may still need to explore a colossal

number of programs before it finds one that satisfies the specification.

In programming-by-example, a common search space reduction tech-

1

nique exploits the observation that programs which yield the same output on

the same input are indistinguishable with respect to the user-provided specifi-

cation and therefore are deemed “equivalent” to each other. Based on this ob-

servation, many techniques use a canonical representation of a set of programs

that share the same input-output behavior. For instance, enumeration-based

techniques, such as Escher [2] and Transit [68], discard programs that yield

the same output as a previously explored program. Similarly, synthesis algo-

rithms in the Flash* family [21, 50, 33, 8], use a single node to represent all

sub-programs that have the same input-output behavior. Thus, in all of these

algorithms, the size of the search space is determined by the number of output

values produced by the programs on the given inputs. While this search space

reduction technique is quite generic, it is not sufficient. In order to synthe-

size non-trivial programs and be truly useful in practice, existing synthesis

techniques also need to employ other domain-specific pruning strategies. For

example, enumeration-based techniques, such as λ2 [16] and Morpheus [15],

use a set of built-in deduction rules to prune the search space. This improves

the search efficiency dramatically, however, at the cost of restricting the ap-

plicability of these techniques to only those domains under consideration.

This dissertation describes a programming-by-example framework that

is both generic and efficient : it can be applied in different application domains

and at the same time achieves efficient synthesis. The key idea underlying this

framework is to leverage abstract interpretation. Building on top of the insight

in prior work [2, 68, 21, 50, 33] that we can reduce the size of the search space by

2

exploiting commonalities in the concrete input-output behavior of programs,

our approach considers two programs to belong to the same equivalence class

if they produce the same abstract output on the same input. Specifically,

the framework is parametrized with a domain-specific language (DSL) and its

abstract semantics as well as a set of input-output examples. Starting from

the input example, our algorithm symbolically executes programs in the DSL

using their abstract semantics and merges any programs that produce the same

abstract output into the same equivalence class. The algorithm then looks

for a program whose abstract behavior is consistent with the user-provided

examples. Because two programs that do not have the same input-output

behavior in terms of their concrete semantics may have the same behavior in

terms of their abstract semantics, our approach has the potential to reduce

the search space in a more dramatic way.

While this abstraction-based approach is able to synthesize programs

efficiently, one obvious implication is that the synthesized programs may now

be spurious. That is, a program that is consistent with the provided examples

with respect to the abstract semantics may not actually satisfy the examples

according to the concrete semantics. Our synthesis algorithm iteratively elim-

inates such spurious programs by performing a form of counterexample-guided

abstraction refinement. That is, starting with a (coarse) initial abstraction, we

first find a program P that is consistent with the input-output examples with

respect to the abstract semantics. If P also satisfies the examples according to

the concrete semantics, our algorithm returns P as a solution. Otherwise, we

3

refine the current abstraction, with the goal of ensuring that P (and hopefully

many other spurious programs) are no longer consistent with the specification

using the new abstraction. This refinement process continues until we either

find a program that indeed satisfies the input-output examples (according to

concrete semantics), or prove that no such DSL program exists.

Our framework can be instantiated for an application domain with a

suitable domain-specific language and its abstract semantics. Its workflow is

shown schematically in Figure 1.1. Note that for a new application domain, a

domain expert needs to provide a DSL with its abstract semantics. From an

end-user ’s perspective, the only input is a set of input-output examples.

End-users

Domain
expert

DSL

Abstract
semantics

Examples

Abstraction-based
algorithm

Abstraction
refinement

Candidate program P

P is correct

AbstractionInitial abstraction

P is spurious

Correct program
(w.r.t. concrete semantics)

Failure (no solution)

Figure 1.1: Workflow of our synthesis framework.

While this framework can be realized in different ways, our particular

development is based on a novel synthesis methodology that uses finite tree au-

4

tomata (FTAs). In the simplest form (with no abstractions), this FTA-based

technique takes as input a domain-specific language with concrete semantics

and a set of input-output examples. It then constructs a finite tree automaton

whose language correspond to exactly the set of programs that are consistent

with the given examples. Finally, our FTA-based method ranks these pro-

grams and returns a “best” program as the result. While this approach can,

in principle, be used to synthesize programs over a broad class of DSLs, it suf-

fers from the same scalability issue as other techniques that also use concrete

program semantics.

This dissertation further introduces the notion of abstract finite tree

automata (AFTAs), which can be used to synthesize programs over the DSLs

abstract semantics. Taking as input a domain-specific language with abstract

semantics and a set of input-output examples, our AFTA method constructs

a finite tree automaton whose language is exactly the set of programs that sat-

isfy the given examples according to the DSL’s abstract semantics. Therefore,

after ranking, the synthesized program is consistent with the specification in

terms of the DSLs abstract semantics. However, this program does not neces-

sarily satisfy the specification according to the DSL’s concrete semantics. In

order to avoid synthesizing such a spurious program, our technique automat-

ically refines the current abstraction by constructing a so-called incorrectness

proof. Such a proof annotates the nodes of the abstract syntax tree repre-

senting a spurious program P with predicates that should be included in the

new abstraction. Then, using this new abstraction, the AFTA constructed in

5

the next iteration is guaranteed to reject P , alongside many other spurious

programs accepted by the AFTA in the previous iteration.

We have implemented our proposed idea in a programming-by-example

framework called Blaze, which can be instantiated in different domains by

providing a suitable domain-specific language with its corresponding abstract

semantics. We have instantiated Blaze in three different application domains,

namely, data completion in data science, string processing in spreadsheets, and

tensor reshaping in MATLAB. In particular, our benchmark suite consists of

real-world programming tasks that are collected from the standard SyGuS

data set and online help forums such as StackOverflow. For each application

domain, we also compare Blaze with existing state-of-the-art synthesis tools.

Our experimental results show that Blaze can successfully synthesize pro-

grams to automate many tasks that arise across different application domains,

and it achieves orders of magnitude improvement in terms of the synthesis

speed compared to existing techniques.

In summary, this dissertation makes the following contributions:

• We introduce a novel programming-by-example paradigm that consists of

two components: an abstraction-based synthesis component that synthe-

sizes programs with respect to an abstraction and an abstraction refine-

ment component that refines the abstraction whenever it is not precise.

• We describe an abstraction-based synthesis technique that utilizes fi-

nite tree automata (FTAs). This technique constructs an FTA from the

6

DSL’s semantics and input-output examples, and the FTA’s language is

guaranteed to be the set of programs that satisfy the given examples.

• We present an abstraction refinement technique that is based on con-

structing an incorrectness proof. We show how to construct such a proof

for any spurious program and describe how to use it to refine the abstrac-

tion so that the same spurious program will not be synthesized again.

• We develop a generic and efficient programming-by-example framework,

called Blaze, that can be instantiated in different application domains

by providing a domain-specific language with its abstract semantics.

• We instantiate Blaze in three application domains, namely, data com-

pletion, string processing, and tensor reshaping. Our evaluation demon-

strates that Blaze can successfully synthesize non-trivial programs and

achieves significant improvement over existing techniques in terms of the

synthesis speed.

• We propose a technique for learning abstractions that are useful for in-

stantiating Blaze in a new domain. Our evaluation demonstrates that

this technique learns abstractions that allow Blaze to achieve signifi-

cantly better results compared to the manually crafted abstractions.

The rest of this dissertation is organized as follows. Chapter 2 presents

a generic synthesis framework that is based on finite tree automata. Chapter 3

describes a technique that improves the efficiency of this synthesis framework

7

by leveraging abstract interpretation. Chapter 4 further proposes a technique

that automatically learns abstractions that are useful for instantiating our syn-

thesis framework. Chapter 5 discusses related work and Chapter 6 concludes.

8

Chapter 2

Program Synthesis using Finite Tree

Automata

This chapter presents a program synthesis algorithm that is based on fi-

nite tree automata (FTAs). We first give some background on FTAs. Then, we

present a generic programming-by-example technique that is based on FTAs.

Finally, we describe how to instantiate this technique to automate data com-

pletion tasks and present our experimental results.

2.1 Background on Finite Tree Automata

A finite tree automaton is a type of state machine that deals with tree-

structured data. In particular, finite tree automata generalize standard finite

word automata by accepting trees rather than words (strings).

Definition 2.1.1. (FTA) A (bottom-up) finite tree automaton (FTA) a tuple

A = (Q,F,Qf ,∆) where Q is a set of states, F is an alphabet, Qf ⊆ Q is

a set of final states, and ∆ is a set of transitions (rewrite rules) of the form

f(q1, · · · , qn)→ q where we have q, q1, · · · , qn ∈ Q and f ∈ F .

We assume that every symbol f ∈ F is associated with an arity (rank),

and we use the notation Fk to denote the function symbols of arity k. We view

9

ground terms over alphabet F as trees such that a ground term t is accepted

by an FTA if we can rewrite t to a state q ∈ Qf using rules in ∆. The language

of an FTA A, denoted L(A), corresponds to the set of all ground terms that

are accepted by A.

Example 2.1.1. Consider the tree automaton A defined by states Q = {q0, q1},

F = F0 ∪ F1 ∪ F2, F0 = {0, 1}, F1 = {¬}, F2 = {∧}, final states Qf = {q0},

and the following transitions ∆:

1→ q1 0→ q0 ∧(q0, q0)→ q0 ∧(q0, q1)→ q0

¬(q0)→ q1 ¬(q1)→ q0 ∧(q1, q0)→ q0 ∧(q1, q1)→ q1

This tree automaton accepts exactly those propositional logic formulas (with-

out variables) that evaluate to false. As an example, Figure 2.1 shows the tree

for formula ¬(0 ∧ ¬1) where each sub-term is annotated with its state on the

right. This formula is not accepted by the tree automaton A because the rules

in ∆ “rewrite” the formula to state q1, which is not a final state.

Figure 2.1: A finite tree automaton example.

10

2.2 Program Synthesis using Finite Tree Automata

In this section, we describe how to apply finite tree automata in the

context of programming-by-example. Here, we consider a general setting where

given a domain-specific language (DSL) and a set of input-output examples,

we synthesize a program in the given DSL that satisfies the given examples.

Given a DSL and a set of examples, our key idea is to construct a finite

tree automaton that represents the set of all DSL programs that are consistent

with the examples. Specifically, the states of the FTA correspond to concrete

values, and the transitions are obtained using the DSL’s concrete semantics.

We therefore refer to such tree automata as concrete FTAs (CFTAs).

To understand the construction of CFTAs, suppose that we are given

a DSL with its syntax (defined by a context-free grammar G) and operational

semantics as well as a set of input-output examples ~e. We represent the input-

output examples ~e as a vector where each element in ~e is of the form ein → eout.

We also write ~ein (resp. ~eout) to represent the input (resp. output) examples.

Without loss of generality, we assume that programs always take a single input

x, as we can always represent multiple inputs as a list. Thus, the synthesized

program is always of the form λx.S, and S is defined by a context-free grammar

G = (T,N, P, s0) where:

• T is a set of terminal symbols which includes the input variable x. We

refer to terminals other than x as constants, and we use the notation TC

to denote these constants.

11

• N is a finite set of non-terminal symbols corresponding to sub-expressions

in the DSL.

• P is a set of production rules of the form s → f(s1, · · · , sn) where f is

a built-in DSL function and s, s1, · · · , sn are symbols in the grammar.

• s0 ∈ N is the topmost non-terminal symbol (start symbol).

We can construct the CFTA for a DSL and a set of input-output ex-

amples using the rules shown in Figure 2.2. First, the alphabet of the CFTA

consists of the built-in functions (operators) in the DSL. The states in the

CFTA are of the form q~cs, where s is a symbol (terminal or non-terminal) in

the grammar G and ~c is a vector of concrete values. Intuitively, the CFTA has

a state q~cs if symbol s can take values ~c for input examples ~ein. Similarly, the

existence of a transition f(q ~c1
s1
, · · · , q ~cn

sn) → q~cs means that applying function f

on the values c1j, · · · , cnj yields cj. Hence, as mentioned earlier, transitions of

the CFTA are constructed using the DSL’s concrete semantics.

We now explain the rules from Figure 2.2 in more detail. The first rule,

labeled Var, states that q~cx is a state whenever x is the input variable and ~c is

the input examples. The Const rule adds a state q
[JtK,··· ,JtK]
t for each constant

t in the grammar. The next rule, called Final, indicates that q~cs0
is a final

state if s0 is the start symbol and ~c is the output examples. The last rule,

labeled Prod, processes each production s → f(s1, · · · , sn) in the grammar

and generates new states and transitions. Essentially, this rule states that, if

symbol si can take value ~ci (i.e., there exists a state q~cisi) and executing f on

12

~c = ~ein

q~cx ∈ Q

(Var)

t ∈ TC ~c =
[
JtK, · · · , JtK

]
|~c| = |~e|

q~ct ∈ Q

(Const)

q~cs0 ∈ Q ~c = ~eout

q~cs0 ∈ Qf

(Final)

(s→ f(s1, · · · , sn)) ∈ P q ~c1s1 ∈ Q, · · · , q ~cnsn ∈ Q cj = Jf(c1j , · · · , cnj)K ~c = [c1, · · · , c|~e|]
q~cs ∈ Q,

(
f(q ~c1s1 , · · · , q ~cnsn)→ q~cs

)
∈ ∆

(Prod)

Figure 2.2: CFTA construction rules.

values c1j, · · · , cnj yields value cj, then we also have a state q~cs in the CFTA as

well as a transition f(q~c1
s1
· · · , q~cnsn)→ q~cs.

In general, the CFTA constructed using the rules from Figure 2.2 may

have infinitely many states. As standard in synthesis literature [50, 62], we

bound the size of the programs under consideration and search within a finite

space 1. In terms of the CFTA construction, this means that we add a state q~cs

only if the size of the smallest tree accepted by the automaton (Q,F, {q~cs},∆)

is lower than the threshold. This ensures the number of states in our CFTA

is finite and therefore our CFTA construction always terminates.

It can be shown that the language of the CFTA constructed from Fig-

ure 2.2 is exactly the set of abstract syntax trees (ASTs) of DSL programs that

are consistent with the input-output examples.2 Hence, once we construct such

a CFTA, the synthesis task boils down to finding an AST that is accepted by

the automaton. However, since there are typically many accepting ASTs, one

1The size of the search space is in general exponential to the bound.
2The proof can be found in Theorem 2.2.1 and Theorem 2.2.2 the appendix.

13

can use heuristics to identify a “best” AST (i.e., program) that satisfies the

input-output examples. For instance, one heuristic could be based on Occam’s

razor that always favors a program with the smallest size.

Example 2.2.1. To see how to construct CFTAs, let us consider a very simple

toy DSL, whose syntax is given by the following context-free grammar that only

contains two constants and allows addition and multiplication by constants:

n := id(x) | n+ t | n× t;
t := 2 | 3;

Here, id is the identity function.

Figure 2.3 shows the CFTA constructed for this DSL and the input-

output example 1→ 9. 3 It represents the set of DSL programs with at most

two + or × operators that satisfy the given example. For readability, we use

circles to represent states of the form qcn, diamonds to represent qcx and squares

to represent qct , and the number labeling the node shows the value of c.

We now explain how we construct states and transitions in the CFTA

for Example 2.2.1. There is a state q1
x since the value of x is 1 in the input

3We visualize a CFTA as a graph. Nodes in the graph correspond to states in the CFTA
and are labeled with concrete values. Edges correspond to transitions and are labeled with
the operator (i.e., + or ×) followed by the constant operand (i.e.., 2 or 3). For example,
the three transitions shown in Figure 2.3 (1) are represented graphically in Figure 2.3 (2).
Note that, in order to simplify our graphical representation, we do not include transitions
that involve nullary functions in the graph. For instance, the transition q2

2 → q2
t in (1) is

not included in (2). A transition of the form f(qc1n , q
c2
t) → qc3n is represented by an edge

from a node labeled c1 to another node labeled c3, and the connecting edge is labeled by f
followed by c2. For instance, the transition +(q1

n, q
2
t)→ q3

n in (1) is represented by an edge
from 1 to 3 with label +2 in (2).

14

Transitions

(1)

(2)

CFTA

Representation
we use in
examples

Figure 2.3: A CFTA example.

example (Var rule). The transitions are constructed using the DSL’s concrete

semantics (Prod rule). For instance, there is a transition id(q1
x)→ q1

n because

id(1) yields value 1 for symbol n. Similarly, there is a transition +(q1
n, q

2
t)→ q3

n

15

since the result of adding 1 and 2 is 3. The only accepting state is q9
n since the

start symbol in the grammar is n and the output example is 9. This CFTA

accepts two programs, namely, (id(x) + 2) × 3 and (id(x) × 3) × 3. Observe

that these are the only two programs with at most two + or × operators in

the DSL that are consistent with the given input-output example 1→ 9.

2.3 Implementation

We have implemented our FTA-based synthesis algorithm in a frame-

work called Blaze, written in Java. Blaze is parametrized over a DSL and

its operational semantics. It consists of two main modules, namely, an FTA

construction procedure and a ranking algorithm. Since our implementation of

the FTA construction procedure follows our technical presentation, we only

focus on the implementation of the ranking algorithm, which is used to find a

“best” program that is accepted by the FTA.

Our heuristic ranking algorithm returns a minimum-cost AST accepted

by the FTA, where the cost of an AST is defined as follows:

Cost(Leaf(t)) = Cost(t)

Cost(Node(f, ~Π)) = Cost(f) +
∑

iCost(Πi)

In the above definition, Leaf(t) represents a leaf node of the AST la-

beled with terminal t, and Node(f, ~Π) represents a non-leaf node labeled with

DSL operator f and sub-trees ~Π. Observe that the cost of an AST is essen-

tially calculated using the costs of the DSL operators and terminals, which are

provided by the domain expert.

16

In our implementation, we identify a minimum-cost AST accepted by

an FTA using the algorithm presented by [19] for finding a minimum weight

B-path in a weighted hypergraph. In the context of the ranking algorithm,

we view an FTA as a hypergraph where states correspond to nodes and a

transition f(q1, · · · , qn) → q represents a B-arc ({q1, · · · , qn}, {q}) where the

weight of the arc is given by the cost of the DSL operator f . We also add a

dummy node r in the hypergraph and an edge with weight cost(s) from r to

every node labeled qcs where s is a terminal symbol in the grammar. Given such

a hypergraph representation of the FTA, the minimum-cost AST accepted by

the FTA corresponds to a minimum-weight B-path from the dummy node r

to a node representing a final state in the FTA.

2.4 Application

We instantiate Blaze in an application domain called data completion.

In what follows, we briefly describe what data completion tasks look like as

well as how we instantiate our Blaze framework in this domain.

Data Completion. Many applications store data in a tabular format. For

example, Excel spreadsheets, R dataframes, and relational databases all view

the underlying data as a 2-dimensional table consisting of cells. In this context,

a common task is to fill the values of some cells based on values stored in other

cells. For instance, consider the following common data completion tasks:

17

• Data imputation: In statistics, imputation means replacing missing

data with substituted values. Since missing values can hinder data an-

alytics tasks, users often need to fill missing values using other related

entries in the table. For instance, data imputation arises frequently in

statistical computing frameworks, such as R and pandas.

• Spreadsheet computation: In spreadsheets, users need to calculate

the value of a cell based on values from other cells. For instance, a

common task is to introduce new columns, where each value in the new

column is derived from values in existing columns.

• Virtual columns in databases: In relational databases, users some-

times create views that store the result of some database query. In this

context, a common task is to add virtual columns whose values are com-

puted using existing entries in the view.

As illustrated by these examples, users often need to complete missing

values in tabular data. While some of these data completion tasks are fairly

straightforward, many others require non-trivial programming knowledge that

is beyond the expertise of end-users and data scientists.

To illustrate a typical data completion task, consider an example shown

in Figure 2.4. Here, the table stores measurements for different people during

a certain time period, where each row represents a person and each column

18

 5
-1
5
4

Figure 2.4: An example data completion task.

corresponds to a day. As explained in a StackOverflow post 4, a data scien-

tist analyzing this data wants to compute the difference of the measurements

between the first and last days for each person and record this information in

the Delta column. Since the table contains a large number of rows (of which

only a small subset is shown in Figure 2.4), manually computing this data

is prohibitively cumbersome. Furthermore, since each person’s start and end

date is different, automating this task requires non-trivial programming logic.

We have applied program synthesis techniques in this domain in order

to allow non-expert users to automate data completion tasks in tabular data

sources, such as dataframes, spreadsheets, and relational databases. Our syn-

thesis methodology is based on two key insights that we gained by analyzing

dozens of posts on online forums: First, it is often easy for end-users to specify

which operators should be used in the data completion task and provide a

specific instantiation of the operands for a few example cells. However, it is

typically very difficult for end-users to express the general operand extraction

logic. For instance, for the example from Figure 2.4, the user knows that the

4http://stackoverflow.com/questions/30952426/substract-last-cell-in-row-from-first-cell-
with-number

19

missing value can be computed as C1−C2, but he is not sure how to implement

the logic for extracting C1, C2 in the general case.

Based on this observation, our synthesis methodology for data comple-

tion combines program sketching and programming-by-example. Specifically,

given a formula sketch (e.g., SUM(?1,AVG(?2,?3))) and a few input-output

examples for each hole, our technique automatically synthesizes a program

that can be used to fill all missing values in the table. For instance, in our

running example, the user provides the sketch MINUS(?1,?2) and the following

input-output examples for the two holes:

?1 ?2

(A, Delta) 7→ (A, Day 6) (A, Delta) 7→ (A, Day 3)
(B, Delta) 7→ (B, Day 4) (B, Delta) 7→ (B, Day 1)

Given these examples, our technique automatically synthesizes a program that

can be used to fill all values in the Delta column in Figure 2.4.

In what follows, we first describe our specification language that com-

bines sketching and examples. Then, we present a PBE technique that gener-

ates programs from the given examples to replace holes in the sketch. In partic-

ular, our PBE technique is based on an instantiation of the Blaze framework.

Specifications. A specification in our synthesis methodology is a pair (S,E),

where S is a formula sketch and E is a set of input-output examples. Specifi-

cally, formula sketches are defined by the following grammar:

Sketch S := t | F (S1, · · · , Sn), F ∈ Λ

Term t := const | ?id

20

Here, Λ denotes a family of pre-defined functions, such as SUM, MAX, etc. Holes

in the sketch represent unknown cell extraction programs to be synthesized.

Observe that formula sketches can contain multiple functions. For instance,

SUM(MAX(?1, ?2), 1) is a valid sketch and indicates that a missing value in the

table should be filled by adding 1 to the maximum of two unknown cells.

In many cases, the data completion task involves copying values from

an existing cell. In this case, the user can express the intent using the identity

sketch ID(?1). Since this sketch is quite common, we abbreviate it using the

notation ?1.

In addition to the sketch, users are also expected to provide one or more

input-output examples E for each hole. Specifically, examples E map each hole

?id in the sketch to a set of pairs of the form i 7→ [o1, · · · , on], where i is an

input cell and [o1, · · · , on] is the desired list of output cells. Hence, examples

have the following shape:

Examples E :=
{
?id ↪→ {i 7→ [o1, · · · , on]}

}
Here, each cell in the table is represented as a pair (x, y), where x and y denote

the row and column of the cell respectively.

Given a specification (S,E), the key learning task is to synthesize a

program Pid for each hole ?id such that Pid satisfies all examples E[?id].
5 For

a list of programs P = [P1, · · · , Pn], we write S[P] to denote the resulting

5Since expressions in the holes of the sketch formula only depend on input cells (and not
on other holes), running the synthesis algorithm once per hole is sufficient.

21

program that is obtained by replacing each hole ?id in sketch S with Pid. Once

a cell extraction program Pid is synthesized for each hole, it computes missing

values in table T using S[P](T, c) where c denotes a cell with missing value. In

the rest of this section, we assume that missing values in the table are identified

using the special symbol ?. For instance, the analog of ? is the symbol NA in

R and blank cell in Excel.

Domain-specific language. The syntax of the DSL is shown in Figure 2.5,

and its denotational semantics is presented in Figure 2.6. We now review the

key constructs in the DSL together with their semantics.

A cell extraction program π takes as input a table T and a cell x, and

returns a list of cells [c1, · · · , cn] or the special value ⊥. Here, ⊥ can be viewed

as an “exception” and indicates that π fails to extract any cell for input x. A

cell extraction program π is either a simple program ρ without branches or a

conditional of the form Seq(ρ, π). As shown in Figure 2.6, the semantics of

Seq(ρ, π) is that the argument π is evaluated only if ρ fails (i.e., returns ⊥).

Our DSL includes conditionals in the form of a Seq construct rather than a

full-fledged conditional statement (e.g., if (C) then · · · else · · ·) because we

have found it to be sufficiently expressive to capture most real-world data com-

pletion scenarios. This design choice also simplifies the synthesis task because

the learning algorithm does not need to infer predicates for each branch.

Let us now consider the syntax and semantics of simple programs ρ. A

simple program is either a list of cell extraction programs (i.e.., List(τ1, · · · , τn)),

22

Extractor π := λT.λx.ρ | λT.λx.Seq(ρ, π)

Simple prog. ρ := List(τ1, · · · , τn) | Filter(τ1, τ2, τ3, λy.λz.p)
Cell prog. τ := x | GetCell(τ, dir, k, λy.λz.p)
Predicate p := True | Val(χ(z)) = s | Val(χ(z)) 6= s | Val(χ(y)) = Val(χ(z)) | p1 ∧ p2

Cell mapper χ := λc.c | λc.(k, col(c)) | λc.(row(c), k)

Direction dir := u | d | l | r

Figure 2.5: Data completion DSL syntax.

or a filter construct of the form Filter(τ1, τ2, τ3, λy.λz.p). Here, τ denotes a cell

program for extracting a single cell. Filter returns all cells between τ2 and τ3

that satisfy the predicate φ. Here, φ takes two arguments y and z, where y is

bound to the result of τ1 and z is bound to each of the cells between τ2 and τ3.

List and Filter constructs are necessary because many data completion tasks

require extracting a range of values rather than a single value.

The key building block of cell extraction programs is the GetCell con-

struct. In the simplest case, it has the form GetCell(x, dir, k, λy.λz.p) where

x is a cell, dir is a direction (up u, down d, left l, right r), k is an integer

constant drawn from the range [−3, 3], and p is a predicate. The semantics of

this construct is that it finds the k’th cell satisfying predicate φ in direction dir

from the starting cell x. For instance, the expression GetCell(x, r, 0, λy.λz.True)

refers to x itself, while GetCell(x, r, 1, λy.λz.True) extracts the neighboring cell

to the right of cell x. An interesting point about the GetCell construct is that

it is recursive: For instance, if x is bound to cell (r, c), then the expression

GetCell(GetCell(x, u, 1, λy.λz.True), r, 1, λy.λz.True)

23

JVal(χ(z)) = sKT,c1,c2 = Eval(T(χ(c2)),=, s)

JVal(χ(z)) 6= sKT,c1,c2 = Eval(T(χ(c2)), 6=, s)
JVal(χ(y)) = Val(χ(z))KT,c1,c2 = Eval(T(χ(c1)),=,T(χ(c2)))

Jp1 ∧ p2KT,c1,c2 = Jp1KT,c1,c2 ∧ Jp2KT,c1,c2

Eval(s1, /, s2) =

{
false if s1 = ? or s2 = ?

s1 / s2 otherwise

JxKT,c = c

JGetCell(τ, dir, k, λy.λz.p)KT,c =


⊥ if JτKT,c =⊥ or |k| ≥ len(L)

L.get(k) if k ≥ 0

L.get
(
len(L)− |k|

)
if k < 0

where L = filter
(
range(JτKT,c, dir), (λy.λz. p)JτKT,c

)

JList(τ1, · · · , τn)KT,c = Jτ1KT,c] · · ·] JτnKT,c

JFilter(τ1, τ2, τ3, λy.λz.p)KT,c =

{
⊥ if Jτ1KT,c =⊥ or Jτ2KT,c =⊥ or Jτ3KT,c =⊥
filter

(
range(Jτ2KT,c, Jτ3KT,c), (λyλz. p)Jτ1KT,c

)
otherwise

c =

{
⊥ if c =⊥

[c] otherwise

c1] c2 =

{
⊥ if c1 =⊥ or c2 =⊥
c1 :: c2 otherwise

JSeq(ρ, π)KT,c =

{
JρKT,c if JρKT,c 6=⊥
JπKT,c otherwise

Figure 2.6: Data completion DSL semantics.

24

retrieves the cell at row r − 1 and column c + 1. Effectively, the recursive

GetCell construct allows the program to “make turns” when searching for the

target cell.

Another important point about the GetCell construct is that it returns

⊥ if the k’th entry from the starting cell falls outside the range of the table.

For instance, if the input table has 3 rows and variable x is bound to the cell

in the third row and first column of the table, then GetCell(x, d, 1, λy.λz.True)

yields ⊥. Finally, another subtlety about GetCell is that the k value can be

negative. For instance, GetCell(x, u,−1, λy.λz.True) returns the uppermost

cell in x’s column.

So far, we have seen how the GetCell construct allows us to express

geometrical relationships by specifying a direction and a distance. However,

many real-world data extraction tasks require combining geometrical and re-

lational reasoning. For this purpose, predicates in our DSL can be constructed

using conjunctions of relations from an expressive family. For example, unary

predicates Val(χ(z)) = s and Val(χ(z)) 6= s in our DSL check whether or not

the value of a cell χ(z) is equal to a string constant s. Similarly, binary pred-

icates Val(χ(y)) = Val(χ(z)) check whether two cells contain the same value.

Observe that the mapper function χ used in the predicate yields a new cell

that shares some property with its input cell z. For instance, the cell mapper

λc.(row(c), 1) yields a cell that has the same row as c but whose column is

1. The use of mapper functions in predicates allows us to further combine

geometric and relational reasoning.

25

2.5 Evaluation

Now we present our experimental results on 84 data completion bench-

marks that are collected from online forums.

Benchmark information. To evaluate our FTA-based synthesis technique,

we collected a total of 84 data completion problems from StackOverflow using

the following methodology: First, we collected all those posts that contain rel-

evant keywords such as “data imputation”, “missing value”, “missing data”,

“spreadsheet formula”, and so on. Then, we inspected each of these posts and

retained exactly those that satisfy the following criteria:

• The question in the post should involve a data completion task.

• The post should contain at least one example.

• The post should include either the desired program or its English de-

scription.

Among the 84 benchmarks collected using this methodology, 46 involve

data imputation in languages such as R and Python, 32 perform spreadsheet

computation in Excel and Google Sheets, and 6 involve data completion in

relational databases. More detailed statistics can be found in Figure 2.7.

Recall that an input to our synthesis algorithm consists of (a) a small

example table, (b) a sketch formula, and (c) a mapping from each hole in the

sketch to a set of examples of the form i 7→ [o1, · · · , on]. As it turns out, most

26

Benchmark category description Formula sketch

C
o
u
n
t

A
v
g
.

ta
b
le

si
z
e

A
v
g
.

#
e
x
a
m

p
le

s
p

e
r

h
o
le

1
Fill missing value by previous/next non-missing value
with/without same keys.

?1 24 24.4 5.3

2
Fill missing value by previous (next) non-missing value
with/without same keys if one exists, otherwise use next (pre-
vious) non-missing value

?1 9 25.6 5.7

3
Replace missing value by the average of previous and next non-
missing values.

AVG(?1, ?2) 3 12.7 2.3

4
Fill missing value by the average of previous and next non-
missing values, but if either one does not exist, fill by the
other one.

AVG(?1) 2 21.5 4

5
Replace missing value by the sum of previous non-missing
value (with or without the same key) and a constant.

SUM(?1, c) 3 31.3 5.7

6
Replace missing value by the average of all non-missing values
in the same row/column (with or without same keys).

AVG(?1) 7 21.7 3.1

7
Replace missing value by the max/min of all non-missing val-
ues in the column with the same key.

MAX(?1), MIN(?1) 2 28.0 3

8
Fill missing value by linear interpolation of previous/next non-
missing values.

INTERPOLATE(?1, ?2) 2 28.0 7.5

9
Fill cells by copying values from other cells in various non-
trivial ways, such as by copying the first/last entered entry in
the same/previous/next row, and etc.

?1 13 44.5 10.2

10
Fill value by the sum of a range of cells in various ways, such
as by summing all values to the left with the same keys.

SUM(?1) 4 47.8 10.3

11 Fill cells with the count of non-empty cells in a range. COUNT(?1) 1 32.0 3

12 Fill cells in a column by the sum of values from two other cells. SUM(?1, ?2) 2 38.3 6.5

13
Fill each value in a column by the difference of values in two
other cells in different columns found in various ways.

MINUS(?1, ?2) 4 39.0 3.5

14
Replace missing value by the average of two non-missing values
to the left.

AVG(?1, ?2) 1 32.0 5

15
Complete a column so that each value is the difference of the
sum of a range of cells and another fixed cell.

MINUS(SUM(?1), ?2) 1 27.0 8

16
Fill each value in a column by the difference of a cell and sum
of a range of cells.

MINUS(?1, SUM(?2)) 1 10.0 3

17
Create column where each value is the max of previous five
cells in sibling column.

MAX(?1) 1 60.0 15

18
Fill blank cell in a column by concatenating two values to its
right.

CONCAT(?1, ?2) 1 12.0 2

19

Fill missing value by the linear extrapolation of the next two
non-missing values to the right, but if there is only one or zero
such entries, fill by the linear extrapolation of the previous two
non-missing values to the left.

EXTRAPOLATE(?1) 1 121.0 16

20
Replace missing values by applying an equation (provided by
the user) to the previous and next non-missing values.

SUM(?1,
MINUS(?1,?2)

ROW(?2)−ROW(?1)
) 1 60.0 9

21
Fill missing value using the highest value or linear interpola-
tion of two values before and after it, based on two different
criteria.

— 1 60.0 10

Summary 84 32.0 6.3

Figure 2.7: Data completion benchmark statistics.

27

posts contain exactly the type of information: Most questions related to data

completion already come with a small example table, a simple formula (or a

short description in English), and a few examples that show how to instantiate

the formula for concrete cells in the table.

Experimental setup. Since Blaze is meant to be used in an interactive

mode where the user iteratively provides more examples, we simulated a realis-

tic usage scenario in the following way: First, for each benchmark, we collected

the set S of all examples provided by the user in the original StackOverflow

post. We then randomly picked a single example e from S and used Blaze

to synthesize a program P satisfying e. If P failed any of the examples in S,

we then randomly sampled a failing test case e′ from S and used Blaze to

synthesize a program that satisfies both e and e′. We repeated this process of

randomly sampling examples from S until either (a) the synthesized program

P satisfies all examples in S, or (b) we exhaust all examples in S, or (c) we

reach a time-out of 30 seconds per synthesis task. At the end of this process,

we manually inspected the program P synthesized by Blaze and checked

whether P conforms to the description provided by the user.

Results. We present the main results of our evaluation of Blaze in Fig-

ure 2.8. The column “# Solved” shows the number of benchmarks that can

be successfully solved by Blaze for each benchmark category. Overall, Blaze

can successfully solve over 92% of the benchmarks. Among the six benchmarks

28

C
at

eg
or

y

C
ou

n
t

Blaze Prose

#
S

ol
ve

d

R
u
n
n
in

g
ti

m
e

p
er

b
en

ch
m

ar
k

(s
ec

) #
E

x
am

p
le

s
u
se

d
p

er
h
ol

e

#
S

ol
v
ed

R
u
n
n
in

g
ti

m
e

p
er

b
en

ch
m

ar
k

(s
ec

) #
E

x
am

p
le

s
u
se

d
p

er
h
ol

e

Avg. Med. Avg. Med. Avg. Med. Avg. Med.

1 24 24 0.41 0.04 1.1 1.0 24 1.32 0.73 1.1 1.0
2 9 9 0.50 0.13 2.7 3.0 7 4.88 1.13 2.4 2.0
3 3 3 0.05 0.04 1.0 1.0 3 5.16 5.89 1.0 1.0
4 2 2 0.19 0.19 2.0 2.0 1 2.11 2.11 2.0 2.0
5 3 3 0.18 0.14 1.3 1.0 3 0.90 0.99 1.7 1.0
6 7 6 0.09 0.07 1.8 2.0 5 15.86 8.31 1.8 2.0
7 2 2 0.66 0.66 2.0 2.0 1 296.17 296.17 3.0 3.0
8 2 2 0.15 0.15 1.0 1.0 1 19.72 19.72 1.0 1.0
9 13 10 1.55 0.31 2.8 2.0 5 6.02 1.52 1.4 1.0
10 4 3 0.42 0.30 1.7 2.0 1 2.27 2.27 2.0 2.0
11 1 1 0.59 0.59 1.0 1.0 0 — — — —
12 2 2 0.51 0.51 1.0 1.0 1 66.95 66.95 2.0 2.0
13 4 4 0.51 0.46 2.0 2.0 2 1.52 1.52 2.0 2.0
14 1 1 0.16 0.16 3.0 3.0 0 — — — —
15 1 1 0.11 0.11 2.0 2.0 1 148.95 148.95 3.0 3.0
16 1 1 0.03 0.03 2.0 2.0 0 — — — —
17 1 1 1.96 1.96 4.0 4.0 1 183.19 183.19 2.0 2.0
18 1 1 0.01 0.01 1.0 1.0 1 1.44 1.44 1.0 1.0
19 1 1 13.66 13.66 5.0 5.0 0 — — — —
20 1 1 1.92 1.92 1.0 1.0 0 — — — —
21 1 0 — — — — 0 — — — —
All 84 78 0.70 0.19 1.8 2.0 57 16.09 1.18 1.5 1.0

Figure 2.8: Blaze vs. Prose in data completion domain.

that cannot be solved by Blaze, one benchmark (Category 21) cannot be ex-

pressed using our specification language. For the remaining 5 benchmarks,

Blaze fails to synthesize the correct program due to limitations of our DSL,

mainly caused by the restricted vocabulary of predicates. For instance, two

benchmarks require capturing the concept “nearest”, which is not expressible

by our current predicate language.

29

Next, let us consider the running time of Blaze, which is shown in the

column labeled “Running time per benchmark”. We see that Blaze is quite

fast in general and takes an average of 0.7 seconds to solve a benchmark. The

median time to solve these benchmarks is 0.19 seconds. In cases where the

sketch contains multiple holes, the reported running times include the time

to synthesize all holes in the sketch. In more detail, Blaze can synthesize

75% of the benchmarks in under one second and 87% of the benchmarks in

under three seconds. There is one benchmark (Category 19) where Blaze’s

running time exceeds 10 seconds. This is because (a) the size of the example

table provided by the user is large in comparison to other example tables, and

(b) the table contains over 100 irrelevant strings that form the universe of

constants used in predicates. These irrelevant entries cause Blaze to consider

over 30, 000 predicates to be used in the GetCell and Filter programs.

Finally, let us look at the number of examples used by Blaze, as shown

in the column labeled “# Examples used per hole”. As we can see, the number

of examples used by Blaze is much smaller than the total number of examples

provided in the benchmark (as shown in Figure 2.7). Specifically, while Stack-

Overflow users provide about 6 examples on average, Blaze requires only

about 2 examples to synthesize the correct program. This statistic highlights

that Blaze can effectively learn general programs from very few input-output

examples.

30

Comparison with Prose. Since our FTA-based synthesis technique can

be viewed as a new version space learning algorithm, we also empirically com-

pare our approach against Prose [50], which is the state-of-the-art version

space learning framework that has been deployed in Microsoft products. Prose

propagates example-based constraints on subexpressions using the inverse se-

mantics of DSL operators and then represents all programs that are consistent

with the examples using the VSA data structure [31].

The Prose results are presented under the Prose column in Figure 2.8.

Overall, Prose can successfully solve 68% of the benchmarks in an average of 15

seconds, whereas Blaze can solve 92% of the benchmarks in an average of 0.7

seconds. These results indicate that Blaze is superior to Prose, both in terms

of its running time and the number of benchmarks that it can solve. Upon

further inspection, we found that the tasks that can be automated using Prose

tend to be relatively simple ones, where the input table size is very small or the

desired program is relatively simple. For benchmarks that have larger tables or

involve more complex synthesis tasks (e.g., require the use of Filter operator),

Prose does not scale well – it might take much longer time than Blaze, time

out in 10 minutes, or run out of memory. On the other hand, Blaze achieves

better performance than Prose because the FTA representation used in Blaze

is more compact than the VSA data structure used in Prose. In particular, in

our experiments, the average FTA size is 2k, whereas the average VSA volume

is 70k. Among the benchmarks that both techniques can solve, the reduction

ratio of the data structure size ranges from 2x to 100x.

31

The careful reader may have observed in Figure 2.8 that Prose requires

fewer examples on average than Blaze (1.5 vs. 1.8). However, this is quite

misleading, as the benchmarks that can be solved using Prose are relatively

simple and therefore require fewer examples on average.

Comparison with Sketch. Since our synthesis methodology involves a

sketching component in addition to examples, we also compare Blaze against

Sketch, which is the state-of-the-art tool for program sketching, and the results

are shown in Figure 2.9. To compare Blaze against Sketch, we define the DSL

operators using nested and recursive structures in Sketch. For each struct, we

define two corresponding functions, namely RunOp and LearnOp. The RunOp

function defines the semantics of the operator whereas LearnOp encodes a

Sketch generator that defines the bounded space of all possible expressions

in the DSL. The specification is encoded as a sequence of assert statements

of the form assert RunExtractor(LearnExtractor(), ik) == Lk, where (ik, Lk)

denotes the input-output examples. To optimize the sketch encoding further,

we use the input-output examples inside the LearnOp functions, and we also

manually unroll and limit the recursion in predicates and cell programs to 3

and 4 respectively.

When we use the complete DSL encoding, Sketch was able to solve only

1 benchmark out of 84 within a time limit of 10 minutes per benchmark. We

then simplified the Sketch encoding by removing the Seq operator, which al-

lows us to synthesize only conditional-free programs. As shown in Figure 2.8,

32

C
at

eg
or

y

C
o
u

n
t

Blaze Sketch

#
S

o
lv

ed

R
u
n
n
in

g
ti

m
e

p
er

b
en

ch
m

ar
k

(s
ec

) #
E

x
am

p
le

s
u
se

d
p

er
h
ol

e

#
S

o
lv

ed
(2

ex
s)

R
u
n
n
in

g
ti

m
e

p
er

b
en

ch
m

ar
k

(s
ec

)

#
S

ol
v
ed

(3
ex

s)

R
u
n
n
in

g
ti

m
e

p
er

b
en

ch
m

ar
k

(s
ec

)

Avg. Med. Avg. Med. Avg. Med. Avg. Med.

1 24 24 0.41 0.04 1.1 1.0 6 230 224 6 314 281
2 9 9 0.50 0.13 2.7 3.0 2 182 182 0 — —
3 3 3 0.05 0.04 1.0 1.0 0 — — 0 — —
4 2 2 0.19 0.19 2.0 2.0 0 — — 0 — —
5 3 3 0.18 0.14 1.3 1.0 0 — — 0 — —
6 7 6 0.09 0.07 1.8 2.0 5 353 352 4 399 400
7 2 2 0.66 0.66 2.0 2.0 0 — — 0 — —
8 2 2 0.15 0.15 1.0 1.0 1 501 501 0 — —
9 13 10 1.55 0.31 2.8 2.0 2 507 507 0 — —
10 4 3 0.42 0.30 1.7 2.0 0 — — 0 — —
11 1 1 0.59 0.59 1.0 1.0 3 223 182 3 353 298
12 2 2 0.51 0.51 1.0 1.0 0 — — 0 — —
13 4 4 0.51 0.46 2.0 2.0 0 — — 0 — —
14 1 1 0.16 0.16 3.0 3.0 0 — — 0 — —
15 1 1 0.11 0.11 2.0 2.0 0 — — 0 — —
16 1 1 0.03 0.03 2.0 2.0 0 — — 0 — —
17 1 1 1.96 1.96 4.0 4.0 1 78 78 1 81 81
18 1 1 0.01 0.01 1.0 1.0 0 — — 0 — —
19 1 1 13.66 13.66 5.0 5.0 0 — — 0 — —
20 1 1 1.92 1.92 1.0 1.0 0 — — 0 — —
21 1 0 — — — — 0 — — 0 — —
All 84 78 0.70 0.19 1.8 2.0 20 289 226 14 330 314

Figure 2.9: Blaze vs. Sketch in data completion domain.

Sketch terminated on 20 benchmarks within 10 minutes using 2 input-output

examples. The average time to solve each benchmark was 289 seconds. How-

ever, on manual inspection, we found that most of the synthesized programs

were not the desired ones. When we increase the number of input-output ex-

amples to 3, 14 benchmarks terminated with an average of 330 seconds, but

only 5 of these 14 programs were the desired ones. We believe that Sketch

33

performs poorly due to two reasons: First, the constraint-based encoding in

Sketch does not scale for complex synthesis tasks that arise in the data com-

pletion domain. Second, since it is difficult to encode our domain-specific

ranking heuristics using primitive cost operations supported by Sketch, it of-

ten generates undesired programs. In summary, this experiment confirms that

a general-purpose program sketching tool is not adequate for automating the

kinds of data completion tasks that arise in practice.

34

Chapter 3

Improving Efficiency using Abstract

Interpretation

In the previous chapter, we saw a novel synthesis approach that is based

on CFTAs. Essentially, a CFTA associates each grammar symbol with concrete

values by executing the DSL constructs on the provided input examples. While

this CFTA-based approach is quite generic, it suffers from scalability issues as

the number of states in the automaton grows exponentially.

In this chapter, we present a more scalable synthesis algorithm, which

is based on abstract interpretation [12]. We first describe an abstraction-based

synthesis algorithm that is able to synthesize programs consistent with the

specification according to the abstract semantics. However, the synthesized

program might not satisfy the specification according to the concrete seman-

tics. We then describe a technique that iteratively refines the abstraction and

ensures we always synthesize programs that satisfy the specification according

to the concrete semantics.

35

3.1 Program Synthesis using Abstract Finite Tree Au-
tomata

In this section, we present an efficient programming-by-example tech-

nique based on abstract finite tree automata (AFTAs). Given a DSL with its

abstract semantics as well as a set of input-output examples, our AFTA-based

algorithm synthesizes a program that satisfies the given examples with respect

to the DSL’s abstract semantics. This abstraction-based approach essentially

performs predicate abstraction over the concrete values of each grammar sym-

bol. Therefore, we first start by reviewing some requirements on the underlying

abstract domain before we describe our AFTA-based synthesis algorithm.

3.1.1 Abstractions

As mentioned earlier, CFTAs associate each grammar symbol with con-

crete values by executing the DSL’s concrete semantics on the user-provided

inputs. To construct AFTAs, we will associate each grammar symbol with ab-

stract values by executing the DSL’s abstract semantics on the user-provided

inputs. In the rest of this dissertation, we assume abstract values are repre-

sented as conjunctions of predicates of the form f(s) op c, where s is a symbol

in the DSL’s grammar, f is a function, and c is a constant. For instance, if

symbol s corresponds to an array, then predicate len(s) > 0 may indicate that

the array is non-empty. Similarly, if s represents a matrix, then rows(s) = 4

could indicate that s contains exactly 4 rows.

Our AFTA-based synthesis algorithm is parametrized with a DSL that

36

is provided by a domain expert. In particular, a domain expert provides the

DSL’s syntax (written in a context-free grammar) and its abstract semantics.

We assume the abstract semantics is specified by a universe of predicates and

a set of abstract transformers.

Universe of predicates. A domain expert provides a suitable universe U

of predicates that may appear in the abstract domain used in our algorithm 1.

In particular, given a family of functions F, a set of operators O, and a set

of constants C specified by the domain expert, the universe U includes any

predicate of the form f(s) op c where f ∈ F, op ∈ O, c ∈ C, and s is symbol

in the DSL’s grammar. To ensure the completeness of our synthesis approach,

we require that F always contains the identity function, O includes equality,

and C includes all concrete values that grammar symbols can take. As we will

see, this requirement ensures that every CFTA can be expressed as an AFTA

over our predicate abstraction. We also assume that U always includes true,

again in order to ensure the completeness of our synthesis algorithm.

Notations. Given two abstract values ϕ1 ∈ U and ϕ2 ∈ U, we write ϕ1 v ϕ2

iff the formula ϕ1 ⇒ ϕ2 is logically valid. As standard in abstract interpre-

tation [12], we write γ(ϕ) to denote the set of concrete values represented by

abstract value ϕ. Given a set of predicates P = {p1, · · · , pn} ⊆ U and a pred-

icate ϕ ∈ U, we write αP(ϕ) to denote the strongest conjunction of predicates

1An abstract domain is always a subset of the universe U.

37

in P that is logically implied by ϕ. Finally, given a vector of abstract values

~ϕ = [ϕ1, · · · , ϕn], we write αP(~ϕ) to mean ~ϕ′ where each ϕ′i = αP(ϕi).

Abstract transformers. In addition to specifying a universe of predicates,

we assume that the domain expert also specifies the DSL’s abstract semantics

by providing abstract transformers over predicates in U for each DSL construct.

For a production s→ f(s1, · · · , sn) in the grammar with DSL construct f , we

represent its abstract transformer using the notation Jf(ϕ1, · · · , ϕn)K]. That is,

given abstract values ϕ1, · · · , ϕn for the arguments s1, · · · , sn, the transformer

Jf(ϕ1, · · · , ϕn)K] returns an abstract value ϕ for s. We require that the abstract

transformers are sound, i.e.:

If Jf(ϕ1, · · · , ϕn)K] = ϕ and c1 ∈ γ(ϕ1), · · · , cn ∈ γ(ϕn),

then Jf(c1, · · · , cn)K ∈ γ(ϕ)

However, in general, we do not require the abstract transformers to be

precise. That is, if we have Jf(ϕ1, · · · , ϕn)K] = ϕ, it is possible that ϕ w αU(S)

where S is the set of concrete values that contains exactly Jf(c1, · · · , cn)K for

every ci ∈ γ(ϕi). In other words, we allow an abstract transformer to produce

an abstract value that is not the strongest over the universe U. We do not

require precision because it may be cumbersome to define the most precise

abstract transformer for some DSL constructs. However, we do require an

abstract transformer Jf(ϕ1, · · · , ϕn)K] where each ϕi is of the form si = ci to

be precise. Note that this can be realized using the DSL’s concrete semantics:

Jf(s1 = c1, · · · , sn = cn)K] = (s = Jf(c1, · · · , cn)K)

38

Example 3.1.1. Consider the same DSL that we used in Example 2.2.1 and

suppose the universe U includes true, all predicates of the form x = c, t = c,

and n = c where c is an integer, and predicates 0 < n ≤ 4, 0 < n ≤ 8. Then,

the abstract semantics can be defined by the following abstract transformers:

Jid(x = c)K] := (n = c)

J(n = c1) + (t = c2)K] := (n = (c1 + c2))

J(n = c1)× (t = c2)K] := (n = c1c2)

J(0 < n ≤ 4) + (t = c)K] :=


0 < n ≤ 4 c = 0

0 < n ≤ 8 0 < c ≤ 4

true otherwise

J(0 < n ≤ 4)× (t = c)K] :=


0 < n ≤ 4 c = 1

0 < n ≤ 8 c = 2

true otherwise

J(0 < n ≤ 8) + (t = c)K] :=

{
0 < n ≤ 8 c = 0

true otherwise

J
(∧

i pi
)
�
(∧

j pj
)
K] :=

d
i

d
j Jpi � pjK] � ∈ {+,×}

In addition, an abstract transformer returns true if any argument is true.

3.1.2 Abstract Finite Tree Automata

Now we are ready to explain our synthesis algorithm based on abstract

finite tree automata (AFTAs).

As mentioned earlier, AFTAs generalize CFTAs by associating abstract

– rather than concrete – values with each symbol in the grammar. Because an

39

abstract value can represent many different concrete values, multiple states in

a CFTA might correspond to a single state in the AFTA. Therefore, AFTAs

typically have far fewer states than their corresponding CFTAs, allowing us

to construct and analyze them much more efficiently than CFTAs.

States in an AFTA are of the form q~ϕs where s is a grammar symbol

and ~ϕ is a vector of abstract values. A transition f(q ~ϕ1
s1
, · · · , q ~ϕn

sn)→ q~ϕs in the

AFTA indicates that we have Jf(ϕ1j, · · · , ϕnj)K] v ϕj. Because our abstract

transformers are sound, this means that formula ϕj over-approximates the

result of running f on the concrete values represented by ϕ1j, · · · , ϕnj.

Let us now consider the AFTA construction rules shown in Figure 3.1.

Similar to CFTAs, the AFTA construction requires a set of input-output exam-

ples ~e and the DSL’s grammar G = (T,N, P, s0). In addition, the construction

requires the abstract transformers for all DSL constructs (i.e.., Jf(· · ·)K]) as

well as a set of predicates P ⊆ U over which we construct our abstraction (i.e.,

P defines an abstract domain).

The first two rules from Figure 3.1 are very similar to their counterparts

from the CFTA construction rules in Figure 2.2. According to the Var rule,

the states Q of the AFTA include a state q~ϕx where x is the input variable

and ~ϕ is the abstraction of the input examples ~ein with respect to the set of

predicates P. Similarly, the Const rule states that we have q~ϕt ∈ Q whenever

t is a constant in the grammar and ~ϕ is the abstraction of [t = JtK, · · · , t = JtK]

with respect to P. The next rule, labeled Final, defines the final states of the

AFTA. Assuming the start symbol in the grammar is s0, then q~ϕs0
is a final

40

~ϕ = αP
([
x = ~ein,1, · · · , x = ~ein,|~e|

])
q~ϕx ∈ Q

(Var)

t ∈ TC ~ϕ = αP
([
t = JtK, · · · , t = JtK

])
|~ϕ| = |~e|

q~ϕt ∈ Q
(Const)

q~ϕs0
∈ Q ∀j ∈ [1, |~eout|]. (s0 = eout,j) v ϕj

q~ϕs0 ∈ Qf

(Final)

(s→ f(s1, · · · , sn)) ∈ P q ~ϕ1
s1
∈ Q, · · · , q ~ϕn

sn ∈ Q
ϕj = αP

(
Jf(ϕ1j, · · · , ϕnj)K]

)
~ϕ = [ϕ1, · · · , ϕ|~e|]

q~ϕs ∈ Q,
(
f(q ~ϕ1

s1 , · · · , q ~ϕn
sn)→ q~ϕs

)
∈ ∆

(Prod)

Figure 3.1: AFTA construction rules.

state whenever the concretization of ~ϕ includes the output examples.

The last rule, labeled Prod, deals with grammar productions of the

form s→ f(s1, · · · , sn). Suppose that the AFTA contains states q ~ϕ1
s1
, · · · , q ~ϕn

sn ,

which, intuitively, means that grammar symbols s1, · · · , sn can take abstract

values ~ϕ1, · · · , ~ϕn. In this rule, we first “run” the abstract transformer for f

on abstract values ϕ1j, · · · , ϕnj to obtain an abstract value Jf(ϕ1j, · · · , ϕnj)K]

over the universe U. Then, we compute its abstraction with respect to P by

applying the abstraction function αP to Jf(ϕ1j, · · · , ϕnj)K] to find the strongest

conjunction ϕj of predicates over P that overapproximates Jf(ϕ1j, · · · , ϕnj)K].

We add the state q~ϕs to the AFTA and the transition f(q ~ϕ1
s1
, · · · , q ~ϕn

sn) → q~ϕs ,

since symbol s can take abstract value ~ϕ.

Example 3.1.2. Consider the same DSL that we used in Example 2.2.1 as well

41

as the universe and abstract transformers given in Example 3.1.1. Now, let us

consider the set of predicates P = {true, t = 2, t = 3, x = c} where c stands

for any integer value. Figure 3.2 shows the AFTA constructed for the input-

output example 1→ 9 over predicates P. Since the abstraction of x = 1 over P

is x = 1, the AFTA includes a state qx=1
x , shown simply as x = 1. Since P only

has true for symbol n, the AFTA contains a transition id(qx=1
x)→ qtruen , where

qtruen is abbreviated as true in Figure 3.2. The AFTA also includes transitions

+(qtruen , t = c) → qtruen and ×(qtruen , t = c) → qtruen for c ∈ {2, 3}. Observe that

qtruen is the only final state since n is the start symbol and the concretization

of true includes 9 (the output example). As we can see, the language of this

AFTA includes all programs that start with id(x).

Figure 3.2: An AFTA example.

Theorem 3.1.1. (Soundness of AFTA) Let A be the AFTA constructed for a

DSL (with abstract semantics), examples ~e and predicates P. If Π is a program

that is accepted by A, then Π is consistent with examples ~e with respect to

the DSL’s abstract semantics under the abstract domain defined by P.

42

Theorem 3.1.2. (Completeness of AFTA) Let A be the AFTA constructed

for a DSL (with abstract semantics), examples ~e and predicates P. If Π is a

program that is consistent with examples ~e with respect to the DSL’s abstract

semantics under the abstract domain defined by P, then Π is accepted by A.

3.2 Program Synthesis using Abstraction Refinement

So far, we have seen an abstraction-based synthesis algorithm that is

able to synthesize programs consistent with the specification according to ab-

stract semantics. While this approach is quite efficient, one obvious implication

is that the synthesized programs might be spurious. That is, the synthesized

program may not actually satisfy the specification in terms of the concrete

semantics. In other words, the synthesized programs might be wrong.

This section presents a technique that ensures we always synthesize

programs that satisfy the specification according to the concrete semantics.

The key idea underlying our technique is to perform abstraction refinement.

That is, we first generate a candidate program using our AFTA-based method

with a coarse initial abstraction. In case the candidate program is spurious, we

iteratively refine the abstraction and its corresponding AFTA until we either

find a program that is consistent with the given specification (in terms of the

concrete semantics) or prove that there exists no such programs.

43

3.2.1 Algorithm Architecture

The high-level structure of our refinement-based synthesis algorithm is

shown in Figure 3.3. The Learn procedure takes as input a set of examples

~e, a context-free grammar G of the DSL, a set of predicates P that defines an

initial abstract domain, and a universe of predicates U. We implicitly assume

that we have access to the concrete and abstract semantics of the DSL. Also,

it is worth noting that the initial abstraction P is optional. In cases where the

domain expert does not specify P, it is set to include only the predicate true.

Our synthesis algorithm consists of a refinement loop (lines 2–9), in

which we alternate between AFTA construction, counterexample generation,

and predicate learning. In each iteration, it first constructs an AFTA A using

the current set of predicates P (line 3). If the language of A is empty, we have

a proof that there is no DSL program that satisfies the input-output examples;

therefore, the algorithm returns null in this case (line 4). Otherwise, we use a

heuristic ranking algorithm to choose a “best” program Π from the language

defined by A (line 5).2 In the remainder of this dissertation, we assume that

programs are represented as abstract syntax trees (ASTs).

Once we find a program Π accepted by the current AFTA, we run it

on the input examples ~ein. If the result matches the expected outputs ~eout, we

return Π as a solution (line 6). Otherwise, we refine the current abstraction P

2Here, we note that we do not fix a particular algorithm for Rank, so the synthesizer is
free to choose any ranking heuristic as long as Rank returns a program that has the lowest
cost with respect to a deterministic cost metric.

44

1: procedure Learn(~e,G,P,U)

input: a set of input-output examples ~e, a context-free grammar G of the
DSL, an initial abstract domain P, and a universe U.
output: a DSL program consistent with input-output examples ~e.

2: while true do . Refinement loop.

3: A := ConstructAFTA(~e,G,P);

4: if L(A) = ∅ then return null;

5: Π := Rank(A);

6: if JΠK~ein = ~eout then return Π;

7: e := FindCounterexample(Π, ~e); . e ∈ ~e and JΠKein 6= eout.

8: I := ConstructProof(Π, e,P,U);

9: P := P ∪ ExtractPredicates(I);

Figure 3.3: Top-level structure of our synthesis algorithm.

so that the spurious program Π will no longer be accepted by the refined AFTA.

Towards this goal, we find a single input-output example e that is inconsistent

with program Π (line 7), i.e.., a counterexample, and then we construct a so-

called incorrectness proof I of Π with respect to the counterexample e (line 8).

In particular, I is a mapping from the nodes in Π’s AST to abstract values in

universe U and serves as a proof that program Π is inconsistent with example

e. More formally, an incorrectness proof I is defined as follows.

Definition 3.2.1. (Incorrectness Proof) Let Π be the AST of a program

that does not satisfy example e according to the concrete semantics. Then, an

incorrectness proof of Π with respect to e has the following properties:

1. If v is a leaf node of Π labeled with constant t, then (t = JtKein) v I(v).

45

2. If v is an internal node labeled with function f and has children v1, · · · , vn,

then Jf(I(v1), · · · , I(vn))K] v I(v).

3. If I maps the root node of Π to abstract value ϕ, then eout 6∈ γ(ϕ).

Here, the first two properties collectively state that I constitutes a

valid proof that executing Π (in terms of the abstract semantics) on input ein

yields an abstract output I(root(Π)). The third property further shows that

I proves Π is spurious, since Π’s abstract output is not consistent with eout.

The following theorem states that such a proof always exists.

Theorem 3.2.1. (Existence of Incorrectness Proofs) Given a spurious pro-

gram Π that does not satisfy example e according to concrete semantics, an

incorrectness proof of Π satisfying properties in Definition 3.2.1. always exists.

Our synthesis algorithm uses such a proof I to refine the abstraction.

In particular, the abstraction that we use in the next iteration includes all

predicates that appear in I in addition to those in the current abstract domain

defined by P. This ensures that the AFTA constructed in the next iteration

does not accept the spurious program Π from the current iteration.

Theorem 3.2.2. (Progress) Let Ai be the AFTA constructed in the i’th itera-

tion of the Learn procedure from Figure 3.3, and let Πi be a spurious program

returned by Rank. Then, we have Πi 6∈ L(Ai+1) and L(Ai+1) ⊂ L(Ai).

Example 3.2.1. Consider the AFTA shown in Figure 3.2 and suppose the pro-

gram returned by Rank is id(x). Since this program is not consistent with the

46

input-output example 1→ 9, our algorithm constructs an incorrectness proof

for it shown in Figure 3.4. In particular, this proof labels the root node of the

AST with a new abstract value 0 < n ≤ 8, establishing that id(x) is spurious

because 9 6∈ [0, 8]. In the next iteration, we add 0 < n ≤ 8 in the abstract

domain P and construct the refined AFTA shown in Figure 3.4. Observe that

the spurious program id(x) is no longer accepted by this refined AFTA.

AST ProofAFTA Refined
AFTA

Figure 3.4: An incorrectness proof example.

Theorem 3.2.3. (Soundness of Algorithm in Figure 3.3) If the Learn

procedure from Figure 3.3 returns a program Π for examples ~e, then Π satisfies

~e, namely, JΠK~ein = ~eout.

Theorem 3.2.4. (Completeness of Algorithm in Figure 3.3) If there exists

a program in the DSL that satisfies the input-output examples ~e, then given

the DSL and examples ~e, the Learn procedure from Figure 3.3 will return a

DSL program Π such that JΠK~ein = ~eout.

47

3.2.2 Constructing Incorrectness Proofs

So far, we have seen how to incorrectness proofs are used to eliminate

spurious programs from the search space. Now we discuss how to automatically

construct such proofs given a spurious program.

Our proof construction algorithm ConstructProof is shown in Fig-

ure 3.5. The algorithm takes as input a spurious program Π represented as an

AST with vertices V and an input-output example e such that JΠKein 6= eout.

The procedure also requires the current abstraction P as well as the universe

of predicates U. The output is a valid incorrectness proof that maps from the

verices V of Π to new abstract values proving that Π is inconsistent with e.

At a high level, the ConstructProof procedure processes the AST

top-down, starting at the root node r. Specifically, we first find an annotation

I(r) for r such that we have eout 6∈ γ(I(r)). In other words, the annotation I(r)

is sufficient for showing that Π is spurious (property (3) from Definition 3.2.1).

After we find an annotation for the root node r (lines 2–4), we add r to worklist

and find suitable annotations for the children of all nodes in the worklist. In

particular, the loop in lines 6–15 ensures that I also satisfies properties (1)

and (2) from Definition 3.2.1.

Let us now consider the ConstructProof procedure in more detail.

To find the annotation for the root node r, we first compute r’s abstract value

in the abstract domain P. Towards this goal, we use a procedure called Eval-

Abstract, shown in Figure 3.6, which symbolically executes Π on ein using

48

1: procedure ConstructProof(Π, e,P,U)

input: a spurious program Π represented as an AST with vertices V .
input: a counterexample e such that JΠKein 6= eout.
input: current abstract domain P and the universe of predicates U.
output: an incorrectness proof I mapping from V to abstract values over U.

. Find annotation I(r) for root r such that eout 6∈ γ(I(r)).
2: ϕ :=EvalAbstract(Π, ein,P);
3: ψ :=StrengthenRoot

(
s0 = JΠKein, ϕ, s0 6= eout,U

)
;

4: I(root(Π)) := ϕ ∧ ψ;
. Process all nodes other than root.

5: worklist :=
{
root(Π)

}
;

6: while worklist 6= ∅ do
. Find annotation I(vi) for each vi s.t Jf(I(v1), · · · , I(vn))K] v I(cur).

7: cur := worklist.remove();
8: ~Π := ChildrenASTs(cur);

9: ~φ :=
[
si = ci

∣∣ ci = JΠiKein, i ∈ [1, |~Π|], si = Symbol(Πi)
]
;

10: ~ϕ :=
[
ϕi

∣∣ ϕi = EvalAbstract(Πi, ein,P), i ∈ [1, |~Π|]
]
;

11: ~ψ := StrengthenChildren
(
~φ, ~ϕ, I(cur),U, label(cur)

)
;

12: for i = 1, · · · , |~Π| do
13: I(root(Πi)) := ϕi ∧ ψi;
14: if ¬IsLeaf(root(Πi)) then
15: worklist.add(root(Πi));

16: return I;

Figure 3.5: Incorrectness proof construction algorithm.

EvalAbstract(Leaf(x), ein,P) = αP(x = ein)
EvalAbstract(Leaf(t), ein,P) = αP

(
t = JtK

)
EvalAbstract(Node(f, ~Π), ein,P) =

αP
(
Jf
(
EvalAbstract(Π1, ein,P), · · · ,EvalAbstract

(
Π|~Π|, ein,P)

)
K]
)

Figure 3.6: Auxiliary EvalAbstract procedure used in Figure 3.5.

49

the abstract transformers (over P). The return value ϕ of EvalAbstract at

line 2 has the property that eout ∈ γ(ϕ), since the AFTA constructed using

predicates P yields the spurious program Π. We then try to strengthen ϕ using

a new formula ψ over predicates U such that the following properties hold:

1. (s0 = JΠKein)⇒ ψ where s0 is the start symbol of the grammar,

2. ϕ ∧ ψ ⇒ (s0 6= eout).

Here, the first property says that the output of Π on input ein should satisfy ψ;

otherwise ψ would not be a correct strengthening. The second property says

that ψ, together with the previous abstract value ϕ, should be strong enough

to show that Π is inconsistent with the input-output example e.

While any strengthening ψ that satisfies these two properties will be

sufficient to prove that Π is spurious, we would ideally want our strengthening

to rule out many other spurious programs. For this reason, we want ψ to be

as general (i.e., logically weak) as possible. Intuitively, the more general the

proof, the more spurious programs it can likely prove incorrect. For example,

while a predicate such as s0 = JΠKein can prove that Π is incorrect, it only

proves the spuriousness of programs that produce the same concrete output as

Π on ein. On the other hand, a more general predicate that is logically weaker

than s0 = JΠKein can potentially prove the spuriousness of other programs

that may not necessarily return the same concrete output as Π on ein.

To find such a suitable strengthening ψ, our algorithm makes use of a

procedure called StrengthenRoot, described in Figure 3.7. In a nutshell,

50

1: procedure StrengthenRoot(p+, p−, ϕ,U)

input: predicates p+ and p−, formula ϕ, and universe U.
output: formula ψ∗ such that p+ ⇒ (ϕ ∧ ψ∗)⇒ p−.

2: Φ :=
{
p ∈ U

∣∣ p+ ⇒ p
}

; Ψ := Φ; . Construct universe of relevant predicates.

3: for i = 1, · · · , k do . Generate all possible conjunctions up to length k.
4: Ψ := Ψ

⋃{
ψ ∧ p

∣∣ ψ ∈ Ψ, p ∈ Φ
}

;

5: ψ∗ := p+; . Find most general formula with desired property.
6: for ψ ∈ Ψ do
7: if ψ∗ ⇒ ψ and (ϕ ∧ ψ)⇒ p− then ψ∗ := ψ;

8: return ψ∗;

Figure 3.7: Algorithm for finding a strengthening for the root.

1: procedure StrengthenChildren(~φ, ~ϕ, ϕp,U, f)

input: predicates ~φ, formulas ~ϕ, formula ϕp, and universe U.

output: ~ψ∗ such that ∀i ∈ [1, |~ψ∗|]. φi ⇒ ψ∗i and Jf(ϕ1 ∧ ψ∗1 · · · , ϕn ∧ ψ∗n)K] ⇒ ϕp.

2: ~Φ :=
[
Φi
∣∣ Φi =

{
p ∈ U

∣∣ φi ⇒ p
}]

; ~Ψ := ~Φ . Construct universe of relevant
predicates.

3: for i = 1, · · · , k do . Generate all possible conjunctions up to length k.
4: for j = 1, · · · , |~Ψ| do
5: Ψj := Ψj

⋃{
ψ ∧ p

∣∣ ψ ∈ Ψj , p ∈ Φj
}

6: ~ψ∗ := ~φ; . Find most general formula with desired property.
7: for all ~ψ where ψi ∈ Ψi do
8: if ∀i ∈ [1, |~φ|]. ψ∗i ⇒ ψi and Jf(ϕ1 ∧ ψ1, · · · , ϕn ∧ ψn)K] ⇒ ϕp then ~ψ∗ := ~ψ;

9: return ~ψ∗;

Figure 3.8: Algorithm for finding a strengthening for nodes other than root.

this procedure returns the most general conjunctive formula ψ using at most k

predicates in U such that the above two properties are satisfied. Since formula

ψ, together with the old abstract value ϕ, proves the spuriousness of Π, our

proof I maps the root node to the new strengthened abstract value ϕ∧ψ (line

4 of ConstructProof).

51

The loop in lines 5–15 of ConstructProof finds annotations for all

nodes other than the root node. Any AST node cur that has been removed

from the worklist at line 7 must be in the domain of I (i.e., we have already

found an annotation for cur). Now, our goal is to find a suitable annotation for

cur’s children such that I satisfies properties (1) and (2) from Definition 3.2.1.

To find the annotation for each child vi of node cur, we first compute the

concrete value φi and abstract value ϕi for vi (lines 9–10). We then invoke the

StrengthenChildren procedure, shown in Figure 3.8, to find a strength-

ening ~ψ such that:

1. ∀i ∈ [1, |~ψ|]. φi ⇒ ψi

2. Jf(ϕ1 ∧ ψ1, · · · , ϕn ∧ ψn)K] ⇒ I(cur)

Here, the first property ensures that I satisfies property (1) from Def-

inition 3.2.1. In other words, the first condition says that our strengthening

over-approximates the concrete output of sub-program Πi rooted at vi on in-

put ein. The second condition enforces property (2) from Definition 3.2.1. In

particular, it says that the annotation for the parent node is provable from the

annotations of the children using the DSL’s abstract semantics.

In addition to satisfying these afore-mentioned properties, the strength-

ening ~ψ returned by StrengthenChildren has some useful generality guar-

antees. In particular, ~ψ is pareto-optimal in the sense that we cannot obtain

a valid strengthening ~ψ′ (with a fixed number of conjuncts) by weakening any

52

of the ψi’s in ~ψ. As mentioned earlier, finding such maximally general anno-

tations is useful because it allows our synthesis procedure to rule out many

spurious programs in addition to the specific one returned by Rank.

Example 3.2.2. To better understand how we construct incorrectness proofs,

consider the AFTA shown in Figure 3.9 (1). Suppose that the ranking algo-

rithm returns the program id(x) + 2, which is clearly spurious with respect

to the input-output example 1 → 9. Figure 3.9 (2)-(4) show the AST for the

program id(x) + 2 as well as the old abstract and concrete values for each

AST node. Note that the abstract values in Figure 3.9 (3) correspond to the

results of EvalAbstract in the ConstructProof algorithm from Fig-

ure 3.5. Our proof construction algorithm starts by strengthening the root

node v1 of the AST. Since JΠKein is 3, the first argument of the Strength-

enRoot procedure is provided as n = 3. Since the output example is 9, the

second argument is n 6= 9. Now, we invoke the StrengthenRoot procedure

to find a formula ψ such that n = 3 ⇒ (true ∧ ψ) ⇒ n 6= 9 holds. The most

general conjunctive formula over U that has this property is 0 < n ≤ 8; hence,

we obtain the annotation I(v1) = 0 < n ≤ 8 for the root node of the AST.

The ConstructProof algorithm now “recurses down” to the children of v1

to find suitable annotations for v2 and v3. When processing v1 inside the while

loop in Figure 3.5, we have ~φ = [n = 1, t = 2] since 1, 2 correspond to the

concrete values for v2, v3. Similarly, we have ~ϕ = [0 < n ≤ 8, t = 2] for the

abstract values for v2 and v3. We now invoke StrenthenChildren to find

53

(1)

Incorrectness proof

AST annotated with
concrete values

AST annotated with
old abstract values

AST

2

AFTA

(2)

(3) (4)

(5)

Figure 3.9: A proof construction example.

54

a ~ψ = [ψ1, ψ2] such that:

n = 1⇒ ψ1 t = 2⇒ ψ2

J+(0 < n ≤ 8 ∧ ψ1, t = 2 ∧ ψ2)K] ⇒ 0 < n ≤ 8

In this case, StrengthenChildren yields the solution ψ1 = 0 < n ≤ 4 and

ψ2 = true. Therefore, we have I(v2) = 0 < n ≤ 4 and I(v3) = (t = 2). The

final proof of incorrectness for this example is shown in Figure 3.9 (5).

Theorem 3.2.5. (Correctness of Algorithm in Figure 3.5) The mapping

I returned by the ConstructProof procedure from Figure 3.5 satisfies the

properties from Definition 3.2.1.

Complexity analysis. The complexity of our synthesis algorithm shown

in Figure 3.3 is mainly determined by the number of iterations, and the com-

plexity of FTA construction, ranking and proof construction. In particular, an

FTA with size m 3 can be constructed in time O(m) (without any pruning).

The complexity of ranking over an FTA depends on the particular ranking

heuristic. For the one used in our implementation (see Chapter 3.4), the time

complexity is O(m · log d) where m is the FTA size and d is the number of

states in the FTA. The complexity of proof construction for an AST is O(l · p)

where l is the number of nodes in the AST and p is the number of conjunc-

tions under consideration. Therefore, the overall complexity of our synthesis

algorithm is O(t · (l · p+m · log d)) where t is the number of refinement steps.

3FTA size is defined as
∑
δ∈∆ |δ| where |δ| = n+ 1 for a transition δ : f(q1, · · · , qn)→ q.

55

3.3 A Working Example

In the previous sections, we illustrated various aspects of our synthesis

algorithm using the DSL from Example 2.2.1 on input-output example 1 7→ 9.

We now walk through the entire algorithm and show how it synthesizes the

desired program (id(x) + 2)× 3. We use the abstract semantics and universe

of predicates U given in Example 3.1.1, and we use the initial abstract domain

defined by P given in Example 3.1.2. Furthermore, we assume that Rank

always favors smaller programs over larger ones. In the case of a tie, it favors

programs that use + and those that use smaller constants.

Figure 3.10 illustrates all iterations of the synthesis algorithm shown in

Figure 3.3. Let us now consider Figure 3.10 in more detail.

Iteration 1. As explained in Example 3.1.2, the initial AFTA A1 constructed

by our algorithm accepts all DSL programs starting with id(x). Hence, in the

first iteration, we obtain the program Π1 = id(x) as a candidate solution. Since

Π1 does not satisfy the example 1 7→ 9, we construct an incorrectness proof

I1, which introduces a new abstract value 0 < n ≤ 8 in our set of predicates.

Iteration 2. During the second iteration, we construct the AFTA labeled

as A2 in Figure 3.10, which contains a new state 0 < n ≤ 8. While A2

no longer accepts the program id(x), it does accept the spurious program

Π2 = id(x)+2, which is returned by the ranking algorithm. Then we construct

the incorrectness proof for Π2, and we obtain a new predicate 0 < n ≤ 4.

Iteration 3. In the next iteration, we construct the AFTA labeled as A3.

56

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 1: Incorrectness proof I1 for spurious program Π1.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 2: Incorrectness proof I2 for spurious program Π2.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 3: Incorrectness proof I3 for spurious program Π3.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 4: Rank returns a desired program.

Figure 3.10: An end-to-end working example.

57

Observe that A3 no longer accepts the spurious program Π2 and also rules

out two other programs, namely id(x) + 3 and id(x) × 2. Rank now returns

the program Π3 = id(x) × 3, which is again spurious. After constructing the

incorrectness proof of Π3, we now obtain a new predicate n = 1.

Iteration 4. In the final iteration, we construct the AFTA labeled as A4,

which rules out all programs containg a single operator (+ or ×) as well as 12

programs that use two operators. When we run the ranking algorithm on A4,

we obtain the candidate program (id(x) + 2) × 3, which is indeed consistent

with the example 1 7→ 9. Thus, the synthesis algorithm terminates with this

solution.

Discussion. As this example illustrates, our approach explores far fewer

programs compared to enumeration-based techniques. For instance, our algo-

rithm only tested four candidate programs against the input-output examples,

whereas an enumeration-based approach would need to explore 24 programs.

However, since each candidate program is generated using abstract finite tree

automata, each iteration has a higher overhead. In contrast, the CFTA-based

approach discussed in Chapter 2.2 always explores a single program, but the

corresponding finite tree automaton may be very large. Thus, our technique

can be seen as providing a useful tuning knob between enumeration-based

synthesis algorithms and representation-based techniques (e.g., CFTAs and

version space algebras) that construct a data structure representing all pro-

grams consistent with the input-output examples.

58

3.4 Implementation

The Blaze implementation now is further parametrized with the DSL’s

abstract semantics (in the form of a universe of predicates and a set of abstract

transformers). Blaze now takes as input a DSL with its syntax and abstract

semantics as well as a set of input-output examples. Its implementation con-

sists of three main modules: AFTA construction, ranking, and incorrectness

proof generation. The AFTA construction implementation reuses the CFTA

construction procedure except that now we use the DSL’s abstract semantics.

The ranking algorithm completely follows the implementation in Chapter 2.3.

Finally, our implementation of the incorrectness proof generation follows our

technical presentation. Therefore, we do not discuss more details here.

3.5 Applications

Now, we describe two instantiations of the Blaze framework in two

different application domains, namely, string processing and tensor reshaping.

In particular, to instantiate the Blaze framework for a specific domain, the

domain expert needs to provide a (cost-annotated) domain-specific language,

a universe of possible predicates to be used in the abstraction, the abstract

semantics of each DSL construct, and optionally an initial abstraction to use

when constructing the initial AFTA.

59

String expr e := Str(f) | Concat(f, e);

Substring expr f := ConstStr(s) | SubStr(x, p1, p2);

Position p := Pos(x, τ, k, d) | ConstPos(k);

Direction d := Start | End;

Figure 3.11: String processing DSL.

3.5.1 String Processing

We now describe our instantiation of the Blaze framework for synthe-

sizing string processing programs.

Domain-specific language. Since there is significant prior work on au-

tomating string processing using PBE [21, 56, 50], we directly adopt the DSL

presented by [56] as shown in Figure 3.11. This DSL essentially allows concate-

nating substrings of the input string x, where each substring is extracted using

a start position p1 and an end position p2. A position can either be a constant

index (ConstPos(k)) or the (start or end) index of the k’th occurrence of the

match of token τ in the input string (Pos(x, τ, k, d)).

Universe of predicates. A natural abstraction when reasoning about strings

is to consider their length; hence, our universe of predicates in this domain

includes predicates of the form len(s) = i, where s is a symbol of type string

and i represents any integer. We also consider predicates of the form s[i] = c

indicating that the i’th character in string s is c. Finally, recall from Chap-

ter 3.1.1 that our universe must include (1) predicates of the form s = c, where

60

Jf(s1 = c1, · · · , sn = cn)K] :=
(
s = Jf(c1, · · · , cn)K

)
JConcat(len(f) = i1, len(e) = i2)K] :=

(
len(e) = (i1 + i2)

)
JConcat(len(f) = i1, e[i2] = c)K] :=

(
e[i1 + i2] = c

)
JConcat(len(f) = i, e = c)K] :=

(
len(e) = (i+ len(c)) ∧∧j=0,··· ,len(c)−1 e[i+ j] = c[j]

)
JConcat(f [i] = c, p)K] :=

(
e[i] = c

)
JConcat(f = c, len(e) = i)K] :=

(
len(e) = (len(c) + i) ∧∧j=0,··· ,len(c)−1 e[j] = c[j]

)
JConcat(f = c1, e[i] = c2)K] :=

(
e[len(c1) + i] = c2 ∧

∧
j=0,··· ,len(c1)−1 e[j] = c1[j]

)
JStr(p)K] := p

Figure 3.12: Abstract transformers for string processing DSL.

c is a concrete value that symbol s can take, and (2) the predicate true. Hence,

our universe of predicates for the string domain is given by:

U =
{
len(s) = i | i ∈ N

}
∪
{
s[i] = c | i ∈ N, c ∈ Char]

}
∪
{
s = c | c ∈ Type(s)

}
∪
{
true

}

Abstract transformers. The domain expert must also provide an abstract

transformer Jf(ϕ1, · · · , ϕn)K] for each grammar production s→ f(s1, · · · , sn)

and abstract values ϕ1, · · · , ϕn. Since our universe of predicates can be viewed

as the union of three different abstract domains for reasoning string length,

character position, and string equality, our abstract transformers effectively

define the reduced product of these abstract domains. In particular, we define

a generic transformer for conjunctions of predicates as follows:

f
(
(
∧
i1

pi1), · · · , (
∧
in

pin)
)

:=
l

i1

· · ·
l

in

f(pi1 , · · · , pin)

Therefore, instead of defining a transformer for every possible abstract

value (with arbitrarily many conjuncts), it suffices to define an abstract trans-

former for every combination of atomic predicates (shown in Figure 3.12).

61

Initial abstraction. Our initial abstraction includes predicates of the form

len(s) = i, where s is a symbol of type string and i is an integer, as well as

the predicate true.

3.5.2 Tensor Reshaping

Motivated by the abundance of questions on how to perform various

matrix and tensor transformations in MATLAB, we also use the Blaze frame-

work to synthesize tensor manipulation programs.4 We believe this application

domain is a good stress test for the Blaze framework because (1) tensors are

complex data structures which make the search space larger, and (2) the input-

output examples in this domain are typically much larger in size. Finally, we

wish to show that the Blaze framework can be immediately used to generate

a practical synthesis tool for a new unexplored domain.

Domain-specific language. Our DSL for the tensor reshaping is inspired

by existing MATLAB functions and is shown in Figure 3.13. In this DSL, ten-

sor operators include Reshape, Permute, Fliplr, and Flipud and correspond

to their namesakes in MATLAB5. For example, Reshape(t, v) takes a tensor t

and a size vector v and reshapes t so that its dimension becomes v. Similarly,

Permute(t, v) rearranges the dimensions of tensor t so that they are in the

order specified by vector v. Next, Fliplr(t) returns tensor t with its columns

4Tensors generalize matrices from 2 dimensions to an arbitrary number of dimensions.
5See the MATLAB documentation https://www.mathworks.com/help/matlab/ref/x.html

where x refers to the name of the corresponding function.

62

Tensor expr t := id(x) | Reshape(t, v) | Permute(t, v) | Fliplr(t) | Flipud(t);
Vector expr v := [k1, k2] | Cons(k, v);

Figure 3.13: Tensor reshaping DSL.

flipped in the left-right direction, and Flipud(t) returns tensor t with its rows

flipped in the up-down direction. Vector expressions are constructed recur-

sively using the Cons(k, v) construct, which yields a vector with first element

k (an integer), followed by elements in vector v.

Example 3.5.1. Suppose that we have a vector v and we would like to reshape it

in a row-wise manner so that it yields a matrix with 2 rows and 3 columns6. For

example, if the input vector is [1, 2, 3, 4, 5, 6], then we should obtain the matrix

[1, 2, 3; 4, 5, 6] where the semi-colon indicates a new row. This transformation

can be expressed by the DSL program Permute(Reshape(v, [3, 2]), [2, 1]).

Universe of predicates. Similar to the strings, a natural abstraction for

vectors is to consider their length. Therefore, our universe includes predicates

of the form len(v) = i, indicating that vector v has length i. In the case of ten-

sors, our abstraction keeps track of the number of elements and number of di-

mensions of the tensors. In particular, the predicate numDims(t) = i indicates

that t is an i-dimensional tensor. Similarly, the predicate numElems(t) = i

indicates that tensor t contains a total of i entries. Therefore, the universe of

6StackOverflow link: https://stackoverflow.com/questions/16592386/reshape-matlab-
vector-in-row-wise-manner.

63

Jf(s1 = c1, · · · , sn = cn)K] :=
(
s = Jf(c1, · · · , cn)K

)
JCons(k = i1, len(v) = i2)K] :=

(
len(v) = (i2 + 1)

)
JPermute(numDims(t) = i, p)K] :=

(
numDims(t) = i

)
JPermute(numElems(t) = i, p)K] :=

(
numElems(t) = i

)
JReshape(numDims(t) = i1, len(v) = i2)K] :=

(
numDims(t) = i2

)
JReshape(numDims(t) = i, v = c)K] :=

(
numDims(t) = len(c)

)
JReshape(numElems(t) = i, p)K] :=

(
numElems(t) = i

)
JReshape(t = c, len(v) = i)K] :=

(
numElems(t) = numElems(c)

)
JFlipud(p)K] := p
JFliplr(p)K] := p

Figure 3.14: Abstract transformers for tensor reshaping DSL.

predicates is given by:

U =

{
numDims(t) = i | i ∈ N

}
∪
{

numElems(t) = i | i ∈ N
}

∪
{

len(v) = i | i ∈ N
}
∪
{
s = c | c ∈ Type(s)

}
∪
{

true
}

Abstract transformers. The abstract transformers for all combinations of

atomic predicates for each DSL construct are given in Figure 3.14. As in the

string domain, we define a generic transformer for conjunctions of predicates

as follows:

f
(
(
∧
i1

pi1), · · · , (
∧
in

pin)
)

:=
l

i1

· · ·
l

in

f(pi1 , · · · , pin)

Initial abstraction. Our initial abstraction includes only true.

3.6 Evaluation

We evaluate Blaze by using it to automate string and tensor manipu-

lation tasks collected from online forums and standard data sets. The goal of

64

our evaluation is to answer the following questions:

• Q1: How does Blaze perform on synthesis tasks across domains?

• Q2: How does Blaze compare with existing synthesis techniques?

• Q3: How many refinement steps does Blaze take to converge?

• Q4: What is the benefit of abstraction refinement in practice?

3.6.1 String Processing

We evaluate Blaze on all 108 string processing benchmarks from the

PBE track of the SyGuS competition [3]. We believe string precessing is a

good testbed because of the existence of mature tools like FlashFill [21] and

the presence of a SyGuS benchmark suite for string transformations.

Benchmark information. Among the 108 string processing benchmarks,

the number of examples range from 4 to 400, with an average of 78.2 and a

median of 14. The average input example string length is 13.6 and the median

is 13.0. The maximum (resp. minimum) string length is 54 (resp. 8).

Experimental setup. We instantiate Blaze using the string processing

DSL shown in Figure 3.11 and the predicates and abstract transformers from

Chapter 3.5.1. For each benchmark, we provide Blaze with all input-output

65

examples at the same time.7 We also compare Blaze with the following

existing synthesis techniques:

• FlashFill: This tool is the state-of-the-art synthesizer for automating

string manipulation tasks and is shipped in Microsoft PowerShell as the

“convert-string” commandlet. It propagates examples backwards using

the inverse semantics of DSL operators, and adopts the version space

algebra data structure to compactly represent the search space.

• ENUM-EQ: This technique is based on enumerative search and has

been adopted to solve different kinds of synthesis problems [2, 68, 11,

3]. It enumerates programs according to their size, groups them into

equivalence classes based on their (concrete) input-output behavior, and

returns the first program that is consistent with the examples.

• CFTA: This is an implementation of the synthesis algorithm presented

in Chapter 2. It uses the concrete semantics of the DSL operators to

construct a CFTA whose language is exactly the set of programs that

are consistent with the specification according to the concrete semantics.

To allow a fair comparison, we evaluate ENUM-EQ and CFTA using

the same DSL and ranking heuristics that we use to evaluate Blaze. For

FlashFill, we use the “convert-string” commandlet from Microsoft Powershell.

7Blaze typically uses a fraction of these examples during abstraction refinement.

66

Because the baseline techniques mentioned above perform much better

when the examples are provided in an interactive fashion 8, we evaluate them

in the following way: Given a set of examples E for each benchmark, we first

sample an example e in E, use each technique to synthesize a program P that

satisfies e, and check if P satisfies all examples in E. If not, we sample another

example e′ in E for which P does not produce the desired output, and repeat

the synthesis process using both e and e′. The synthesizer terminates when it

either successfully learns a program that satisfies all examples, proves that no

program in the DSL satisfies the examples, or times out in 10 minutes.

Blaze results Figure 3.15 summarizes the results of our evaluation of Blaze

for string processing. 9 Because it is not feasible to give statistics for all 108

SyGuS benchmarks, we only show the detailed results for one benchmark from

each of the 27 categories. Note that the four benchmarks within a category

are very similar and only differ in the number of provided examples. The main

take-away message from our evaluation is that Blaze can successfully solve

70% of the benchmarks in under a second, and 85% of the benchmarks in un-

8Because Blaze is not very sensitive to the number of examples, we used Blaze in a
non-interactive mode by providing all examples at once. Since the baseline tools do not
scale as well in the number of examples, we used them in an interactive mode, with the goal
of casting them in the best light possible.

9In Figure 3.15, |~e| denotes the total number of examples available in each benchmark
and Tsyn denotes the synthesis time (in seconds). The next columns labeled Tx denote the
times for FTA construction, ranking, proof construction, and all remaining parts (e.g., FTA
minimization). #Iters gives the number of refinement steps, and |Qfinal| and |∆final| denotes
the number of states and transitions in the AFTA in the last iteration. The last column
|Πsyn| shows the size of the synthesized program (measured by the number of AST nodes).

67

Benchmark |~e| Tsyn (sec) TA Trank TI Tother #Iters |Qfinal| |∆final| |Πsyn|
bikes 6 0.05 0.05 0.00 0.00 0.00 1 52 135 13

dr-name 4 0.16 0.09 0.02 0.01 0.04 17 95 513 19
firstname 4 0.08 0.08 0.00 0.00 0.00 1 71 350 13

initials 4 0.11 0.09 0.00 0.01 0.01 14 68 209 32
lastname 4 0.10 0.10 0.00 0.00 0.00 3 79 450 13

name-combine-2 4 0.20 0.12 0.02 0.01 0.05 45 101 549 32
name-combine-3 6 0.16 0.10 0.01 0.02 0.03 26 80 305 32
name-combine-4 5 0.30 0.14 0.03 0.05 0.08 62 114 725 35
name-combine 6 0.16 0.10 0.02 0.02 0.02 20 87 427 29

phone-1 6 0.07 0.07 0.00 0.00 0.00 2 43 79 13
phone-10 7 1.99 0.69 0.34 0.30 0.66 539 471 4754 48
phone-2 6 0.06 0.06 0.00 0.00 0.00 3 43 77 13
phone-3 7 0.25 0.12 0.03 0.05 0.05 59 88 355 35
phone-4 6 0.23 0.10 0.03 0.04 0.06 63 155 1256 45
phone-5 7 0.08 0.08 0.00 0.00 0.00 1 53 114 13
phone-6 7 0.10 0.10 0.00 0.00 0.00 2 53 112 13
phone-7 7 0.08 0.08 0.00 0.00 0.00 3 53 108 13
phone-8 7 0.11 0.11 0.00 0.00 0.00 4 53 106 13
phone-9 7 1.09 0.34 0.19 0.15 0.41 269 454 7355 61
phone 6 0.07 0.07 0.00 0.00 0.00 1 43 80 13

reverse-name 6 0.14 0.08 0.01 0.02 0.03 20 83 414 29
univ 1 6 1.34 0.61 0.21 0.12 0.40 149 348 9618 32
univ 2 6 T/O — — — — — — — —
univ 3 6 3.69 1.63 0.57 0.15 1.34 405 467 18960 22
univ 4 8 T/O — — — — — — — —
univ 5 8 T/O — — — — — — — —
univ 6 8 T/O — — — — — — — —

Median 6 0.14 0.10 0.01 0.01 0.02 17 80 355 22
Average 6.1 0.46 0.22 0.06 0.04 0.14 74.3 137.1 2045.7 25.3

Figure 3.15: Blaze results for string processing domain.

der 4 seconds, with a median running time of 0.14 seconds. In comparison, the

best solver, i.e.., EUSolver [5], in the SyGuS’16 competition is able to solve in

total 45 benchmarks within the timeout of 60 minutes [4].

For most benchmarks, Blaze spends the majority of its running time

on FTA construction, whereas the time on proof construction is typically neg-

ligible. This is because the number of predicates that are considered in the

proof construction phase is usually quite small. It takes Blaze an average of

74 refinement steps before it finds the correct program. However, the median

number of refinement steps is much smaller (17). Furthermore, as expected,

68

there is a clear correlation between the number of iterations and total running

time. Finally, we can observe that the synthesized programs are non-trival,

with an average size of 25 in terms of the number of AST nodes.

Comparison. Figure 3.16 compares the running times of Blaze with Flash-

Fill, ENUM-EQ, and CFTA on all 108 SyGuS benchmarks. Overall, Blaze

solves the most number of benchmarks (90), with an average running time of

0.49 seconds. Furthermore, any benchmark that can be solved using FlashFill,

ENUM-EQ, or CFTA can also be solved by Blaze.

Compared to CFTA, Blaze solves 60% more benchmarks (90 vs. 56)

and outperforms CFTA by 363x (in terms of running time) on the 56 bench-

marks that can be solved by both techniques. This result demonstrates that

abstraction refinement helps scale up the CFTA-based synthesis technique to

solve more benchmarks in much less time.

Compared to ENUM-EQ, the improvement is moderate for relatively

simple benchmarks. In particular, for the 40 benchmarks that ENUM-EQ can

solve in under 1 second, Blaze (only) shows a 1.5x improvement in running

time. However, for more complex synthesis tasks, the performance of Blaze

is significantly better than ENUM-EQ. For the 54 benchmarks that can be

solved by both techniques, we observe a 16x improvement in running time.

Furthermore, Blaze can solve 36 benchmarks on which ENUM-EQ times out.

We believe this result demonstrates the advantage of using abstract values for

search space reduction.

69

0.01

0.1

1

10

100

1000

1 8 15 22 29 36 43 50 57 64 71 78 85 92

Ti
m
e%
(s
ec
)

#%Solved%benchmarks%(total%108)

BLAZE FlashFill ENUMCEQ CFTA

Solved Average time (sec)

Blaze 90 0.49

FlashFill 87 7.66

ENUM-EQ 54 4.25

CFTA 56 73.91

Figure 3.16: Blaze vs. existing techniques for string processing domain.

Finally, Blaze compares favorably with FlashFill, a state-of-the-art

technique for automating string processing tasks. In particular, Blaze achieves

competitive performance for the benchmarks that both techniques can solve.

Furthermore, Blaze solves 3 benchmarks on which FlashFill times out. Since

FlashFill is a domain-specific synthesizer that has been crafted specifically for

automating string manipulation tasks, we believe these results demonstrate

that Blaze can compete with domain-specific state-of-the-art synthesizers.

Outlier analysis. All techniques, including Blaze, time out on 18 bench-

marks for the univ x category. We investigated the cause of failure for these

70

benchmarks and found that the desired program for most of these benchmarks

cannot be expressed in the underlying DSL.

3.6.2 Tensor Reshaping

In our second experiment, we evaluate Blaze on tensor reshaping

benchmarks collected from online forums. Because tensors are more compli-

cated data structures than strings, the search space in this application tends

to be larger on average compared to the string processing application. Fur-

thermore, since automating tensor reshaping is a useful (yet unexplored) ap-

plication of programming-by-example, we believe this application domain is

an interesting target for Blaze.

To perform our evaluation, we collected 39 benchmarks from two on-

line forums, namely StackOverflow and MathWorks.10 Our benchmarks were

collected using the following methodology: We searched for the keyword “mat-

lab matrix reshape” and then sorted the results according to their relevance.

We then looked at the first 100 posts from each forum and retained posts that

contain at least one example and the target program is in one of the responses.

Benchmark information. Since the overwhelming majority of forum en-

tries contain a single example, we only provide one input-output example for

each benchmark. The number of entries in the input tensor ranges from 6 to

10MathWorks (https://www.mathworks.com/matlabcentral/answers/) is a help forum
for MATLAB users.

71

https://www.mathworks.com/matlabcentral/answers/

640, with an average of 73.5 and a median of 36. Among all benchmarks, 29

involve reshaping the input example into tensors of dimension great than 2.

Experimental setup. We instantiate Blaze with the DSL shown in Fig-

ure 3.13 and the abstract semantics presented in Chapter 3.5.2. Similar to the

string processing domain, we also compare Blaze with ENUM-EQ and CFTA.

However, since there is no existing domain-specific synthesizer for automating

tensor reshaping tasks, we implemented a specialized VSA-based synthesizer

for our matrix domain by instantiating the Prose framework [50]. In particular,

to instantiate Prose, we provide precise witness functions (inverse semantics)

for all the operators in our DSL. To allow a fair comparison, we use the same

DSL for all the synthesizers, as well as the same ranking heuristics. We also

experiment with all baseline synthesizers in the interactive setting, as we did

for the string processing domain. The timeout is set to be 10 minutes.

Blaze results. The results of our evaluation on Blaze are summarized in

Figure 3.17. As we can see, Blaze can successfully solve all benchmarks

with an average (resp. median) synthesis time of 3.35 (resp. 1.07) seconds.

Furthermore, Blaze can solve 46% of the benchmarks in under 1 second, and

87% of the benchmarks in under 5 seconds. These results demonstrate that

Blaze is also practical for automating tensor reshaping tasks.

Looking at Figure 3.17 in more detail, Blaze takes an average of 165

refinement steps to synthesize a correct program. Unlike in the string process-

ing domain where Blaze spends most of its time in FTA construction, proof

72

Benchmark Tsyn (sec) TA Trank TI Tother #Iters |Qfinal| |∆final| |Πsyn|
stackoverflow-1 0.29 0.14 0.02 0.08 0.05 39 125 993 10
stackoverflow-2 2.74 0.86 0.10 1.52 0.26 319 279 4483 22
stackoverflow-3 0.72 0.20 0.03 0.43 0.06 57 143 1334 14
stackoverflow-4 13.32 0.31 0.04 12.89 0.08 166 165 959 22
stackoverflow-5 1.34 0.57 0.08 0.48 0.21 222 236 2595 18
stackoverflow-6 0.42 0.17 0.02 0.17 0.06 48 129 1012 10
stackoverflow-7 2.04 0.59 0.07 1.20 0.18 217 244 2607 18
stackoverflow-8 2.04 0.83 0.08 0.90 0.23 288 280 3447 18
stackoverflow-9 1.67 0.90 0.08 0.44 0.25 114 374 5389 16
stackoverflow-10 0.23 0.12 0.01 0.06 0.04 28 114 715 10
stackoverflow-11 0.74 0.34 0.05 0.24 0.11 106 155 1004 18
stackoverflow-12 0.82 0.12 0.02 0.63 0.05 38 124 929 10
stackoverflow-13 0.59 0.17 0.02 0.34 0.06 49 143 1227 12
stackoverflow-14 52.94 1.36 0.11 51.24 0.23 385 324 4321 22
stackoverflow-15 0.41 0.12 0.01 0.24 0.04 31 121 611 14
stackoverflow-16 5.02 0.38 0.06 4.45 0.13 228 172 1083 22
stackoverflow-17 2.54 0.79 0.09 1.42 0.24 319 279 4483 22
stackoverflow-18 0.54 0.25 0.03 0.18 0.08 65 144 1201 14
stackoverflow-19 0.73 0.36 0.06 0.17 0.14 142 162 1180 18
stackoverflow-20 1.31 0.36 0.05 0.78 0.12 165 160 786 18
stackoverflow-21 1.01 0.52 0.06 0.27 0.16 180 195 1566 18
stackoverflow-22 0.21 0.10 0.01 0.07 0.03 19 106 526 10
stackoverflow-23 1.24 0.26 0.04 0.85 0.09 108 181 2493 14
stackoverflow-24 0.62 0.14 0.02 0.41 0.05 52 138 1183 12
stackoverflow-25 0.81 0.20 0.03 0.51 0.07 72 170 2201 14

mathworks-1 0.71 0.15 0.02 0.48 0.06 55 137 1103 12
mathworks-2 0.88 0.11 0.02 0.71 0.04 34 126 848 14
mathworks-3 1.07 0.58 0.06 0.27 0.16 180 195 1566 18
mathworks-4 3.94 0.22 0.03 3.62 0.07 89 195 2589 14
mathworks-5 0.45 0.15 0.02 0.22 0.06 45 134 963 12
mathworks-6 1.30 0.42 0.07 0.63 0.18 195 222 2100 18
mathworks-7 0.21 0.10 0.01 0.06 0.04 28 116 717 10
mathworks-8 0.27 0.13 0.02 0.07 0.05 39 125 993 10
mathworks-9 1.73 0.23 0.03 1.39 0.08 104 160 955 10
mathworks-10 1.57 0.30 0.05 1.10 0.12 145 172 1176 14
mathworks-11 9.40 5.72 0.50 1.83 1.35 613 583 25924 22
mathworks-12 1.25 0.36 0.07 0.66 0.16 187 203 1799 18
mathworks-13 2.49 1.45 0.17 0.41 0.46 462 295 2574 15
mathworks-14 11.10 6.18 1.19 0.60 3.13 827 678 34176 22

Median 1.07 0.30 0.04 0.48 0.09 108 165 1201 14
Average 3.35 0.67 0.09 2.36 0.23 165.6 205.2 3225.9 15.5

Figure 3.17: Blaze results for tensor reshaping domain.

construction now seems to also take significant time. We conjecture this is

because for tensor reshaping tasks Blaze needs to search for predicates in a

large space during proof construction. The final AFTA contains an average of

205 states, and the synthesized program has 16 AST nodes on average.

73

0.1

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ti
m
e%
(s
ec
)

#%Solved%benchmarks%(total%39)

BLAZE PROSE ENUMDEQ CFTA

Solved Average time (sec)

Blaze 39 3.35

Prose 36 113.13

ENUM-EQ 38 147.88

CFTA 27 252.80

Figure 3.18: Blaze vs. existing techniques for tensor reshaping domain.

Comparison. As shown in Figure 3.18, Blaze significantly outperforms

all existing techniques, both in terms of the number of solved benchmarks

as well as the running time. In particular, we observe a 262x improvement

over CFTA, 115x improvement over ENUM-EQ, and 90x improvement over

Prose in terms of the running time. This experiment also demonstrates the

advantage of using abstractions and abstraction refinement for synthesizing

tensor reshaping programs.

Outlier analysis. The benchmark “stackoverflow-14” takes 53 seconds be-

cause the input example tensor is the largest one we have in our benchmark

74

suite (with 640 entries). As a result, in the proof construction phase Blaze

needs to search for the desired formula in a space with over 105 formulas. This

makes the overall synthesis process computationally expensive.

3.6.3 Discussion

The reader may wonder why Blaze performs much better in the tensor

reshaping domain compared to VSA-based techniques (FlashFill and Prose)

than in the string processing domain. We conjecture that this discrepancy can

be explained by considering the size of the search space measured in terms of

the number of (intermediate) concrete values produced by the DSL programs.

For the string domain, the search space size is dominated by the number of

substrings, and FlashFill constructs n2 nodes for substrings in the VSA data

structure, where n is the length of the output example. For the tensor domain,

the search space size is mostly determined by the number of intermediate

tensors; in the worst case Prose would have to explore O(n!) nodes, where n

is the number of entries in the example tensors. Hence, the size of the search

space in the tensor domain is potentially much larger for VSA-based techniques

than that in the string domain. In contrast, Blaze performs quite well in both

application domains, since it uses abstract values (instead of concrete values)

to represent equivalence classes.

75

Chapter 4

Learning Abstractions for Program Synthesis

So far, we have seen an abstraction-guided synthesis paradigm. While

this paradigm has proven to be quite powerful, a down-side of such techniques

is that they require a domain expert to manually come up with a suitable

abstraction. For instance, the Blaze synthesis framework expects a domain

expert to manually specify an abstraction in the form of a universe of predicate

templates together with sound abstract transformers for every DSL function.

Unfortunately, this process is not only time-consuming but also requires sig-

nificant insight about the application domain as well as the internal workings

of the synthesizer.

In this chapter, we present a novel technique for automatically learn-

ing domain-specific abstractions that are useful for instantiating an example-

guided synthesis framework in a new domain.

4.1 Overview

Given a DSL and a training set of synthesis problems (i.e., input-output

examples), our method learns an abstraction in the form of predicate templates

and infers sound abstract transformers for each DSL construct. In addition to

76

Abstraction
learner Synthesizer

ATLAS approach
Current abstraction

Synthesized programs

DSL +
training

problems

Abstraction
(predicates +

 transformers)

Figure 4.1: Schematic overview of our abstraction learning technique.

eliminating the significant manual effort required from a domain expert, the

abstractions learned by our method often outperform manually-crafted ones

in terms of their benefit to synthesizer performance.

The workflow of our approach, henceforth called Atlas 1, is shown

schematically in Figure 4.1. Since Atlas is meant to be used as an off-line

training step for a general-purpose PBE system, it takes as input a DSL as

well as a set of synthesis problems ~E that can be used for training purposes.

Given these inputs, our method enters a refinement loop where an Abstraction

Learner component discovers a sequence of increasingly precise abstract do-

mains A1, · · · ,An, and their corresponding abstract transformers T1, · · · ,Tn,

in order to help the Abstraction-Guided Synthesizer (AGS) solve all training

problems. While the AGS can reject many incorrect solutions using an abstract

domain Ai, it might still return an incorrect solution due to the insufficiency

of Ai. Thus, whenever the AGS returns an incorrect solution to any training

problem, the Abstraction Learner discovers a more precise abstract domain

and automatically synthesizes the corresponding abstract transformers. Upon

1Atlas stands for AuTomated Learning of AbStractions.

77

termination of our algorithm, the final abstract domain An and transformers

Tn are sufficient for the AGS to correctly solve all training problems. Further-

more, because our method learns general abstractions in the form of predicate

templates, the learned abstractions are expected to be useful for solving many

other synthesis problems beyond those in the training set.

From a technical perspective, the Abstraction Learner is based on two

key ideas, namely tree interpolation and data-driven constraint solving, for

learning useful abstract domains and transformers respectively. Specifically,

given an incorrect program Π that cannot be refuted by the AGS using the cur-

rent abstract domain Ai, the Abstraction Learner generates a tree interpolant

Ii that serves as a proof of Π’s incorrectness and constructs a new abstract

domain Ai+1 by extracting templates from the predicates used in Ii. The Ab-

straction Learner also synthesizes the corresponding abstract transformers for

Ai+1 by setting up a second-order constraint solving problem where the goal

is to find the unknown relationship between symbolic constants used in the

predicate templates. Our method solves this problem in a data-driven way

by sampling input-output examples for DSL operators and ultimately reduces

the transformer learning problem to solving a system of linear equations.

4.2 An Illustrative Example

Suppose that we wish to use the Blaze framework to automate the

class of string processing tasks considered by FlashFill [21] and BlinkFill [56].

In the Blaze framework, a domain expert needs to come up with a universe

78

of suitable predicate templates as well as abstract transformers for each DSL

construct. We will now illustrate how Atlas automates this process, given a

suitable DSL and its semantics (e.g., the one used in [56]).

In order to use Atlas, one needs to provide a set of synthesis prob-

lems ~E (i.e., input-output examples) that will be used in the training process.

Specifically, let us consider the three synthesis problems given below:

~E =


E1 :

{
“CAV” 7→ “CAV2018”, “SAS” 7→ “SAS2018”, “FSE” 7→ “FSE2018”

}
,

E2 :
{

“510.220.5586” 7→ “510-220-5586”
}
,

E3 :

{
“\Company\Code\index.html” 7→ “\Company\Code\”,
“\Company\Docs\Spec\specs.html” 7→ “\Company\Docs\Spec\”

}
 .

In order to construct the abstract domain A and transformers T, Atlas

starts with the trivial abstract domain A0 = {>} and transformers T0, defined

as JF (>, · · · ,>)K] := > for every DSL construct F . Using this abstraction,

Atlas invokes Blaze to find a program Π0 that satisfies specification E1 under

the current abstraction (A0,T0). However, since the program Π0 returned by

Blaze is incorrect with respect to the concrete semantics, Atlas tries to find

a more precise abstraction that allows Blaze to succeed.

Towards this goal, Atlas enters a refinement loop that culminates in

the discovery of the abstract domain A1 = {>, len(α) = c, len(α) 6= c},

where α denotes a variable and c is an integer constant. In other words,

A1 tracks equality and inequality constraints on the length of strings. After

learning these predicate templates, Atlas also synthesizes the corresponding

abstract transformers T1. In particular, for each DSL construct, Atlas learns

one abstract transformer for each combination of predicate templates in A1.

79

For instance, for the Concat operator which returns the concatenation y of two

strings x1, x2, Atlas synthesizes the following abstract transformers, where ?

denotes any predicate:

T1 =



JConcat(>, ?)
)
K] := >

JConcat(?,>)
)
K] := >

JConcat
(
len(x1) 6= c1, len(x2) 6= c2

)
K] := >

JConcat
(
len(x1) = c1, len(x2) = c2

)
K] :=

(
len(y) = c1 + c2

)
JConcat

(
len(x1) = c1, len(x2) 6= c2

)
K] :=

(
len(y) 6= c1 + c2

)
JConcat

(
len(x1) 6= c1, len(x2) = c2

)
K] :=

(
len(y) 6= c1 + c2

)


.

Since the AGS can successfully solve E1 using (A1,T1), Atlas now

moves on to the next training problem.

For synthesis problem E2, the current abstraction (A1,T1) is not suffi-

cient for Blaze to discover the correct program. After processing E2, Atlas

refines the abstract domain to the following set of predicate templates:

A2 =
{
>, len(α) = c, len(α) 6= c, charAt(α , i) = c, charAt(α , i) 6= c

}
.

Observe that Atlas has discovered two additional predicate templates that

track positions of characters in the string. Atlas also learns the corresponding

abstract transformers T2 for A2.

Moving on to the final training problem E3, Blaze can already suc-

cessfully solve it using (A2,T2); thus, Atlas terminates with this abstraction.

4.3 Overall Abstraction Learning Algorithm

Our top-level algorithm for learning abstractions, called LearnAb-

stractions, is shown in Figure 4.2. The algorithm takes two inputs, namely

80

1: procedure LearnAbstractions(L, ~E)

input: Domain-specific language L and a set of training problems ~E.
output: Abstract domain A and transformers T.

2: A :=
{
>
}

; . Initialization.
3: T :=

{
JF (>, · · · ,>)K] := > | F ∈ Constructs(L)

}
;

4: for i := 1, · · · , |~E| do
5: while true do . Refinement loop.
6: Π := Synthesize(L,Ei,A,T); . Invoke AGS.
7: if Π = null then break;

8: if IsCorrect(Π,Ei) then break;

9: A := A ∪ LearnAbstractDomain(Π,Ei);
10: T := LearnTransformers(L,A);

11: return (A,T);

Figure 4.2: Overall learning algorithm.

a domain-specific language L (both syntax and semantics) as well as a set of

training problems ~E, where each problem is specified as a set of input-output

examples Ei. The output of our algorithm is a pair (A,T), where A is an ab-

straction represented by a set of predicate templates and T is the corresponding

abstract transformers.

At a high-level, the LearnAbstractions procedure starts with the

most imprecise abstraction A (just consisting of>) and incrementally improves

the its precision whenever the AGS fails to synthesize a correct program using

A. Specifically, the outer loop (lines 4–10) considers each training instance Ei

and performs a fixed-point computation (lines 5–10) that terminates when the

current abstract domain A is good enough to solve problem Ei. Thus, upon

81

termination, the learned abstract domain A is sufficiently precise for the AGS

to solve all training problems ~E.

Specifically, in order to find an abstraction that is sufficient for solv-

ing Ei, our algorithm invokes the AGS with the current abstract domain A

and corresponding transformers T (line 6). We assume Synthesize returns a

program Π that is consistent with Ei under abstraction (A, T). That is, sym-

bolically executing Π (according to T) on inputs Ein
i yields abstract values ~ϕ

that are consistent with the outputs Eout
i (i.e., ∀j. Eout

ij ∈ γ(ϕj)). However,

while Π is guaranteed to be consistent with Ei under the abstract semantics, it

may not satisfy Ei under the concrete semantics. In other words, Π is spurious.

Thus, whenever the call to IsCorrect fails at line 8, we invoke the Learn-

AbstractDomain procedure (line 9) to learn additional predicate templates

that are later added to A. Since the refinement of A necessitates the synthesis

of new transformers, we then call LearnTransformers (line 10) to learn a

new T. The new abstraction is guaranteed to rule out the spurious program

Π as long as there is a unique best transformer of each DSL construct for A.

4.4 Synthesis of Predicate Templates

In this section, we present the LearnAbstractDomain procedure:

Given a spurious program Π and a synthesis problem E that Π does not solve,

our goal is to find new predicate templates A′ to add to the abstract domain A

such that the Abstraction-Guided Synthesizer no longer returns Π as a valid

solution to the synthesis problem E. Our key insight is that we can mine for

82

such useful predicate templates by constructing a tree interpolation problem.

In what follows, we first review tree interpolants (based on [10]) and then

explain how we use this concept to find useful predicate templates.

Definition 4.4.1 (Tree interpolation problem). A tree interpolation problem

T = (V, r, P, L) is a directed labeled tree, where V is a finite set of nodes,

r ∈ V is the root, P : (V \{r}) 7→ V is a function that maps children nodes to

their parents, and L : V 7→ F is a labeling function that maps nodes to formulas

from a set F of first-order formulas such that
∧

v∈V L(v) is unsatisfiable.

In other words, a tree interpolation problem is defined by a tree T where

each node is labeled with a formula and the conjunction of these formulas

is unsatisfiable. In what follows, we write Desc(v) to denote the set of all

descendants of node v, including v itself, and we write NonDesc(v) to denote

all nodes other than those in Desc(v) (i.e., V \Desc(v)). Also, given a set of

nodes V ′, we write L(V ′) to denote the set of formulas labeling nodes in V ′.

Given a tree interpolation problem T , a tree interpolant I is an anno-

tation from every node in V to a formula such that the label of the root node

is false and the label of an internal node v is entailed by the conjunction of

annotations of its children nodes. More formally, a tree interpolant is defined

as follows:

Definition 4.4.2 (Tree interpolant). Given a tree interpolation problem T =

(V, r, P, L), a tree interpolant for T is a function I : V 7→ F that satisfies the

following conditions:

83

len(v1) = len(v2) + len(v3)
^ 8 0  i < len(v2) : v1[i] = v2[i]
^ 8 len(v2)  j < len(v2) + len(v3) :

v1[j] = v3[j � len(v2)]

v1

v2 v3

r

len(v2) = 3 len(v3) = 2

len(v1) 6= 7

false

v2 = “CAV” v3 = “18”

v1 = “CAV2018”

Figure 4.3: A tree interpolation problem and a tree interpolant (underlined).

1. I(r) = false;

2. For each v ∈ V :
((∧

P (ci)=v I(ci)
)
∧ L(v)

)
⇒ I(v);

3. For each v ∈ V : Vars
(
I(v)

)
⊆ Vars

(
L(Desc(v))

)⋂
Vars

(
L(NonDesc(v))

)
.

Intuitively, the first condition ensures that I establishes the unsatis-

fiability of formulas in T , and the second condition states that I is a valid

annotation. As standard in Craig interpolation [41, 40], the third condition

stipulates a “shared vocabulary” condition by ensuring that the annotation

at each node v refers to the common variables between the descendants and

non-descendants of v.

Example 4.4.1. Consider the tree interpolation problem T = (V, r, P, L) in

Figure 4.3, where L(v) is shown to the right of each node v. A tree interpolant

I for this problem maps each node to the corresponding underlined formula.

For instance, we have I(v1) = (len(v1) 6= 7). It is easy to confirm that I is a

valid interpolant according to Definition 4.4.2.

84

1: procedure LearnAbstractDomain(Π,E)

input: Program Π that does not solve problem E (set of examples).
output: Set of predicate templates A′.

2: A′ := ∅;
3: for each (ein, eout) ∈ E do
4: if JΠKein 6= eout then
5: T := ConstructTree(Π, ein, eout);
6: I := FindTreeItp(T);
7: for each v ∈ Nodes(T)\{r} do
8: A′ := A′ ∪

{
MakeSymbolic

(
I(v)

)}
;

9: return A′;

Figure 4.4: Algorithm for learning abstract domain using tree interpolation.

To see how tree interpolation is useful for learning predicates, suppose

that the spurious program Π is represented as an abstract syntax tree (AST),

where each non-leaf node is labeled with the axiomatic semantics of the corre-

sponding DSL construct. Now, since Π does not satisfy the given input-output

example (ein, eout), we are able to use this information to construct a labeled

tree where the conjunction of labels is unsatisfiable. Our key idea is to mine

useful predicate templates from the formulas in the resulting tree interpolant.

With this intuition in mind, let us consider the LearnAbstractDo-

main procedure in Figure 4.4: It uses a procedure called ConstructTree

to generate a tree interpolation problem T for each example (ein, eout)
2 that

program Π does not satisfy (line 5). Specifically, letting Π denote the AST

2Without loss of generality, we assume that programs take a single input x, as we can
always represent multiple inputs as a list.

85

representation of Π, we construct T = (V, r, P, L) as follows:

• V consists of all AST nodes in Π as well as a “dummy” node d.

• The root r of T is the dummy node d.

• P is a function that maps children AST nodes to their parents and maps

the root AST node to the dummy node d.

• L maps each node v ∈ V to a formula as follows:

L(v) =



v′ = eout v is the dummy root node with child v′.

v = ein v is a leaf representing program input ein.

v = c v is a leaf representing constant c.

φF [~v′/~x, v/y] v represents DSL operator F with axiomatic semantics
φF (~x, y) and ~v′ represents children of v.

Essentially, the ConstructTree procedure labels any leaf node rep-

resenting the program input with the input example ein and the root node

with the output example eout. All other internal nodes are labeled with the

axiomatic semantics of the corresponding DSL operator (modulo renaming).3

Observe that the formula
∧

v∈V L(v) is guaranteed to be unsatisfiable since Π

does not satisfy the I/O example (ein, eout); thus, we can obtain a tree inter-

polant for T .

3Here, we assume access to the DSL’s axiomatic semantics. If this is not the case (i.e.,
we are only given the DSL’s operational semantics), we can still annotate each node as v = c
where c denotes the output of the partial program rooted at node v when executed on ein.
However, this may affect the quality of the resulting interpolant.

86

Example 4.4.2. Consider a program Π : Concat(x, “18”) which concatenates

constant string “18” to input x. Figure 4.3 shows the result of invoking Con-

structTree for Π and input-output example (“CAV”, “CAV2018”). As men-

tioned in Example 4.4.1, the tree interpolant I for this problem is indicated

with the underlined formulas.

Since the tree interpolant I effectively establishes the incorrectness of

program Π, the predicates used in I serve as useful abstract values that the

synthesizer (AGS) should consider during the synthesis task. Towards this

goal, the LearnAbstractDomain algorithm iterates over each predicate

used in I (lines 7–8 in Figure 4.4) and converts it to a suitable template by

replacing the constants and variables used in I(v) with symbolic names (or

“holes”). Because the original predicates used in I may be too specific for

the current input-output example, extracting templates from the interpolant

allows our method to learn reusable abstract domains.

Example 4.4.3. Given the tree interpolant I from Example 4.4.1, LearnAb-

stractDomain extracts two predicate templates, namely, len(α) = c and

len(α) 6= c.

4.5 Synthesis of Abstract Transformers

Now, we turn our attention to the LearnTransformers procedure

that synthesizes abstract transformers T for a given abstract domain A. Fol-

lowing our presentation in Chapter 3, we consider abstract transformers that

87

are described using equations of the following form:

JF
(
χ1(x1,~c1), · · · , χn(xn,~cn)

)
K] =

∧
1≤j≤m

χ′j
(
y, ~fj(~c)

)
(4.1)

Here, F is a DSL construct, χi, χ
′
j are predicate templates 4, xi is the i’th in-

put of F , y is F ’s output, ~c1, · · · , ~cn are vectors of symbolic constants, and ~fj

denotes a vector of affine functions over ~c = ~c1, · · · , ~cn. Intuitively, given con-

crete predicates describing the inputs to F , the transformer returns concrete

predicates describing the output. Given such a transformer τ , let Outputs(τ)

be the set of pairs (χ′j,
~fj) in Eqn. 4.1.

We define the soundness of a transformer τ for DSL operator F with

respect to F ’s axiomatic semantics φF . In particular, we say that the abstract

transformer from Eqn. 4.1 is sound if the following implication is valid:(
φF (~x, y) ∧

∧
1≤i≤n

χi(xi,~ci)
)
⇒

∧
1≤j≤m

χ′j
(
y, ~fj(~c)

)
(4.2)

That is, the transformer for F is sound if the (symbolic) output predicate is

indeed implied by the (symbolic) input predicates according to F ’s semantics.

Our key observation is that the problem of learning sound transformers

can be reduced to solving the following second-order constraint :

∃~f. ∀~V .
((
φF (~x, y) ∧

∧
1≤i≤n

χi(xi,~ci)
)
⇒

∧
1≤j≤m

χ′j
(
y, ~fj(~c)

))
(4.3)

where ~f = ~f1, · · · , ~fm and ~V includes all variables and functions from Eqn. 4.2

other than ~f . In other words, the goal of this constraint solving problem is

4We assume that χ′1, · · · , χ′m are distinct.

88

to find interpretations of the unknown functions ~f that make Eqn. 4.2 valid.

Our key insight is to solve this problem in a data-driven way by exploiting the

fact that each unknown function fj,k is affine.

Towards this goal, we first express each affine function fj,k(~c) as follows:

fj,k(~c) = pj,k,1 · c1 + · · ·+ pj,k,|~c| · c|~c| + pj,k,|~c|+1

where each pj,k,l corresponds to an unknown integer constant that we would

like to learn. Now, arranging the coefficients of functions fj,1, · · · , fj,|~fj | in ~fj

into a |~fj| × (|~c|+ 1) matrix Pj, we can represent ~fj(~c) in the following way:

~fj(~c)
ᵀ =

 fj,1(~c)
· · ·

fj,|~fj |(~c)


︸ ︷︷ ︸

~c′
ᵀ
j

=

 pj,1,1 · · · pj,1,|~c|+1

· · · · · ·
pj,|~fj |,1 · · · pj,|~fj |,|~c|+1


︸ ︷︷ ︸

Pj


c1

· · ·
c|~c|
1


︸ ︷︷ ︸

~c†

(4.4)

where ~c† is ~cᵀ appended with the constant 1.

Given this representation, it is easy to see that the problem of synthe-

sizing the unknown functions ~f1, · · · , ~fm from Eqn. 4.2 boils down to finding

the unknown matrices P1, · · · , Pm such that each Pj makes the following im-

plication valid:

Λ ≡
((

(~c′
ᵀ

j = Pj~c
†) ∧ φF (~x, y) ∧

∧
1≤i≤n

χi(xi,~ci)
)
⇒ χ′j(y, ~c

′
j)
)

(4.5)

Our key idea is to infer these unknown matrices P1, · · · , Pm in a data-

driven way by generating input-output examples of the form [i1, · · · , i|~c|] 7→

[o1, · · · , o|~fj |] for each ~fj. In other words, ~i and ~o correspond to instantiations

89

1: procedure LearnTransformers(L,A)
input: DSL L and abstract domain A.
output: A set of transformers T for constructs in L and abstract domain A.

2: for each F ∈ Constructs(L) do

3: for (χ1, · · · , χn) ∈ An do
4: ϕ := >; . ϕ is output of transformer.

5: for χ′j ∈ A do

6: E := GenerateExamples(φF , χ
′
j , χ1, · · · , χn);

7: ~fj := Solve(E);

8: if ~fj 6= null ∧ Valid(Λ[~fj]) then ϕ := (ϕ ∧ χ′j(y, ~fj(~c1, · · · ,~cn)))

9: T := T ∪
{
JF (χ1(x1,~c1), · · · , χn(xn,~cn))K] = ϕ

}
;

10: return T;

Figure 4.5: Algorithm for synthesizing abstract transformers.

of ~c and ~fj(~c) respectively. Given sufficiently many such examples for every

~fj, we can then reduce the problem of learning each unknown matrix Pj to

the problem of solving a system of linear equations.

Based on this intuition, the LearnTransformers procedure from Fig-

ure 4.5 describes our algorithm for learning abstract transformers T for a given

abstract domain A. At a high-level, our algorithm synthesizes one abstract

transformer for each DSL construct F and n argument predicate templates

χ1, · · · , χn. In particular, given F and χ1, · · · , χn, the algorithm constructs

the “return value” of the transformer as:

ϕ =
∧

1≤j≤m

χ′j(y,
~fj(~c))

where ~fj is the inferred affine function for each predicate template χ′j.

90

The key part of our LearnTransformers procedure is the inner loop

(lines 5–8) for inferring each of these ~fj’s. Specifically, given an output predi-

cate template χ′j, our algorithm first generates a set of input-output examples

E of the form [p1, · · · , pn] 7→ p0 such that JF (p1, · · · , pn)K] = p0 is a sound (al-

beit overly specific) transformer. Essentially, each pi is a concrete instantiation

of a predicate template, so the examples E generated at line 6 of the algorithm

can be viewed as sound input-output examples for the symbolic transformer

shown in Eqn. 4.1. We will describe the GenerateExamples procedure in

Chapter 4.5.1.

Once we generate these examples E, the next step of the algorithm

is to learn the unknown coefficients of matrix Pj from Eqn. 4.5 by solving

a system of linear equations (line 7). Specifically, observe that we can use

each input-output example [p1, · · · , pn] 7→ p0 in E to construct one row of

Eqn. 4.4. In particular, we can directly extract ~c = ~c1, · · · ,~cn from p1, · · · , pn
and the corresponding value of ~fj(~c) from p0. Since we have one instantiation of

Eqn. 4.4 for each of the input-output examples in E, the problem of inferring

matrix Pj now reduces to solving a system of linear equations of the form

AP T
j = B where A is a |E| × (|~c| + 1) (input) matrix and B is a |E| × |~fj|

(output) matrix. Thus, a solution to the equation AP T
j = B generated from

E corresponds to a candidate solution for matrix Pj, which in turn uniquely

defines ~fj.

Observe that the call to Solve at line 7 may return null if no affine func-

tion exists. Furthermore, any non-null ~fj returned by Solve is just a candidate

91

solution and may not satisfy Eqn. 4.5. For example, this situation can arise

if we do not have sufficiently many examples in E and end up discovering an

affine function that is “over-fitted” to the examples. Thus, the validity check

at line 8 of the algorithm ensures the learned transformers are actually sound.

4.5.1 Example Generation

In our discussion so far, we assumed an oracle that is capable of gen-

erating valid input-output examples for a given transformer. We now ex-

plain our GenerateExamples procedure from Figure 4.6 that essentially

implements this oracle. In a nutshell, the goal of GenerateExamples is

to synthesize input-output examples of the form [p1, · · · , pn] 7→ p0 such that

JF (p1, · · · , pn)K] = p0 is sound where each pi is a concrete predicate (rather

than symbolic).

Going into more detail, GenerateExamples takes as input the se-

mantics φF of DSL construct F for which we want to learn a transformer for

as well as the input predicate templates χ1, · · · , χn and output predicate tem-

plate χ0 that are supposed to be used in the transformer. For any example

[p1, · · · , pn] 7→ p0 synthesized by GenerateExamples, each concrete pred-

icate pi is an instantiation of the predicate template χi where the symbolic

constants used in χi are substituted with concrete values.

Conceptually, the GenerateExamples algorithm proceeds as follows:

First, it generates concrete input-output examples [s1, · · · , sn] 7→ s0 by eval-

uating F on randomly-generated inputs s1, · · · , sn (lines 4–5). Now, for each

92

1: procedure GenerateExamples(φF , χ0, · · · , χn)

input: axiomatic semantics φF of DSL operator F and predicate tem-
plates χ0, · · · , χn for the output and inputs.
output: a set of valid input-output examples E for DSL construct F .

2: E := ∅;
3: while ¬FullRank(E) do

4: Draw (s1, · · · , sn) randomly from distribution RF over Domain(F);
5: s0 := JF (s1, · · · , sn)K;
6: (A0, · · · , An) := Abstract(s0, χ0, · · · , sn, χn);

7: for each (p0, · · · , pn) ∈ A0 × · · · × An do
8: if Valid

(∧
1≤i≤n pi∧φF ⇒ p0

)
then E := E∪

{
[p1, ··, pn] 7→ p0

}
;

9: return E;

Figure 4.6: Example generation for learning abstract transformers.

concrete I/O example [s1, · · · , sn] 7→ s0, we generate a set of abstract I/O ex-

amples of the form [p1, · · · , pn] 7→ p0 (line 6). Specifically, we assume that the

return value (A0, · · · , An) of Abstract at line 6 satisfies the following properties

for every pi ∈ Ai:

• pi is an instantiation of template χi.

• pi is a sound over-approximation of si (i.e., si ∈ γ(pi)).

• For any other p′i satisfying the above two conditions, p′i is not logically

stronger than pi.

In other words, we assume that Abstract returns a set of “best” sound

abstractions of (s0, · · · , sn) under predicate templates (χ0, · · · , χn).

93

Next, given abstractions (A0, · · · , An) for (s0, · · · , sn), we consider each

candidate abstract example of the form [p1, · · · , pn] 7→ p0 where pi ∈ Ai. Even

though each pi is a sound abstraction of si, the example [p1, · · · , pn] 7→ p0

may not be valid according to the semantics of operator F . Thus, the validity

check at line 8 ensures that each example added to E is in fact valid.

Example 4.5.1. Given abstract domain A = {len(α) = c}, suppose we want

to learn an abstract transformer τ for Concat of the following form:

JConcat
(
len(x1) = c1, len(x2) = c2

)
K] =

(
len(y) = f([c1, c2])

)
We learn the affine function f used in the transformer by first generating

a set E of input-output examples for f (line 6 in LearnTransformers). In

particular, GenerateExamples generates concrete input values for Concat

at random and obtains the corresponding output values by executing Concat

on the input values. For instance, it may generate s1 = “abc” and s2 = “de”

as inputs, and obtain s0 = “abcde” as output. Then, it abstracts these values

under the given templates. In this case, we have an abstract example with p1 =(
len(x1) = 3

)
, p2 =

(
len(x2) = 2

)
and p0 =

(
len(y) = 5

)
. Since [p1, p2] 7→ p0

is a valid example, it is added in E (line 8 in GenerateExamples). At this

point, E is not yet full rank, so the algorithm keeps generating more examples.

Suppose it generates two more valid examples
(
len(x1) = 1, len(x2) = 4

)
7→(

len(y) = 5
)

and
(
len(x1) = 6, len(x2) = 4

)
7→
(
len(y) = 10

)
. Now E is full

rank, so LearnTransformers computes f by solving the following system

94

of linear equations: 3 2 1
1 4 1
6 4 1

P T =

 5
5
10

 Solve
====⇒ P =

[
1 1 0

]
Here, P corresponds to the function f([c1, c2]) = c1 + c2, and this func-

tion defines the sound transformer: JConcat
(
len(x1) = c1, len(x2) = c2

)
K] =(

len(y) = c1 + c2

)
which is added to T at line 9 in LearnTransformers.

4.6 Evaluation

We have implemented the proposed method as a new tool called Atlas,

which is written in Java. Atlas takes as input a set of training problems, an

Abstraction-Guided Synthesizer (AGS), and a DSL and returns an abstract do-

main (in the form of predicate templates) and the corresponding transformers.

Internally, Atlas uses the Z3 theorem prover [73] to compute tree interpolants

and the JLinAlg linear algebra library [28] to solve linear equations.

To assess the usefulness of Atlas, we conduct an experimental evalu-

ation in which our goal is to answer the following two questions:

1. How does Atlas perform during training? That is, how many training

problems does it require and how long does training take?

2. How useful are the abstractions learned by Atlas in the context of syn-

thesis?

95

4.6.1 Abstraction Learning

To answer our first question, we use Atlas to automatically learn ab-

stractions for two application domains: (i) string manipulations and (ii) tensor

transformations. We provide Atlas with the DSLs used in Chapter 3.5 and

employ Blaze as the underlying Abstraction-Guided Synthesizer. Axiomatic

semantics for each DSL construct were given in the theory of equality with

uninterpreted functions.

Training set information. For the string domain, our training set con-

sists of exactly the four problems used as motivating examples in BlinkFill [56].

Specifically, each training problem consists of 4-6 examples that demonstrate

the desired string transformation. For the tensor domain, our training set con-

sists of four (randomly selected) synthesis problems taken from online forums.

Since almost all online posts contain one single input-output example, each

training problem includes one example illustrating the desired reshaping task.

Main results. Our main results are summarized in Figure 4.7 5. The main

take-away message is that Atlas can learn abstractions quite efficiently and

does not require a large training set. For example, Atlas learns 5 predicate

templates and 30 abstract transformers for the string domain in a total of 10.2

5Here, |A|, |T|, Iters denote the number of predicate templates, abstract transformers, and
iterations taken per training instance (lines 5-10 from Figure 4.2), respectively. TAGS, TA, TT
denote the times for invoking the AGS, learning the abstract domain, and learning the
abstract transformers, respectively. Ttotal shows the total training time in seconds

96

|A| |T| Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 5 30 4 0.6 0.2 0.2 1.0

E2 5 30 1 4.9 0 0 4.9

E3 5 30 1 0.2 0 0 0.2

E4 5 30 1 4.1 0 0 4.1

Total 5 30 7 9.8 0.2 0.2 10.2

String domain

|A| |T| Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 8 45 3 2.9 0.7 0.5 4.1

E2 8 45 1 2.8 0 0 2.8

E3 10 59 2 0.5 0.3 0.2 1.0

E4 10 59 1 14.6 0 0 14.6

Total 10 59 7 20.8 1.0 0.7 22.5

Tensor domain

Figure 4.7: Training results of Atlas.

seconds. Interestingly, Atlas does not need all the training problems to infer

these four predicates and converges to the final abstraction after just processing

the first training instance. Furthermore, for the first training instance, it takes

Atlas 4 iterations in the learning loop (lines 5-10 from Figure 4.2) before it

converges to the final abstraction. Since this abstraction is sufficient, it takes

just one iteration for each following training problem to synthesize a correct

program.

97

For the tensor domain in Figure 4.7, we also observe similar results. In

particular, Atlas learns 10 predicate templates and 59 abstract transformers

in a total of 22.5 seconds. Furthermore, Atlas converges to the final abstract

domain after processing the first three problems, and the number of iterations

for each training instance is also quite small (ranging from 1 to 3).

4.6.2 Evaluating the Usefulness of Learned Abstractions

To answer our second question, we integrated the abstractions synthe-

sized by Atlas into the Blaze framework. In the remainder of this chapter,

we refer to all instantiations of Blaze using the Atlas-generated abstractions

as Blaze?. To assess how useful the automatically generated abstractions are,

we compare Blaze? against Blaze†, which refers to the manually-constructed

instantiations of Blaze described in Chapter 3.

Benchmark information. For the string domain, our benchmark suite

consists of (1) all 108 string transformation benchmarks that were used to

evaluate Blaze† and (2) 40 additional challenging problems that are collected

from online forums involving manipulating file paths, URLs, etc. The number

of examples for each benchmark ranges from 1 to 400, with a median of 7.

For the tensor domain, our benchmark set includes (1) all 39 tensor trans-

formation benchmarks in the Blaze† benchmark suite and (2) 20 additional

challenging problems collected from online forums. We emphasize that the set

of benchmarks used for evaluating Blaze? are completely disjoint from the set

98

Original Blaze† benchmarks Additional benchmarks All benchmarks

#Solved
Running time
improvement

#Solved
Running time
improvement

Time
(sec)

Running time
improvement

Blaze? Blaze† max. avg. Blaze? Blaze† max. avg. avg. max. avg.

String 93 91 15.7× 1.5× 40 40 56× 18.8× 2.8 56× 3.2×

Tensor 39 39 6.1× 2.9× 20 19 83× 15.6× 5.0 83× 5.0×

Figure 4.8: Improvement of Blaze? over Blaze†.

of synthesis problems used for training Atlas.

Experimental setup. We evaluate Blaze? and Blaze† using the same

DSLs presented in Chapter 3.5. For each benchmark, we provide the same set

of input-output examples to Blaze? and Blaze†, and use a time limit of 20

minutes per synthesis task.

Main results. Our main evaluation results are summarized in Figure 4.8.

The key observation is that Blaze? consistently improves upon Blaze† for

both string and tensor transformations. In particular, Blaze? not only solves

more benchmarks than Blaze† for both domains, but also achieves about an

order of magnitude speed-up on average for the common benchmarks that both

tools can solve. Specifically, for the string domain, Blaze? solves 133 (out

of 148) benchmarks within an average of 2.8 seconds and achieves an average

3.2× speed-up over Blaze†. For the tensor domain, we also observe a very

similar result where Blaze? leads to an overall speed-up of 5.0× on average.

In summary, this experiment confirms that the abstractions discovered

by Atlas are indeed useful and that they outperform manually-crafted ab-

stractions despite eliminating human effort.

99

Chapter 5

Related Work

In this chapter, we compare our techniques against related approaches

in the synthesis and verification literature.

CEGAR in model checking. Our approach is inspired by the use of

counterexample-guided abstraction refinement (CEGAR) in software model

checking [9, 24, 23, 6]. The idea is to start with a coarse abstraction of the

program and then perform model checking over this abstraction. Since any

errors encountered using this approach may be spurious, the model checker

then looks for a counterexample trace and refines the abstraction if the error

is indeed spurious. While there are many ways to perform refinement, a pop-

ular approach is to refine the abstraction using interpolation, which provides a

proof of unsatisfiability of a trace [23]. Our synthesis approach is very similar

to CEGAR-based model checkers in the overall workflow, however, we perform

abstraction refinement whenever we find a spurious program as opposed to a

spurious error trace. In addition, the incorrectness proofs that we utilize in

our synthesis technique can be viewed as a form of tree interpolant [42, 53].

100

Abstraction in program synthesis. The only prior work that uses ab-

straction refinement in the context of synthesis is the abstraction-guided syn-

thesis (AGS) technique by Vechev et al. for learning efficient synchronization

for concurrent programs [69]. Unlike Blaze which aims to learn an entire pro-

gram from input-output examples, AGS requires an input concurrent program

and only performs small modifications to the program by adding synchroniza-

tion primitives. Specifically, AGS first abstracts the program and then checks

whether there are any counterexample (abstract) interleavings that violate the

given safety constraint. If there is no violation, it returns the current program.

Otherwise, it non-deterministically chooses to either refine the abstraction or

modify the program by adding synchronization primitives such that the violat-

ing interleaving is removed. AGS can be viewed as a program repair technique

and cannot be used for synthesizing programs from input-output examples.

Other synthesizers that bear similarities to the approach proposed in

this dissertation include Synquid [49] and Morpheus [15]. In particular,

both of these techniques use specifications of DSL constructs in the form of

refinement types and first-order formulas respectively, and use these specifica-

tions to refute programs that do not satisfy the specification. Similarly, Blaze

uses abstract semantics of the DSL, which can also be viewed as specifications.

However, unlike Synquid, the specifications in Blaze and Morpheus over-

approximate the behavior of the DSL constructs. Furthermore, Blaze differs

from both techniques in that it performs abstraction refinement and learns

programs using finite tree automata.

101

There is a line of work that uses abstractions in the context of component-

based program synthesis [20, 67]. These techniques annotate each component

with a “decoration” that serves as an abstraction of the semantics of that com-

ponent. The use of such abstractions simplifies the synthesis task by reducing

a complex ∃∀ problem to a simpler ∃∃ constraint solving problem, albeit at

the cost of sacrificing the completeness. In contrast to these techniques, our

method uses abstractions to construct a compact finite tree automaton and

performs abstraction refinement to rule out spurious programs.

The use of abstraction refinement has also been explored in the context

of superoptimizing compilers [47]. In particular, Phothilimthana et al. use test

cases to construct an (over-approximate) abstraction of the program behavior

and “refine” this abstraction by iteratively including more test cases. However,

since this abstraction is heuristically applied only to the “promising” parts of

the candidate space, this method may not be able to find the desired equivalent

program. This technique differs significantly from our method in that they use

an orthogonal definition of abstraction and perform abstraction refinement in

a different and heuristic-guided manner.

Another related technique is Storyboard Programming [59] for learning

data structure manipulation programs from examples by combining abstract

interpretation and shape analysis. However, it differs from Blaze in that the

user needs to manually provide precise abstractions for input-output examples

as well as abstract transformers for data structure operations. Furthermore,

there is no automated refinement phase.

102

Programming-by-example (PBE). The problem of automatically learn-

ing programs that are consistent with a set of input-output examples has been

the subject of research for the last four decades [55]. Recent advances in algo-

rithmic and logical reasoning techniques have led to the development of PBE

systems in several domains including regular expression based string transfor-

mations [21, 56], data structure manipulations [16, 71], file manipulations [22],

interactive parser synthesis [34], and synthesizing map-reduce distributed pro-

grams [60]. It has also been studied from different perspectives, such as type-

theoretic interpretation [54, 45, 17], version space learning [50, 21], and deep

learning [46, 13].

Our method presents a new approach to example-guided program syn-

thesis using abstraction refinement. Unlike most of the earlier PBE approaches

that prune the search space using the concrete semantics of DSL operators [2,

68], Blaze uses the DSL’s abstract semantics and iteratively refines the ab-

straction until it finds a program that satisfies the input-output examples.

We instantiate Blaze in three application domains, namely data completion,

string processing and tensor reshaping, and we believe that Blaze can be used

to complement many previous PBE systems to make synthesis more efficient.

Counterexample-guided inductive synthesis. Counterexample-guided

inductive synthesis (CEGIS) [64, 62] is a popular algorithm for solving syn-

thesis problems of the form ∃P ∀i : φ(P, i) where the goal is to find a program

P such that the specification φ holds for all inputs i. The key idea in CEGIS

103

is to reduce the solving of the second-order formula to two first-order formulas:

(1) ∃P : φ(P, i1)∧ · · · ∧ φ(P, ik) (synthesis) and (2) ∃i : ¬φ(P, i) (verification).

In the first phase, we synthesize a program P that is consistent with a finite set

of inputs (i1, · · · , ik), whereas in the second phase we perform verification on

P to find a counterexample input i that violates the specification φ. If such an

input i exists, it is added to the set of current inputs and the synthesis phase

is repeated. This iterative process continues until either the verification check

succeeds (i.e., the synthesized program satisfies the specification) or if the

synthesis check fails (i.e., there is no program that satisfies the specification).

CEGIS bears similarities to Blaze in that both approaches are guided

by counterexamples (i.e., incorrect programs). However, they are very differ-

ent in that CEGIS abstracts the specification, whereas Blaze abstracts the

program. In particular, the synthesis phase in CEGIS uses a finite set of ex-

amples to under-approximate the specification, whereas Blaze uses program

abstractions to over-approximate the program behavior in programming-by-

example. Because Blaze is intended for example-guided synthesis, we believe

that it can be used to complement the synthesis phase in CEGIS.

Tree automata. Tree automata, which generalize word (string) automata,

were originally used for proving the existence of a decision procedure for weak

monadic second-order logic [66]. Since then, tree automata have found applica-

tions in analyzing XML documents [38, 25], software verification [1, 27, 18, 44]

and natural language processing [29, 39]. Recent work by Kafle and Gallagher

104

is particularly related in that they use counterexample-guided abstraction re-

finement to solve a system of constrained Horn Clauses and perform refinement

using finite tree automata [18]. In contrast to their approach, we use finite

tree automata for synthesis rather than for refinement.

Tree automata have also found interesting applications in the context of

program synthesis. For example, Parthasarathy uses tree automata as a theo-

retical basis for reactive synthesis [37]. Specifically, given an ω-specification of

the reactive system, their technique constructs a tree automaton that accepts

all programs that meet the specification. In this dissertation, we use finite tree

automata for programming-by-example in a general setting. We also introduce

introduce the concept of abstract finite tree automata (AFTAs) and describe

a method for counterexample-guided synthesis using AFTAs.

Abstract transformers. Many verification techniques use logical abstract

domains [35, 36, 48, 30, 52]. Some of these work, following Yorsh et al. [51] use

sampling with a decision procedure to evaluate the abstract transformer [65].

Interpolation has also been used to compile efficient symbolic abstract trans-

formers [26]. However, these techniques are restricted to only finite domains or

domains of finite height in order to allow convergence. Here, Blaze uses infi-

nite parameterized domains to obtain better generalization; hence, the abstract

transformer computation in our context is more challenging. Nonetheless, the

approach might also be applicable in verification.

105

Chapter 6

Conclusion

This dissertation describes a programming-by-example framework that

is both generic and efficient. The underpinning idea is a novel program syn-

thesis paradigm that consists of two main components: an abstraction-based

synthesis component that synthesizes programs with respect to an abstraction

and an abstraction refinement component that refines the abstraction when-

ever it is not precise. We present a particular development of this idea based

on finite tree automata and the notion of incorrectness proofs. We have im-

plemented this framework in a tool, called Blaze, that can be instantiated

to different application domains by providing a domain-specific language with

its syntax and abstract semantics. Our evaluation demonstrates that Blaze

can successfully synthesize non-trivial programs across three different applica-

tion domains and achieves orders of magnitude improvement in terms of the

synthesis speed compared to existing state-of-the-art synthesis techniques.

106

Appendices

107

Appendix A

Proofs of Theorems

Theorem 2.2.1 (Soundness of CFTA) Let A be the CFTA constructed for

a DSL (with concrete semantics) and examples ~e. If Π is a program that is

accepted by A, then Π is consistent with examples ~e with respect to the DSL’s

concrete semantics.

Proof.

Theorem 2.2.2 (Completeness of CFTA)

Proof.

Theorem 3.1.1 (Soundness of AFTA) Let A be the AFTA constructed for a

DSL (with abstract semantics), examples ~e and predicates P. If Π is a program

that is accepted by A, then Π is consistent with examples ~e with respect to

the DSL’s abstract semantics under the abstract domain defined by P.

Proof.

???

108

Theorem A.0.1. (Completeness of AFTA) Let A be the AFTA constructed

for a DSL (with abstract semantics), examples ~e and predicates P. If Π is a

program that is consistent with examples ~e with respect to the DSL’s abstract

semantics under the abstract domain defined by P, then Π is accepted by A.

Theorem A.0.2. (Existence of Incorrectness Proofs) Given a spurious

program Π that does not satisfy example e according to concrete semantics,

an incorrectness proof of Π satisfying properties in Definition 3.2.1. always

exists.

Theorem A.0.3. (Progress) Let Ai be the AFTA constructed in the i’th itera-

tion of the Learn procedure from Figure 3.3, and let Πi be a spurious program

returned by Rank. Then, we have Πi 6∈ L(Ai+1) and L(Ai+1) ⊂ L(Ai).

Theorem A.0.4. (Soundness of Algorithm in Figure 3.3) If the Learn

procedure from Figure 3.3 returns a program Π for examples ~e, then Π satisfies

~e, namely, JΠK~ein = ~eout.

Theorem A.0.5. (Completeness of Algorithm in Figure 3.3) If there ex-

ists a program in the DSL that satisfies the input-output examples ~e, then

given the DSL and examples ~e, the Learn procedure from Figure 3.3 will

return a DSL program Π such that JΠK~ein = ~eout.

Theorem A.0.6. (Correctness of Algorithm in Figure 3.5) The mapping

I returned by the ConstructProof procedure from Figure 3.5 satisfies the

properties from Definition 3.2.1.

109

Bibliography

[1] Parosh A Abdulla, Ahmed Bouajjani, Lukáš Hoĺık, Lisa Kaati, and Tomáš

Vojnar. Composed bisimulation for tree automata. In International

Conference on Implementation and Application of Automata, pages 212–

222. Springer, 2008.

[2] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive

program synthesis. In International Conference on Computer Aided Ver-

ification, CAV, pages 934–950. Springer, 2013.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. Depend-

able Software Systems Engineering, 40:1–25, 2015.

[4] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.

SyGuS-Comp 2016: Results and Analysis. In SYNT, pages 178–202,

2016.

[5] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enu-

merative program synthesis via divide and conquer. In International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS, pages 319–336. Springer, 2017.

110

[6] Thomas Ball, Vladimir Levin, and Sriram K Rajamani. A decade of

software model checking with SLAM. Communications of the ACM,

54(7):68–76, 2011.

[7] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin,

and Daniel Tarlow. Deepcoder: Learning to write programs. arXiv

preprint arXiv:1611.01989, 2016.

[8] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. FlashRe-

late: Extracting relational data from semi-structured spreadsheets using

examples. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI, pages 218–228.

ACM, 2015.

[9] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar.

The software model checker BLAST. International Journal on Software

Tools for Technology Transfer, 9(5-6):505–525, 2007.

[10] Régis Blanc, Ashutosh Gupta, Laura Kovács, and Bernhard Kragl. Tree

Interpolation in Vampire. In International Conference on Logic for Pro-

gramming Artificial Intelligence and Reasoning, pages 173–181. Springer,

2013.

[11] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Using pro-

gram synthesis for social recommendations. In Proceedings of the 21st

ACM international conference on Information and knowledge manage-

ment, pages 1732–1736. ACM, 2012.

111

[12] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, POPL, pages 238–

252, 1977.

[13] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-

rahman Mohamed, and Pushmeet Kohli. RobustFill: Neural program

learning under noisy I/O. arXiv preprint arXiv:1703.07469, 2017.

[14] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program syn-

thesis using conflict-driven learning. arXiv preprint arXiv:1711.08029,

2017.

[15] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaud-

huri. Component-based synthesis of table consolidation and transfor-

mation tasks from examples. In Proceedings of the 38th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, PLDI, pages 422–436. ACM, 2017.

[16] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data

structure transformations from input-output examples. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI, pages 229–239. ACM, 2015.

[17] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.

112

Example-directed synthesis: A type-theoretic interpretation. In Proceed-

ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL, pages 802–815. ACM, 2016.

[18] John Gallagher and German Puebla. Abstract interpretation over non-

deterministic finite tree automata for set-based analysis of logic programs.

Practical Aspects of Declarative Languages, pages 243–261, 2002.

[19] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen.

Directed hypergraphs and applications. Discrete Appl. Math., 42(2-

3):177–201, 1993.

[20] Adrià Gascón, Ashish Tiwari, Brent Carmer, and Umang Mathur. Look

for the proof to find the program: Decorated-component-based program

synthesis. In International Conference on Computer Aided Verification,

CAV, pages 86–103. Springer, 2017.

[21] Sumit Gulwani. Automating string processing in spreadsheets using

input-output examples. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL,

pages 317–330. ACM, 2011.

[22] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. StriSynth:

Synthesis for live programming. In Proceedings of the 37th International

Conference on Software Engineering, ICSE, pages 701–704. IEEE, 2015.

113

[23] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.

McMillan. Abstractions from proofs. In Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL, pages 232–244. ACM, 2004.

[24] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. Software verification with BLAST. In International SPIN Work-

shop on Model Checking of Software, pages 235–239. Springer, 2003.

[25] Haruo Hosoya and Benjamin C Pierce. XDuce: A statically typed XML

processing language. ACM Transactions on Internet Technology (TOIT),

3(2):117–148, 2003.

[26] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition re-

lation approximation. Logical Methods in Computer Science, 3(4), 2007.

[27] Bishoksan Kafle and John P Gallagher. Tree automata-based refinement

with application to horn clause verification. In International Workshop

on Verification, Model Checking, and Abstract Interpretation, VMCAI,

pages 209–226. Springer, 2015.

[28] A Keilhauer, SD Levy, A Lochbihler, S Ökmen, GL Thimm, and C Würzebesser.

JLinAlg: A Java-library for Linear Algebra without Rounding Errors.

Technical report, Technical report (2003-2010), http://jlinalg.sourceforge.net/.

[29] Kevin Knight and Jonathan May. Applications of weighted automata in

natural language processing. In Handbook of Weighted Automata, pages

114

571–596. Springer, 2009.

[30] Shuvendu K. Lahiri and Randal E. Bryant. Constructing quantified

invariants via predicate abstraction. In VMCAI, pages 267–281, 2004.

[31] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld.

Programming by demonstration using version space algebra. Machine

Learning, 53(1-2):111–156, 2003.

[32] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space alge-

bra and its application to programming by demonstration. In Proceedings

of the 17th International Conference on Machine Learning, ICML, pages

527–534, 2000.

[33] Vu Le and Sumit Gulwani. FlashExtract: A framework for data extrac-

tion by examples. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI, pages 542–

553. ACM, 2014.

[34] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthe-

sis by example. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI, pages 565–

574. ACM, 2015.

[35] Tal Lev-Ami, Roman Manevich, and Mooly Sagiv. TVLA: A System

for Generating Abstract Interpreters. Building the Information Society,

pages 367–375, 2004.

115

[36] Tal Lev-Ami and Mooly Sagiv. TVLA: A System for Implementing Static

Analyses. Static Analysis, pages 105–110, 2000.

[37] Parthasarathy Madhusudan. Synthesizing reactive programs. In Lipics-

Leibniz International Proceedings in Informatics, volume 12, 2011.

[38] Wim Martens and Joachim Niehren. Minimizing tree automata for un-

ranked trees. In International Workshop on Database Programming Lan-

guages, pages 232–246. Springer, 2005.

[39] Jonathan May and Kevin Knight. A primer on tree automata software

for natural language processing, 2008.

[40] Kenneth L McMillan. Interpolation and SAT-based Model Checking. In

International Conference on Computer Aided Verification, CAV, pages

1–13. Springer, 2003.

[41] Kenneth L McMillan. Applications of Craig Interpolants in Model Check-

ing. In International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 1–12. Springer, 2005.

[42] Kenneth L McMillan and Andrey Rybalchenko. Solving constrained horn

clauses using interpolation. Tech. Rep. MSR-TR-2013-6, 2013.

[43] Tom M Mitchell. Generalization as search. Artificial intelligence,

18(2):203–226, 1982.

116

[44] David Monniaux. Abstracting cryptographic protocols with tree au-

tomata. In International Static Analysis Symposium, pages 149–163.

Springer, 1999.

[45] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed

program synthesis. In Proceedings of the 36th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI, pages

619–630. ACM, 2015.

[46] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,

Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthe-

sis. arXiv preprint arXiv:1611.01855, 2016.

[47] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and

Dinakar Dhurjati. Scaling up superoptimization. In Proceedings of the

21st International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS, pages 297–310. ACM, 2016.

[48] Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive

verification with invisible invariants. In TACAS, pages 82–97, 2001.

[49] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program

synthesis from polymorphic refinement types. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI, pages 522–538. ACM, 2016.

117

[50] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A framework for

inductive program synthesis. In Proceedings of the 2015 ACM SIG-

PLAN International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA, pages 107–126. ACM,

2015.

[51] Thomas Reps, Mooly Sagiv, and Greta Yorsh. Symbolic Implementa-

tion of the Best Transformer. In VMCAI, volume 2937, pages 252–266.

Springer, 2004.

[52] Thomas Reps and Aditya Thakur. Automating Abstract Interpretation.

In VMCAI, pages 3–40. Springer, 2016.

[53] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Classifying and

solving horn clauses for verification. In Working Conference on Verified

Software: Theories, Tools, and Experiments, pages 1–21. Springer, 2013.

[54] Gabriel Scherer and Didier Rémy. Which simple types have a unique

inhabitant? In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming, ICFP, pages 243–255. ACM,

2015.

[55] David E. Shaw, William R. Swartout, and C. Cordell Green. Inferring

LISP programs from examples. In Proceedings of the 4th International

Joint Conference on Artificial Intelligence, IJCAI, pages 260–267, 1975.

118

[56] Rishabh Singh. BlinkFill: Semi-supervised programming by example for

syntactic string transformations. Proceedings of the VLDB Endowment,

9(10):816–827, 2016.

[57] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations

from input-output examples. In International Conference on Computer

Aided Verification, CAV, pages 634–651. Springer, 2012.

[58] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types

using examples. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL,

pages 343–356. ACM, 2016.

[59] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure

manipulations from storyboards. In Proceedings of the 19th ACM SIG-

SOFT Symposium and the 13th European Conference on Foundations of

Software Engineering, ESEC/FSE, pages 289–299, 2011.

[60] Calvin Smith and Aws Albarghouthi. MapReduce program synthesis.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, pages 326–340. ACM, 2016.

[61] Sunbeom So and Hakjoo Oh. Synthesizing imperative programs from

examples guided by static analysis. In Static Analysis Symposium, pages

364–381. Springer International Publishing, 2017.

119

[62] Armando Solar-Lezama. Program synthesis by sketching. PhD thesis,

2008.

[63] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bod́ık, and Kemal

Ebcioğlu. Programming by sketching for bit-streaming programs. In

Proceedings of the 26th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, pages 281–294. ACM, 2005.

[64] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,

and Vijay Saraswat. Combinatorial sketching for finite programs. In

Proceedings of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS, pages 404–

415. ACM, 2006.

[65] Aditya V Thakur and Thomas W Reps. A Method for Symbolic Compu-

tation of Abstract Operations. In International Conference on Computer

Aided Verification, volume 12, pages 174–192. Springer, 2012.

[66] James W Thatcher and Jesse B Wright. Generalized finite automata

theory with an application to a decision problem of second-order logic.

Theory of Computing Systems, 2(1):57–81, 1968.

[67] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. Program synthesis

using dual interpretation. In International Conference on Automated

Deduction, pages 482–497. Springer, 2015.

120

[68] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-

Haim, Milo M. K. Martin, and Rajeev Alur. TRANSIT: Specifying

protocols with concolic snippets. In Proceedings of the 34th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, PLDI, pages 287–296, 2013.

[69] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided

synthesis of synchronization. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL, pages 327–338, 2010.

[70] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing

highly expressive SQL queries from input-output examples. In Proceed-

ings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI, pages 452–466. ACM, 2017.

[71] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaud-

huri. Synthesizing transformations on hierarchically structured data.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, pages 508–521. ACM, 2016.

[72] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. NetEgg: Programming

network policies by examples. In Proceedings of the 13th ACM Workshop

on Hot Topics in Networks, page 20. ACM, 2014.

[73] Z3. https://github.com/Z3Prover/z3.

121

Vita

Xinyu Wang was born in Weifang, Shandong, China. He graduate from

Shanghai Jiao Tong University in 2013 with a B.E. degree in Information En-

gineering. In August 2013, he entered the doctoral program in the Department

of Computer Science at the University of Texas at Austin. He obtained a M.S.

degree in Computer Science in May 2019.

Email address: xinyuwangsd@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

122

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Program Synthesis using Finite Tree Automata
	Background on Finite Tree Automata
	Program Synthesis using Finite Tree Automata
	Implementation
	Application
	Evaluation

	Chapter 3. Improving Efficiency using Abstract Interpretation
	Program Synthesis using Abstract Finite Tree Automata
	Abstractions
	Abstract Finite Tree Automata

	Program Synthesis using Abstraction Refinement
	Algorithm Architecture
	Constructing Incorrectness Proofs

	A Working Example
	Implementation
	Applications
	String Processing
	Tensor Reshaping

	Evaluation
	String Processing
	Tensor Reshaping
	Discussion

	Chapter 4. Learning Abstractions for Program Synthesis
	Overview
	An Illustrative Example
	Overall Abstraction Learning Algorithm
	Synthesis of Predicate Templates
	Synthesis of Abstract Transformers
	Example Generation

	Evaluation
	Abstraction Learning
	Evaluating the Usefulness of Learned Abstractions

	Chapter 5. Related Work
	Chapter 6. Conclusion
	Appendices
	Appendix A. Proofs of Theorems
	Bibliography
	Vita

