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Database applications typically undergo several schema refactorings

during their life cycle due to performance or maintainability reasons. Such

refactorings not only require migrating the underlying data to a new schema

but also re-implementing large chunks of the code that query and update the

database. The code and data migration tasks implied by schema refactor-

ing are notoriously challenging to developers, as they are time-consuming and

error-prone.

Motivated by these challenges, this dissertation presents formal method

techniques to help developers correctly and easily evolve database applications

during schema refactoring. Specifically, it first describes how to verify equiva-

lence between database applications that operate over different schemas, such

as those that arise before and after schema refactoring. Next, it presents a

novel technique that can automatically synthesize an equivalent version of the

database program that operates over the new schema. Finally, it describes a

synthesis technique that helps developers migrate data between schemas using

input-output examples.
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We also implement research prototypes based on the proposed tech-

niques and perform experiments to evaluate their effectiveness and efficiency.

The experimental results demonstrate that our techniques are effective for code

and data migration during schema refactoring, and they are more efficient than

several baselines and state-of-the-art approaches.
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Chapter 1

Introduction 1

Database applications have been, and continue to be, enormously pop-

ular in software development. For example, most contemporary websites are

built using database applications in order to generate web page content dy-

namically. As people rely on various database applications in modern software

systems, database applications have formed the backbone of many aspects of

human society, including healthcare, finance, e-commerce, and industries.

Generally speaking, database applications continuously evolve due to

performance or maintainability reasons. One common theme of the evolu-

tion is that database applications usually undergo schema refactoring several

times during their life cycle [9, 54]. A schema refactoring typically involves

some changes to the database schema, intending to improve the design and/or

performance of the application without changing its semantics. For instance,

example changes during schema refactoring include splitting a table into mul-

tiple tables, merging many tables into a single one, and moving columns from

one table to another.

1This chapter is adapted from the author’s previous publications [130, 131, 133], where
the author led the technical discussion, tool development, and experimental evaluation.
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Despite the frequent need to perform schema refactoring, this task is

known to be non-trivial [8, 138]. In order to retain the semantics of database

applications during schema refactoring, developers need to solve two problems

after changing the schema: code migration and data migration. Specifically,

code migration requires re-implementing large chunks of code that query and

update the database, and data migration requires migrating the underlying

data to the new schema. Both of these problems are demanding and challeng-

ing for developers.

On one hand, code migration is time-consuming and error-prone. Data-

base applications may have hundreds of SQL functions for data access and

manipulation, and many of these functions need to be rewritten after the

schema is changed [39]. While developers may choose to migrate affected SQL

functions manually, such migration requires lots of effort and thus introduces

significant burdens. Even worse, developers need to be very careful about

manual code migration, because it is easy to introduce bugs in the migration

process [8, 9].

On the other hand, data migration is inefficient and tedious. While de-

velopers may write scripts to perform data migration, these scripts are rarely

executed after the schema refactoring is finished. Furthermore, migration

scripts usually require a long time to write and distract developers from other

creative programming tasks. An alternative approach is providing a schema

mapping that describes the relationship of two database schemas and gener-

ating a script based on the schema mapping to perform data migration [86].
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However, the desired schema mappings for realistic database schemas is in-

creasingly impractical to be specified by developers, because large database

schemas could result in complicated and daunting schema mappings [6].

Motivated by these challenges, this dissertation presents formal method

techniques for schema refactoring. In particular, it consists of verification and

synthesis techniques that can help developers correctly and easily perform

code and data migration. Here, verification is an effective means to ensure

that developers do not introduce bugs in the refactoring process. Synthesis

facilitates a high degree of automation and significantly reduces the manual

effort from developers during schema refactoring. Overall, this dissertation

aims to present verification and synthesis techniques that can provide devel-

opers with high confidence in the correctness of migration, as well as improve

the developer productivity for schema refactoring.

First of all, we describe how to verify equivalence between database

programs operating over different schemas, such as those that arise before and

after schema refactoring [130]. While there has been significant progress in

the area of equivalence checking [33, 34, 94, 97, 105, 146], existing techniques

cannot be used to verify equivalence between database programs. The problem

of equivalence checking for database programs introduces several challenges

that are not addressed by previous work, ranging from equivalence definition

to proof methodology. In this dissertation, we formalize the equivalence ver-

ification problem for database programs and propose a verification algorithm

based on bisimulation invariants for proving equivalence. Specifically, given

3



two programs P and P ′ over schemas S and S ′ respectively, our algorithm

can automatically verify whether P is equivalent to P ′ or not. This technique

is useful for developers to prove the correctness of a manual code migration

during schema refactoring.

Next, building on top of the verification procedure, we present a novel

synthesis technique that can automatically migrate the database program to

a new schema [131]. Specifically, given the original database program P over

schema S and a new database schema S ′, the goal of synthesis is to automat-

ically generate a new program P ′ over S ′ such that P ′ is provably equivalent

to P . Since programmers typically spend significant time and effort in rewrit-

ing the program after a schema change, such automated synthesis techniques

have the potential to improve programmer productivity dramatically. In or-

der to automate code migration in real-world database applications, we must

overcome the difficulty of scaling to a large number of SQL functions and

minimizing the number of calls issued to the verifier. To address the scala-

bility issues, we present a synthesis algorithm that decomposes the problem

into more tractable sub-problems. In particular, we first generate a database

program sketch, which includes many candidate instantiations of the target

program, by inferring a value correspondence between the source and target

schemas. Then we develop an efficient sketch completion algorithm that uti-

lizes counterexamples to rule out many syntactically valid, but semantically

incorrect, instantiations of the generated sketch.

Finally, we describe an automatic data migration technique based on

4



the programming-by-example paradigm to help developers migrate data dur-

ing schema refactoring [133]. Specifically, given the original database and a

target schema, our technique can perform the desired data transformation us-

ing only a number of demonstrating examples. Unlike previous programming-

by-example efforts [6, 102, 140] that typically focus on data transformations

between particular types of schemas, our technique provides a general solution

between many types of schemas, including relational, document, and graph

schemas. The key idea is to use a Datalog program to relate the source and

target schemas and reduce the automatic data migration problem to the prob-

lem of synthesizing a Datalog program from examples. However, synthesizing

Datalog programs from examples for data transformation is challenging, be-

cause real-world database schemas usually have a large number of entities and

attributes, and the search space over all possible Datalog programs is enor-

mous. To address this challenge, we leverage the properties of Datalog, ana-

lyze the root cause of the discrepancy between the expected and actual output

yielded by an incorrect program, and then utilize the root cause information

to prune many incorrect programs at a time.

To evaluate the proposed techniques, we have implemented three tools:

1. Mediator for verifying equivalence between database programs that

operate over different schemas

2. Migrator for automatically migrating code to a new schema

5



3. Dynamite for automated data migration between different schemas us-

ing demonstrating input-output examples

The experimental results demonstrate that our techniques are effective for code

and data migration during schema refactoring. Furthermore, these tools are

more efficient than several baselines and state-of-the-art systems.

In summary, this dissertation makes the following key contributions:

• We introduce and formalize the equivalence verification problem for

database programs over different schemas.

• We present a sound and relatively complete proof methodology for veri-

fying equivalence between database programs.

• We show how to enable automated reasoning over relational algebra with

updates and how to automatically infer suitable invariants for verifying

equivalence.

• We propose a new synthesis technique for automatically migrating database

programs to a new schema.

• We describe a new sketch completion algorithm for database programs

that is based on symbolic search and conflict-driven learning from mini-

mum failing inputs.

• We present a formulation of the automated data migration problem in

terms of Datalog program synthesis.

6



• We describe a new algorithm that leverages Datalog properties and root

cause analysis to efficiently synthesize Datalog programs from input-

output examples.

The rest of this dissertation is organized as follows. Chapter 2 describes

the verification technique for proving equivalence between database programs

over different schemas. Chapter 3 presents the synthesis technique for auto-

matically migrating database programs from one schema to another. Chapter 4

shows the synthesis technique for automated data migration between different

schemas using demonstrating examples. Chapter 5 surveys the related work

and Chapter 6 concludes the dissertation.

7



Chapter 2

Verifying Equivalence of Database Programs 1

While there has been significant progress in equivalence checking [33,

34, 94, 97, 105, 146], existing techniques cannot be used to verify the equiva-

lence of database programs. To see why verifying equivalence is important in

this context, consider the scenario in which a web application interacts with

a relational database to dynamically render a web page, and suppose that

the database schema needs to be changed either for performance or maintain-

ability reasons. In this case, the developer will need to migrate the database

to the new schema and also re-implement the code that interacts with the

database without changing the observable behavior of the application. While

this task of database refactoring arises very frequently during the life cycle of

web applications, it is also known to be quite hard and error-prone [8, 138],

and several textbooks have been published on this topic [9, 54]. As pointed

out by Faroult and L’Hermite, “database applications are a difficult ground for

refactoring” because “small changes are not always what they appear to be”

and “testing the validity of a change may be difficult” [54].

Motivated by the prevalence of database applications in the real world

1This chapter is adapted from the author’s previous publication [130], where the author
led the technical discussion, tool development, and experimental evaluation.

8



and the frequent need to perform schema refactoring, we propose a new tech-

nique for verifying equivalence of database programs. Given a pair of programs

P , P ′ that interact with two different databases, we would like to automatically

construct a proof that P and P ′ are semantically equivalent. Unfortunately,

the problem of equivalence checking for database programs introduces sev-

eral challenges that are not addressed by previous work: First, it is unclear

how to define equivalence in this context, particularly when the two database

schemas are different. Second, database applications typically use declarative

query languages, such as SQL, but, to the best of our knowledge, there are no

automated reasoning tools for a rich enough fragment of SQL that captures

realistic use cases.

In this chapter, we formalize the equivalence checking problem for

database applications and propose a verification algorithm for proving equiv-

alence. Suppose that we are given two programs P , P ′ that interact with

databases D, D′. Let us also assume that each program comprises a set of

SQL functions (query or update) such that every function f in P has a corre-

sponding function f ′ in P ′. Our goal is to prove that P and P ′ yield the same

result on a pair of corresponding queries Q, Q′ whenever we execute the same

sequence of update operations on D and D′.

To prove equivalence between a pair of database applications, our ap-

proach infers a so-called bisimulation invariant that relates states of the two

programs. In this context, program states correspond to database instances,

so the bisimulation invariants relate a pair of database instances. As shown

9
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Figure 2.1: Bisimulation invariant between two database programs.

in Figure 2.1, our bisimulation invariants are preserved after each database

transaction, and, in addition, they are strong enough to establish that any

corresponding pair of queries must yield the same result.

In the context of software verification, program invariants are typically

expressed in some first-order theory supported by modern SMT solvers. Un-

fortunately, since the bisimulation invariants that we require in this context

relate a pair of databases, they typically involve non-trivial relational algebra

operators, such as join and selection. To solve this difficulty, we consider the

theory of relational algebra with updates, TRA, and present an SMT-friendly

encoding of TRA into the theory of lists, which is supported by many SMT

solvers.

Once we automate reasoning in relational algebra with updates, a re-

maining challenge is to automatically infer suitable bisimulation invariants.

In this chapter, we use the framework of monomial predicate abstraction to

automatically synthesize conjunctive quantifier-free invariants that relate two

10



database states [16, 41, 76]. Specifically, we identify a family F of predicates

that are useful for proving equivalence and generate the strongest conjunc-

tive bisimulation invariant over this universe. Towards this goal, we define a

strongest post-condition semantics of database transactions and automatically

generate verification conditions whose validity establishes the correctness of a

candidate bisimulation invariant.

We have implemented the proposed approach in a tool called Media-

tor for verifying equivalence between applications written in our intermedi-

ate representation (IR), which abstracts database applications as a fixed set

of queries and updates to the database. To evaluate our methodology, we

consider 21 database applications translated into our IR and show that Medi-

ator can successfully verify equivalence between benchmarks extracted from

real-world web applications with up to hundreds of functions. We also show

that Mediator can handle challenging textbook examples that illustrate a

wide spectrum of structural changes to the database schema. Overall, our

experiments show that the proposed method is useful and practical: Medi-

ator can successfully verify the desired property for 10 out of 11 real-world

benchmarks in under 50 seconds on average.

2.1 Motivating Example

Consider a database-driven Connected Diagnostics Platform (cdx) for

notifying patients about the results of their medical tests and alerting com-

munity health workers about (anonymous) positive test results in their area.

11



This application interacts with a database that stores information about sub-

scribers, laboratories, institutions and so on. In an earlier version of the ap-

plication, the database contains a Subscriber relation with three attributes,

namely sid, which corresponds to the subscriber id, sname, which is the name

of the subscriber, and filter, which is used to filter out irrelevant subscriptions.

In the updated version, the developers decide to refactor this information into

two separate relations:

Subscriber(sid, sname, fid fk) Filter(fid, fname, params)

The new database schema now contains an additional Filter relation,

and the fid fk attribute in Subscriber is now a foreign key referring to the

corresponding filter in the Filter relation.

After refactoring the database schema in this manner, the develop-

ers also re-implement the relevant parts of the code that interact with this

database. In particular, Figure 2.2 shows the relevant functionality before and

after the database refactoring, where UUID x is a unique fid. Both versions of

the code contain three functions for updating the database, namely createSub,

deleteSub, and updateSub, and two functions (getSubName and getSubFilter)

for querying the database. However, the underlying implementation of these

functions has changed due to the migration of the schema to a new format.

Nonetheless, we would like to be able to show that the application returns the

same query results before and after the schema migration. This verification

task is non-trivial because the database transactions in the two implementa-

tions are often structurally different and operate over different relations.

12



void createSub(int id, String name, String fltr)
INSERT INTO Subscriber VALUES (id, name, fltr);

void deleteSub(int id)
DELETE FROM Subscriber WHERE sid=id;

void updateSub(int id, String name, String fltr)
UPDATE Subscriber SET filter=fltr WHERE sid=id;
UPDATE Subscriber SET sname=name WHERE sid=id;

List<Tuple> getSubName(int id)
SELECT sname FROM Subscriber WHERE sid=id;

List<Tuple> getSubFilter(int id)
SELECT filter FROM Subscriber WHERE sid=id;

(a) Before Refactoring

void createSub(int id, String name, String fltr)
INSERT INTO Subscriber VALUES (id, name, UUID x);
INSERT INTO Filter VALUES (UUID x,

“Filter for ” + name + “ subscriber”, fltr);

void deleteSub(int id)
DELETE FROM Filter WHERE fid IN

( SELECT fid fk FROM Subscriber WHERE sid=id );
DELETE FROM Subscriber WHERE sid=id;

void updateSub(int id, String name, String fltr)
UPDATE Filter SET params=fltr WHERE fid IN

( SELECT fid fk FROM Subscriber WHERE sid=id );
UPDATE Subscriber SET sname=name WHERE sid=id;

List<Tuple> getSubName(int id)
SELECT sname FROM Subscriber WHERE sid=id;

List<Tuple> getSubFilter(int id)
SELECT params FROM Filter JOIN Subscriber ON fid=fid fk WHERE sid=id;

(b) After Refactoring

Figure 2.2: Sample database programs.
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Let us now see how to verify equivalence of the two versions of the cdx

application before and after refactoring. As mentioned earlier, our method in-

fers a bisimulation invariant that relates two versions of the database. In the

remainder of this discussion, let us use primed variables to refer to database

relations and attributes in the refactored database. For instance, Subscriber ′

refers to the version of the original Subscriber relation in the refactored database.

To come up with a suitable bisimulation invariant, we first generate a fi-

nite universe of atomic predicates that could be used to relate the two versions

of the database. For example, one possible predicate is Πsid,sname(Subscriber) =

Πsid′,sname′(Subscriber
′), which states that the sid and sname attributes in re-

lation Subscriber correspond to sid ′ and sname ′ in Subscriber ′, respectively.

Given such predicates, we then try to find a conjunctive formula that is prov-

ably a valid bisimulation invariant.

As an example, let us consider the following candidate formula Φ:

Πsid,sname(Subscriber) = Πsid′,sname′(Subscriber
′) ∧

Πsid,sname,filter(Subscriber) = Πsid′,sname′,params′(Subscriber
′ on Filter′)

Essentially, this formula states that the sid and sname attributes of Subscriber

are unchanged, and the Subscriber relation in the original database can be

obtained by taking the natural join of Subscriber and Filter relations in the

refactored database and then projecting the relevant attributes.

Using our verification methodology, we can automatically prove that

the candidate formula Φ corresponds to a valid bisimulation invariant. In par-
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ticular, assuming that Φ holds before each pair of update operations U,U ′ from

the original and revised implementations, we can show that Φ still continues

to hold after executing U and U ′. In other words, this means that Φ is an

inductive bisimulation invariant. To prove the inductiveness of Φ, we use a

strongest postcondition semantics for database update operations as well as an

automated theorem prover for the theory of relational algebra with updates.

After finding an inductive bisimulation invariant Φ, we still need to

ensure that Φ is strong enough to prove equivalence. For this purpose, we

consider every pair of queries Q,Q′ from the old and revised versions of the

application and try to prove that Q and Q′ yield the same results. Using the

axioms of theory of relational algebra with updates, it can be shown that Φ⇒

Q = Q′ is logically valid for both of the queries getSubName and getSubFilter

in this application. Hence, we are able to prove equivalence between these two

programs even though they use databases that operate over different schemas.

2.2 Problem Statement

This section formalizes the syntax and semantics of database programs

and precisely defines the equivalence and refinement checking problems in this

context.

2.2.1 Language Syntax

A database program P is a tuple (S, ~TU , ~TQ), where S is the schema

of the underlying database, ~TU is a vector of database update functions, and
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Program P := (S, ~TU , ~TQ)
Schema S := R→ {a1 : τ1; . . . ; an : τn}
Function T := λ~v. U | λ~v. Q
Update U := ins(R, {a1 : v1, . . . , an : vn})

| del(R, φ) | upd(R, φ, a, v) | U ;U
Query Q := R | Πψ(Q) | σφ(Q) | Q onφ Q | Q ∪Q | Q−Q
Attribute list ψ := a | ψ, ψ
Predicate φ := p | φ ∧ φ | φ ∨ φ | ¬φ
Atomic predicate p := a� a | a� v | a ∈ Q
Operator � := ≤ | < | = | 6= | > | ≥

τ ∈ {Int, String, . . .} R ∈ Relation
a ∈ Attribute v ∈ Variable ∪ Constant

Figure 2.3: Syntax of database programs.

~TQ is a vector of database queries (see Figure 2.3). We collectively refer to

any update or query in ~TU ∪ ~TQ as a database function and denote the i-th

function in ~TU (resp. in ~TQ) as Ui (resp. Qi). Let us now take a closer look at

the syntax in Figure 2.3.

Database schema. The database schema S provides a logical view of how the

database organizes its data. In particular, the schema describes all relations

(i.e., tables) stored in the database as well as the typed attributes for each

relation. More precisely, we represent the schema S as a mapping from table

names R to their corresponding record types {a1 : τ1; . . . ; an : τn}, which

indicates that attribute ai of table R has type τi. In the rest of this chapter,

we use the notation dom(S) to denote the set of tables stored in the database.

Update functions. An update function λ~v.U ∈ ~TU contains a sequence of
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database update operations, including insertion, deletion, and modification.

Specifically, the language construct ins(R, t) models the insertion of tuple t

into relation R, where R ∈ dom(S) and tuple t is represented as a mapping

from attributes to symbols (variable or constant). Similarly, the statement

del(R, φ) removes all tuples satisfying predicate φ from R, and upd(R, φ, a, v)

assigns value v to the a attribute of all tuples satisfying predicate φ in R. We

assume that each database function occurs atomically (i.e., either all or none

of the updates are committed).

Query functions. In our language, query functions λ~v.Q ∈ ~TQ are expressed

as relational algebra expressions involving projection (Π), selection (σ), join

(on), union (∪), and difference (−) operators. While our language allows gen-

eral theta joins of the form R1 onφ R2, we abbreviate natural joins using the

notation R1 on R2.

2.2.2 Language Semantics

To define the formal semantics of database programs, we first need

to define what we mean by an input to the programs defined in Figure 2.3.

Since we consider a model in which the user interacts with the application by

performing a sequence of updates and queries to the database, we consider a

program input to be an invocation sequence ω of the form:

ω = (i1, σ1); . . . ; (in−1, σn−1); (in, σn)
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where each ij specifies an update function λ~v.Uij for j ∈ [1, n) and σj is

its corresponding valuation, mapping values of formal parameters ~v to their

concrete values. The last element (in, σn) in the invocation sequence always

corresponds to a query function with corresponding valuation σn.

Example 2.2.1. Consider the motivating example from Figure 2.2. This pro-

gram can be expressed in our intermediate language as shown in Figure 2.4.

Now, consider the following invocation sequence, assuming that the five func-

tions are indexed 1− 5 from top to bottom:

ω = (1, [id 7→ 100, name 7→ Alice, fltr 7→ Filter1]); (4, [id 7→ 100])

This sequence indicates that the user first invokes the update function create-

Sub(100, Alice, Filter1), followed by the query function getSubName(100).

Figure 2.5 defines the denotational semantics for the language presented

in Figure 2.3. Our semantics are defined in terms of the standard list combi-

nators map, append, filter, foldl, and contains. Given a map x, we write vals(x)

to denote the list of values stored in the map, and we think of a map as a list of

(key, value) pairs. The function delete(y, ys) removes the first occurence of y

in list ys. Given two maps y, z with disjoint keys, merge(y, z) generates a new

map that contains all key-value pairs in y and z. We use the notation JPKω

to represent the result of the last query in ω after performing all updates on

an empty database. Since any reachable database state can be modeled using

a suitable sequence of insertions to an empty database, this assumption does

not result in a loss of generality.
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void createSub(int id, String name, String fltr)
ins(Subscriber, (id, name, fltr))

void deleteSub(int id)
del(Subscriber, sid=id)

void updateSub(int id, String name, String fltr)
upd(Subscriber, sid=id, filter, fltr)
upd(Subscriber, sid=id, sname, name)

List<Tuple> getSubName(int id)
Πsname(σsid=id(Subscriber))

List<Tuple> getSubFilter(int id)
Πfilter(σsid=id(Subscriber))

(a) Before Refactoring

void createSub(int id, String name, String fltr)
ins(Filter ′, (UUID x, name, fltr))
ins(Subscriber ′, (id, name, UUID x))

void deleteSub(int id)
del(Filter ′, fid ′∈ Πfid fk′(σsid′=id(Subscriber

′)))
del(Subscriber ′, sid ′=id)

void updateSub(int id, String name, String fltr)
upd(Filter ′, fid ′∈ Πfid fk′(σsid′=id(Subscriber

′)), params ′, fltr)
upd(Subscriber ′, sid ′=id, sname ′, name)

List<Tuple> getSubName(int id)
Πsname′(σsid′=id(Subscriber

′))

List<Tuple> getSubFilter(int id)
Πparams′(σsid′=id(Filter

′ on Subscriber′))

(b) After Refactoring

Figure 2.4: Database programs in intermediate language.
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JPK :: Invocation Sequence ω → Instance ∆→ List

J(S, ~TU , ~TQ)K(n,σ),∆ = map(JQnKσ,∆, λx.vals(x))

J(S, ~TU , ~TQ)K(n,σ);ω,∆= J(S, ~TU , ~TQ)Kω,∆′ where ∆′ = JUnKσ,∆

JUK :: Valuation σ → Instance ∆→ Instance

JU1;U2Kσ,∆ = JU2Kσ,∆′ where ∆′ = JU1Kσ,∆
Jins(R, t)Kσ,∆ = ∆[R← append(∆(R), t[σ])]
Jdel(R,φ)Kσ,∆ = ∆[R← filter(∆(R), λx.¬JφKσ,∆,x)]

Jupd(R,φ, a, v)Kσ,∆ = ∆

[
R← append

(
filter(∆(R), λx.¬JφKσ,∆,x),

map(filter(∆(R), λx.JφKσ,∆,x), λx.x[a← v[σ]])

)]

JQK :: Valuation σ → Instance ∆→ Relation

JRKσ,∆ = ∆(R)
JΠψ(Q)Kσ,∆ = map(JQKσ,∆, λx.filter(x, λy.contains(first(y), ψ)))
Jσφ(Q)Kσ,∆ = filter(JQKσ,∆, λx.JφKσ,∆,x)
JQ1 ×Q2Kσ,∆ = foldl(λys.λy.append(ys,map(JQ2Kσ,∆, λz.merge(y, z))), [ ], JQ1Kσ,∆)
JQ1 onφ Q2Kσ,∆ = Jσφ(Q1 ×Q2)Kσ,∆
JQ1 ∪Q2Kσ,∆ = append(JQ1Kσ,∆, JQ2Kσ,∆)
JQ1 −Q2Kσ,∆ = foldl (λys.λy.delete(y, ys), JQ1Kσ,∆, JQ2Kσ,∆)

JφK :: Valuation σ → Instance ∆→ Tuple x→ Predicate

Ja1 � a2Kσ,∆,x = lookup(x, a1)� lookup(x, a2)
Ja� vKσ,∆,x = lookup(x, a)� v[σ]
Ja ∈ QKσ,∆,x = contains(lookup(x, a), map(JQKσ,∆, λy.head(vals(y)))
Jφ1 ∧ φ2Kσ,∆,x = Jφ1Kσ,∆,x ∧ Jφ2Kσ,∆,x
Jφ1 ∨ φ2Kσ,∆,x = Jφ1Kσ,∆,x ∨ Jφ2Kσ,∆,x
J¬φKσ,∆,x = ¬JφKσ,∆,x

Figure 2.5: Denotational semantics of database programs.
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In our semantics, we model database instances ∆ as a mapping from

relation names to a list of tuples.2 Similarly, we model tuples as a mapping

from attribute names to their corresponding values. Given a program P , an

invocation sequence ω = ω′; (n, σ), and a database instance ∆, we first obtain

a new instance ∆′ by running ω′ on ∆ and then evaluate the query Qn on

database instance ∆′ and valuation σ. Observe that the result of a program is

represented as a list of lists rather than as relations (list of maps). That is, our

semantics disregards the names of attributes to enable meaningful comparison

between programs over different schemas.

The semantics for update functions in Figure 2.5 are described using the

familiar list combinators, such as append, filter, map, and fold. In particular,

JUKσ,∆ yields the database instance after executing update operation U with

input σ on database ∆. For example, consider the semantics for ins(R, t):

To obtain the new database instance, we first evaluate t under valuation σ,

where the notation t[σ] denotes applying substitution σ to term t. The entry

for relation R in the new database instance is obtained by appending the tuple

t[σ] to table ∆(R), which is represented as a list of tuples. Similarly, del(R, φ)

filters from list R the set of all tuples that do not satisfy predicate φ. Finally,

upd(R, φ, a, v) first obtains a new relation R1 that contains all tuples in R that

do not satisfy φ. It then also filters out all tuples of R that satisfy predicate

φ, and updates the a attribute of each such tuple to a new value v[σ]. The

2We model relations as lists rather than bags because many libraries provide database
interfaces based on ordered data structures.
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new entry for R is then obtained by concatenating these two lists.

Let us now turn our attention to the semantics of query functions (third

part of Figure 2.5). The semantics are defined inductively, with the first rule

for R being the base case. Since R corresponds to the name of a database

table, we obtain the query result by simply looking up R in ∆. As another

example, consider the semantics of the selection (σ) operator. Given a query

of the form σφ(Q), we first recursively evaluate Q and obtain the query result

T = JQKσ,∆. We then evaluate the predicate φ under σ and obtain a symbolic

predicate p = JφKσ,∆,x. In particular, predicate p is symbolic in the sense that

it refers to a variable x, which ranges over tuples in T . We obtain the final

query result by filtering out those rows of T that do not satisfy predicate λx.p.

The final part of Figure 2.5 describes predicate semantics inductively.

For instance, consider a predicate of the form a�v, where a is an attribute, �

is a (logical) binary operator, and v is a symbol (variable or constant). Since

the predicate takes as input a tuple x, we evaluate attribute a by looking up a

in x, which is represented as a mapping from attributes to values. Thus, the

evaluation of the predicate is given by lookup(x, a)� v[σ], where the notation

v[σ] applies substitution σ to symbol v.

2.2.3 Equivalence and Refinement

Having defined the semantics of database programs, we are now ready

to precisely state the notion of semantic equivalence in this context:

Definition 2.2.1. (Program equivalence) A database program P ′ is said
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to be semantically equivalent to another program P , denoted P ′ ' P , if and

only if executing ω on P ′ yields the same result as executing ω on P for any

invocation sequence ω, i.e.,

P ′ ' P , ∀ω. JP ′Kω = JPKω

In the above definition, we assume that P and P ′ have the same num-

ber of query and update functions. If this condition does not hold, we can

immediately conclude that P and P ′ are not equivalent because some inputs

that are valid for P are not valid for P ′ or vice versa. We also assume that P

and P ′ have functions that are supposed to be functionally equivalent at the

same index; otherwise, the functions can be syntactically re-arranged. Under

these assumptions, our definition effectively states that programs P and P ′ are

equivalent whenever their corresponding queries yield the same result under

the same sequence of update functions to the database.

While there are many real-world scenarios in which we would like to

prove equivalence, there are also some cases where one program refines the

other. For instance, consider a situation in which a web application developer

changes the database schema for performance reasons, but also decides to add

some new piece of information to the underlying database such that query

results also include this new information. In this scenario, the updated version

of the application will not be semantically equivalent to its prior version, but

we would still like to verify that adding new features does not break existing

functionality. Towards this goal, we also formally define what it means for a
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database program P ′ to refine another program P .

Definition 2.2.2. (Valuation refinement) Consider two valuations σ and

σ′. We say that σ′ is a refinement of σ, denoted σ′ � σ, if and only if σ′ maps

the variables that occur in σ to the same values as in σ. In other words,

σ′ � σ , ∀x ∈ dom(σ). σ′(x) = σ(x)

Definition 2.2.3. (Input refinement) Given invocation sequences ω =

(i1, σ1)(i2, σ2) . . . (in, σn) and ω′ = (i′1, σ
′
1)(i′2, σ

′
2) . . . (i′n, σ

′
n), we say that ω′

refines ω, denoted ω′ � ω, if and only if ω′ has the same index sequence as ω

and the valuations in ω′ refine the corresponding valuations in ω. That is,

ω′ � ω , ∀k ∈ [1, n]. ik = i′k ∧ σ′k � σk

Using these definitions, we can now also state what it means for a

program to refine another one:

Definition 2.2.4. (Program refinement) Program P ′ refines another pro-

gram P , denoted P ′ � P , if and only if, for any invocation sequences ω′, ω

satisfying ω′ � ω, executing ω on P yields a relation that is a projection of

executing ω′ on P ′, i.e.,

P ′ � P , ∀ω, ω′. ω′ � ω → ∃L. JΠL(P ′)Kω′ = JPKω

where ΠL((S, ~TU , ~TQ)) = (S, ~TU , ~T ′Q) such that Q′i = ΠL(Qi) for all Qi in ~TQ.

As in Definition 2.2.1, we require that ω′ and ω are valid inputs for

P ′ and P respectively. However, unlike in Definition 2.2.1, we do not assume
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that P ′ contains the same number of update and query functions in P . Our

definition simply disregards the new functions that are added by P ′ and only

considers invocation sequences that are valid for both. Thus, intuitively, if an

application P ′ refines P , the query results of P can be obtained by applying

a projection to the corresponding query results in P ′.

2.3 Proof Methodology

Having defined the semantic equivalence and refinement properties for

database programs, let us now turn our attention to the proof methodology

for showing these properties.

2.3.1 Proving Equivalence

A standard methodology for proving equivalence between any two sys-

tems A,B is to find a bisimulation relation that relates states in A with those

in B [35]. In our case, these systems are database-driven applications, and the

states that we need to relate are database instances. Our approach does not di-

rectly infer an explicit mapping between database instances, but instead finds

a bisimulation invariant that (a) is satisfied by pairs of database instances

from the two systems, and (b) is strong enough to prove equivalence.

In this chapter, we prove that a bisimulation invariant Φ is valid by

showing that it is inductive. That is, Φ must hold initially, and assuming that

it holds for a pair of databases ∆,∆′, it must continue to hold after executing

any pair of corresponding update operations λ~x.U and λ~y.U ′.
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Definition 2.3.1. (Inductive bisimulation invariant) Consider programs

P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q) and suppose that P ,P ′ contain a

disjoint set of variables (which can be enforced using α-renaming if necessary).

A bisimulation invariant Φ is said to be inductive with respect to programs P

and P ′ if (a) Φ is satisfied by a pair of empty databases, and (b) the following

Hoare triple is valid for all λ~x.Ui ∈ ~TU and λ~y.U ′i ∈ ~T ′U :

{Φ ∧ ~x = ~y} Ui || U ′i {Φ}

In the above definition, the notation U ||U ′ denotes the parallel exe-

cution of updates λ~x.U and λ~y.U ′. However, since programs P ,P ′ contain

a disjoint set of variables, U ||U ′ is semantically equivalent to the sequential

composition U ;U ′. Thus, to prove inductiveness, we need to show the validity

of the Hoare triple

{Φ ∧ ~x = ~y} Ui ; U ′i {Φ}

for every pair of updates λ~x.Ui and λ~y.U ′i in P and P ′. Also, observe that Φ

must hold for a pair of empty databases in the base case because we assume

that the databases are initially empty (recall Section 2.2).3

While there are many possible inductive bisimulation invariants (in-

cluding true, for example), we need a bisimulation invariant that is strong

enough to prove equivalence. According to Definition 2.2.1, two programs are

3This assumption is realistic in situations where database migration is performed by
calling the new update functions in the application. Otherwise, the base case needs to
establish that Φ holds for the initial databases.
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equivalent if they yield the same result for every pair of corresponding queries

λ~x.Q and λ~y.Q′ given the same input. Thus, we can define what it means for

a bisimulation invariant to be sufficient in the following way:

Definition 2.3.2. (Sufficiency) A formula Φ is said to be sufficient with

respect to programs P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q) if, for all λ~x.Qi ∈
~TQ and λ~y.Q′i ∈ ~T ′Q, we have:

(Φ ∧ ~x = ~y) |= Qi = Q′i

Our general proof methodology for proving equivalence is to find a

sufficient, inductive bisimulation invariant between the given pair of programs.

If we can find such an invariant Φ, we know that Φ holds after executing

any invocation sequence ω on P ,P ′, so Φ must also hold before issuing any

database query. Furthermore, since Φ is a sufficient bisimulation invariant, it

implies that any pair of queries yield the same result. Thus, the existence of

such a bisimulation invariant Φ implies that P ,P ′ are semantically equivalent.

Theorem 2.3.1. (Soundness) Given database programs P ,P ′, the existence

of a sufficient, inductive bisimulation invariant Φ implies P ' P ′.

Proof. See [129].

Theorem 2.3.2. (Relative Completeness) Suppose we have an oracle for

proving any valid Hoare triple and logical entailment. If P ' P ′, then there al-

ways exists a sufficient, inductive bisimulation invariant Φ for programs P ,P ′.

Proof. See [129].
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2.3.2 Proving Refinement

Since our notion of refinement is a generalization of equivalence (re-

call Definition 2.2.4), our proof methodology for showing program refinement

closely follows that for verifying equivalence. In particular, rather than finding

a one-to-one mapping between database states as in the case of equivalence,

it suffices to find a one-to-many mapping for showing refinement. Hence,

our proof methodology relies on finding a simulation invariant rather than a

stronger bisimulation invariant:

Definition 2.3.3. (Inductive simulation invariant) Consider programs

P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q) and suppose that P ,P ′ contain a

disjoint set of variables. A simulation invariant Φ is said to be inductive with

respect to programs P and P ′ if (a) Φ is satisfied by a pair of empty databases,

and (b) the following Hoare triple is valid for all λ~x.Ui ∈ ~TU and λ~y.U ′i ∈ ~T ′U

where i ∈ [1, |~TU |]: {
Φ ∧

∧
xj∈~x

xj = yj

}
Ui ; U ′i

{
Φ
}

Recall from Definition 2.2.4 that we allow the second program P ′ to

contain more functions than P , but the notion of refinement only talks about

invocation sequences that use shared functions from P and P ′. Therefore, in

Definition 2.3.3, we only require Φ to be preserved by pairs of update functions

that are both present in P and P ′. Furthermore, since functions in P ′ can take

additional arguments not present in their counterparts in P , our precondition

states that the arguments are pairwise equal for only the “shared” variables.
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As in the equivalence scenario, finding an inductive simulation invariant

Φ between P and P ′ is not sufficient for proving that P ′ refines P , as Φ may

not be strong enough to show refinement. Hence, we also need to define what

it means for an inductive simulation invariant to be sufficient for showing

refinement. However, since the notion of refinement is weaker than equivalence,

we also weaken our corresponding notion of sufficiency as follows:

Definition 2.3.4. (Projective sufficiency) A formula Φ is said to be projec-

tively sufficient with respect to programs P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q)

if for all λ~x.Qi ∈ ~TQ and λ~y.Q′i ∈ ~T ′Q where i ∈ [1, |~TQ|], we have:(
Φ ∧

∧
xj∈~x

xj = yj

)
|= ∃L. Qi = ΠL(Q′i)

Observe that the notion of projective sufficiency is weaker than Defini-

tion 2.3.2, as we do not require Qi and Q′i to yield exactly the same relation

and allow the result of Q′i to contain attributes not present in the result of Qi.

Our general proof methodology for proving refinement then relies on finding a

simulation invariant that is both inductive and projectively sufficient.

Theorem 2.3.3. (Soundness) Given database applications P ,P ′, the exis-

tence of a projectively sufficient and inductive simulation invariant Φ implies

P ′ � P .

Proof. See [129].

Theorem 2.3.4. (Relative Completeness) Suppose we have an oracle for

proving any valid Hoare triple and logical entailment. If P ′ � P , then there
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Formula F := true | false | t = t | F ∧ F | F ∨ F
| ¬F | F → F | ∃x.F | ∀x.F

Term t := x | T | Πa1,...,an(t) | σφ(t) | t× t | t ∪ t | t− t | t〈ai / v〉
Predicate φ := ai � aj | ai � v | ai ∈ t | φ ∧ φ | φ ∨ φ | ¬φ

BinOp � := ≤ | < | = | 6= | > | ≥

T ∈ Table ai ∈ Attribute
v ∈ Constant ∪ Variable x ∈ Variable

Figure 2.6: Formula in Theory of Relational Algebra with Updates.

always exists a projectively sufficient and inductive simulation invariant Φ for

programs P ,P ′.

Proof. See [129].

2.4 SMT Encoding of Relational Algebra with Updates

In the previous section, we defined what it means for simulation and

bisimulation invariants to be inductive, but we have not fixed a logical theory

over which we express these invariants. In this section, we discuss the theory

of relational algebra with updates, TRA, and show how to enable reasoning in

TRA using existing SMT solvers.

Figure 2.6 gives the syntax of the theory of relational algebra with

updates TRA, which we use to express simulation and bisimulation invariants.

The notation ai represents the i’th attribute in a relation. Atomic formulas in

TRA are of the form t1 = t2 where t1 and t2 are terms representing relations.

Basic terms include variables x and concrete tables T , and more complex
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terms can be formed using the relational algebra operators Π (projection), σ

(selection), × (Cartesian product), ∪ (union), and − (difference). In addition

to these standard relational algebra operators, TRA also includes an update

operator, denoted as t〈ai /v〉, which represents the new relation after changing

the i-th attribute of all tuples in t to v. Observe that the theta join operator

onφ is expressible in this logic as σφ(t1× t2). We also write t1 on t2 as syntactic

sugar for σφ(t1 × t2) where φ is a predicate stating that the shared attributes

of t1 and t2 are equal.

Since we view tables as lists of tuples, we axiomatize TRA using the

theory of lists [18]. Our axiomatization is presented in Figure 2.7 in the form

of inference rules, where we view tuples as lists of values and relations as lists

of tuples. [ ] represents an empty list nil. The binary operator :: denotes

the list constructor cons. ×′ and cat are auxiliary functions for axiomatizing

Cartesian product. Π′, −′, and upd are auxiliary functions for axiomatizing

projection, minus, and update, respectively. An attribute ai of a tuple is simply

an index into the list representing that tuple. For example, consider the axioms

for projection Πl(t), which projects term t given attribute list l. We first define

an auxiliary function Π′l(h) that projects a single tuple h given l. In particular,

if the attribute list l is empty, then Π′l(h) yields [ ]. Otherwise, if l consists of

head ai and tail l1, Π′l(h) composes the i-th value of h (i.e., get(i, h)) and the

projection of tail Π′l1(h). Similarly, Πl(t) is also recursively defined. If t = [ ],

then Πl(t) = [ ]. Otherwise if t = h :: t1, then Πl(t) composes the projection

Π′l(h) of head h and the projection Πl(t1) of tail t1. Also, observe that the

31



get get(i, l)

l = h :: t i = 0

get(i, l) = h

l = h :: t i 6= 0

get(i, l) = get(i− 1, t)

projection Πl(t)

t = [ ]

Πl(t) = [ ]

t = h :: t1
Πl(t) = Π′

l(h) :: Πl(t1)

l = [ ]

Π′
l(h) = [ ]

l = ai :: l1
Π′
l(h) = get(i, h) :: Π′

l1
(h)

union t1 ∪ t2

t1 = [ ]

t1 ∪ t2 = t2

t1 = h :: t

t1 ∪ t2 = h :: (t ∪ t2)

minus t1 − t2

t2 = [ ]

t1 − t2 = t1

t2 = h2 :: t

t1 − t2 = (t1 −′ h2)− t

t1 = [ ]

t1 −′ h2 = [ ]

t1 = h1 :: t3 h1 = h2

t1 −′ h2 = t3

t1 = h1 :: t3 h1 6= h2

t1 −′ h2 = h1 :: (t3 −′ h2)

selection σφ(t)

t = [ ]

σφ(t) = [ ]

φ(h) t = h :: t1
σφ(t) = h :: σφ(t1)

¬φ(h) t = h :: t1
σφ(t) = σφ(t1)

Cartesian product t1 × t2

t1 = [ ]

t1 × t2 = [ ]

t1 = h1 :: t

t1 × t2 = (h1 ×′ t2) ∪ (t× t2)

t2 = [ ]

h1 ×′ t2 = [ ]

t2 = h2 :: t3
h1 ×′ t2 = cat(h1, h2) :: h1 ×′ t3

h1 = [ ]

cat(h1, h2) = h2

h1 = c :: h

cat(h1, h2) = c :: cat(h, h2)

update t〈ai / v〉

t = [ ]

t〈ai / v〉 = [ ]

t = h :: t1
t〈ai / v〉 = upd(h, i, v) :: t1〈ai / v〉

h = [ ]

upd(h, i, v) = [ ]

h = c :: h1 i = 0

upd(h, i, v) = v :: h1

h = c :: h1 i 6= 0

upd(h, i, v) = c :: upd(h1, i− 1, v)

Figure 2.7: Axioms in Theory of Relation Algebra with Updates.

(ai � aj)(h) = get(i, h)� get(j, h)
(ai � v)(h) = get(i, h)� v
(ai ∈ t)(h) = ∃j. get(0, get(j, t)) = get(i, h)

(φ1 ∧ φ2)(h) = φ1(h) ∧ φ2(h)
(φ1 ∨ φ2)(h) = φ1(h) ∨ φ2(h)

(¬φ)(h) = ¬φ(h)

Figure 2.8: Auxiliary functions for selection axiom schema φ(h).
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rules for selection in Figure 2.7 actually correspond to axiom schemata rather

than axioms: Because the selection operator is parameterized over a predicate

φ, this schema needs to be instantiated for each predicate that occurs in the

formula.

Example 2.4.1. Consider the formula σa1≥2(x) = σa2>1(y) in the theory of

relational algebra with updates. We generate the following axioms using the

axiom schemata for selection:

(1a) ∀x. (x = [ ])→ σa1≥2(x) = [ ]

(1b) ∀x, h, t.
(
x = h :: t→

( (get(1, h) ≥ 2→ σa1≥2(x) = h :: σa1≥2(t))∧
(¬(get(1, h) ≥ 2)→ σa1≥2(x) = σa1≥2(t))

))
(2a) ∀y. (y = [ ])→ σa2>1(y) = [ ]

(2b) ∀y, h, t.
(
y = h :: t→

( (get(2, h) > 1→ σa2>1(y) = h :: σa2>1(t))∧
(¬(get(2, h) > 1)→ σa2>1(y) = σa2>1(t))

))
Remark 2.4.1. Since the problem of checking equivalence between a pair of

relational algebra expressions is known to be undecidable [124], our theory of

relational algebra with updates is also undecidable. However, with the aid of

some optimizations that we discuss in Section 2.6, we are able to determine

the validity of most TRA formulas that we encounter in practice.

2.5 Automated Verification

So far, we have explained our general proof methodology and intro-

duced a first-order theory in which we will express our bisimulation invariants.

However, we have not yet explained how to automatically prove equivalence

between programs. In this section, we discuss our strategy for proof automa-

tion. Specifically, we first discuss how to automatically prove equivalence
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assuming that an oracle provides bisimulation invariants (Section 2.5.1), and

then explain how we infer them automatically (Section 2.5.2). Because the

automation of refinement checking is very similar, this section only addresses

equivalence.

2.5.1 Automation for Bisimulation Invariant Inductiveness

Consider two database programs P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q),

and suppose that an oracle provides a bisimulation invariant Φ between P and

P ′ . Based on the proof methodology we outlined in Section 2.3, we can prove

that P ,P ′ are equivalent by showing that Φ satisfies the following conditions

for any pair of updates λ~x.Ui, λ~y.U
′
i and any pair of queries λ~x.Qi, λ~y.Q

′
i:

(1) Φ ∧ ~x = ~y |= Qi = Q′i (Sufficiency)
(2) {Φ ∧ ~x = ~y} Ui;U ′i {Φ} (Inductiveness)

The first condition (sufficiency) is easy to prove since we have already

defined a logical theory that allows us to write terms of the form Qi = Q′i.

The only small technical hiccup is that TRA uses the syntax ai to denote the

i-th attribute in a relation, whereas attributes in the queries Qi, Q
′
i are names

of attributes. To solve this difficulty, we assume a function ς which replaces

attribute names s in constructs from Figure 2.3 with ai, where i is the index of

s. Thus, we can check whether formula Φ satisfies condition (1) by querying

whether the following formula is valid modulo TRA:

(Φ ∧ ~x = ~y)→ ς(Qi) = ς(Q′i)
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sp(Φ, ins(R, {a1 : v1, . . . , an : vn})) = ∃x. (R = x ∪ [r]) ∧ Φ[x/R] where r = [v1, . . . , vn]
sp(Φ, del(R,φ)) = ∃x. (R = σς(¬φ)(x)) ∧ Φ[x/R]

sp(Φ, upd(R,φ, a, v)) = ∃x. (R = σς(¬φ)(x) ∪ σς(φ)(x)〈ς(a) / v〉) ∧ Φ[x/R]
sp(Φ, U1;U2) = sp(sp(Φ, U1), U2)

Figure 2.9: Strongest postcondition for update functions.

However, to prove the second condition (i.e., inductiveness), we need a

way to prove Hoare triples for update statements U from Figure 2.3. Towards

this goal, we define a strongest post-condition semantics for update statements.

Given a formula Φ over TRA and an update statement U , Figure 2.9 describes

the computation of sp(Φ, U), which represents the strongest post-condition of

Φ with respect to statement U .

To compute the strongest postcondition of Φ with respect to ins(R, {a1 :

v1, . . . , an : vn}), we think of the insertion as the assignmentR := append(R, [r])

where r is the tuple (list) [v1, . . . , vn]. Since the union operator ∪ in TRA cor-

responds to list concatenation, the new value of R is given by x ∪ [r], where

the existentially quantified variable x represents the old value of R.

To understand the strongest postcondition semantics of deletion, recall

that del(R, φ) removes all rows in R that satisfy φ. Hence, we can model

this statement using the assignment R := σ¬φ(R). Thus, when we compute

the strongest postcondition of φ with respect to del(R, φ), the new value

of R is given by σς(¬φ)(x) where the existentially quantified variable x again

represents the old value of R and ς(φ) replaces attribute names in φ with their

corresponding indices.
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Finally, let us consider the strongest postcondition for update state-

ments of the form upd(R, φ, a, v). Recall that this statement assigns value v

to the a attribute of all tuples in R that satisfy φ. Specifically, according to

the denotational semantics from Figure 2.5, we can model upd(R, φ, a, v) using

the assignment statement:

R := (σ¬φ(R)) ∪ (σφ(R))〈a / v〉

Hence, we obtain the strongest postcondition of Φ with respect to upd(R, φ, a, v)

by computing the strongest postcondition of the above assignment, where the

right-hand side is a term in TRA (modulo changing attribute names to indices).

Definition 2.5.1. (Agreement) Consider database instance ∆ and valua-

tion σ, and let ς(∆) denote the representation of ∆ where each tuple {a1 :

v1, . . . , an : vn} is represented as the list [v1, . . . , vn]. We say that (∆, σ) agrees

with TRA-formula Φ, written (∆, σ) ∼ Φ, iff ς(∆) ] σ |= Φ.

Theorem 2.5.1. (Soundness of sp) Suppose that JUKσ,∆ = ∆′, and let Φ

be a TRA formula. If (∆, σ) ∼ Φ, then we also have (∆′, σ) ∼ sp(Φ, U).

Proof. See [129].

Now that we have defined a strongest post-condition semantics for up-

date statements in our language, it is easy to check the correctness of the Hoare

triple {Φ ∧ ~x = ~y} Ui;U ′i {Φ} by simply querying the validity of the following

formula modulo TRA:

sp(Φ ∧ ~x = ~y, Ui;U
′
i)→ Φ
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Algorithm 1 Verification Algorithm for Database Program Equivalence

1: procedure Verify(P , P ′)
2: Input: program P = (S, ~TU , ~TQ) and P ′ = (S ′, ~T ′U , ~T ′Q)
3: Output: Invariant Φ to establish equivalence or ⊥ to indicate failure

4: U := GetAllPredicates(S, S ′);
5: Φ :=

∧
ϕ∈U ϕ;

6: while CheckSufficiency(Φ, ~TQ, ~T ′Q) do
7: ind := true;
8: for each ϕ ∈ U do
9: if ¬CheckInductiveness(Φ, ~TU , ~T ′U , ϕ) then

10: ind := false; U := U \ {ϕ}; Φ :=
∧
ϕ∈U ϕ;

11: break;

12: if ind then return Φ;

13: return ⊥;

14: procedure CheckSufficiency(Φ, ~TQ, ~T ′Q)

15: for each λ~x.Qi ∈ ~TQ and λ~y.Q′i ∈ ~T ′Q do
16: if TRA 6|= (Φ ∧ ~x = ~y → ς(Qi) = ς(Q′i)) then return false;

17: return true;

18: procedure CheckInductiveness(Φ, ~TU , ~T ′U , ϕ)

19: for each λ~x.Ui ∈ ~TU and λ~y.U ′i ∈ ~T ′U do
20: if TRA 6|= (sp(Φ ∧ ~x = ~y, Ui;U

′
i)→ ϕ) then return false;

21: return true;

2.5.2 Bisimulation Invariant Synthesis

So far, we have discussed how to automate the proof that Φ is an induc-

tive and sufficient bisimulation invariant. However, since we do not want users

to manually provide such bisimulation invariants, our verification algorithm

automatically infers them using monomial predicate abstraction [16, 76].
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Our technique for inferring suitable bisimulation invariants is shown in

Algorithm 1. Given two programs P ,P ′ with corresponding schemas S,S ′,

the Verify procedure first generates the universe of all predicates that may

be used in the bisimulation invariant (line 4). We generate all such predicates

by instantiating the following database of predefined templates:

1. ΠL( R ) = ΠL′( R′ )

2. ΠL( R1 on R2 ) = ΠL′( R′1 )

3. ΠL( R ) = ΠL′( R′1 on R′2 )

4. ΠL( R1 on R2 ) = ΠL′( R′1 on R′2 )

In these templates, L and R represent an attribute list and a relation

under schema S, while L′ and R′ represent the attribute list and relation under

schema S ′. Please note that we only consider templates with at most one join

operator on each side. Any predicate containing a longer join chain can be

decomposed into several predicates of these forms.

Once we generate the universe U of all predicates that may be used in

the invariant, we perform a fixed point computation in which we iteratively

weaken the candidate bisimulation invariant. Initially, the candidate bisimula-

tion invariant Φ starts out as the conjunction of all predicates in our universe.

During the fixed point computation (lines 6–12 in Algorithm 1), the candidate

invariant Φ is always stronger than the actual bisimulation invariant. Hence,

if we get to a point where Φ is not strong enough to show equivalence, we
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conclude that the program cannot be verified using conjunctive formulas over

our templates (line 13). On the other hand, assuming that Φ is strong enough

to prove equivalence, we then proceed to check whether Φ is inductive (lines

7–12). If it is, the strongest postcondition of Φ∧~x = ~y must logically imply ϕ

for every predicate ϕ used in Φ. If some predicate ϕ is not preserved by a pair

of updates (i.e., call to CheckInductiveness returns false), we then remove

ϕ from both Φ and our universe of predicates U . We continue this process of

weakening the invariant until it becomes an inductive bisimulation invariant,

or we prove that no such invariant exists over our universe of predicates.

2.6 Implementation

We have implemented the proposed verification technique in a new tool

called Mediator. Mediator utilizes the Z3 SMT solver [42] to automate

reasoning over the theory of relational algebra with updates. In particular,

we decide the validity of a TRA formula φ by asking Z3 whether the TRA

axioms logically imply φ. All queries to the solver are configured to have

a time budget of 2 seconds, and we assume that the answer to any query

exceeding the time budget is “invalid”. In the remainder of this section, we

describe several important optimizations that we found necessary for making

Mediator practical.

Redundant axioms. During the development of Mediator, we have found

that many validity queries cannot be resolved due to Z3’s limited capabilities

39



1. A ∪ [ ] = A (∪ nil)
2. A on [ ] = [ ] (on nil)
3. A−A = [ ] (− nil)
4. ΠL(A ∪B) = ΠL(A) ∪ΠL(B) (Π ∪ distributivity)
5. σφ(A ∪B) = σφ(A) ∪ σφ(B) (σ ∪ distributivity)
6. (A ∪B) on C = (A on C) ∪ (B on C) (on ∪ distributivity)
7. σφ(A) on B = σφ(A on B) (σ on associativity1)
8. A on σφ(B) = σφ(A on B) (σ on associativity2)
9. σφ(σφ(A)) = σφ(A) (σ idempotence)

10. (ΠL(A) = ΠL′(B) ∧ φ↔ φ′[L/L′])→ ΠL(σφ(A)) = ΠL′(σφ′(B)) (Πσ introduction)
11. ΠL(A) = ΠL′(B)→ ΠL(A〈Li / v〉) = ΠL′(B〈L′

i / v〉) (Π〈 / 〉 introduction)

Figure 2.10: List of additional axioms used for proving validity.

for performing inductive reasoning. In particular, some of the TRA theorems

needed for proving equivalence require performing structural induction over

lists; but Z3 times out in most of these cases. In our implementation, we

address this issue by providing a redundant set of axioms, which are logically

implied by the TRA axioms. Figure 2.10 shows a representative subset of the

additional theorems that we use when issuing validity queries to Z3. Because

these axioms alleviate the need for performing induction, many queries that

would otherwise time out can now be successfully proven using Z3.

Conjunctive queries. While the full theory of relational algebra with up-

dates is undecidable, we have identified a class of formulas for which we can

come up with an optimization to check validity. Let us call a query conjunctive

if it uses only projection, selection, and equi-join and all predicates are con-

junctions of equalities. As pointed out in prior work, two conjunctive queries

are equivalent under bag semantics if (and only if) they are syntactically iso-
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morphic [36, 60]. Inspired by their work, we optimize the validity checking of

formulas of the form Φ→ Qi = Q′i, which arise when checking sufficiency of a

candidate bisimulation invariant Φ. If Qi, Q
′
i are conjunctive queries, we use

the schema mapping induced by Φ to rewrite the query Qi to another query Q′′i

such that Q′i, Q
′′
i refer to the same schema elements. If they are syntactically

the same modulo reordering of equalities, we can conclude the original formula

is valid; otherwise, we check its TRA-validity using an SMT solver.

Invariant synthesis. Recall from Algorithm 1 that our verification proce-

dure looks for conjunctive invariants over a universe of predicates U . While

these predicates are constructed from a small set of pre-defined templates, the

number of possible instantiations of these templates grows quickly in the num-

ber of attributes and relations in the database schema. To prevent a blow-up in

the size of the universe U , we use the implementation of insertion transactions

to rule out infeasible predicates. For example, we only generate a predicate

Π[a1,a2,...,an](A) = Π[b1,b2,...,bn](B) if there are two corresponding insertion trans-

actions U,U ′ such that U inserts its argument xi to attribute ai of relation

A, whereas U ′ inserts xi into attribute bi of relation B. Similarly, we only

generate a predicate of the form Π[a1,a2,...,an](A) = Π[b1,b2,...,bn](B on C) if B

and C can be joined and there are two corresponding transactions U,U ′ such

that U inserts its argument xi to attribute ai of relation A, whereas U ′ inserts

the same argument into attribute bi of relation B or C. We have found these

heuristics work quite well in that they do not lead to a loss of completeness in
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practice but significantly reduce the number of predicates considered by the

invariant synthesis algorithm.

Proving refinement. Recall that proving refinement requires showing that

the inferred simulation invariant Φ is projectively sufficient, i.e.,(
Φ ∧

∧
xj∈~x

xj = yj

)
|= ∃L. Qi = ΠL(Q′i)

In our implementation, we determine the TRA-validity of this formula by

instantiating the existentially quantified variables L with attributes in the

database schema and check validity for each possible instantiation. In partic-

ular, suppose that Qi, Q
′
i can contain attributes A,A′ respectively. Each in-

stantiation of L essentially corresponds to a mapping M such that M(A) ⊆ A′.

Our implementation rank-orders candidate mappings based on similarity met-

rics between attribute names and tries more likely instantiations first.

2.7 Evaluation

In this section, we evaluate the practicality and usefulness of the Me-

diator tool. Specifically, we use Mediator to verify equivalence and refine-

ment between different versions of 21 database programs containing over 1000

functions in total.

Benchmarks. To perform this evaluation, we collect benchmarks from two

different sources, namely challenging refactoring examples from textbooks [9]

and tutorials [95] and different versions of web applications collected from
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Table 2.1: Benchmark source and description for Mediator.

ID Source Description

te
x
tb

o
o
k

b
e
n
ch

1 Oracle tutorial Merge relations
2 Oracle tutorial Split relations
3 Textbook Split relations
4 Textbook Merge relations
5 Textbook Move attributes
6 Textbook Rename attributes
7 Textbook Introduce associative relations
8 Textbook Replace the surrogate key with natural key
9 Textbook Introduce new attributes
10 Textbook Denormalization

re
a
l-
w
o
rl
d

b
e
n
ch

11 cdx Rename attributes and split relations
12 coachup Split relations
13 2030Club Split relations
14 rails-ecomm Split relations and introduce new attributes
15 royk Introduce and move attributes
16 MathHotSpot Rename relations and move attributes
17 gallery Split relations
18 DeeJBase Rename attributes and split relations
19 visible-closet-1 Split relations
20 visible-closet-2 Move attributes to a polymorphic relation
21 probable-engine Merge relations

Github. The textbook examples are useful for evaluating Mediator, as

they illustrate challenging database refactoring tasks that require non-trivial

changes to the application code. The remaining half of the benchmarks used

in the experiments are taken from real-world web applications on Github.

Specifically, we evaluate Mediator on two different versions A,B of the ap-

plication such that (a) A,B are consecutive versions in the commit history, (b)

B is obtained from A by performing a structural schema change that requires

rewriting parts of the application code, and (c) B is meant to be equivalent

to (or a refinement of) A. Table 2.1 describes each benchmark and changes to

the schema between the two versions. Since our current implementation re-
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Table 2.2: Experimental results of Mediator.

ID Type Funcs
Source Schema Target Schema

Status
Time

Iters Queries
Rels Attrs Rels Attrs (s)

te
x
tb

o
o
k

b
e
n
ch

1 ' 4 2 8 1 6 X 2.4 2 10
2 ' 19 3 17 7 25 X 11.5 5 188
3 ' 10 1 6 2 7 X 2.5 2 32
4 ' 10 2 7 1 6 X 0.3 1 16
5 ' 7 2 5 2 5 X 34.1 7 147
6 ' 5 1 2 1 2 X 0.2 1 5
7 ' 8 2 5 3 6 X 3.1 2 61
8 ' 10 2 9 2 8 X 0.4 1 18
9 � 8 2 7 2 8 X 0.3 1 14
10 ' 14 3 10 3 13 X 57.7 23 374

re
a
l-
w
o
rl
d

b
e
n
ch

11 ' 138 16 125 17 131 X 90.8 13 4840
12 ' 45 4 51 5 55 X 23.2 7 489
13 ' 125 15 155 16 159 X 42.6 8 2403
14 � 65 8 69 9 75 X 23.4 7 1059
15 � 151 19 152 19 155 X 19.1 1 1307
16 ' 54 7 38 8 42 X 20.9 6 701
17 ' 58 7 52 8 57 X 54.5 13 1512
18 ' 70 10 92 11 97 X 28.7 6 1228
19 ' 263 26 248 27 252 X 150.6 12 9072
20 ' 267 28 262 29 261 × - - -
21 ' 85 12 83 11 78 X 13.7 3 823

quires manually translating the web application to our IR representation, we

only used the first 10 real-world applications that meet the afore-mentioned

criteria.

Experimental Setup. All experiments are performed on a computer with

Intel Xeon(R) E5-1620 v3 CPU and 32GB of memory, running Ubuntu 14.04

operating system.

Results. Table 2.2 summarizes the results of our evaluation of Mediator

on these benchmarks. For each benchmark, the column labeled Type shows
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whether we used Mediator to check refinement (�) or equivalence ('), and

Funcs shows the number of functions in each program. The next two columns

provide information about the number of relations and total number of at-

tributes in the source and target schema, respectively. The last four columns

provide information about Mediator results: Status shows whether Media-

tor was able to verify the desired property (i.e., equivalence or refinement),

and Time provides total running time in seconds. The column labeled Iters

shows the number of iterations that Mediator takes to find an inductive sim-

ulation (or bisimulation) invariant. Finally, the last column labeled Queries

shows the number of TRA-validity checks issued by Mediator.

As we can see from Table 2.2, Mediator is able to successfully verify

the desired property for 20 out of 21 benchmarks. The running time of the tool

ranges between 0.2 seconds for small textbook examples with a few functions

to 150 seconds for large, real-world benchmarks with hundreds of functions.

As expected, the running time of Mediator on real-world benchmarks is

typically much longer (46.8 seconds on average) than on textbook examples

(11.3 seconds on average). However, some textbook examples (namely bench-

marks 5 and 10) take longer than some of the real-world examples because

many iterations are required to find an inductive bisimulation invariant. As

shown in Figure 2.11(b), the running time of Mediator is roughly linear in

the number of validity queries to the SMT solver. Because the number of va-

lidity checks depends on the number of functions in the program as well as the

number of iterations required for finding an inductive bisimulation invariant,
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Figure 2.11: Running time analysis for Mediator.

Figure 2.11(a) also shows that Mediator’s running time is roughly linear

with respect to #functions×#iterations.

Cause of false positives. As shown in Table 2.2, Mediator fails to verify

equivalence for benchmark 20, where the schema change involves moving the

shared attributes of two relations into a new polymorphic relation. Upon

further inspection, we determined this warning to be a false positive that is

caused by a shortcoming of our inference engine for synthesizing bisimulation

invariants. In particular, proving equivalence of this benchmark requires a

bisimulation invariant of the form ΠL(R) = ΠL′(σφ(R′)), which is currently

not supported in our implementation (recall Section 2.5.2). While it is possible

to extend our templates to include predicates of this form, this modification

would significantly increase the search space, as the selection predicate φ can

be instantiated in many different ways.
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2.8 Limitations

As a research prototype, our current implementation of Mediator has

a number of limitations: First, Mediator analyzes programs that are written

in the language given in Figure 2.3. Hence, the applicability of Mediator

relies on translating the original database application to our IR, which ab-

stracts programs as a fixed set of queries and updates to the database. Thus,

programs that use dynamically generated SQL functions or control-flow con-

structs cannot be translated into our IR. Second, Mediator synthesizes simu-

lation and bisimulation invariants by finding the strongest conjunctive formula

over a given class of predicates. However, as exemplified by the false positive

from our evaluation, Mediator may not be able to prove equivalence if the

bisimulation requires additional predicates (or boolean connectives) beyond

the ones we consider. Third, Mediator axiomatizes TRA using the theory

of lists, which is also undecidable. Therefore, the SMT solver may time-out

when checking validity queries over the theory of lists. Fourth, Mediator

can only be used to prove equivalence but not disequivalence. In particular,

Mediator cannot provide witnesses to prove that two applications are indeed

not equivalent. Finally, our verification technique proves equivalence under list

semantics. Thus, if a web application uses set/bag semantics to represent the

results of database queries, Mediator may end up reporting false positives.

However, despite these limitations, our evaluation shows that Mediator is

still practical and that it can verify equivalence between different versions of

many real-world database applications.
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Chapter 3

Synthesizing Equivalent Database Programs 1

While we have addressed the problem of verifying equivalence between

two database programs before and after schema refactoring in Chapter 2, gen-

erating a new version of the program after a schema change still remains an

arduous and manual task. Motivated by this problem, this chapter takes a step

towards simplifying the evolution of programs that interact with a database.

Specifically, we consider database programs that consist of a set of functions

written in SQL. Given an existing database program P that operates over

source schema S and a new target schema S ′ that P should be migrated to,

our method automatically synthesizes a new database program P ′ over the

new schema S ′ such that P and P ′ are semantically equivalent. Thus, our

technique automates the code migration process for these kinds of database

programs while ensuring that no desirable behaviors are lost and no unwanted

behaviors are introduced in the process.

Our methodology for automatically migrating database programs to a

new schema is illustrated schematically in Figure 3.1. Rather than synthesiz-

ing the new version of the program in one go, our algorithm decomposes the

1This chapter is adapted from the author’s previous publication [131], where the author
led the technical discussion, tool development, and experimental evaluation.
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Figure 3.1: Methodology for migrating database programs.

problem into three simpler sub-tasks, each of which leverages the results of

the previous task in the pipeline. Specifically, given the source and the target

schemas S,S ′, our algorithm starts by guessing a candidate value correspon-

dence relating S and S ′. At a high level, a value correspondence Φ specifies

how attributes in S ′ can be obtained using the attributes in S [86]. Intuitively,

learning a value correspondence is useful because (a) it is relatively easy to

guess the correct correspondence based on attribute names in the schema,

and (b) having a value correspondence dramatically constrains the space of

programs that may be equivalent to the original program P .

While the value correspondence holds important clues as to what the

transformation should look like, it nonetheless does not uniquely determine

the target program P ′. Thus, given a candidate value correspondence Φ, our

synthesis algorithm generates a program sketch Ω that represents the space

of all programs that may be equivalent to the original program P according

to Φ. In this context, a program sketch is a database program where some

of the tables, attributes, or boolean constants are unknown. Furthermore,

assuming the correctness of the candidate value correspondence Φ, the sketch

Ω is guaranteed to have a completion that is equivalent to P (if one exists).
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The third, and final, step in our synthesis pipeline “solves” the sketch

Ω by finding an instantiation P ′ of Ω that is equivalent to P . However, unlike

existing sketch solvers that use the counterexample-guided inductive synthesis

(CEGIS) methodology, we use a different approach that does not require sym-

bolically encoding the semantics of database programs into an SMT formula.

Specifically, since database query languages like SQL are not easily amenable

to symbolic reasoning using established first-order theories supported by SMT

solvers, our approach instead performs enumerative search over the space of

all possible completions of the sketch. However, because this search space is

typically very large, a näıve search algorithm is difficult to scale to realistic

database programs. Our approach deals with this difficulty by using a novel

algorithm that leverages minimum failing inputs (MFIs) to dramatically prune

the search space.

Overall, our synthesis algorithm for automatically migrating database

programs to a new schema has several useful properties: First, it is completely

push-button and does not require the user to provide anything other than the

original program and the source and target schemas. Second, our approach is

sound in that the synthesized program is provably equivalent to the original

program and does not introduce any new, unwanted behaviors. Finally, since

our method performs backtracking search over all possible value correspon-

dences, it is guaranteed to find an equivalent program over the new schema if

one exists.

We have implemented our proposed approach in a prototype tool called
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update addInstructor(int id, String name, Binary pic)
INSERT INTO Instructor VALUES (id, name, pic);

update deleteInstructor(int id)
DELETE FROM Instructor WHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, IPic FROM Instructor WHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO TA VALUES (id, name, pic);

update deleteTA(int id)
DELETE FROM TA WHERE TaId = id;

query getTAInfo(int id)
SELECT TName, TPic FROM TA WHERE TaId = id;

Figure 3.2: An example database program.

Migrator for automatically migrating database programs to a new schema.

We evaluate Migrator on 20 benchmarks and show that it can successfully

synthesize the new versions for all twenty database programs with an aver-

age synthesis time of 69.4 seconds per benchmark. Thus, we believe these

experiment results provide preliminary, but firm, evidence that the proposed

synthesis technique can be useful to database program developers during the

schema refactoring process.

3.1 Overview

In this section, we give an overview of our technique using a simple

motivating example. Consider the database program shown in Figure 3.2 for
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managing and querying a course-related database with the following schema:

Class(ClassId, InstId, TaId)
Instructor(InstId, IName, IPic)

TA(TaId, TName, TPic)

This database has three tables that store information about courses, instruc-

tors, and TAs respectively. Here, the Instructor and TA tables store profile

information about the course staff, including a picture. Since accessing a table

containing large images may be potentially inefficient, the programmer decides

to refactor the schema by introducing a new table for images. In particular,

the desired new schema is as follows:

Class(ClassId, InstId, TaId)
Instructor(InstId, IName, PicId)

TA(TaId, TName, PicId)
Picture(PicId, Pic)

As a result of this schema change, the program from Figure 3.2 needs to be re-

implemented to conform to the new schema. We now explain how Migrator

automatically synthesizes the new version of the program.

Value correspondence generation. As mentioned earlier, Migrator lazily

enumerates possible value correspondences (VCs) between the source and tar-

get schemas. For this example, the first VC Φ generated by Migrator con-

tains the following mappings:

Instructor.IPic → Picture.Pic
TA.TPic → Picture.Pic

In addition, all other attributes T.a in the source schema are mapped to the

same T.a in the target schema.
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update addInstructor(int id, String name, Binary pic)
INSERT INTO ??1{ Pictureon Instructor, PictureonTAon Instructor,

Picture on TA on Class on Instructor } VALUES (id, name, pic);

update deleteInstructor(int id)
DELETE ??2{ [Picture], . . ., [Picture, Instructor, TA, Class] }

FROM ??3{ Pictureon Instructor, PictureonTAon Instructor,
Picture on TA on Class on Instructor } WHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, Pic FROM ??4{

Picture on Instructor, Picture on TA on Instructor,
Picture on TA on Class on Instructor } WHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO ??5{ Picture on TA, Picture on Instructor on TA,

Picture on Instructor on Class on TA } VALUES (id, name, pic);

update deleteTA(int id)
DELETE ??6{ [Picture], . . ., [Picture, Instructor, TA, Class] }

FROM ??7{ Picture on TA, Picture on Instructor on TA,
Picture on Instructor on Class on TA } WHERE TaId = id;

query getTAInfo(int id)
SELECT TName, Pic FROM ??8{

Picture on TA, Picture on Instructor on TA,
Picture on Instructor on Class on TA } WHERE TaId = id;

Figure 3.3: Generated sketch over the new database schema.

Sketch generation. Next, Migrator uses the candidate VC Φ to generate

a program sketch that encodes the space of all programs that are consistent

with Φ. The corresponding sketch for this example is shown in Figure 3.3.

Here, each hole, denoted ??{c1, . . . , cn}, corresponds to an unknown constant

drawn from the set {c1, . . . , cn}. As will be discussed later in Section 3.2, we
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use the statement:

INSERT INTO T1 on T2 VALUES · · ·

as short-hand for:
INSERT INTO T1 VALUES · · ·
INSERT INTO T2 VALUES · · ·

Thus, the first function in the sketch corresponds to the following three possible

implementations of addInstructor :

INSERT INTO Instructor VALUES (id, name, v0);
INSERT INTO Picture VALUES (v0, pic);

or
INSERT INTO Instructor VALUES (id, name, v1);
INSERT INTO TA VALUES (v2, v3, v1);
INSERT INTO Picture VALUES (v1, pic);

or
INSERT INTO Instructor VALUES (id, name, v4);
INSERT INTO Class VALUES (v5, id, v6);
INSERT INTO TA VALUES (v6, v7, v4);
INSERT INTO Picture VALUES (v4, pic);

where v0, v1, . . . , v7 are unique values.

Observe that the program sketch shown in Figure 3.3 has an enormous

number of possible completions — in particular, it corresponds to a search

space of 164, 025 possible re-implementations of the original program.

Sketch completion. Given a sketch Ω and the original program P , the

goal of sketch completion is to find an instantiation P ′ of Ω such that P ′ is

equivalent to P , if such a P ′ exists. Unfortunately, it is difficult to solve this

sketch using existing solvers (e.g., [117, 119]) because the symbolic encoding

of the program is quite complex due to the non-trivial semantics of SQL. We
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deal with this difficulty by (a) encoding the space of all possible programs

represented by the sketch using a SAT formula Ψ, and (b) using minimum

failing inputs to dramatically prune the search space represented by Ψ.

Going back to our sketch Ω from Figure 3.3, Migrator generates the

following SAT formula that encodes all possible instantiations of Ω:

⊕(b1
1, b

2
1, b

3
1) ∧ ⊕(b1
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Here, ⊕ denotes n-ary xor, and bji is a boolean variable that is assigned to true

iff hole ??i in the sketch is instantiated with the j-th constant in ??i’s domain.

Given this formula Ψ, Migrator queries the SAT solver for a model.

For the purpose of this example, suppose the SAT solver returns the following

model for Ψ:

b3
1 ∧ b2

2 ∧ b3
3 ∧ b3

4 ∧ b1
5 ∧ b4

6 ∧ b3
7 ∧ b3

8 (3.1)

which corresponds to the following assignment of the holes:

??1 = ??3 = ??4 = Picture on TA on Class on Instructor
∧ ??2 = [Instructor] ∧ ??5 = Picture on TA ∧ ??6 = [TA]
∧ ??7 = ??8 = Picture on Instructor on Class on TA

(3.2)

However, instantiating the sketch with this assignment results in a pro-

gram P ′ that is not equivalent to P . Now, we could block this program P ′ by

conjoining the negation of Equation 3.1 with Ψ and asking the SAT solver for

another model. While this strategy would give us a different instantiation of

sketch Ω, it would preclude only one of the 164, 025 possible instantiations of

Ω. Our key idea is to learn from this failure and block many other programs

that are incorrect for the same reason as P ′.
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Towards this goal, our approach computes a minimum failing input,

which is a shortest sequence of function invocations such that the result of P

differs from that of P ′. For this example, such a minimum failing input is the

following invocation sequence ω:

addTA(ta1, name1, pic1); getTAInfo(ta1) (3.3)

This input establishes that P ′ is not equivalent to P because the query result

for P is (name1, pic1) whereas the query result for P ′ is empty.

Our idea is to utilize such a minimum failing input ω to prune incorrect

programs other than just P ′. Specifically, let F denote the functions that

appear in the invocation sequence ω, and let H be the holes that appear in

the sketch for functions in F . Our key intuition is that the assignments to

holes in H are sufficient for obtaining a spurious program, as ω is a witness to

the disequivalence between P and P ′. Thus, rather than blocking the whole

model, we can extract the assignment to the holes in H and use this partial

assignment to obtain a much stronger blocking clause. For our example, this

yields the clause ¬(b1
5 ∧ b3

8) because only the fifth and eighth holes appear in

the sketches for addTA and getTAInfo. Using this blocking clause, we can

eliminate a total of 18, 225 incorrect programs rather than just P ′.

Continuing in this manner, Migrator finally obtains the following

model for Equation 3.2:

b1
1 ∧ b2

2 ∧ b1
3 ∧ b1

4 ∧ b1
5 ∧ b4

6 ∧ b1
7 ∧ b1

8
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update addInstructor(int id, String name, Binary pic)
INSERT INTO Instructor VALUES (id, name, UID0);
INSERT INTO Picture VALUES (UID0, pic);

update deleteInstructor(int id)
DELETE Instructor FROM Picture JOIN Instructor

ON Picture.PicId = Instructor.PicId WHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, Pic FROM Picture JOIN Instructor

ON Picture.PicId = Instructor.PicId WHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO TA VALUES (id, name, UID1);
INSERT INTO Picture VALUES (UID1, pic);

update deleteTA(int id)
DELETE TA FROM Picture JOIN TA
ON Picture.PicId = TA.PicId WHERE TaId = id;

query getTAInfo(int id)
SELECT TName, Pic FROM Picture JOIN TA

ON Picture.PicId = TA.PicId WHERE TaId = id;

Figure 3.4: The synthesized database program.

This model corresponds to the program P ′ shown in Figure 3.4, which is indeed

equivalent to the original program from Figure 3.2. Thus, Migrator returns

P ′ as the synthesis result.

3.2 Preliminaries

In this section, we introduce the syntax and semantics of database pro-

grams for the synthesis algorithm. For the purpose of this chapter, a database

program consists of a set of functions, where each function is either a query or
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Prog := Func+
Func := update Name(Param+) U

| query Name(Param+) Q
Update U := InsStmt | DelStmt | UpdStmt | U ;U
Query Q := Πa+(Q) | σφ(Q) | J

Join J := T | JaonaJ
Pred φ := a op a | a op v | a ∈ Q | φ ∧ φ | φ ∨ φ | ¬φ

InsStmt := ins(J, {(a : v)+})
DelStmt := del([T+], J, φ)
UpdStmt := upd(J, φ, a, v)

Param ∈ Variable Name ∈ String
T ∈ Table a ∈ Attribute v ∈ Value ∪Variable

Figure 3.5: Syntax of database programs for synthesis.

update to the database. As shown in Figure 3.5, every function consists of a

name, a list of parameters, and a function body.

The body of a query function is a relational algebra expression involv-

ing projection (Π), selection (σ), and join (on). As is standard, Πa1,...,an(Q)

recursively evaluates sub-query Q to obtain a table T and then constructs a

table T ′ that is the same as T but containing only the columns a1, . . . , an.

The filter operation σφ(Q) recursively evaluates Q to obtain a table T and

then filters out all rows in T that do not satisfy predicate φ. A join expression

J1a1ona2J2 corresponds to the equi-join of J1 and J2 based on predicate a1 = a2,

where a1 is an attribute in J1 and a2 is an attribute in J2. In the rest of this

chapter, we use the terminology join or join chain to refer to both database

tables as well as (possibly nested) join expressions of the form J1a1 ona2 J2.

Furthermore, since natural join is a special case of equi-join, we also use the
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standard notation J1 on J2 to denote natural joins where the equality check is

implicit on identically named columns.

In contrast to query functions that do not change the state of the

database, update functions can add or remove tuples to database tables.

Specifically, an insert statement ins(T, {a1 : v1, . . . , an : vn}) inserts the tuple

{a1 : v1, . . . , an : vn} into relation T . To simplify presentation in the rest of

the chapter, we use the syntax

ins(T1fk1onpk2T2, {a1 : v1, . . . , an : vn, a
′
1 : v′1, . . . , a

′
m : v′m})

as short-hand for the following sequence of insertions:

ins(T1, {pk1 : u0, a1 : v1, . . . , an : vn, fk1 : u1});
ins(T2, {pk2 : u1, a

′
1 : v′1, . . . , a

′
m : v′m})

where u0, u1 are unique values, and the schema for T1, T2 are T1(pk1, a1, . . . , an, fk)

and T2(pk2, a
′
1, . . . , a

′
m) respectively.

A delete statement del([T1, . . . , Tn], J, φ) removes from tables T1, . . . , Tn

exactly those tuples that satisfy predicate φ in join chain J . As an example,

consider the delete statement del([T1], T1a1ona2T2, φ). Here, we first compute

T1a1ona2T2 to obtain a virtual table T where each tuple in T is the union of a

source tuple in T1 and a source tuple in T2. We then obtain another virtual

table T ′ that filters out predicates satisfying φ. Finally, we delete from T1 all

tuples that occur as (a prefix of) a tuple in T ′. In contrast, if the statement

is del([T1, T2], T1a1ona2T2, φ), the deletion is performed on both T1 and T2.
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We refer the reader to [91] for a more detailed discussion of the semantics of

delete statements.2

An update statement upd(J, φ, a, v) modifies the value of attribute a to

v for all tuples satisfying predicate φ in join chain J [92]. For instance, consider

the update statement upd(T1a1ona2T2, φ, T1.a3, v). Like delete statements,

we first compute T1a1ona2T2 and get a virtual table T where each tuple in T is

the union of a source tuple in T1 and a source tuple in T2. Then we filter out

tuples satisfying predicate φ in T and get another virtual table T ′. Finally, we

update attribute a3 in T1 to value v for all T1 tuples that appear in T ′.

Example 3.2.1. Consider a simple database with two tables:

Car
cid model year
1 M1 2016
2 M2 2018

Part
name amount cid

tire 10 1
brake 20 1
tire 20 2

brake 30 2

The delete statement

del([Car, Part], Car on Part, model = M1)

would delete tuple (1,M1, 2016) from the Car table and tuples (tire, 10, 1),

(brake, 20, 1) from the Part table. On the other hand, the update statement

upd(Car on Part, model = M2 ∧ name = tire, amount, 30)

would modify the third record of Part to (tire, 30, 2).

2We consider this form of delete statement rather than the more standard del(T, φ) as
it dramatically simplifies presentation in the rest of the chapter.
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3.3 Synthesis Algorithm

In this section, we present our algorithm for automatically migrating

database programs to a new schema. We start with an overview of the top-

level algorithm and then discuss value correspondence enumeration, sketch

generation, and sketch completion in more detail.

3.3.1 Algorithm Overview

Our top-level synthesis algorithm is summarized as pseudo-code in Al-

gorithm 2. Given the original program P over schema S and the target schema

S ′, Synthesize either returns a program P ′ such that P ' P ′ or ⊥ to indicate

that no equivalent program exists.

In a nutshell, the Synthesize procedure is a while loop (lines 2 - 7)

that lazily enumerates all possible value correspondences between the source

and target schemas. Formally, a value correspondence Φ from source schema

S to target schema S ′ is a mapping from each attribute in S to a set of

attributes in S ′ [86]. Specifically, if T ′.b ∈ Φ(T.a), this indicates that the

entries in column a in the source table T are the same as the entries in column

b of table T ′ in the target schema. Observe that, if Φ maps some attribute

T.a in S to ∅, this indicates that attribute a of table T has been deleted from

the database. Similarly, if |Φ(T.a)| > 1, this indicates that attribute T.a has

been duplicated in the target schema. Our value correspondence is a slightly

simplified version of the definition given by Miller et al. [86]. For example,

their definition also allows attributes in the target schema to be obtained by
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Algorithm 2 Synthesizing database programs

1: procedure Synthesize(P ,S,S ′)
Input: Program P over source schema S, target schema S ′
Output: Program P ′ or ⊥ to indicate failure

2: while true do
3: Φ← NextValueCorr(S,S ′);
4: if Φ = ⊥ then return ⊥;

5: Ω← GenSketch(Φ,P);
6: P ′ ← CompleteSketch(Ω,P);
7: if P ′ 6= ⊥ then return P ′;

applying a function to attributes in the source schema. Our technique can be

extended to handle this scenario, albeit at the cost of increasing the size of the

search space.

Now, given a candidate value correspondence Φ, the GenSketch pro-

cedure at line 5 generates a sketch Ω that represents all programs that may

be equivalent to P under the assumption that Φ is correct. Finally, the Com-

pleteSketch procedure (line 6) tries to find an instantiation P ′ of Ω such

that P ′ ' P . If such a P ′ exists, then the algorithm terminates and returns

P ′ as the transformed program. On the other hand, if there is no completion

of the sketch that is equivalent to P , this indicates that the conjectured value

correspondence is incorrect. In this case, the algorithm moves on to the next

value correspondence Φ′ and re-attempts the synthesis task using Φ′.

As formalized in more detail in [132], our synthesis algorithm is both

sound and relatively complete. That is, if Synthesize returns P ′ as a solution,

then P ′ is indeed equivalent to P . Furthermore, Synthesize is relatively
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complete, meaning that it can always find an equivalent program P ′ under

the assumption that (a) we have access to a sound and complete oracle for

verifying equivalence of database programs, (b) P ′ is related to P according

to a value correspondence that conforms to our definition, and (c) P ′ has the

same general structure as P .

In the following subsections, we explain the subroutines used in the

Synthesize algorithm in more detail.

3.3.2 Lazy Enumeration of Value Correspondence

In order to guarantee the completeness of our synthesis algorithm, we

need a way to enumerate all possible value correspondences between the source

and target schemas. However, it is infeasible to generate all such value corre-

spondences eagerly, as there are exponentially many possibilities. In this sec-

tion, we describe how to lazily enumerate value correspondences in decreasing

order of likelihood using a partial weighted MaxSAT encoding.

Background on MaxSAT. MaxSAT is a generalization of the traditional

boolean satisfiability problem and aims to determine the maximum number

of clauses that can be satisfied. Specifically, a MaxSAT problem is defined as

a triple (H,S,W), where H is a set of hard clauses (constraints), S is a set

of soft clauses, and W is a mapping from each soft clause c ∈ S to a weight,

which is an integer indicating the relative importance of satisfying clause c.

Then, the goal of MaxSAT is to find an interpretation I such that:
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1. I satisfies all the hard clauses (i.e., I |=
∧
ci∈H ci)

2. I maximizes the weight of the satisfied soft clauses

Variables. To describe our MaxSAT encoding, suppose that the source

(resp. target) schema contains attributes a1, . . . , an (resp. a′1, . . . , a
′
m). In

our encoding, we introduce a boolean variable xij to indicate that attribute ai

in the source schema is mapped by the value correspondence Φ to attribute a′j

in the target schema, i.e.,

xij ⇔ a′j ∈ Φ(ai)

Hard constraints. Hard constraints in our MaxSAT encoding rule out in-

feasible value correspondences:

• Type-compatibility: Since a′j ∈ Φ(ai) indicates that the entries stored in

ai and a′j are the same, xij must be false if ai and a′j have different types.

Thus, we add the following hard constraint for type compatibility:

∧
i,j

¬xij where type(ai) 6= type(a′j)

• Necessary condition for equivalence: If the source program P queries

some attribute ai of the database, then there must be a corresponding

attribute a′j that ai is mapped to; otherwise, the source and target pro-

grams would not be equivalent (recall Section 2.2.3). Thus, we introduce
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the following hard constraint:∨
1≤j≤m

xij where ai is queried in P

which ensures that every attribute that is queried in the original program

is mapped to at least one attribute in the target schema.

Soft constraints. The soft constraints in our encoding serve two purposes:

First, since most attributes in the source schema typically have a unique cor-

responding attribute in the target schema, our soft constraints prioritize one-

to-one mappings over one-to-many ones. Second, since attributes with similar

names are more likely to be mapped to each other, they prioritize value cor-

respondences that relate similarly named attributes.

To encode the latter constraint, we introduce a soft clause xij with

weight sim(ai, a
′
j) for every variable xij. Here, sim is a heuristic metric that

measures similarity between the names of attributes ai and a′j.
3 To encode

the former constraint, we add a soft clause xij → ¬xik (with fixed weight α)

for every i ∈ [1, n], j ∈ [1,m] and k ∈ (j,m]. Essentially, such clauses tell the

solver to de-prioritize mappings where the cardinality of Φ(ai) is large.

Blocking clauses. While our initial MaxSAT encoding consists of exactly

the hard and soft constraints discussed above, we need to add additional con-

straints to block previously rejected value correspondences. Specifically, let A

3In our implementation, we implement sim as α− Levenshtein(ai, a
′
j) where α is a fixed

constant and Levenshtein is the standard Levenshtein distance.
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Prog := Func+
Func := update Name(Param+) U

| query Name(Param+) Q
Update U := InsStmt | DelStmt | UpdStmt | U ;U | U ? U
Query Q := Π(??{a+})+(Q) | σφ(Q) | J | Q ? Q

Join J := T | JaonaJ
Pred φ := ??{a+} op ??{a+} | ??{a+} op v

| φ ∧ φ | φ ∨ φ | ¬φ
InsStmt := ins(J, {(??{a+} : v)+})
DelStmt := del(??{L+}, J, φ)
UpdStmt := upd(J, φ, ??{a+}, v)

TabList L := [T+]

Param ∈ Variable Name ∈ String
T ∈ Table a ∈ Attribute v ∈ Value ∪Variable

Figure 3.6: Sketch language used in the synthesis algorithm.

be an assignment (with corresponding value correspondence ΦA) returned by

the MaxSAT solver, and suppose that there is no program P ′ that is equivalent

to P under ΦA. In this case, our algorithm adds ¬A as a hard constraint to

prevent exploring the same value correspondence multiple times.

3.3.3 Sketch Generation

In this section, we explain the GenSketch procedure for generating

a sketch that represents all programs that may be equivalent to P under a

given value correspondence Φ. We first describe our sketch language and then

explain how to use the value correspondence to generate a suitable sketch.
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Sketch language. Our sketch language for database programs is presented

in Figure 3.6, where ?? represents a hole in the sketch and the subsequent set

indicates the domain of that hole. ? is a choice operator and s1 ? s2 denotes

the statement could either be s1 or s2. E+ indicates a list of elements of type

E. The language differs from the source language in Figure 3.5 in the following

ways: First, programs in the sketch language can contain a construct of the

form ??{e1, . . . , en}, where the question mark is referred to as a hole and the

set of elements {e1, . . . , en} is the domain of that hole — i.e., the question mark

must be filled with some element drawn from the set {e1, . . . , en}. In addition,

programs in the sketch language also contain a choice construct s1 ? s2, which

is short-hand for the conditional statement:

if ??{>,⊥} then s1 else s2

where >,⊥ represent the boolean constants true and false, respectively. Thus,

program sketches in this context represent multiple (but finitely many) pro-

grams written in the syntax of Figure 3.5.

Join correspondence. In order to generate a sketch from a program P and

value correspondence Φ, our approach first maps each join chain used in P

to a set of possible join chains over the target schema. We refer to such a

mapping as a join correspondence and say that a join correspondence (J, J ′)

is valid with respect to Φ if Φ can map all attributes used in J to attributes

in J ′.
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A ⊆ Attrs(J) ∀a ∈ A. ∃a′ ∈ Φ(a). a′ ∈ Attrs(J ′)

Φ `A J ∼ J ′
(Attrs)

A = Attrs(J) Φ `A J ∼ J ′

Φ ` J ∼ J ′
(JoinChain)

Figure 3.7: Inference rules for checking join correspondence (J, J ′) under value
correspondence Φ.

Figure 3.7 presents inference rules for checking whether a join corre-

spondence (J, J ′) is valid under Φ. Specifically, the judgment Φ `A J ∼ J ′

indicates that every attribute a ∈ A of join chain J can be mapped to some

attribute of join chain J ′ under Φ. Similarly, the judgment Φ ` J ∼ J ′ means

that every attribute in the join chain J can be mapped to an attribute of J ′

using Φ. Observe that, if Φ ` J ∼ J1 and Φ ` J ∼ J2, it means that join chain

J in the source program could map to either J1 or J2 in the target program.

Sketching approach. Our sketch generation technique uses the inferred

join correspondences to produce a sketch that encodes all possible programs

that may be equivalent to the source program. However, since a join chain J

might correspond to any one of the join chains J1, . . . , Jn in the target program,

our sketch generation method proceeds in two phases: In the first phase, we

non-deterministically pick any one of the join chains Ji that J could map to.

Then, in the second phase, we combine the sketches obtained using J1, . . . , Jn

to obtain a more general sketch that accounts for every possibility.
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Φ ` J ∼ J ′

Φ ` J  J ′
(Join)

Φ(a) = {a′1, . . . , a′n}
Φ ` a ??{a′1, . . . , a′n}

(Attr)

ai ∈ Attrs(φ) Φ ` ai  hi i = 1, . . . , n

Φ ` φ φ[h1/a1, . . . , hn/an]
(Pred)

Φ ` Q Ω Φ ` φ φ′

Φ ` σφ(Q) σφ′(Ω)
(Filter)

Φ ` Q(J) Ω(h) Φ ` aj  hj j = 1, . . . ,m
A = {a1, . . . , am}∪Attrs(Q) Φ `A J ∼ J ′

Φ ` Πa1,...,am(Q(J)) Πh1,...,hm(Ω(J ′))
(Proj)

A = Attrs(L) ∪ Attrs(φ) Φ ` φ φ′

Φ `A J ∼ J ′ TabLists(J ′) = {L1, . . . , Ln}
Φ ` del(L, J, φ) del(??{L1, . . . , Ln}, J ′, φ′)

(Delete)

Φ ` φ φ′ Φ ` a h
A = Attrs(φ) ∪ {a} Φ `A J ∼ J ′

Φ ` upd(J, φ, a, v) upd(J ′, φ′, h, v)
(Update)

Φ ` J ∼ J ′ Φ ` ai  hi i = 1, . . . , n

Φ ` ins(J, {a1 : v1, . . . , am : vm}) 
ins(J ′, {h1 : v1, . . . , hm : vm})

(Insert)

Figure 3.8: Rewrite rules for generating sketch from value correspondence.

Sketch generation, phase I. The first phase of our sketch generation pro-

cedure is summarized in Figure 3.8 and assumes that every join chain J in the

source program maps to a unique join chain J ′ in the target program. Here,

all holes ?? are annotated with an index to ensure they are globally unique.

The function TabLists returns all non-empty subset of tables in a join, i.e.

TabLists(T1 on . . . on Tn) = PowerSet({T1, . . . , Tn})\∅. The rules in Figure 3.8
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derive judgments of the form Φ ` s  Ω, meaning that statement s in the

original program can be rewritten into sketch Ω under the assumption that

(a) Φ is correct and (b) every join chain in the source program corresponds to

a unique join chain in the target program. We now explain each of these rules

in more detail.

The Attr (resp. Join) rule corresponds to a base case of our inductive

rewrite system and generates the sketch directly using the value (resp. join)

correspondence. The Pred rule first generates holes h1, . . . , hn for each at-

tribute ai in φ and then generates a predicate sketch by replacing each ai with

its corresponding sketch. The Filter and Proj rules are similar and generate

the sketch by recursively rewriting the nested query, predicate, and attributes.

The last three rules in Figure 3.8 generate sketches for update state-

ments. Here, the Update and Insert rules are straightforward and generate

the sketch by recursively rewriting the nested attributes and predicates. For

the Delete rule, recall that deletion statements are of the form del(Tbls, J, φ),

where Tbls can refer to any non-empty subset of the tables used in J . Thus,

the sketch for deletion statements contains a hole for Tbls, with the domain

of the hole being the power-set of the tables used in J ′.

Sketch generation, phase II. Recall that a join chain in the source pro-

gram may correspond to multiple join chains in the target schema — the target

join chain is not uniquely determined by a given value correspondence. Thus,

the second phase of our algorithm combines the sketches generated during the
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Φ ` Q� Ω Φ ` Q Ω′

Ω = Ω1 ? . . . ? Ωn Ω′ 6= Ωi i = 1, . . . , n

Φ ` Q� Ω ? Ω′
(Query)

Φ ` U � Ω Φ ` U  Ω′

Ω = Ω1 ? . . . ? Ωn Ω′ 6= Ωi i = 1, . . . , n

Φ ` U � Ω ? Ω′ ? (Ω • Ω′)
(Update)

Φ ` s Ω

Φ ` s� Ω
(Lift)

Φ ` U1 � Ω1 Φ ` U2 � Ω2

Φ ` U1;U2 � Ω1; Ω2

(Seq)

Figure 3.9: Inference rules for composing multiple sketches.

U1 • U2 = U1;U2 (U1 = ins or del or upd)
(U1;U2) • U3 = U1;U2;U3

(U1 ? U2) • U3 = (U1 • U3) ? (U2 • U3)

Figure 3.10: Definition of the composition operator.

first phase to synthesize a more general sketch that accounts for this ambiguity.

Figure 3.9 describes the second phase of sketch generation using judg-

ments of the form Φ ` s � Ω, and the composition operator • is defined in

Figure 3.10. At a high level, the rules in Figure 3.9 compose the sketches

obtained during the first phase to obtain a more general sketch. To start

with, the Lift rule corresponds to a base case and states that the � relation

is initially obtained using the  relation. The Query rule composes multi-

ple sketches Ω1, . . . ,Ωn for a query statement Q as Ω1 ? . . . ? Ωn — i.e., the

composed sketch is a union of the individual sketches.

The Update rule is similar to Query, but it is slightly more involved. In

particular, suppose that we have two different sketches Ω1,Ω2 for an update
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statement U . Now, we need to account for the possibility that either one or

both of the updates may happen. Thus, the corresponding sketch for update

statements is Ω1 ? Ω2 ? (Ω1; Ω2) rather than the simpler sketch Ω1 ? Ω2 for

query statements. The Update rule generalizes this discussion to arbitrarily

many sketches by using a binary operator • (defined in Figure 3.10) that

distributes sequential composition (;) over the choice ( ? ) construct. Finally,

the Seq rule allows generating a sketch for U1;U2 using the sketch Ωi for each

Ui.

Given a statement s in the source program, its corresponding sketch Ω is

obtained by applying the rewrite rules from Figure 3.9 to a fixed-point. Specif-

ically, let Ω1, . . . ,Ωn be the set of sketches such that Φ ` s � Ω1, . . . , Φ `

s� Ωn, and let us say that a sketch Ω is more general than Ω′, written Ω � Ω′,

if Ω represents more programs than Ω′. Then, the resulting sketch for s is the

most general sketch Ωi such that ∀j ∈ [1, n]. Ωi � Ωj.

3.3.4 Sketch Completion

In this section, we explain our algorithm for solving the database pro-

gram sketches from Section 3.3.3. As mentioned earlier, we do not encode

the precise semantics of the sketch using an SMT formula because relational

algebra operators are difficult to express using standard first-order theories

supported by SMT solvers. Instead, we perform symbolic search (using SAT)

over the space of programs encoded by the sketch and then subsequently check

equivalence. If the two programs are not equivalent, we employ minimum fail-
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Algorithm 3 Sketch Completion

1: procedure CompleteSketch(Ω,P)

Input: Sketch Ω, Source program P
Output: Target program P ′ or ⊥ to indicate failure

2: Ψ← Encode(Ω);
3: while SAT(Ψ) do
4: M← GetModel(Ψ);
5: P ′ ← Instantiate(Ω,M);
6: done← Verify(P,P ′);
7: if done then return P ′;
8: E ← MinCex(P,P ′);
9: Ψ← Ψ ∧ Block(M, E);

10: return ⊥;

ing inputs to further prune the search space by identifying programs that share

the same root cause of failure as a previously encountered program.

Overview. Our sketch completion procedure is summarized in Algorithm 3

and takes as input a program sketch Ω together with the source program P .

The output of CompleteSketch is either a completion P ′ of Ω such that

P ' P ′ or ⊥ to indicate no such program exists.

At a high level, the CompleteSketch procedure first generates a

boolean formula Ψ that represents all possible completions of the sketch Ω

(line 2). While any model of Ψ corresponds to a concrete program P ′ that is

an instantiation of Ω, such a program P ′ may or may not be equivalent to the

input program P . Thus, the sketch solving algorithm enters a loop (lines 3–9)

that lazily explores different instantiations of Ω, checks equivalence, and adds
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useful blocking clauses to the SAT encoding Ψ as needed. In what follows, we

explain the algorithm (and its subroutines) in more detail.

Initial SAT encoding. The goal of the Encode procedure at line 2 is to

generate a SAT formula that encodes all possible completions of Ω. Specifically,

for each hole ??i{e1, . . . , en} in the sketch, we introduce n boolean variables

b1
i , . . . , b

n
i such that bji = true if and only if hole ??i is instantiated with ex-

pression ej.
4 Since any valid completion of sketch Ω must assign every hole

??i to some expression ej in its domain, our initial SAT encoding is obtained

as follows:

Ψ =
∧

??i∈Holes(Ω)

⊕(b1
i , . . . , b

in
i )

where the domain of ??i consists of expressions e1, . . . ein , and ⊕ denotes the

n-ary xor operator. Observe that every model M of formula Ψ corresponds

to one particular instantiation of Ω; thus, the procedure Instantiate produces

program P ′ by assigning hole ??i to expression ej if and only if M assigns

variable bji to true.

Verification and blocking clauses. As is apparent from the discussion

above, our symbolic encoding Ψ of the sketch intentionally does not enforce

equivalence between source and target programs. Thus, whenever we obtain a

4Since the choice construct s1 ? s2 is just syntactic sugar for if ??{>,⊥} then s1 else s2,
we assume it has been de-sugared before this SAT encoding.
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completion P ′ of the sketch, we must check whether P ,P ′ are actually equiv-

alent using the Verify subroutine at line 6 of Algorithm 3. If the two programs

are indeed equivalent, the algorithm terminates with P ′ as a solution. Other-

wise, in the next iteration, we ask the SAT solver for a different model, which

corresponds to a different instantiation of the input sketch. However, in prac-

tice, there are an enormous number (e.g., up to 1039) of completions of the

sketch; thus, a synthesis algorithm that tests equivalence for every possible

sketch completion is unlikely to scale. Our sketch completion algorithm ad-

dresses this issue by using minimum failing inputs to block many programs at

the same time.

Specifically, a minimum failing input for a pair of programs P ,P ′ is an

invocation sequence ω (recall Section 2.2.3) satisfying the following criteria:

1. We have JPKω 6= JP ′Kω. That is, ω is a witness to the disequivalence of

P and P ′

2. There does not exist another invocation sequence ω′ such that |ω′| < |ω|

and JPKω′ 6= JP ′Kω′

Intuitively, minimum failing inputs are useful in this context because

they provide feedback about which assignments to which holes cause program

P ′ to not be equivalent to P . Specifically, let H (resp. H) be the holes used

in functions that appear (resp. do not appear) in ω, and let AH denote the

assignments to holes H. Then, any program that instantiates Ω by assigning
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AH to H will also be incorrect, regardless of the assignments to holes H. Our

sketch completion algorithm uses this observation to rule out many programs

beyond P ′. Specifically, let H = {??1, . . . , ??n} and suppose that AH assigns

expression eki to each ??i. Then, the Block procedure (line 9 of Algorithm 3)

generates the following blocking clause:

ϕ = ¬(bk11 ∧ . . . ∧ bknn )

Intuitively, this blocking clause ϕ rules out all completions of Ω that agree with

P ′ on the assignment to holes in H. Since minimum failing inputs typically

involve a small subset of the methods in the program, this technique allows

us to rule out many programs in one iteration. Furthermore, as we discuss in

Section 3.4, minimum failing inputs are inexpensive to obtain using testing.

3.4 Implementation

We have implemented the proposed synthesis technique in a new tool

called Migrator, which is implemented in Java. Migrator uses the Sat4J

solver [77] for answering all SAT and MaxSAT queries and the Mediator

tool [130] for verifying equivalence between a pair of database programs. In

the remainder of this section, we discuss two important design choices about

our implementation.

Sketch generation. Recall from Section 3.3.3 that our sketch generation al-

gorithm produces a sketch using a so-called join correspondence, which in turn
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is synthesized from a candidate value correspondence. While our presentation

in Section 3.3.3 presents “type-checking” rules that determine whether a join

correspondence is valid with respect to some value correspondence, it can be in-

efficient to consider all possible join chains in the target schema and then check

whether they are feasible. Thus, rather than taking an enumerate-then-check

approach, our implementation algorithmically produces join correspondences

that are feasible with respect to a given value correspondence.

To see how we infer all target join chains that may correspond to a

source join chain J , suppose we are given a value correspondence Φ and let

A be the set of attributes that occur in J . Our goal is to find all join chains

J1, . . . , Jn over the target schema such that for every attribute a ∈ A, there is

a corresponding attribute a′ ∈ Attrs(Ji). We reduce the problem of finding all

such possible join chains to the problem of finding all possible Steiner trees [68]

over a graph data structure where nodes represent tables and edges represent

join-ability relations.

In more detail, let A′ be a set of attributes over the target schema such

that for every a ∈ A, there exists some a′ ∈ A′ where a′ ∈ Φ(a), and let T ′

denote the set of tables containing all attributes in A′. Since the source join

chain refers to all attributes in A, we need to find exactly those join chains over

the target schema that “cover” the relations in which A′ appears. Towards this

goal, we construct a graph data structure G = (V,E) as follows: The nodes

V are tables in the target schema, and there is an edge (T, T ′) if tables T and

T ′ can be joined with each other. Now, recall that, given a graph G = (V,E)
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and a set of vertices V ′ ⊆ V , a Steiner tree is a connected subgraph that spans

all vertices V ′. Since our goal is to “cover” exactly the tables T ′ in the target

schema, we compute all possible Steiner trees spanning T ′ and convert them

to join chains in the expected way.

Generating minimum failing inputs. Recall from Section 3.3.4 that our

sketch completion algorithm uses minimum failing inputs to prune the search

space. In our implementation, we generate such inputs using a bounded testing

procedure. Specifically, we generate a fixed set of constants for each type (e.g.,

{0, 1} for integers) as the seed set to be used for arguments. Then, given such

a seed set C of constants, our testing engine generates all possible invocation

sequences containing only constants from C in increasing order of length. For

each invocation sequence ω, we execute both P and P ′ on ω and check if the

outputs are different. If so, we return ω as a minimum failing input, and

otherwise, we test equivalence using the next invocation sequence.

Verification. Our sketch completion algorithm from Section 3.3.4 invokes a

Verify procedure to check if two programs are equivalent. However, since full-

fledged verification using the Mediator tool [130] can be quite expensive,

we first perform exhaustive testing up to some bound and invoke Mediator

only when no failing inputs are found. In principle, it is possible that the

testing procedure fails to find a failing input while the verifier cannot establish

equivalence. We have not encountered this kind of scenario in practice, but it

could nonetheless happen in theory.
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Table 3.1: Main experimental results of Migrator.

Benchmark Funcs
Source Schema Target Schema Value

Iters
Synth Total

Tables Attrs Tables Attrs Corr Time(s)Time(s)

te
x
tb

o
o
k

b
e
n
ch

Oracle-1 4 2 8 1 6 1 1 0.3 2.7
Oracle-2 19 3 17 7 25 1 5 0.5 11.3
Ambler-1 10 1 6 2 7 1 2 0.3 2.9
Ambler-2 10 2 7 1 6 1 1 0.3 0.6
Ambler-3 7 2 5 2 5 2 5 0.4 30.6
Ambler-4 5 1 2 1 2 1 1 0.3 0.5
Ambler-5 8 2 5 3 6 5 7 0.3 3.1
Ambler-6 10 2 9 2 8 1 1 0.3 0.7
Ambler-7 8 2 7 2 8 1 1 0.3 0.6
Ambler-8 14 3 10 3 13 1 7 0.5 3.1

re
a
l-
w
o
rl
d

b
e
n
ch

cdx 138 16 125 17 131 1 7 11.9 38.9
coachup 45 4 51 5 55 1 10 1.8 6.7
2030Club 125 15 155 16 159 1 2 5.2 24.8
rails-ecomm 65 8 69 9 75 1 6 2.5 10.3
royk 151 19 152 19 155 1 17 46.1 60.1
MathHotSpot 54 7 38 8 42 6 11 1.2 5.8
gallery 58 7 52 8 57 1 11 2.5 9.4
DeeJBase 70 10 92 11 97 1 8 3.5 9.3
visible-closet 263 26 248 27 252 1 108 1304.7 1370.8
probable-engine 85 12 83 11 78 1 9 4.6 17.5

Average 57.5 7.2 57.1 7.8 59.4 1.5 11.0 69.4 80.5

3.5 Evaluation

To evaluate the proposed idea, we use Migrator to automatically

migrate 20 database programs to a new schema.

Benchmarks. All 20 programs in our benchmark set are taken from Sec-

tion 2.7 for verifying equivalence between database programs.5 Specifically,

half of these benchmarks are adapted from textbooks and online tutorials, and

5 While we consider 21 benchmarks in Section 2.7, one of these benchmarks cannot
be verified by Mediator. Since we use Mediator as our verifier, we exclude that one
benchmark from this evaluation.
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the remaining half are manually extracted from real-world web applications

on Github. However, because the input language of Migrator is slightly dif-

ferent from that of Mediator, we write a translator to convert the database

programs to Migrator’s input language.

Experimental Setup. All of our experiments are conducted on a machine

with Intel Xeon(R) E5-1620 v3 quad-core CPU and 32GB of physical memory,

running the Ubuntu 14.04 operating system. For each synthesis benchmark,

we set a time limit of 24 hours.

3.5.1 Main Results

Our main experimental results are summarized in Table 3.1. Here, the

first ten rows correspond to benchmarks taken from database schema refactor-

ing textbooks, and the latter ten rows correspond to real-world Ruby-on-Rails

applications collected from Github. The “Funcs” column shows the number of

functions that need to be synthesized. The next two columns under “Source

Schema” (resp. “Target Schema”) describe the number of tables and attributes

in the source (resp. target) schema. The last four columns report the results

obtained by running Migrator on each benchmark. Specifically, the col-

umn “Value Corr” shows the number of value correspondences considered by

Migrator, and “Iters” shows the number of programs explored before an

equivalent one is found. Finally, the “Synth Time” column shows synthesis

time in seconds (excluding verification), and “Total Time” shows total time,
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including both synthesis and verification.

The key takeaway message from this experiment is that Migrator

can successfully synthesize equivalent versions of all 20 benchmarks, including

the database programs in real-world Ruby-on-Rails web applications with up

to 263 functions. Furthermore, synthesis time (excluding verification) ranges

from 0.3 seconds to 1304.7 seconds, with the average time being 69.4 seconds

in total or 1.2 seconds per function. We believe these results provide strong

evidence that our proposed technique can be quite useful for automating the

code migration process for schema refactoring.

3.5.2 Comparison with Baselines

Given that there are other existing techniques for solving program

sketches, we also evaluate our sketch completion algorithm by comparing our

method against two baselines. In particular, our first baseline is the Sketch

tool [117], and the second one is a variant of our own sketch completion algo-

rithm that does not use minimum failing inputs (MFIs).

Comparison with Sketch. To compare our approach with the Sketch

tool [117], we first implemented the semantics of SQL in Sketch by encod-

ing each SQL statement as a C function. Specifically, our Sketch encoding

models each database table as an array of arrays, with the nested array rep-

resenting a tuple, and we model each SQL operation as a function that reads

and updates the array as appropriate.
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Table 3.2: Comparing Migrator with Sketch.

Benchmark
Sketch Speedup of

Synth Time(s) Migrator

te
x
tb

o
o
k

b
e
n
ch

Oracle-1 88.2 294.0x
Oracle-2 >86400.0 >172800.0x
Ambler-1 3136.5 10455.0x
Ambler-2 71.5 238.3x
Ambler-3 74.7 186.8.5x
Ambler-4 1.6 5.3x
Ambler-5 494.4 1648.0x
Ambler-6 226.2 754.0x
Ambler-7 814.8 2716.0x
Ambler-8 >86400.0 >172800.0x

re
a
l-
w
o
rl
d

b
e
n
ch

cdx >86400.0 >7260.5x
coachup >86400.0 >48000.0x
2030Club >86400.0 >16615.4x
rails-ecomm >86400.0 >34560.0x
royk >86400.0 >1874.2x
MathHotSpot >86400.0 >72000.0x
gallery >86400.0 >34560.0x
DeeJBase >86400.0 >24685.7x
visible-closet >86400.0 >66.2x
probable-engine >86400.0 >18782.6x

Average >52085.4 >750.5x

The results of this experiment are summarized in Table 3.2. The main

observation is that Sketch times out on all real-world benchmarks from

Github as well as two textbook examples, namely Oracle-2 and Ambler-8.

For all other benchmarks, Migrator is significantly faster than Sketch,

with speed-ups ranging between 5.3x to 10455.0x in terms of synthesis time.

Since Sketch only performs bounded model checking rather than full-fledged

verification, we only report speedup in terms of synthesis time rather than to-

tal time including verification. The speedup in terms of total time (including

verification) ranges from 2.4x to 1358.0x. We believe this experiment demon-
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Table 3.3: Comparing Migrator with symbolic enumerative search.

Benchmark
Symbolic Enum Speedup of

Iters Synth Time(s) Migrator

te
x
tb

o
o
k

b
e
n
ch

Oracle-1 1 0.3 1.0x
Oracle-2 5 0.5 1.0x
Ambler-1 2 0.3 1.0x
Ambler-2 1 0.3 1.0x
Ambler-3 6 0.4 1.0x
Ambler-4 1 0.3 1.0x
Ambler-5 11 0.4 1.3x
Ambler-6 1 0.3 1.0x
Ambler-7 1 0.3 1.0x
Ambler-8 67996 54367.6 108735.2x

re
a
l-
w
o
rl
d

b
e
n
ch

cdx 5595 6169.4 518.4x
coachup 1303 76.2 42.3x
2030Club 2 5.2 1.0x
rails-ecomm 2779 602.5 241.0x
royk >31249 >86400.0 >1874.2x
MathHotSpot 115 5.3 4.4x
gallery 21483 32266.2 12906.5x
DeeJBase 605 142.8 40.8x
visible-closet >9512 >86400.0 >66.2x
probable-engine 1661 540.3 117.5x

Average >7116.5 >13348.9 >192.3x

strates the advantage of our proposed sketch completion algorithm compared

to the standard CEGIS approach implemented in Sketch.

Comparison with enumerative search. Since the key novelty of our

sketch completion algorithm is the use of minimum failing inputs to prune

the search space, we also compare our approach against a baseline that does

not use MFIs. In particular, this baseline uses the same SAT encoding of the

search space but blocks only a single program at a time. More concretely,

given a model M of the SAT encoding Ψ, this baseline updates Ψ by con-
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joining ¬M whenever verification fails. Effectively, this baseline performs

enumerative search but does so in a symbolic way using a SAT solver.

The results of this experiment are summarized in Table 3.3. As we

can see from this table, the impact of MFIs is particularly pronounced for the

Ambler-8 textbook example and almost all real-world benchmarks. In particu-

lar, Migrator is 192.3x faster than enumerative search on average. Moreover,

without using MFIs to prune the search space, two of the benchmarks do not

terminate within a time-limit of 24 hours. Hence, the results demonstrate that

our MFI-based sketch completion is very important for practical synthesis.

3.6 Limitations

In this section, we will explain and discuss some limitations of the

Migrator tool.

First, Migrator cannot handle schema changes that are not express-

ible using our notion of value correspondence. For example, one can merge

two columns “first name” and “last name” into a single column “name” and

use string operations to extract first or last names in a query. These types

of schema refactorings cannot be expressed using our definition of value cor-

respondence. While it is relatively straightforward to expand our technique

to a richer scope of value correspondences (e.g., by enriching the sketch lan-

guage to include a set of predefined functions like concat, split, etc), this

change would require a more sophisticated verifier that can reason about the

semantics of built-in functions.
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Second, Migrator does not synthesize database programs with control-

flow constructs such as if statements and loops, because the underlying equiva-

lence verifier [130] does not support database programs with those constructs.

Third, the notion of equivalence considered in this chapter characterizes

behavioral equivalence between database programs, which ensures that two

corresponding sequences of transactions yield the same result. However, it

does not enforce that the underlying data stored in the database is inserted

or manipulated in particular ways. For example, Migrator may choose to

delete from one or multiple tables when performing deletion as long as the new

program satisfies the behavioral equivalence requirement. In some contexts,

it may be desirable to adopt a stronger definition of equivalence than the one

we consider in this chapter.
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Chapter 4

Data Migration via Datalog Synthesis 1

In previous chapters, we have discussed formal method techniques for

verifying the correctness of code migration and synthesizing a new database

program automatically. Recall that schema refactoring not only requires mi-

grating code but also migrating the underlying data to a new schema. To

facilitate data migration for developers, in this chapter, we present a new

programming-by-example technique for automatically migrating data from one

schema to another.

Specifically, given a small input-output example illustrating the source

and target data, our method automatically synthesizes a program that trans-

forms data in the source format to its corresponding target format. Further-

more, unlike prior programming-by-example efforts in this space [5, 102, 140],

our method can transform data between several types of database schemas,

such as from a graph database to a relational one or from a SQL database to

a JSON document.

One of the key ideas underlying our method is to reduce the automated

1This chapter is adapted from the author’s previous publication [133], where the author
led the technical discussion, tool development, and experimental evaluation.
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data migration problem to that of synthesizing a Datalog program from ex-

amples. Inspired by the similarity between Datalog rules and popular schema

mapping formalisms, such as GLAV [5, 52] and tuple-generating dependen-

cies [101], our method expresses the correspondence between the source and

target schemas as a Datalog program in which extensional relations define the

source schema and intensional relations represent the target. Then, given an

input-output example (I,O), finding a suitable schema mapping boils down to

inferring a Datalog program P such that (I,O) is a model of P . Furthermore,

because a Datalog program is executable, we can automate the data migration

task by simply executing the synthesized Datalog program P on the source

instance.

While we have found Datalog programs to be a natural fit for express-

ing data migration tasks that arise in practice, automating Datalog program

synthesis turns out to be a challenging task for several reasons: First, without

some a-priori knowledge about the underlying schema mapping, it is unclear

what the structure of the Datalog program would look like. Second, even if

we “fix” the general structure of the Datalog rules, the search space over all

possible Datalog programs is still very large. Our method deals with these

challenges by employing a practical algorithm that leverages both the seman-

tics of Datalog programs as well as our target application domain. As shown

schematically in Figure 4.1, our proposed synthesis algorithm consists of three

steps:

87



Target
Instance

 Datalog Program Synthesis

Attr. Map.
Inference

Source
Schema
Taget

Schema
Example

Ψ Datalog
ProgramSketch

Completion
Sketch

Generation
Ω

Migration
Framework

Source
Instance

Figure 4.1: Schematic workflow of Dynamite.

Attribute mapping inference. The first step of our approach is to infer

an attribute mapping Ψ which maps each attribute in the source schema to

a set of attributes that it may correspond to. While this attribute mapping

does not uniquely define how to transform the source database to the target

one, it substantially constrains the space of possible Datalog programs that

we need to consider.

Sketch generation. In the next step, our method leverages the inferred at-

tribute mapping Ψ to express the search space of all possible schema mappings

as a Datalog program sketch where some of the arguments of the extensional

relations are unknown. While such a sketch represents a finite search space,

this space is exponentially large, making it infeasible to naively enumerate all

programs defined by the sketch.

Sketch completion. The final and most crucial ingredient of our method is

the sketch completion step that performs Datalog-specific deductive reasoning

to dramatically prune the search space. Specifically, given a Datalog program

that does not satisfy the input-output examples, our method performs logical

inference to rule out many other Datalog programs from the search space. In
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particular, our method leverages a semantics-preserving transformation as well

as a new concept called minimal distinguishing projection (MDP) to generalize

from one incorrect Datalog program to many others.

Results. We have implemented our proposed technique in a prototype called

Dynamite and evaluate it on 28 data migration tasks between real-world

data-sets. These tasks involve transformations between different types of

source and target schemas, including relational, document, and graph databases.

Our experimental results show that Dynamite can successfully automate all

of these tasks using small input-output examples that consist of just a few

records. Furthermore, our method performs synthesis quite fast (with an av-

erage of 7.3 seconds per benchmark) and can be used to migrate real-world

database instances to the target schema in an average of 12.7 minutes per

database.

4.1 Overview

In this section, we give a high-level overview of our method using a

simple motivating example. Specifically, consider a document database with

the following schema:

Univ: [{ id: Int, name: String,

Admit: [{uid: Int, count: Int}] }]

This database stores a list of universities, where each university has its own id,

name, and graduate school admission information. Specifically, the admission
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information consists of a university identifier and the number of undergraduate

students admitted from that university.

Now, suppose that we need to transform this data to the following

alternative schema:

Admission:[{grad: String, ug: String, num: Int}]

This new schema stores admission information as tuples consisting of a grad-

uate school grad, an undergraduate school ug, and an integer num that indi-

cates the number of undergraduates from ug that went to graduate school at

grad. As an example, Figure 4.2(a) shows a small subset of the data in the

source schema, and 4.2(b) shows its corresponding representation in the target

schema.

For this example, the desired transformation from the source to the

target schema can be represented using the following simple Datalog program:

Admission(grad, ug, num) :-
Univ(id1, grad, v1),Admit(v1, id2, num),Univ(id2, ug, ).

Here, the relation Univ corresponds to a university entity in the source schema,

and the relation Admit denotes its nested Admit attribute. In the body of the

Datalog rule, the third argument of the first Univ occurrence has the same

first argument as Admit ; this indicates that (id2, num) is nested inside the

university entry (id1, grad). Essentially, this Datalog rule says the following:

“If there exists a pair of universities with identifiers id1, id2 and names grad, ug
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Univ: [

{id:1, name:"U1",

Admit: [

{uid:1, count:10},
{uid:2, count:50}]},

{id:2, name:"U2",

Admit: [

{uid:2, count:20},
{uid:1, count:40}]}

]

(a) Input Documents

Admission: [

{grad:"U1",
ug:"U1", num:10},
{grad:"U1",
ug:"U2", num:50},
{grad:"U2",
ug:"U2", num:20},
{grad:"U2",
ug:"U1", num:40}

]

(b) Output Documents

Figure 4.2: Example database instances.

in the source document, and if (id2, num) is a nested attribute of id1, then

there should be an Admission entry (grad, ug, num) in the target database.”

In what follows, we explain how Dynamite synthesizes the above Dat-

alog program given just the source and target schemas and the input-output

example from Figure 4.2.

Attribute Mapping. Our approach starts by inferring an attribute mapping

Ψ, which specifies which attribute in the source schema may correspond to

which other attributes (either in the source or target). For instance, based on

the example provided in Figure 4.2, Dynamite infers the following attribute

mapping Ψ:
id → {uid} name → {grad, ug}

uid → {id} count → {num}

Since the values stored in the name attribute of Univ in the source schema

are the same as the values stored in the grad and ug attributes of the target
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schema, Ψ maps source attribute name to both target attributes grad and ug.

Observe that our inferred attribute mapping can also map source attributes to

other source attributes. For example, since the values in the id field of Univ

are the same as the values stored in the nested uid attribute, Ψ also maps id

to uid and vice versa.

Sketch Generation. In the next step, Dynamite uses the inferred at-

tribute mapping Ψ to generate a program sketch Ω that defines the search

space over all possible Datalog programs that we need to consider. Towards

this goal, we introduce an extensional (resp. intensional) relation for each

document in the source (resp. target) schema, including relations for nested

documents. In this case, there is a single intensional relation Admission for

the target schema; thus, we introduce the following single Datalog rule sketch

with the Admission relation as its head:

Admission(grad, ug, num) :-
Univ(??1, ??2, v1),Admit(v1, ??3, ??4),
Univ(??5, ??6, ),Univ(??7, ??8, ).

(4.1)

??1, ??3, ??5, ??7 ∈ {id1, id2, id3, uid1} ??4 ∈ {num, count1}
??2, ??6, ??8 ∈ {grad, ug, name1, name2, name3}

Here, ??i represents a hole (i.e., unknown) in the sketch, and its domain is

indicated as ??i ∈ {e1, . . . , en}, meaning that hole ??i can be instantiated with

an element drawn from {e1, . . . , en}. To see where this sketch is coming from,

we make the following observations:
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• According to Ψ, the grad attribute in the target schema comes from the

name attribute of Univ ; thus, we must have an occurrence of Univ in

the rule body.

• Similarly, the ug attribute in the target schema comes from the name

attribute of Univ in the source; thus, we may need another occurrence

of Univ in the body.

• Since the num attribute comes from the count attribute in the nested Ad-

mit document, the body of the Datalog rule contains Univ(??1, ??2, v1),

Admit(v1, ??3, ??4) denoting an Admit document stored inside some Univ

entity (the nesting relation is indicated through variable v1).

• The domain of each hole is determined by Ψ and the number of occur-

rences of each relation in the Datalog sketch. For example, since there

are three occurrences of Univ, we have three variables id1, id2, id3 asso-

ciated with the id attribute of Univ. The domain of hole ??1 is given

by {id1, id2, id3, uid1} because it refers to the id attribute of Univ, and

id may be an “alias” of uid according to Ψ.

Sketch Completion. While the Datalog program sketch Ω given above

looks quite simple, it actually has 64, 000 possible completions; thus, a brute-

force enumeration strategy is intractable. To solve this problem, Dynamite

utilizes a novel sketch completion algorithm that aims to learn from failed

synthesis attempts. Towards this goal, we encode all possible completions
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of sketch Ω as a satisfiability-modulo-theory (SMT) constraint Φ where each

model of Φ corresponds to a possible completion of Ω. For the sketch from

Equation 4.1, our SMT encoding is the following formula Φ:

(x1 = id1 ∨ x1 = id2 ∨ x1 = id3 ∨ x1 = uid1)
∧ (x2 = grad ∨ x2 = ug ∨ x2 = name1 ∨ . . . ∨ x2 = name3)
∧ . . . ∧ (x8 = grad ∨ x8 = ug ∨ . . . ∨ x8 = name3)

Here, for each hole ??i in the sketch, we introduce a variable xi and stipulate

that xi must be instantiated with exactly one of the elements in its domain.2

Furthermore, since Datalog requires all variables in the head to occur in the

rule body, we also conjoin the following constraint with Φ to enforce this

requirement:

(x2 = grad ∨ x6 = grad) ∧ (x2 = ug ∨ x6 = ug) ∧ (x4 = num)

Next, we query the SMT solver for a model of this formula. In this case, one

possible model σ of Φ is:

x1 = id1 ∧ x2 = grad ∧ x3 = id1 ∧ x4 = num
∧ x5 = id1 ∧ x6 = ug ∧ x7 = id2 ∧ x8 = name1

(4.2)

which corresponds to the following Datalog program P :

Admission(grad, ug, num) :- Univ(id1, grad, v1),
Admit(v1, id1, num), Univ(id1, ug, ),Univ(id2, name1, ).

However, this program does not satisfy the user-provided example be-

cause evaluating it on the input yields a result that is different from the ex-

pected one (see Figure 4.3).

2In the SMT encoding, one should think of id1, id2 etc. as constants rather than variables.
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grad ug num

U1 U1 10

U2 U2 20

(a) Actual Result

grad ug num

U1 U1 10

U1 U2 50

U2 U2 20

U2 U1 40

(b) Expected Result

Figure 4.3: Actual and expected results of program P .

Now, in the next iteration, we want the SMT solver to return a model

that corresponds to a different Datalog program. Towards this goal, one pos-

sibility would be to conjoin the negation of σ with our SMT encoding, but this

would rule out just a single program in our search space. To make synthesis

more tractable, we instead analyze the root cause of failure and try to infer

other Datalog programs that also do not satisfy the examples.

To achieve this goal, our sketch completion algorithm leverages two key

insights: First, given a Datalog program P , we can obtain a set of semantically

equivalent Datalog programs by renaming variables in an equality-preserving

way. Second, since our goal is to rule out incorrect (rather than just semanti-

cally equivalent) programs, we can further enlarge the set of rejected Datalog

programs by performing root-cause analysis. Specifically, we express the root

cause of incorrectness as a minimal distinguishing projection (MDP), which is

a minimal set of attributes that distinguishes the expected output from the ac-

tual output. For instance, consider the expected and actual outputs O and O′

shown in Figure 4.3. An MDP for this example is the singleton num because

taking the projection of O and O′ on num yields different results.
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Using these two key insights, our sketch completion algorithm infers 720

other Datalog programs that are guaranteed not to satisfy the input-output

example and represents them using the following SMT formula:

(x4 = num ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5

∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8)
(4.3)

We can use the negation of this formula as a “blocking clause” by conjoining

it with the SMT encoding and rule out many infeasible solutions at the same

time.

After repeatedly sampling models of the sketch encoding and adding

blocking clauses as discussed above, Dynamite finally obtains the following

model:

x1 = id1 ∧ x2 = grad ∧ x3 = id2 ∧ x4 = num
∧x5 = id2 ∧ x6 = ug ∧ x7 = id3 ∧ x8 = name1

which corresponds to the following Datalog program (after some basic simpli-

fication):

Admission(grad, ug, num) :-
Univ(id1, grad, v1),Admit(v1, id2, num),Univ(id2, ug, ).

This program is consistent with the provided examples and can automate the

desired data migration task.

4.2 Preliminaries

In this section, we review some preliminary information on Datalog and

our schema representation; then, we explain how to represent data migration

programs in Datalog.
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4.2.1 Schema Representation

We represent database schemas using non-recursive record types, which

are general enough to express a wide variety of database schemas, including

XML and JSON documents and graph databases. Specifically, a schema S is

a mapping from type names N to their definition:

Schema S ::= N → T
Type T ::= τ | {N1, . . . , Nn}

A type definition is either a primitive type τ or a set of named attributes

{N1, . . . Nk}, and the type of attribute Ni is given by the schema S. An

attribute N is a primitive attribute if S(N) = τ for some primitive type τ .

Given a schema S, we write PrimAttrbs(S) to denote all primitive attributes

in S, and we write parent(N) = N ′ if N ∈ S(N ′).

Example 4.2.1. Consider the JSON document schema from our motivating

example in Section 4.1:

Univ: [{ id: Int, name: String,

Admit: [{uid: Int, count: Int}] }]

In our representation, this schema is represented as follows:

S(Univ) = {id, name, Admit} S(Admit) = {uid, count}
S(id) = S(uid) = S(count) = Int S(name) = String

Example 4.2.2. Consider the following relational schema:

User(id : Int, name : String, address : String)

In our representation, this schema is represented as follows:

S(User) = {id, name, address}
S(id) = Int S(name) = S(address) = String
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Program ::= Rule+ Rule ::= Head :- Body.
Head ::= Pred Body ::= Pred+

Pred ::= R(v+) v ∈ Variable R ∈ Relation

Figure 4.4: Syntax of Datalog programs.

Example 4.2.3. Consider the following graph schema:

Actor
aid     : Int      
name : String

ACT_IN
role : String

Movie
mid : Int      
title : String

To convert this schema to our representation, we first introduce two at-

tributes source and target to denote the source and target nodes of the edge.

Then, the graph schema corresponds the following mapping in our representa-

tion:
S(Movie) = {mid, title} S(Actor) = {aid, name}

S(ACT IN) = {source, target, role}
S(mid) = S(aid) = S(source) = S(target) = Int

S(title) = S(name) = S(role) = String

4.2.2 Datalog

As shown in Figure 4.4, a Datalog program consists of a list of rules,

where each rule is of the form H :- B. Here, H is referred as the head of

the rule and B is the body. The head H is a single relation of the form

R(v1, . . . , vn), and the body B is a collection of predicates B1, B2, . . . , Bn. In

the remainder of this chapter, we sometimes also write

H1, . . . , Hm :- B1, B2, . . . , Bn.
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as short-hand for m Datalog rules with the same body. Predicates that appear

only in the body are known as extensional relations and correspond to known

facts. Predicates that appear in the head are called intensional relations and

correspond to the output of the Datalog program.

Semantics. The semantics of Datalog programs are typically given using

Herbrand models of first-order logic formulas [29]. In particular, each Data-

log rule R of the form H(~x) :- B(~x, ~y) corresponds to a first-order formula

JRK = ∀~x, ~y. B(~x, ~y)→ H(~x), and the semantics of the Datalog program can

be expressed as the conjunction of each rule-level formula. Then, given a Dat-

alog program P and an input I (i.e., a set of ground formulas), the output

corresponds to the least Herbrand model of JPK ∧ I.

4.2.3 Data Migration using Datalog

We now discuss how to perform data migration using Datalog. The

basic idea is as follows: First, given a source database instance D over schema

S, we express D as a collection of Datalog facts over extensional relations

R. Then, we express the target schema S ′ using intensional relations R′

and construct a set of (non-recursive) Datalog rules, one for each intensional

relation inR′. Finally, we run this Datalog program and translate the resulting

facts into the target database instance. Since programs can be evaluated

using an off-the-shelf Datalog solver, we only explain how to translate between

database instances and Datalog facts.
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From instances to facts. Given a database instance D over schema S, we

introduce an extensional relation symbol RN for each record type with name

N in S and assign a unique identifier Id(r) to every record r in the database

instance. Then, for each instance r = {a1 : v1, . . . , an : vn} of record type N ,

we generate a fact RN(c0, c1, . . . , cn) where:

ci =


Id(parent(r)), if i = 0 and r is a nested record

vi, if S(ai) is a primitive type

Id(r), if S(ai) is a record type

Intuitively, relation RN has an extra argument that keeps track of its

parent record in the database instance if N is nested in another record type.

In this case, the first argument of RN denotes the unique identifier for the

record in which it is nested.

Example 4.2.4. For the JSON document from Figure 4.2(a), our method

generates the following Datalog facts

Univ(1, “U1”, id1) Univ(2, “U2”, id2) Admit(id1, 1, 10)
Admit(id2, 2, 20) Admit(id1, 2, 50) Admit(id2, 1, 40)

where id1 and id2 are unique identifiers.

From facts to instances. We convert Datalog facts to the target database

instance using the inverse procedure. Specifically, given a fact RN(c1, . . . , cn)

for record type N : {a1, . . . , an}, we create a record instance using a function

BuildRecord(RN , N) = {a1 : v1, . . . , an : vn} where

vi =


ci, if S(ai) is a primitive type

BuildRecord(Rai , ai), if S(ai) is a record type and

the first argument of Rai is ci
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Algorithm 4 Synthesizing Datalog programs

1: procedure Synthesize(S,S ′, E)

Input: Source schema S, target schema S ′, example E = (I,O)
Output: Datalog program P or ⊥ to indicate failure

2: Ψ← InferAttrMapping(S,S ′, E);
3: Ω← SketchGen(Ψ,S,S ′);
4: Φ← Encode(Ω);
5: while SAT(Φ) do
6: σ ← GetModel(Φ);
7: P ← Instantiate(Ω, σ);
8: O′ ← JPKI ;
9: if O′ = O then return P;

10: Φ← Φ ∧Analyze(σ,O′,O);

11: return ⊥;

Observe that the BuildRecord procedure builds the record recursively

by chasing parent identifiers into other relations.

4.3 Datalog Program Synthesis

In this section, we describe our algorithm for automatically synthesiz-

ing Datalog programs from an input-output example E = (I,O). Here, I

corresponds to an example of the database instance in the source schema, and

O demonstrates the desired target instance. We start by giving a high-level

overview of the synthesis algorithm and then explain each of the key ingredi-

ents in more detail.
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4.3.1 Algorithm Overview

The top-level algorithm for synthesizing Datalog programs is summa-

rized in Algorithm 4. The Synthesize procedure takes as input a source

schema S, a target schema S ′, and an input-output example E = (I,O). The

return value is either a Datalog program P such that evaluating P on I yields

O (i.e. JPKI = O) or ⊥ to indicate that the desired data migration task cannot

be represented as a Datalog program.

As shown in Algorithm 4, the Synthesize procedure first invokes the

InferAttrMapping procedure (line 2) to infer an attribute mapping Ψ.

Specifically, Ψ is a mapping from each a ∈ PrimAttrbs(S) to a set of attributes

{a1, . . . , an} where ai ∈ PrimAttrbs(S) ∪ PrimAttrbs(S ′) such that:

a′ ∈ Ψ(a) ⇔ Πa′(D) ⊆ Πa(I)

where D stands for either I or O. Thus, InferAttrMapping is conservative

and maps a source attribute a to another attribute a′ if the values contained

in a′ are a subset of those contained in a.

Next, the algorithm invokes SketchGen (line 3) to generate a Datalog

program sketch Ω based on Ψ. As mentioned in Section 4.1, a sketch Ω is a

Datalog program with unknown arguments in the rule body, and the sketch

also determines the domain for each unknown. Thus, if the sketch contains

n unknowns, each with k elements in its domain, then the sketch encodes a

search space of kn possible programs.
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Lines 4-10 of the Synthesize algorithm perform lazy enumeration over

possible sketch completions. Given a sketch Ω, we first generate an SMT

formula Φ whose models correspond to all possible completions of Ω (line 4).

Then, the loop in lines 5-10 repeatedly queries a model of Φ (line 6), tests

if the corresponding Datalog program is consistent with the example (lines

7-9), and adds a blocking clause to Φ if it is not (line 10). The blocking

clause is obtained via the call to the Analyze procedure, which performs

Datalog-specific deductive reasoning to infer a whole set of programs that are

guaranteed not to satisfy the examples.

In the remainder of this section, we explain the sketch generation and

completion procedures in more detail.

4.3.2 Sketch Generation

Given an attribute mapping Ψ, the goal of sketch generation is to con-

struct the skeleton of the target Datalog program. Our sketch language is sim-

ilar to the Datalog syntax in Figure 4.4, except that it allows holes (denoted by

??) as special constructs indicating unknown expressions. As summarized in

Algorithm 5, the SketchGen procedure iterates over each top-level record in

the target schema and, for each record type, it generates a Datalog rule sketch

using the helper procedure GenRuleSketch. 3 Conceptually, GenRuleS-

ketch performs the following tasks: First, it generates a set of intensional

predicates for each top-level record in the target schema (line 8). The inten-

3 The property of the generated sketch is characterized and proved in [134].
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Algorithm 5 Generating Datalog program sketches

1: procedure SketchGen(Ψ,S,S ′)
Input: Attribute mapping Ψ, source schema S, target schema S ′
Output: Program sketch Ω

2: Ω← ∅;
3: for each top-level record type N ∈ S ′ do
4: R← GenRuleSketch(Ψ,S,S ′, N);
5: Ω← Ω ∪ {R};
6: return Ω;

7: procedure GenRuleSketch(Ψ,S,S ′, N)

8: H ← GenIntensionalPreds(S ′, N); B ← ∅;
9: for each a ∈ dom(Ψ) do

10: repeat |{a′ | a′ ∈ PrimAttrbs(N) ∧ a′ ∈ Ψ(a)}| times
11: N ← RecName(a);
12: B ← B ∪GenExtensionalPreds(S, N);

13: for each ??a ∈ Holes(B) do
14: V ← {va′ | a′ ∈ PrimAttrbs(N) ∧ a′ ∈ Ψ(a)};
15: for each a′ ∈ Ψ(a) ∪ {a} and a′ ∈ PrimAttrbs(S) do
16: n← CopyNum(B,RecName(a′));
17: V ← V ∪

⋃n
i=1{via′};

18: B ← B[??a 7→ ??a ∈ V ];

19: return H :- B.;

sional predicates do not contain any unknowns and only appear in the head of

the Datalog rules. Next, the loop (lines 9–12) constructs the skeleton of each

Datalog rule body by generating extensional predicates for the relevant source

record types. The extensional predicates do contain unknowns, and there can

be multiple occurrences of a relation symbol in the body. Finally, the loop in

lines 13–18 generates the domain for each unknown used in the rule body.
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S ′(N) ∈ PrimType

S ′ ` N  (vN , ∅)
(InPrim)

S ′(N) = {a1, . . . , an} isNested(N)
S ′ ` ai  (vi, Hi) i = 1, . . . , n

S ′ ` N  (vN , {RN (vN , v1, . . . , vn)} ∪
⋃n
i=1Hi)

(InRecNested)

S ′(N) = {a1, . . . , an} ¬isNested(N)
S ′ ` ai  (vi, Hi) i = 1, . . . , n

S ′ ` N  ( , {RN (v1, . . . , vn)} ∪
⋃n
i=1Hi)

(InRec)

Figure 4.5: Inference rules describing GenIntensionalPreds.

Head generation. Given a top-level record type N in the target schema, the

procedure GenIntensionalPreds generates the head of the corresponding

Datalog rule for N . If N does not contain any nested records, then the head

consists of a single predicate, but, in general, the head contains as many

predicates as are (transitively) nested in N .

In more detail, Figure 4.5 presents the GenIntensionalPreds pro-

cedure as inference rules that derive judgments of the form S ′ ` N  (v,H)

where H corresponds to the head of the Datalog rule for record type N . As ex-

pected, these rules are recursive and build the predicate set H for N from those

of its nested records. Specifically, given a top-level record N with attributes

a1, . . . , an, the rule InRec first generates predicates Hi for each attribute ai and

then introduces an additional relation RN(v1, . . . , vn) for N itself. Predicate

generation for nested relations (rule InRecNested) is similar, but we intro-

duce a new variable vN that is used for connecting N to its parent relation.
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The InPrim rule corresponds to the base case of GenIntensionalPreds and

generates variables for attributes of primitive type.

Body sketch generation. We now consider sketch generation for the body

of each Datalog rule (lines 9–12 in Algorithm 5). Given a record type N in the

source schema and its corresponding predicate(s) RN , the loop in lines 9–12

of Algorithm 5 generates as many copies of RN in the rule body as there are

head attributes that “come from” RN according to Ψ. Specifically, Algorithm 5

invokes a procedure called GenExtensionalPreds, described in Figure 4.6,

to generate each copy of the extensional predicate symbol.

Given a record type N in the source schema, GenExtensionalPreds

generates predicates up until the top-level record that contains N . The rules

in Figure 4.6 are of the form S ` N ↪→ (h,B), where B is the sketch body

for record type N . The ExPrim rule is the base case to generate sketch holes

for primitive attributes. Given a record N with attributes a1, . . . , an and its

parent N ′, the rule ExRecNested recursively generates the body predicates B′

for the parent record N ′ and adds an additional predicate RN(vN , h1, . . . , hn)

for N itself. Here vN is a variable for connecting N and its parent N ′, and

hi is the hole or variable for attribute ai. In the case where N is a top level

record, the ExRec rule generates a singleton predicate RN(h1, . . . , hn).

Example 4.3.1. Suppose we want to generate the body sketch for the rule

associated with record type T : {a′ : Int, b′ : Int} in the target schema. Also,

suppose we are given the attribute mapping Ψ where Ψ(a) = a′ and Ψ(b) =
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S(N) ∈ PrimType

S ` N ↪→ (??N , )
(ExPrim)

S(N) = {a1, . . . , an} fresh vN
S ` ai ↪→ (hi, ) i = 1, . . . , n

N ′ = parent(N) S ` N ′ ↪→ ( , B′)

S ` N ↪→ (vN , {RN (vN , h1, . . . , hn)} ∪B′)
(ExRecNested)

S(N) = {a1, . . . , an} ¬isNested(N)
S ` ai ↪→ (hi, ) i = 1, . . . , n

S ` N ↪→ ( , {RN (h1, . . . , hn)})
(ExRec)

Figure 4.6: Inference rules for GenExtensionalPreds.

b′ and source attributes a, b belong to the following record type in the source

schema: C : {a : Int, D : {b : Int}}. According to Ψ, a′ comes from attribute

a of record type C in the source schema, so we have a copy of RC in the sketch

body. Based on the rules of Figure 4.6, we generate predicate RC(??a, v
1
D),

where ??a is the hole for attribute a and v1
D is a fresh variable. Similarly, since

b′ comes from attribute b of record type D, we generate predicates RC(??a, v
2
D)

and RD(v2
D, ??b). Putting them together, we obtain the following sketch body:

RC(??a, v
1
D), RC(??a, v

2
D), RD(v2

D, ??b)

Domain generation. Having constructed the skeleton of the Datalog pro-

gram, we still need to determine the set of variables that each hole in the

sketch can be instantiated with. Towards this goal, the last part of Gen-

RuleSketch (lines 13–18 in Algorithm 5) constructs the domain V for each
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hole as follows: First, for each attribute a of source relation RN , we introduce

as many variables v1
a, . . . , v

k
a as there are copies of RN . Next, for the pur-

poses of this discussion, let us say that attributes a and b “alias” each other

if b ∈ Ψ(a) or vice versa. Then, given a hole ??x associated with attribute x,

the domain of ??x consists of all the variables associated with attribute x or

one of its aliases.

Example 4.3.2. Consider the same schemas and attribute mapping from Ex-

ample 4.3.1 and the following body sketch:

RC(??a, v
1
D), RC(??a, v

2
D), RD(v2

D, ??b)

Here, we have ??a ∈ {va′ , v1
a, v

2
a} and ??b ∈ {vb′ , v1

b}.

4.3.3 Sketch Completion

While the sketch generated by Algorithm 5 defines a finite search space

of Datalog programs, this search space is still exponentially large. Thus, rather

than performing naive brute-force enumeration, our sketch completion algo-

rithm combines enumerative search with Datalog-specific deductive reasoning

to learn from failed synthesis attempts. As explained in Section 4.3.1, the ba-

sic idea is to generate an SMT encoding of all possible sketch completions and

then iteratively add blocking clauses to rule out incorrect Datalog programs.

In the remainder of this section, we discuss how to generate the initial SMT

encoding as well as the Analyze procedure for generating useful blocking

clauses.
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Sketch encoding. Given a Datalog program sketch Ω, our initial SMT en-

coding is constructed as follows: First, for each hole ??i in the sketch, we in-

troduce an integer variable xi, and for every variable vj in the domain of some

hole, we introduce a unique integer constant denoted as Const(vj). Then, our

SMT encoding stipulates the following constraints to enforce that the sketch

completion is well-formed:

• Every hole must be instantiated: For each hole of the form ??i ∈

{v1, . . . , vn}, we add a constraint

n∨
j=1

xi = Const(vj)

• Head variables must appear in the body. In a well-formed Datalog

program, every head variable must appear in the body. Thus, for each head

variable v, we add:

∨
i

xi = Const(v) where v is in the domain of ??i

Since there is a one-to-one mapping between integer constants in the SMT

encoding and sketch variables, each model of the SMT formula corresponds to

a Datalog program.

Adding blocking clauses. Given a Datalog program P that does not sat-

isfy the examples (I,O), our top-level synthesis procedure (Algorithm 4) in-

vokes a function called Analyze to find useful blocking clauses to add to the
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SMT encoding. This procedure is summarized in Algorithm 6 and is built

on two key insights. The first key insight is that the semantics of a Datalog

program is unchanged under an equality-preserving renaming of variables:

Theorem 4.3.3. Let P be a Datalog program over variables X and let σ̂ be

an injective substitution from X to another set of variables Y . Then, we have

P ' Pσ̂.

Proof. See [134].

To see how this theorem is useful, let σ be a model of our SMT encoding.

In other words, σ is a mapping from holes in the Datalog sketch to variables

V . Now, let σ̂ be an injective renaming of variables in V . Then, using the

above theorem, we know that any other assignment σ′ = σσ̂ is also guaranteed

to result in an incorrect Datalog program.

Based on this insight, we can generalize from the specific assignment

σ to a more general class of incorrect assignments as follows: If a hole is not

assigned to a head variable, then it can be assigned to any variable in its

domain as long as it respects the equalities and disequalities in σ. Concretely,

given assignment σ, we generalize it as follows:

Generalize(σ) =
∧

xi∈dom(σ)

α(xi, σ), where

α(x, σ) =

{
x = σ(x) if σ(x) is a head variable∧
xj∈dom(σ) x ? xj otherwise
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Here the binary operator ? is defined to be equality if σ assigns both x and xj

to the same value, and disequality otherwise. Thus, rather than ruling out just

the current assignment σ, we can instead use ¬Generalize(σ) as a much more

general blocking clause that rules out several equivalent Datalog programs at

the same time.

Example 4.3.4. Consider again the sketch from Section 4.1:

Admission(grad, ug, num) :- Univ(??1, ??2, v1),
Admit(v1, ??3, ??4), Univ(??5, ??6, ), Univ(??7, ??8, ).

??1, ??3, ??5, ??7∈{id1, id2, id3, uid1} ??4∈{num, count1}
??2, ??6, ??8 ∈ {grad, ug, name1, name2, name3}

Suppose the variable for ??i is xi and the assignment σ is:

x1 = id1 ∧ x2 = grad ∧ x3 = id1 ∧ x4 = num
∧ x5 = id1 ∧ x6 = ug ∧ x7 = id2 ∧ x8 = name1

Since grad, ug, and num occur in the head, Generalize(σ) yields the following

formula:
x2 = grad ∧ x4 = num ∧ x6 = ug

∧x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5

∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8

(4.4)

The other key insight underlying our sketch completion algorithm is

that we can achieve even greater generalization power using the concept of

minimal distinguishing projections (MDP), defined as follows:

Definition 4.3.1. (MDP) We say that a set of attributes A is a minimal

distinguishing projection for Datalog program P and input-output example

(I,O) if (1) ΠA(O) 6= ΠA(P(I)), and (2) for any A′ ⊂ A, we have ΠA′(O) =

ΠA′(P(I)).
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In other words, the first condition ensures that, by just looking at

attributes A, we can tell that program P does not satisfy the examples. On

the other hand, the second condition ensures that A is minimal.

To see why minimal distinguishing projections are useful for pruning

a larger set of programs, recall that our Generalize(σ) function from earlier

retains a variable assignment x 7→ v if v corresponds to a head variable. How-

ever, if v does not correspond to an attribute in the MDP, then we will still

obtain an incorrect program even if we rename x to something else; thus Gen-

eralize can drop the assignments to head variables that are not in the MDP.

Thus, given an MDP ϕ, we can obtain an improved generalization procedure

Generalize(σ, ϕ) by using the following α(x, σ, ϕ) function instead of α(x, σ)

from earlier:

α(x, σ, ϕ) =

{
x = σ(x) if σ(x) ∈ ϕ∧
xj∈dom(σ) x ? xj otherwise

Because not all head variables correspond to an MDP attribute, per-

forming generalization this way allows us to obtain a better blocking clause

that rules out many more Datalog programs in one iteration.

Example 4.3.5. Consider the same sketch and assignment σ from Exam-

ple 4.3.4, but now suppose we are given an MDP ϕ = {num}. Then the

function Generalize(σ, ϕ) yields the following more general formula:

x4 = num ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4 ∧ x1 = x5

∧x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8
(4.5)

Note that (4.5) is more general (i.e., weaker) than (4.4) because it drops the

constraints x2 = grad and x6 = ug. Therefore, the negation of (4.5) is a better
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Algorithm 6 Analyzing outputs to prune search space

1: procedure Analyze(σ,O′,O)

Input: Model σ, actual output O′, expected output O
Output: Blocking clause φ

2: φ← true;
3: ∆←MDPSet(O′,O);
4: for each ϕ ∈ ∆ do
5: ψ ← true;
6: for each (xi, xj) ∈ dom(σ)× dom(σ) do
7: if σ(xi) = σ(xj) then ψ ← ψ ∧ xi = xj ;
8: else ψ ← ψ ∧ xi 6= xj ;

9: for each xi ∈ dom(σ) do
10: if σ(xi) ∈ ϕ then ψ ← ψ ∧ xi = σ(xi);

11: φ← φ ∧ ¬ψ;

12: return φ;

blocking clause than the negation of (4.4), since it rules out more programs in

one step.

Based on this discussion, we now explain the full Analyze procedure

in Algorithm 6. This procedure takes as input a model σ of the SMT encoding

and the actual and expected outputs O′,O. Then, at line 3, it invokes the

MDPSet procedure to obtain a set ∆ of minimal distinguishing projections

and uses each MDP ϕ ∈ ∆ to generate a blocking clause as discussed above

(lines 6–10).

The MDPSet procedure is shown in Algorithm 7 and uses a breadth-

first search algorithm to compute the set of all minimal distinguishing projec-

tions. Specifically, it initializes a queue W with singleton projections {a} for

each attribute a in the output (lines 2 – 5). Then, it repeatedly dequeues a
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Algorithm 7 Computing a set of MDPs

1: procedure MDPSet(O′,O)

Input: Actual output O′, expected output O
Output: A set of minimal distinguishing projections ∆

2: ∆← ∅; V ← ∅;
3: W ← EmptyQueue();
4: for each a ∈ Attributes(O′) do
5: W.Enqueue({a}); V ← V ∪ {{a}};
6: while ¬W.IsEmpty() do
7: L←W.Dequeue();
8: if ΠL(O′) = ΠL(O) then
9: for each a′ ∈ Attributes(O′) \ L do

10: L′ ← L ∪ {a′};
11: if L′ 6∈ V then
12: W.Enqueue(L′);
13: V ← V ∪ {L′};
14: else if @L′′ ∈ ∆. L′′ ⊆ L then ∆← ∆ ∪ {L};
15: return ∆;

projection L from W and checks if L is an MDP (lines 6 – 14). In particular,

if L can distinguish outputs O′ and O (line 14) and there is no existing projec-

tion L′′ in the current MDP set ∆ such that L′′ ⊆ L, then L is an MDP. If L

cannot distinguish outputs O′ and O (line 8), we enqueue all of its extensions

L′ with one more attribute than L and move on to the next projection in queue

W .

Example 4.3.6. Let us continue with Example 4.3.5 to illustrate how to prune

incorrect Datalog programs using multiple MDPs. Suppose we obtain the MDP

set ∆ = {ϕ1, ϕ2}, where ϕ1 = {num} and ϕ2 = {grad, ug}. In addition

to Generalize(σ, ϕ1) (see formula (4.5) of Example 4.3.5), we also compute
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Generalize(σ, ϕ2) as:

x2 = grad ∧ x6 = ug ∧ x1 6= x2 ∧ x1 = x3 ∧ x1 6= x4

∧x1 = x5 ∧ x1 6= x6 ∧ x1 6= x7 ∧ x1 6= x8 ∧ · · · ∧ x7 6= x8

By adding both blocking clauses ¬Generalize(σ, ϕ1) as well as ¬Generalize(σ, ϕ2),

we can prune even more incorrect Datalog programs.

Theorem 4.3.7. Let φ be a blocking clause returned by the call to Analyze

at line 10 of Algorithm 4. If σ is a model of ¬φ, then σ corresponds to an

incorrect Datalog program.

Proof. See [134].

4.4 Implementation

We have implemented the proposed technique as a new tool called Dy-

namite. Internally, Dynamite uses the Z3 solver [42] for answering SMT

queries and leverages the Souffle framework [70] for evaluating Datalog pro-

grams. In the remainder of this section, we discuss some extensions over the

synthesis algorithm described in Section 4.3.

Interactive mode. In Section 4.3, we presented our technique as returning

a single program that is consistent with an input-output example. However,

in this non-interactive mode, Dynamite does not guarantee the uniqueness

of the program consistent with the given example. To address this potential

usability issue, Dynamite can also be used in a so-called interactive mode
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where Dynamite iteratively queries the user for more examples in order to

resolve ambiguities. Specifically, when used in this interactive mode, Dyna-

mite first checks if there are multiple programs P ,P ′ that are consistent with

the provided examples (I,O), and, if so, Dynamite identifies a small differ-

entiating input I ′ such that P and P ′ yield different outputs on I ′. Then,

Dynamite asks the user to provide the corresponding output for I ′.

Example 4.4.1. Suppose the source database contains two relations

Employee(name, deptId) Department(id, deptName)

and we want to obtain the relation WorksIn(name, deptName) by joining Em-

ployee and Department on deptId=id and then applying projection. Suppose

the user only provides the input example Employee(Alice, 11), Department(11,

CS) and the output WorksIn(Alice, CS). Now Dynamite may return one of

the following results:

(1) WorksIn(x, y) :- Employee(x, z), Department(z, y).

(2) WorksIn(x, y) :- Employee(x, z), Department(w, y).

Note that both Datalog programs are consistent with the given input-output ex-

ample, but only program (1) is the transformation the user wants. Since the

program returned by Dynamite depends on the model sampled by the SMT

solver, it is possible that Dynamite returns the incorrect solution (2) instead

of the desired program (1). Using Dynamite in the interactive mode solves

this problem. In this mode, Dynamite searches for an input that distinguishes
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the two programs shown above. In this case, such a distinguishing input is Em-

ployee(Alice, 11), Employee(Bob, 12), Department(11, CS), Department(12,

EE), and Dynamite asks the user to provide the corresponding output. Now,

if the user provides the output WorksIn(Alice, CS), WorksIn(Bob, EE), only

program (1) will be consistent and Dynamite successfully eliminates the ini-

tial ambiguity.

Filtering operation. While the synthesis algorithm described in Section 4.3

does not support data filtering during migration, Dynamite allows the tar-

get database instance to contain a subset of the data in the source instance.

However, the filtering operations supported by Dynamite are restricted to

predicates that can be expressed as a conjunction of equalities. To see how

Dynamite supports such filtering operations, observe that if an extensional

relation R uses a constant c as the argument of attribute ai, this is the same

as filtering out tuples where the corresponding value is not c. Based on this

observation, Dynamite allows program sketches where the domain of a hole

can include constants in addition to variables. These constants are drawn from

values in the output example, and the sketch completion algorithm performs

enumerative search over these constants.

Database instance construction. Dynamite builds the target database

instance from the output facts of the synthesized Datalog program as de-

scribed in Section 4.2.3. However, Dynamite performs one optimization to
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make large-scale data migration practical: We leverage MongoDB [88] to build

indices on attributes that connect records to their parents. This strategy al-

lows Dynamite to quickly look up the children of a given record and makes

the construction of the target database more efficient.

4.5 Evaluation

To evaluate Dynamite, we perform experiments that are designed to

answer the following research questions:

RQ1 Can Dynamite successfully migrate real-world data sets given a repre-

sentative set of records, and how good are the synthesized programs?

RQ2 How sensitive is the synthesizer to the number and quality of examples?

RQ3 Is the proposed sketch completion algorithm significantly more efficient

than a simpler baseline?

RQ4 How does the proposed synthesis technique compare against prior tech-

niques?

Benchmarks. To answer these research questions, we collected 12 real-world

database instances (see Table 4.1 for details) and created 28 benchmarks in

total. Specifically, four of these datasets (namely Yelp, IMDB, Mondial, and

DBLP) are taken from prior work [140], and the remaining eight are taken

from open dataset websites such as Kaggle [71]. For the document-to-relational

transformations, we used exactly the same benchmarks as prior work [140]. For
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Table 4.1: Datasets used in the evaluation of Dynamite.

Name Size Description

Yelp 4.7GB Business and reviews from Yelp

IMDB 6.3GB Movie and crew info from IMDB

Mondial 3.7MB Geography information

DBLP 2.0GB Publication records from DBLP

MLB 0.9GB Pitch data of Major League Baseball

Airbnb 0.4GB Berlin Airbnb data

Patent 1.7GB Patent Litigation Data 1963-2015

Bike 2.7GB Bike trip data in Bay Area

Tencent 1.0GB User followers in Tencent Weibo

Retina 0.1GB Biological info of mouse retina

Movie 0.1GB Movie ratings from MovieLens

Soccer 0.2GB Transfer info of soccer players

the remaining cases (e.g., document-to-graph or graph-to-relational), we used

the source schemas in the original dataset but created a suitable target schema

ourselves. As summarized in Table 4.2, where “R” stands for relational, “D”

stands for document, and “G” stands for graph, our 28 benchmarks collec-

tively cover a broad range of migration scenarios between different types of

databases.4

Experimental setup. All experiments are conducted on a machine with

Intel Xeon(R) E5-1620 v3 quad-core CPU and 32GB of physical memory,

running the Ubuntu 18.04 OS.

4Schemas for all benchmarks are available at https://bit.ly/schemas-dynamite.
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Table 4.2: Statistics of benchmarks for Dynamite.

Benchmark
Source Schema Target Schema

Type #Recs #Attrs Type #Recs #Attrs

Yelp-1 D 11 58 R 8 32

IMDB-1 D 12 21 R 9 26

DBLP-1 D 37 42 R 9 35

Mondial-1 D 37 113 R 25 110

MLB-1 R 5 83 D 7 85

Airbnb-1 R 4 30 D 6 24

Patent-1 R 5 49 D 7 50

Bike-1 R 4 48 D 7 47

Tencent-1 G 2 8 R 1 3

Retina-1 G 2 17 R 2 13

Movie-1 G 5 18 R 5 21

Soccer-1 G 10 30 R 7 21

Tencent-2 G 2 8 D 1 3

Retina-2 G 2 17 D 2 15

Movie-2 G 5 18 D 4 14

Soccer-2 G 10 30 D 7 23

Yelp-2 D 11 58 G 4 31

IMDB-2 D 12 21 G 11 19

DBLP-2 D 37 42 G 17 28

Mondial-2 D 37 113 G 27 78

MLB-2 R 5 83 G 12 90

Airbnb-2 R 4 30 G 7 32

Patent-2 R 5 49 G 8 49

Bike-2 R 4 48 G 6 52

MLB-3 R 5 83 R 4 75

Airbnb-3 R 4 30 R 7 33

Patent-3 R 5 49 R 8 52

Bike-3 R 4 48 R 5 52

Average - 10.2 44.4 - 8.0 39.8
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4.5.1 Main Synthesis Results

In this section, we evaluate RQ1 by using Dynamite to migrate the

datasets from Table 4.1 for the source and target schemas from Table 4.2. To

perform this experiment, we first constructed a representative set of input-

output examples for each record in the source and target schemas. As shown

in Table 4.3, across all benchmarks, the average number of records in the input

(resp. output) example is 2.6 (resp. 2.2). Given these examples, we then used

Dynamite to synthesize a migration script consistent with the given examples

and ran it on the real-world datasets from Table 4.1.5 We now highlight the

key take-away lessons from this experiment whose results are summarized in

Table 4.3. Note that the average search space size is calculated by geometric

mean; all other averages are arithmetic mean.

Synthesis time. Even though the search space of possible Datalog programs

is very large (5.1× 1039 on average), Dynamite can find a Datalog program

consistent with the examples in an average of 7.3 seconds, with maximum

synthesis time being 87.9 seconds.

Statistics about synthesized programs. As shown in Table 4.3, the av-

erage number of rules in the synthesized Datalog program is 8.0, and each rule

contains an average of 2.5 predicates in the rule body (after simplification).

5All input-output examples and synthesized programs are available at https://bit.ly/
benchmarks-dynamite.
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Table 4.3: Main experimental results of Dynamite.

Bench
Avg # Examples Search Synth

#Rules
#Preds #Optim Dist to Mig

Source Target Space Time(s) per Rule Rules Optim Time(s)
Yelp-1 4.7 3.9 4.8× 10120 6.0 8 1.8 7 0.38 328

IMDB-1 6.0 2.7 1.5× 1020 2.7 9 3.6 5 1.22 1153
DBLP-1 1.5 2.6 1.1× 1014 0.8 9 6.4 0 2.44 1060

Mondial-1 1.2 2.8 2.2× 1088 2.5 25 3.3 17 1.40 5
MLB-1 2.0 1.4 9.1× 1081 13.0 7 3.9 2 1.71 1020

Airbnb-1 4.0 2.5 1.7× 1038 2.0 6 2.7 4 1.33 286
Patent-1 2.6 2.3 1.4× 1049 3.0 7 2.4 5 1.14 553
Bike-1 2.3 2.0 3.1× 1047 2.0 7 2.0 5 0.71 2601

Tencent-1 1.5 1.0 1.3× 1012 0.2 1 4.0 0 3.00 65
Retina-1 1.5 1.5 3.1× 1019 0.8 2 2.0 2 0.00 9
Movie-1 3.6 2.2 5.2× 1011 2.9 5 2.8 3 1.00 1062
Soccer-1 1.9 2.0 2.9× 1011 0.5 7 1.0 7 0.00 15

Tencent-2 1.5 1.0 1.3× 1012 0.2 1 4.0 0 3.00 160
Retina-2 2.0 2.0 3.3× 1019 4.0 2 2.5 1 0.50 22
Movie-2 2.4 2.3 1.0× 1018 22.7 4 7.0 0 4.00 40
Soccer-2 2.5 2.1 6.9× 1022 87.9 7 4.4 4 1.71 311
Yelp-2 4.5 1.8 2.9× 1073 0.5 4 1.0 4 0.00 1160

IMDB-2 2.4 2.5 2.3× 1011 1.1 11 3.1 5 1.27 3409
DBLP-2 2.1 2.1 1.2× 104 3.6 17 1.8 16 0.06 1585

Mondial-2 1.0 2.1 8.2× 1024 30.8 27 1.9 26 0.04 7
MLB-2 2.2 1.9 3.3× 1084 2.6 12 1.3 10 0.25 785

Airbnb-2 2.8 2.7 1.4× 1028 0.9 7 1.3 7 0.00 664
Patent-2 2.0 2.1 3.9× 1051 1.0 8 1.4 6 0.38 786
Bike-2 2.3 2.5 7.3× 1047 0.4 6 1.8 4 0.83 3346
MLB-3 2.2 1.3 9.1× 1081 3.3 4 2.3 3 0.50 145

Airbnb-3 2.5 2.6 3.3× 1028 0.5 7 1.1 7 0.00 57
Patent-3 2.8 2.3 1.3× 1040 3.9 8 1.6 7 0.38 122
Bike-3 4.3 2.2 7.3× 1047 4.1 5 1.8 4 0.20 519

Average 2.6 2.2 5.1× 1039 7.3 8.0 2.5 5.8 0.79 760
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Quality of synthesized programs. To evaluate the quality of the syn-

thesized programs, we compared the synthesized Datalog programs against

manually written ones (which we believe to be optimal). As shown in the

column labeled “#Optim Rules” in Table 4.3, on average, 5.8 out of the 8

Datalog rules (72.5%) are syntactically identical to the manually-written ones.

In cases where the synthesized rule differs from the manually-written one, we

observed that the synthesized program contains redundant body predicates.

In particular, if we quantify the distance between the two programs in terms of

additional predicates, we found that the synthesized rules contain an average

of 0.79 extra predicates (shown in column labeled “Dist to Optim”). However,

note that, even in cases where the synthesized rule differs syntactically from

the manually-written rule, we confirmed that the synthesized and manual rules

produce the exact same output for the given input relations in all cases.

Migration time and results. For all 28 benchmarks, we confirmed that

Dynamite is able to produce the intended target database instance. As re-

ported in the column labeled “Mig time”, the average time taken by Dy-

namite to convert the source instance to the target one is 12.7 minutes for

database instances containing 1.7 GB of data on average.

4.5.2 Sensitivity to Examples

To answer RQ2, we perform an experiment that measures the sensitivity

of Dynamite to the number and quality of records in the provided input-

output examples. To perform this experiment, we first fix the number r of
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Figure 4.7: Sensitivity analysis of Dynamite.

records in the input example. Then, we randomly generate 100 examples

of size r and obtain the output example by running the “golden” program

(written manually) on the randomly generated input example. Then, for each

size r ∈ [1, 8], we measure average running time across all 100 examples as well

as the percentage of examples for which Dynamite synthesizes the correct

program within 10 minutes.

The results of this experiment are summarized in Figure 4.7 for four

representative benchmarks (the remaining 24 are provided in [134]). Here,
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the x-axis shows the number of records r in the input example, and the y-

axis shows both (a) the average running time in seconds for each r (the blue

line with circles) and (b) the % of correctly synthesized programs given r

randomly-generated records (the red line with squares).

Overall, this experiment shows that Dynamite is not particularly sen-

sitive to the number and quality of examples for 26 out of 28 benchmarks: it

can synthesize the correct Datalog program in over 90% of the cases using 2−3

randomly-generated examples. Furthermore, synthesis time grows roughly lin-

early for 24 out of 28 benchmarks. For 2 of the remaining benchmarks (namely,

IMDB-1 and Movie-2), synthesis time seems to grow exponentially in example

size; however, since Dynamite can already achieve a success rate over 90%

with just 2-3 examples, this growth in running time is not a major concern. Fi-

nally, for the last 2 benchmarks (namely, Retina-2 and Soccer-2), Dynamite

does not seem to scale beyond example size of 3. For these benchmarks, Dy-

namite seems to generate complicated intermediate programs with complex

join structure, which causes the resulting output to be very large and causes

MDP analysis to become very time-consuming. However, this behavior (which

is triggered by randomly generated inputs) can be prevented by choosing more

representative examples that allow Dynamite to generate better sketches.

4.5.3 Comparison with Synthesis Baseline

To answer RQ3, we compare Dynamite against a baseline called Dy-

namite-Enum that uses enumerative search instead of the sketch completion
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Figure 4.8: Comparing Dynamite with baseline and Mitra.

technique described in Section 4.3.3. In particular, Dynamite-Enum uses the

lazy enumeration algorithm based on SMT, but it does not use the Analyze

procedure for learning from failed synthesis attempts. Specifically, whenever

the SMT solver returns an incorrect assignment σ, Dynamite-Enum just uses

¬σ as a blocking clause. Thus, Dynamite-Enum essentially enumerates all

possible sketch completions until it finds a Datalog program that satisfies the

input-output example.

Figure 4.8(a) shows the results of the comparison when using the manually-

provided input-output examples from Section 4.5.1. In particular, we plot the

time in seconds that each version takes to solve the first n benchmarks. As

shown in Figure 4.8(a), Dynamite can successfully solve all 28 benchmarks

whereas Dynamite-Enum can only solve 22 (78.6%) within the one hour

time limit. Furthermore, for the first 22 benchmarks that can be solved by

both versions, Dynamite is 9.2x faster compared to Dynamite-Enum (1.8

vs 16.5 seconds). Hence, this experiment demonstrates the practical advan-
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tages of our proposed sketch completion algorithm compared to a simpler

enumerative-search baseline.

4.5.4 Comparison with Other Tools

While there is no existing programming-by-example (PBE) tool that

supports the full diversity of source/target schemas handled by Dynamite,

we compare our approach against two other tools, namely Mitra and Eirene,

in two more specialized data migration scenarios. Specifically, Mitra [140] is

a PBE tool that automates document-to-relational transformations, whereas

Eirene [6] infers relational-to-relational schema mappings from input-output

examples.

Comparison with Mitra. Since Mitra uses a domain-specific language

that is customized for transforming tree-structured data into a tabular repre-

sentation, we compare Dynamite against Mitra on the four data migration

benchmarks from [140] that involve conversion from a document schema to

a relational schema. The results of this comparison are summarized in Fig-

ure 4.8(b), which shows synthesis time for each tool for all four benchmarks.

In terms of synthesis time, Dynamite outperforms Mitra by roughly an

order of magnitude: in particular, Dynamite takes an average of 3 seconds

to solve these benchmarks, whereas Mitra needs 29.4 seconds. Furthermore,

Mitra synthesizes 559 and 780 lines of JavaScript for Yelp and IMDB, and

synthesizes 134 and 432 lines of XSLT for DBLP and Mondial. In contrast,
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Figure 4.9: Comparing Dynamite against Eirene.

Dynamite synthesizes 13 Datalog rules on average. These statistics suggest

that the programs synthesized by Dynamite are more easily readable com-

pared to the JavaScript and XSLT programs synthesized by Mitra. Finally,

if we compare Dynamite and Mitra in terms of efficiency of the synthesized

programs, we observe that Dynamite-generated programs are 1.1x faster.

Comparison with Eirene. Since Eirene specializes in inferring relational-

to-relational schema mappings, we compare Dynamite against Eirene on

the four relational-to-relational benchmarks from Section 4.5.1 using the same

input-output examples. As shown in Figure 4.9(a), Dynamite is, on average,

1.3x faster than Eirene in terms of synthesis time. We also compare Dyna-

mite with Eirene in terms of the quality of inferred mappings using the same

“distance from optimal schema mapping metric” defined in Section 4.5.1.6 As

6To conduct this measurement, we manually wrote optimal schema mappings in the
formalism used by Eirene.
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shown in Figure 4.9(b), the schema mappings synthesized by Dynamite are

closer to the optimal mappings than those synthesized by Eirene. In par-

ticular, Eirene-synthesized rules have 4.5x more redundant body predicates

than the Dynamite-synthesized rules.

4.6 Limitations

Our approach has three limitations that we plan to address in future

work. First, our synthesis technique does not provide any guarantees about the

optimality of the synthesized Datalog programs, either in terms of performance

or size. Second, we assume that the examples provided by the user are always

correct; thus, our method does not handle any noise in the specification. Third,

we assume that we can compare string values for equality when inferring the

attribute mapping and obtain the proper matching using set containment. If

the values are slightly changed, or if there is a different matching heuristic

between attributes, our technique would not be able to synthesize the desired

program. However, this shortcoming can be overcome by more sophisticated

schema matching techniques [48, 84].
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Chapter 5

Related Work 1

The research problems addressed in this dissertation are related to a

long line of work about relational verification, database application analysis,

program synthesis, and data migration. In this chapter, we survey papers that

are most relevant and explain how they differ from our techniques.

5.1 Relational Verification

Formal verification of software programs typically refers to the act of

proving a system satisfies a specification of the system’s behavior. Among

different domains of software verification, relational verification refers to the

problem of proving two programs or two runs of the same program satisfy a

relational specification, such as equivalence, inversion, etc.

Relational program logics. Formally, the relational specification is de-

scribed as relational Hoare triples of the form {P} S1 ∼ S2 {Q}. Here, P is a

relational pre-condition that relates inputs to programs S1, S2, and Q is a rela-

tional post-condition that relates their outputs. In the context of equivalence

1This chapter is adapted from the author’s previous publications [130, 131, 133], where
the author led the technical discussion, tool development, and experimental evaluation.
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checking, the pre-condition simply assumes equality between program inputs,

and the post-condition asserts equality between their outputs. Prior work

has presented program logics, such as Relational Hoare Logic and Cartesian

Hoare logic, for showing such relational correctness properties [23, 120, 144].

Another common technique for proving relational correctness properties is to

construct a product program S1 × S2, which is semantically equivalent to

S1;S2 but that is somehow easier to verify [19, 20]. In contrast to existing re-

lational verification techniques that work on imperative programs, Mediator

addresses database programs that work over different schemas. Furthermore,

while the main focus of Mediator is to verify equivalence/refinement be-

tween programs, we believe our technique can be easily extended for proving

other relational correctness properties.

Translation validation. One of the most well-known applications of rela-

tional verification is translation validation, where the goal is to prove that the

compiled version of the code is equivalent to the original one [94, 97, 105, 121,

145, 146]. More recent work extends translation validation to parameterized

equivalence checking (PEC), which aims to prove equivalence between templa-

tized programs representing many concrete programs [75]. Most of the work in

this area focuses on imperative programs and proves equivalence by inferring

some form of bisimulation relation. As mentioned earlier, another common

technique for proving equivalence is to generate a product program [19, 145]

and reduce the equivalence checking problem to the safety verification of a sin-
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gle program. Rather than validating the correctness of compiler optimizations,

the goal of Mediator is to show equivalence between database programs be-

fore and after changes to the database schema. Our bisimulation invariants

relate database states rather than program variables and are expressed in the

theory of relational algebra with updates instead of standard first-order theo-

ries directly supported by SMT solvers.

Contextual equivalence. There has also been a significant body of work

on verifying contextual equivalence, where the goal is to determine whether

two expressions are equivalent under any program context. One important

application of contextual equivalence is to identify compiler optimization op-

portunities, particularly in the context of functional programming languages.

For example, Sumii and Pierce define an untyped call-by-value lambda cal-

culus with sealing and present a bisimulation-based approach to prove con-

textual equivalence [122]. They later present another sound and complete

proof methodology based on bisimulation relations, but apply it to a lambda

calculus with full universal, existential, and recursive types [123]. Koutavas

and Wand extend this line of work to prove contextual equivalence in an un-

typed lambda calculus with an explicit store by introducing a new notion of

bisimulation. Their method enables constructive proofs in the presence of

higher-order functions [74]. They also extend the same proof technique to the

imperative untyped object calculus [73]. Sangiorgi et al. step further and de-

velop a notion of environmental bisimulation for higher-order languages. Their
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technique does not require induction on evaluation derivations and is appli-

cable to different calculi, ranging from pure lambda calculus to higher-order

π-calculus [109, 110]. Existing techniques for proving contextual equivalence

offer a limited degree of automation and do not address database programs.

Query equivalence. Query equivalence has been a long-standing relational

verification problem in the database community. For example, Chandra and

Merlin study the equivalence of conjunctive queries under set semantics and

show that every conjunctive query has a unique representation up to isomor-

phism [30]. Aho et al. use tableaus to represent conjunctive queries and

present a polynomial time algorithm for deciding equivalence between certain

kinds of conjunctive queries [1]. Sagiv and Yannanakis generalize this tableau

approach to union and difference operators, but place limitations on the use of

difference [108]. In more recent work, Green studies equivalence between con-

junctive queries and gives an algorithm for deciding their equivalence [60]. As

mentioned in Section 2.6, our Mediator implementation leverages insights

from this work when checking validity of certain classes of TRA formulas.

In the past few years, there has been significant activity on proving

query equivalence using interactive theorem provers and constraint solvers.

Specifically, Chu et al. define a new semantics for SQL based on K-Relations

and homotopy type theory and develop a Coq library to interactively prove

equivalence between SQL queries [34]. Another recent work by Chu et al. pro-

vides a greater degree of automation by incorporating constraint solvers [33].
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Specifically, their tool, Cosette, first translates each SQL query into a cor-

responding logical formula and uses an SMT solver to find a counterexample

that shows the queries are not equivalent. If Cosette fails to find a coun-

terexample, it then tries to prove equivalence using the Coq theorem prover

augmented with a library of domain-specific tactics. While tools like Cosette

could be useful for deciding validity of some of our TRA formulas, existing tools

do not support reasoning about updates to the database.

Schema equivalence. There has also been some work on proving schema

equivalence under various different definitions of equivalence [21, 87, 107]. Un-

der one definition, two schemas are considered equivalent if there is a bijection

from the set of database instances from one schema to that of another [87, 107].

According to another definition, two schemas S1, S2 are equivalent if there is

a query mapping from S1 to S2 such that its inverse is also a valid mapping

from S2 to S1[3, 14, 67]. While many of these papers provide algorithms for

deciding schema equivalence according to these definitions, they do not ad-

dress the problem of verifying equivalence between applications that operate

over databases with different schemas.

5.2 Database Application Analysis

Over the past decade, there has been significant interest in analyzing,

verifying, and testing database applications [13, 22, 31, 45, 46, 49, 58, 61, 69,

80, 93, 103, 125, 136, 137]. Some of these techniques aim to verify integrity
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constraints, find shallow bugs, or identify security vulnerabilities, while others

attempt to uncover violations of functional correctness properties. For exam-

ple, Benedikt et al. statically verify that database transactions preserve in-

tegrity constraints by means of computing weakest preconditions [22]. Itzhaky

et al. [69] propose a technique to verify pre- and post-conditions of methods

with embedded SQL statements. As another example, the Agenda framework

generates test cases by randomly populating the database with tuples that

satisfy schema constraints [31, 44], and several papers use concolic testing to

find crashes or SQL injection vulnerabilities [12, 137]. Gligoric and Majum-

dar describe an explicit state model checking technique for database-driven

applications and use this technique to find concurrency bugs [58].

There have also been proposals for checking functional correctness of

database applications. For example, Near and Jackson present a bounded

verifier that uses symbolic execution to check functional correctness proper-

ties specified using an extension of the RSpec specification language [93]. As

another example, the WAVE project allows users to specify functional cor-

rectness properties using LTL formulas and model checks a given database

application against this specification [45, 46, 125]. However, we are not aware

of any existing work on verifying relational correctness properties of database

applications.
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5.3 Program Synthesis

Program synthesis refers to the task of generating a program in some

language such that the program satisfies a given specification. It aims to free

developers from tedious programming tasks or make programming accessible

to end-users. Program synthesis has demonstrated its capability towards this

end in various domains, including data wrangling [62], compiler superopti-

mization [111], and so on.

This dissertation is related to a long line of recent work on program

synthesis [2, 7, 17, 26, 55, 62, 65, 66, 78, 82, 83, 98, 99, 111, 114, 117, 118, 119,

128, 135]. While the goal of program synthesis is always to produce a program

that satisfies the given specification, different synthesizers use different forms

of specifications, including input-output examples [17, 55, 62, 99, 128], logical

constraints [117, 118, 119], refinement types [98], or a reference implementa-

tion [65, 82, 111]. In this work, Migrator uses reference implementation and

Dynamite uses input-output examples as the specification.

Synthesizing database programs. In recent years, there have been sev-

eral papers that apply program synthesis to SQL queries or database pro-

grams [32, 43, 56, 79, 127, 141]. For instance, Sqlizer [141] synthesizes SQL

queries from natural language, whereas Scythe [127] and Morpheus [56]

generate queries from examples. The QBS system uses program synthesis to

repair performance bugs in database applications [32]. In addition, Fiat [43]

performs deductive synthesis to generate SQL-like operations from declara-
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tive specifications. However, none of these techniques consider the problem of

automatically migrating database programs for schema refactoring.

Schema evolution and program synthesis. In the database community,

schema evolution refers to the problem of evolving database schemas to adapt

to requirement changes. The code migration problem in schema evolution

can be viewed as a program synthesis problem that uses reference implemen-

tation as the specification. There is a body of literature on schema evolu-

tion, including rewriting SQL queries and updates [27, 37, 38, 47, 100, 126].

Among these works, the most related one is the Prism project and its suc-

cessor Prism++ [37, 38]. In addition to the original program and the source

and target schemas, the Prism approach requires the user to provide so-called

Schema Modification Operators (SMOs) that describe how tables in the source

schema are modified to tables in the target schema. The basic idea is to lever-

age these user-provided SMOs to rewrite SQL queries using the well-known

chase and backchase algorithms [47, 100]. To deal with updates, they addi-

tionally require the user to provide Integrity Constraint Modification Operators

(ICMOs) and “translate” updates into queries. In contrast to the Prism ap-

proach, Migrator does not require users to provide modification operators

expressed in a domain-specific language. Although it is possible to explore the

search space of SMOs and ICMOs to automate the generation of new database

programs, we decided not to pursue this approach for two reasons: first, the

rewriting technique in Prism requires these modification operators to be in-
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vertible, and, second, the search space of operator sequences is also potentially

very large.

Inductive logic programming. As a particular type of program synthesis,

inductive logic programming (ILP) aims to synthesize a logic program consis-

tent with a set of examples [50, 63, 81, 89, 90, 106, 112, 143]. Among ILP

techniques, Dynamite is most similar to recent work on Datalog program

synthesis [2, 113]. In particular, Zaatar [2] encodes an under-approximation

of Datalog semantics using the theory of arrays and reduces synthesis to SMT

solving. However, this technique imposes an upper bound on the number of

clauses and atoms in the Datalog program. The Alps tool [113] also performs

Datalog program synthesis from examples but additionally requires meta-rule

templates. In contrast, Dynamite focuses on a recursion-free subset of Data-

log, but it does not require additional user input beyond examples and learns

from failed synthesis attempts by using the concept of minimal distinguishing

projections.

Conflict-driven learning. The synthesis techniques used in Migrator

and Dynamite bear similarities to recent work on conflict-driven learning in

program synthesis [55, 85, 131] where the goal is to learn useful information

from failed synthesis attempts. Among existing techniques, Migrator is

particularly related to the Neo tool [55], which uses conflict-driven learning

to infer useful lemmas from failed synthesis attempts. Migrator’s sketch
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solving algorithm from Section 3.3.4 can also be viewed as performing some

form of conflict driven learning in that it uses minimum failing inputs to rule

out many programs that share the same root cause of failure as the currently

explored one. However, our technique is much more lightweight compared

to Neo because it does not compute a minimum unsatisfiable core of the

logical specification for the failing program. Instead, our technique exploits

the observation that only a subset of the methods in a database program are

necessary for proving disequivalence. Dynamite’s sketch completion approach

is based on a similar insight, but it uses Datalog-specific techniques to perform

inference. In contrast to Migrator, Dynamite addresses the problem of

migrating data rather than code and is not limited to relational schemas. In

addition, while Migrator also aims to learn from failed synthesis attempts,

it does so using testing as opposed to MDP analysis for Datalog.

5.4 Schema Mapping and Data Migration

Data migration is the process of moving data from one schema to an-

other. To express how to transform the data in this process, developers typ-

ically use schema mappings to describe the relationship between the source

and target schemas.

Schema mapping formalisms. There are several different formalisms for

expressing schema mappings, including visual representations [102, 104], schema

modification operators [38, 40], and declarative constraints [4, 5, 6, 11, 28, 52,
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72]. Some techniques require the user to express the schema mapping visually

by drawing arrows between attributes in the source and target schemas [101,

104]. In contrast, schema modification operators express the schema mapping

in a domain-specific language [38, 40]. Another common approach is to express

the schema mapping using declarative specifications, such as Global-Local-As-

View (GLAV) constraints [4, 5, 6, 52]. Similar to this third category, Dy-

namite expresses the schema mapping using a declarative, albeit executable,

formalism.

Schema mapping inference. To help people easily create schema map-

pings for data migration, researchers have developed a body of techniques on

automatically inferring schema mappings [5, 6, 10, 51, 57, 59, 86, 101, 102, 142].

For example, Clio [57, 101] infers schema mappings for relational and XML

schemas given a value correspondence between atomic schema elements. An-

other line of work [15, 96] uses model management operators such as Model-

Gen [24] to translate schemas from one model to another. In contrast, Dy-

namite takes examples as input, which are potentially easier to construct for

non-experts. There are also several other schema mapping techniques that

use examples. For instance, Eirene [5, 6] interactively solicits examples to

generate a GLAV specification. Eirene is restricted to relational-to-relational

mappings and does not support data filtering, but their language can also ex-

press mappings that are not expressible in the Datalog fragment used in this

work. Similarly, Bonifati et al. use example tuples to infer possible schema
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mappings and interact with the user via binary questions to refine the inferred

mappings [25]. In contrast to Dynamite, [25] only focuses on relational-

to-relational mappings [5]. Finally, MWeaver [102] provides a GUI to help

users to interactively generate attribute correspondences based on examples.

MWeaver is also restricted to relational-to-relational mappings and disallows

numerical attributes in the source database for performance reasons. Further-

more, it requires the entire source instance to perform mapping inference.

Data transformation using program synthesis. There has been signif-

icant work on automating data transformations using program synthesis [56,

64, 85, 115, 116, 127, 139, 140]. Many techniques focus only on table or

string transformations [56, 64, 85, 115, 127], whereas Hades [139] (resp. Mi-

tra [140]) focuses on document-to-document (resp. document-to-table) trans-

formations. Dynamite generalizes prior work by automating transformations

between many different types of database schemas. Furthermore, as we demon-

strate in Section 4.5.4, this generality does not come at the cost of practicality,

and, in fact, performs faster synthesis.

Universal and core solutions for data exchange. The data migration

problem solved by Dynamite is related to the data exchange problem [52],

where the goal is to construct a target instance J given a source instance I

and a schema mapping Σ such that (I, J) |= Σ. Since such a solution J is not

unique, researchers have developed the concept of universal and core solutions
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to characterize generality and compactness [52, 53]. In contrast, during its data

migration phase, Dynamite obtains a unique target instance by executing

the synthesized Datalog program on the source instance. The target instance

generated by Dynamite is the least Herbrand model of the Datalog rules and

the source instance [29]. While the least Herbrand model also characterizes

generality and compactness of the target instance, the relationship between

the least Herbrand model and the universal/core solution for data exchange

requires further theoretical investigation.
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Chapter 6

Conclusion

This dissertation presents formal method techniques for database ap-

plications to help developers correctly and easily perform code and data migra-

tion during schema refactoring. First, we introduce the equivalence verification

problem between database programs over different schemas and describe an

automated verification algorithm for proving equivalence. The key insight is

inferring a bisimulation invariant to relate two database states and show two

programs always yield identical results given any input. Second, we present

a synthesis technique for automated code migration during schema refactor-

ing. To scale to real-world database applications, we develop an efficient sketch

completion algorithm that utilizes counterexamples to rule out many incorrect

programs at a time. Third, we describe an automatic data migration technique

based on the programming-by-example paradigm. To enable efficient synthe-

sis, our key idea is leveraging Datalog properties to analyze the root cause of

the discrepancy between expected and actual outputs, and then prune many in-

correct programs accordingly. We have implemented these techniques in three

tools: Mediator, Migrator, and Dynamite, and our evaluation shows

that these tools are effective for ensuring correctness and improving developer

productivity during schema refactoring.
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[54] Stéphane Faroult and Pascal L’Hermite. Refactoring SQL applications.

O’Reilly Media, 2008.

[55] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program syn-

thesis using conflict-driven learning. In Proceedings of PLDI, pages 420–

435, 2018.

[56] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat

Chaudhuri. Component-based synthesis of table consolidation and trans-

formation tasks from examples. In Proceedings of PLDI, pages 422–436,

2017.

151



[57] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho, Renée J.

Miller, Paolo Papotti, and Lucian Popa. Nested mappings: Schema

mapping reloaded. In Proceedings of VLDB, pages 67–78, 2006.

[58] Milos Gligoric and Rupak Majumdar. Model checking database appli-

cations. In Proceedings of TACAS, pages 549–564, 2013.

[59] Georg Gottlob and Pierre Senellart. Schema mapping discovery from

data instances. J. ACM, 57(2):6:1–6:37, 2010.

[60] Todd J. Green. Containment of conjunctive queries on annotated rela-

tions. In Proceedings of ICDT, pages 296–309, 2009.

[61] Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and

Mooly Sagiv. Verifying equivalence of spark programs. In Proceedings

of CAV, pages 282–300, 2017.

[62] Sumit Gulwani. Automating string processing in spreadsheets using

input-output examples. In Proceedings of POPL, pages 317–330, 2011.
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