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Abstract. Circuit languages like Circom and Gnark have become essen-
tial tools for programmable zero-knowledge cryptography, allowing de-
velopers to build privacy-preserving applications. These domain-specific
languages (DSLs) encode both the computation to be verified (as a wit-
ness generator) and the corresponding arithmetic circuits, from which
the prover and verifier can be automatically generated. However, for
these programs to be correct, the witness generator and the arithmetic
circuit need to be mutually consistent in a certain technical sense, and
inconsistencies can result in security vulnerabilities. This paper formal-
izes the consistency requirement for circuit DSLs and proposes the first
automated technique for verifying it. We evaluate the method on hun-
dreds of real-world circuits, demonstrating its utility for both automated
verification and uncovering errors that existing tools are unable to detect.

1 Introduction
Zero-knowledge (ZK) proofs are cryptographic protocols that allow a prover

to convince a verifier of the truth of a statement without disclosing confidential
information. These protocols have become crucial building blocks in implement-
ing privacy-preserving applications. Recent advancements in cryptography have
introduced a powerful class of succinct zero-knowledge proofs [1, 2] that enable
verification of complex computations while keeping both proof sizes and verifi-
cation times minimal. This innovation has enabled a wide range of applications,
including anonymous whistleblowing [3], image authentication [4], private digital
transactions [5], and ensuring computational integrity in blockchains [6].

However, successfully integrating zero-knowledge proofs into an application
requires developers to create two interdependent artifacts: (1) a set of constraints,
formulated as polynomial equations over a finite field and (2) a witness generator
that produces satisfying values for these constraints. Crucially, a fundamental
assumption about these artifacts is that the constraints should only accept values
that are produced by the witness generator. Failure to meet this requirement
can lead to severe security vulnerabilities, allowing true statements to become
unprovable or, even more seriously, false statements to be incorrectly verified.

To aid developers in defining these two artifacts, several domain-specific lan-
guages (DSLs) have been developed. These “circuit DSLs”, such as Circom and
Gnark, streamline the process of maintaining consistency between constraints
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and witness generators. For example, several DSLs include constructs that al-
low developers to define constraints and assignments simultaneously, reducing
the risk of errors. Despite these tools, inconsistencies remain a major challenge,
with over 95% of known ZK vulnerabilities arising from such issues [7].

This paper aims to address these challenges by introducing a formal definition
of consistency between constraints and witness computation and presenting the
first automated algorithm to verify this notion of consistency in circuit DSLs.
Informally, a circuit is consistent if its constraints accept only those witnesses
generated by the witness generator. While prior work has focused on detecting
specific instances of inconsistency (such as non-determinism) [8–11], none have
provided an automated solution for verifying the stronger notion consistency
formalized in this paper.

From a technical perspective, the consistency verification problem poses two
key challenges. First, it requires proving a relational property between a witness
generator and an arithmetic circuit, which oftentimes defines non-linear finite
field equations that tend to challenge SMT solvers. Second, both of these arti-
facts are typically derived from templates containing arrays and complex loops,
necessitating the inference of complex quantified loop invariants.

This paper tackles the consistency verification problem through a two-step
approach. First, given a product program that simultaneously performs constraint
generation and witness construction, our approach uses lightweight static rea-
soning to infer pair-wise equivalences between array elements and simplifies the
initial product program as much as possible. In the subsequent verification step,
our method infers more complicated quantified invariants over arrays to dis-
charge the verification conditions needed for proving equivalence.

We have implemented our method in a tool called Zequal, which verifies
consistency of circuit templates written in Circom, a widely-used circuit DSL
and the target language of several other ZK circuit verifiers and bug-finding
tools in prior literature [8–10, 12]. We evaluate Zequal on hundreds of real-
world benchmarks taken from popular projects and show that Zequal can verify
consistency in a majority of these templates. We also demonstrate that Zequal
is capable of finding bugs that cannot be detected using prior methods.

To summarize, contributions of this paper include: (1) a formal definition of
the consistency verification problem for ZK circuits; (2) first automated tech-
nique for verifying consistency of ZK circuit templates; (3) evaluation of the
method on several hundred real-world circuit templates.

2 Background

Zero-Knowledge Proofs (ZKPs) are protocols that allow a prover to demon-
strate the truth of a statement to a verifier without revealing any additional in-
formation beyond the statement’s validity. Traditionally, ZKPs were developed
for specific statements such as the three-coloring problem or graph isomorphism;
however, new advancements in Programmable ZKP have enabled greater flexi-



Automated Verification of Consistency in Zero-Knowledge Proof Circuits 3

1 template MultiMux() {
2 signal input x[5]; // Constants
3 signal input y[5]; // Constants
4 signal input s; // Selector
5 signal output out[5];
6 for (var i=0; i<5; i++) {
7 out[i] <== (x[i] - y[i])*s + x[i];
8 }
9 }

1 template IsZero() {
2 signal input in;
3 signal output out;
4 signal inv;
5 inv <-- in!=0 ? 1/in : 0;
6 out <== -in*inv +1;
7 in*out === 0; }

Fig. 2: Examples of Circom templates.

bility. For example, proof frameworks like zk-SNARKs [1] or zk-STARKs [2] can
generate verifiable proofs that P (x) = y for some computation P and private
input x. A key property of programmable ZKPs is that a prover and verifier
can be automatically generated from a set of polynomial equations over a finite
field Fp. The variables in these equations are referred to as signals, and addition
and multiplication are performed modulo a large prime p. The details of how
the prover and verifier are generated are beyond the scope of this paper, but we
refer the interested reader to [1, 13, 14] for additional background.

Witness 
Generator
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Fig. 1: ZK workflow.

Once the prover and verifier are set up, proofs are
generated and verified as illustrated in Figure 1. The
process begins with the witness generator, a program
that produces a witness—a mapping of signals to val-
ues that satisfy the constraints. Conceptually, the wit-
ness generator executes the computation P for which
the user seeks to prove correctness. The prover then
uses this witness, along with the constraints, to gen-
erate a proof, which is sent to the verifier. Crucially,
the proof conceals the values of all private signals. The
verifier receives the proof and only the public values,
verifying its correctness or rejecting it. Notably, witnesses do not need to be
generated solely by running the witness generator; any satisfying assignment to
the constraints can produce a verifiable proof. As a result, it is essential that
the constraints accurately reflect the intended computation and align with the
witness generator. Inconsistencies between these artifacts could lead to invalid
proofs being accepted or valid computations failing to produce verifiable proofs.
Indeed, most security vulnerabilities in real-world implementations of these pro-
tocols stem from such inconsistencies [7].

Circom DSL. Manually encoding a computation as a set of constraints is a time-
consuming and error-prone task. To address these challenges, several domain-
specific languages have been developed [15–17], with Circom being one of the
most popular [16]. Circom allows developers to specify the witness generation
logic and constraints in a unified language (with concepts similar to a hardware
description language (HDL)), and the compiler automatically generates the wit-
ness generator along with the constraints. Tools like SnarkJS [18] can then be
used to generate the prover and verifier from these constraints.

A Circom program consists of a list of templates with one template distin-
guished as the entry point. A template is similar to a sub-circuit module in a
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1 template Divide() {
2 signal input numerator, denominator;
3 signal output remainder, quotient;
4 isZero := IsZero();
5 isZero.in <== denominator;
6 isZero.out == 0; // ensure denominator is non-zero
7 remainder <-- numerator % denominator;
8 quotient <-- numerator \ denominator;
9 numerator === denominator * quotient + remainder;

10 }

1 template Reward() {
2
3 signal input inp;
4 signal output out;
5 var gwei = 10 ** 6;
6 out <-- inp \ gwei;
7 out * gwei === inp;
8 }
9

Fig. 3: Non-determinism bug on left; inconsistency bug on right.

HDL as it defines a reusable block of code that is instantiated upon invocation
by connecting the declared input and output signals within the caller. All output
signals in Circom are public and other signals are private by default unless other-
wise specified. Witness generation is expressed using the <-- and --> operators
for signal assignment, while the === operator expresses constraints. Additionally,
the ==> and <== operators can be used to combine assignment and constraint
declaration when the left and right hand sides are polynomials, helping devel-
opers maintain consistency between computation and constraints. For example,
the program on the left in Figure 2 only performs addition and multiplication
over signals—operations that are directly expressible as polynomials over finite
fields. As such, it is able to exclusively use the <== operator, keeping the wit-
ness generation and constraints consistent. In contrast, the program in Figure
2(b) does not use the <== operator because comparisons cannot be expressed
directly as polynomials. Instead, the corresponding constraints utilize an inter-
mediate signal, inv, relying on the field axiom that every nonzero element has a
multiplicative inverse.

Circuit Bugs. Languages like Circom help developers maintain consistency be-
tween witness generation and constraints, but implementations often contain
bugs due to discrepancies. A common issue, known as “Unintended Nondeter-
minism” or “Underconstrained Circuits”, arises when constraints C(in, out) allow
multiple outputs o and o′ for the same input i. The program on the left of Figure
3 provides an example of a nondeterminism bug: the template takes a numer-
ator and denominator as inputs and returns the quotient and remainder. The
witness generation code performs this logic directly using the integer division
operator and the modulo operator %. However, the constraints only assert that
quotient ∗ numerator + remainder = numerator, lacking a crucial check that
the remainder is less than the denominator when interpreted as integers. With-
out this check, there are multiple solutions for a given input.

However, not all discrepancies manifest themselves as nondeterminism bugs:
constraints can be deterministic, yet their satisfying assignments may still di-
verge from the witness values, as illustrated on the right of Figure 31. This
program takes an input currency amount inp, and the witness generator returns
a reward out by dividing inp by a constant gwei using integer division. Here,
the computation and constraints only align when inp is a multiple of gwei but

1This example was taken from [9] and is a simplified version of a bug found in a
real-world closed-source project.
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1template DecomposeProduct(N) {
2 signal input u8_xs[N], u8_ys[N];
3 signal u16s[N];
4 signal output high[N], low[N];
5 component bits_low[N], bits_high[N];
6
7 for (var i = 0; i < N; i++) {
8 u16s[i] <== u8_xs[i] * u8_ys[i];
9 low[i] <-- u16s[i] % 0x100;

10 bits_low[i] = Num2Bits(8);
11 bits_low[i].in <== low[i];
12 high[i] <-- (u16s[i] \ 0x100) % 0x100;
13 bits_high[i] = Num2Bits(8);
14 bits_high[i].in <== high[i];
15 u16s[i] === low[i] + 0x100 * high[i];
16 }
17}

Fig. 4: Code for motivating example

1template DecomposeProduct_Expanded(N) {
2 signal input u8_xs[N], u8_ys[N];
3 signal u16s_w[N], u16s_c[N];
4 signal output high_w[N], high_c[N];
5 signal output low_w[N], low_c[N];
6 component bits_low[N], bits_high[N];
7
8 for (var i = 0; i < N; i++) {
9 u16s_w[i] <-- u8_xs[i] * u8_ys[i];

10 u16s_c[i] === u8_xs[i] * u8_ys[i];
11 low_w[i] <-- u16s_w[i] % 0x100;
12 bits_low[i] = Num2Bits(8);
13 bits_low[i].in_w <-- low_w[i];
14 bits_low[i].in_c === low_c[i];
15 high_w[i] <-- (u16s_w[i] \ 0x100) % 0x100;
16 bits_high[i] = Num2Bits(8);
17 bits_high[i].in_w <-- high_w[i];
18 bits_high[i].in_c === high_c[i];
19 u16s_c[i] === low_c[i] + 0x100 * high_c[i];
20 }
21}

Fig. 5: Product program

diverge in all other cases. For instance, if inp is 1, the witness will assign out to
0, while the satisfying assignment for the constraints sets out to gwei−1. This
results in the output (as defined by the constraints) being even larger than the
input, which could allow gaining more reward than intended.

3 Motivating Example

Figure 4 presents a Circom template which takes two arrays, u8_xs and
u8_ys of length N , each containing field elements whose integer representation
is an unsigned 8-bit integer. The template computes the element-wise product,
capturing the result as 16-bit unsigned integers in u16s. Each entry in u16s is
then decomposed into two output arrays, low and high, which store the lower
and higher 8 bits, respectively.

At first glance, it is not immediately obvious why the witness generator and
the constraints expressed by this program align with each other. For instance,
the witness generator computes the low and high bytes in a standard way using
integer division and the modulo operator (lines 9, 12), whereas the constraints
enforce this decomposition at the bit level, validating each byte component in-
dividually through binary representations (Num2Bits) (lines 10, 13). Given the
nontrivial differences between the witness generator and the constraints, estab-
lishing their equivalence over all possible template instantiations is challenging.
In the following discussion, we explain the key ideas that enable Zequal to
perform verification successfully, along with the observations that inspired these
ideas.

Observation #1: Many circuit DSLs provide a “pseudo-product-program”
with good alignment. A common approach to verifying equivalence is to reduce
the relational verification task to checking assertions in a product program [19].
A crucial step in this reduction is establishing a suitable alignment — a map-
ping that pairs corresponding operations between the two programs. In general-
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purpose languages, achieving this alignment can be difficult because the program
structures may differ significantly.

Fortunately, circuit DSLs like Circom, Gnark, and Zirgen implicitly define
a “pseudo-product-program” with good alignment where corresponding opera-
tions between the witness and constraint components are grouped within the
same basic block. We call this a pseudo-product because it uses the same vari-
ables to represent signals in both the constraints and the witness generator even
when they may not be equivalent. Hence, in order to instrument the program
with suitable assertions that ensure equivalence, our method modifies the Cir-
com program by introducing two copies sc, sw for each (non-input) signal. For
instance, as shown in Figure 5, high[N] is replaced with two arrays high_w[N]

and high_c[N] denoting the constraint and witness generation components re-
spectively.

Observation #2: Lightweight static analysis can help infer pair-wise equiva-
lence between signals, simplifying the verification task. As mentioned in Section
2, circuit DSLs often include constructs that generate equivalent witness gener-
ation logic and constraints from a single statement. For instance, in Circom, the
statement x <== e serves as shorthand for both the assignment x <– e and the
constraint x === e. Other circuit languages also have similar features.2

This duality between witness generator logic and constraints is commonly
leveraged by circuit developers to maintain consistency across the two artifacts.
This makes it feasible to infer pair-wise equality between the two copies sc, sw
of a signal s through lightweight static analysis of the product program. For
example, at line 9 of Figure 5, u16s_w[i] is assigned to some expression e and
line 10 includes constraint u16s_c[i] === e using the same expression e. Because
e only involves input signals, we can conclude that u16s_w[i] and u16s_c[i] are
pair-wise equivalent and then propagate this information to potentially prove
equivalence of more signals. Finally, for any pair of signals proven equivalent,
we can simplify the product program by deleting assignments and replacing the
two copies of a signal with a single variable. In this example, we can delete the
assignment at line 9 and replace u16s_w and u16s_c with a single variable u16s.
Observation #3: Invariants needed for verification often have a particular

shape. After simplifying the product program, our approach instruments it with
assumptions and assertions (see Figure 6) and tries to discharge the latter. How-
ever, because circuit programs often contain loops, Zequal needs to synthesize
quantified array invariants. While this is a challenging problem in general, most
required invariants involve predicates of the form ∀ī. ϕ(̄i) → sw[f (̄i)] = sc[f (̄i)]
where ϕ is a guard predicate over the loop counters and f is an arithmetic func-
tion. Our method generates candidate invariants of this shape through static
analysis and computes the strongest conjunction over this universe of predicates

2For example, in Gnark and Cairo, every operation, by default, is translated both into
a statement (in the witness generator) and a field equation; when this is not possible,
the developer needs to employ so-called “hints”. Similarly, in Zirgen, computation
performed in a component generates equivalent witness generator logic and constraints
while computation performed in an extern is only performed in the witness generator.
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1template DecomposeProduct_Instrumented(N) {
2 signal input u8_xs[N], u8_ys[N];
3 signal u16s[N];
4 signal output high_w[N], high_c[N];
5 signal output low_w[N], low_c[N];
6 component bits_low[N], bits_high[N];
7
8 for (var i = 0; i < N; i++) {
9 assume(u16s[i] = u8_xs[i]*u8_ys[i]);

10 low_w[i] <-- u16s_w[i] % 0x100;
11 bits_low[i] = Num2Bits(8);
12 bits_low[i].in_w <-- low_w[i];
13 assume(bits_low[i].in_c = low_c[i]);
14 assert(bits_low[i].in_w = low_w[i]);
15 high_w[i] <-- (u16s_w[i] \ 0x100) % 0x100;
16 bits_high[i] = Num2Bits(8);
17 bits_high[i].in_w <-- high_w[i];
18 assume(bits_high[i].in_c = high_c[i]);
19 assert(bits_low[i].in_w = low_w[i]);
20 assume(u16s[i] = low_c[i] + 0x100 * high_c[i]);
21 assert(u16s[i] = low_w[i] + 0x100 * high_w[i]);
22 }
23 assert(low_w = low_c && high_w = high_c);
24}

Fig. 6: Instrumented product

through monomial predicate abstraction [20]. For our example, the following
invariant is sufficient for successful verification:

∀x. 0 ≤ x < i ≤ N → (low_w[x] = low_c[x] ∧ high_w[x] = high_c[x])

4 Problem Statement
In this paper, we adopt a formalization that captures commonalities between

most circuit DSLs, such as Circom [16], Gnark [15], Zirgen [21], and Zokrates [22].

Definition 1 (Circuit program). A ZK circuit program P is a tuple (Γ,Fp, Φ, ω)
where:

– Γ is a set of signal declarations s : τ , where τ ∈ {In,Out,Temp};
– Fp is the prime field of the circuit – i.e., s ∈ Fp for any signal s;
– Constraint Φ is a formula in the theory of finite fields [23]. The precise lan-

guage for such formulas is shown on the left side of Figure 7.
– Witness computation ω is a loop-free program over signals in Γ . The language

for expressing witness computation is shown on the right side of Figure 7.

Given a program P = (Γ,Fp, Φ, ω), we write PΦ, Pω to denote Φ and ω re-
spectively, and, for a signal s, Γ (s) denotes the type of s. We refer to signals of
type In, Out, and Temp as input, output, and intermediate signals respectively.
Witness computation ω can only perform assignments to output and interme-
diate signals but never to inputs. Furthermore, ω can never perform multiple
assignments to the same signal within the same execution.

The semantics of ZK circuit programs are defined over signal valuations σ
that map signals to concrete values. The output of a program is a tuple (b, σ′)
where b is a boolean and σ′ is the output valuation. Given a program P =
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Constraints Φ ::= Φ1 ∧ Φ2 | P1 == P2

Polynomial P ::= P1 + P2

| P1 ∗ P2 | s | c

Program ω ::= s← E | ω1;ω2

| if(C) ω1 else ω2

Conditional C ::= E1 ⊗ E2 | ¬C
Expression E ::= E1 ⊕ E2 |s |c | E−1

Fig. 7: (Left) Arithmetic circuit DSL. P is a polynomial equation over a finite field Fp.
(Right) Witness generation DSL over Fp. E−1 computes the multiplicative inverse of
E, and ⊕,⊗ denote arithmetic and logical operators respectively.

(Γ,Fp, Φ, ω) we write (σ, P ) ⇓ (b, σ′) iff JΦK(σ) evaluates to b and executing ω
on σ yields new environment σ′. Next, we define a notion of agreement between
the witness computation and constraint in ZK circuit programs.

Definition 2 (Agreement). Let P = (Γ,Fp, Φ, ω) be a program and let σ be a
signal valuation such that (σ, P ) ⇓ (b, σ′). We say that constraint Φ and witness
computation ω agree on σ, denoted σ ⊢ Φ ∼ ω, iff the following holds:

b→ (JΦK(σ′) ∧ ∀(s : Out) ∈ Γ. σ(s) = σ′(s)) (1)

According to this definition, if the constraint Φ “accepts” some valuation σ
(meaning b is true), then (1) the output valuation σ′ produced by the witness
generator should also be accepted by Φ, and (2) the two valuations σ and σ′

should agree on the values of all output signals. In other words, if a given witness
σ with inputs I is accepted by the constraints Φ, then the witness generator ω
should also be able to produce a satisfying witness σ′ with the same inputs I
such that the output signals in σ and σ′ match. This ensures that the constraints
will only accept valuations that are produced by the witness generator, which in
turn captures the desired behavior of a ZK circuit program.

Definition 3 (Consistency). Let P = (Γ,Fp, Φ, ω) be a ZK circuit program.
P is correct iff for all σ ∈ F|Γ |

p , we have σ ⊢ Φ ∼ ω.

The definition of consistency expresses the desired notion of correctness as
it states that the constraint Φ agrees with the witness computation function ω
for all possible signal valuations. This definition is similar to the definition of
strong safety from prior work [16]. In particular, strong safety states that for
every input to the circuit, (a) there is exactly one solution to the constraints
and (b) that solution is equal to the witness produced by the witness generator
on that input. However, we note that strong safety is too strong a requirement
in practice: for many real world circuits, there can be multiple witnesses that
satisfy the constraints which disagree on their assignment to the intermediate
signals but agree on their assignments to the output signals. In contrast, our
notion of consistency allows the two witnesses to disagree on the assignment to
intermediate signals as long as both witnesses satisfy the constraints.
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Skeleton P ::= D;S
Var Decl D ::= var v[E]; | D1;D2

Statement S ::= □i | v ← E | S1;S2 | if(C) S1 else S2 | while(C) S
Expression E ::= E1 ⊕ E2 | s | v | α | E1[E2] | c

Conditional C ::= E1 ⊗ E2 | ¬C

Fig. 8: Template syntax. c, s, v, α denote constants, signals, variables, and pa-
rameters respectively where ⊕ ∈ {+,−, ∗, /, \,&, |} and ⊗ ∈ {≤, <,>,≥, ̸=,=}.
Holes are instantiated with terms from Fig. 9 and 10.

Constraint ϕ ::= E′
1 == E′

2

Expression E′ ::= s | v | α | c | E′
1[E

′
2]

| E′
1 + E′

2 | E′
1 ∗ E′

2

Fig. 9: Constraint DSL

Assignments A ::= L← E | A;A
LHS Expression L ::= s | L[E]

Fig. 10: Witness DSL

ZK circuit templates. While ZK circuit programs cannot contain unbounded
constraints or computation, many DSLs do allow developers to implement tem-
plates containing loops as long as these templates can be instantiated to ZK cir-
cuit programs at compile time. However, in general, it is often desirable to reason
about the correctness of the template itself rather than its specific instantiations.
For example, many libraries provide circuit templates that are instantiated by
clients of that library, so reasoning about the correctness of a library in iso-
lation requires the ability to reason about template correctness. Thus, we also
generalize our formalization to circuit templates as follows.

Definition 4 (Template). A template T is a tuple (V, Γ,Fp,P, ΣΦ, Σω) where:

– V is a set of template parameters;
– Γ is a set of signal declarations s : τ , and Fp is the prime field for the circuit;
– P is a program with holes belonging to the syntax of Figure 8;
– ΣΦ is a mapping from holes in P to constraints, as defined in Figure 9;
– Σω is a mapping from holes in P to statements, as defined in Figure 10

We refer to P[ΣΦ] as a constraint template and P[Σω] as a witness template.

Template parameters α ∈ V are instantiated at compile-time; thus, they can
never be modified. Signals can have type Array(τ), and we refer to a type τ as
an input type, denoted IsInput(τ), if τ = In or τ = Array(τ ′) and IsInput(τ ′).

In most DSLs, the constraint and witness templates are required to have
the same control flow structure; thus, we represent them using a shared control-
flow skeleton P. As shown in Figure 8, the skeleton involves loops, conditionals,
constants, and importantly, mutable data variables denoted v. Typically, data
variables are used as loop counters and for configuring different parts of the
circuit. The constraint and witness templates are obtained by filling the holes
in the shared control-flow skeleton with constraints (Fig. 9) or statements that
manipulate signals (Fig. 10) respectively. Statements in the witness DSL can
only perform assignments to signals, but not to data variables, which can only
be modified in the shared control-flow skeleton.
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1: procedure VerifyCircuitTemplate(T )
input: A ZK circuit template T = (V, Γ,Fp,P, ΣΦ, Σω)

2: # Step 1: Construct product of circuit and witness programs

3: S ← {s | (s : τ) ∈ Γ,¬IsInput(τ)}
4: P⊗ ← P[{(□i 7→ Ai[Sw/S];ϕi[Sc/S]) | ΣΦ[□i] = ϕi ∧Σω[□i] = Ai}]
5: # Step 2: Perform static analysis to simplify P⊗ into P⋆

6: E ← InferEquivalences(P⊗, S)
7: P⋆ ← Simplify(P⊗, E)
8: # Step 3: Verify product program

9: PI ← Instrument(P⋆)
10: return VerifyProduct(PI)

Fig. 11: Top-level algorithm. Given signals S, we write Sx to denote {vx | v ∈ S}

Definition 5 (Instantiation). A template instantiation is a pair (T , ν) where
T is a template, and ν maps template parameters V to values in Fp, and (T , ν) ↪→
P indicates that P is the ZK circuit program obtained by evaluating T under ν.

Definition 6 (Correctness of template). A ZK circuit template T is correct
if, for every ν such that (T , ν) ↪→ P , P is correct according to Definition 3.

5 Verification Algorithm
Figure 11 shows our top-level algorithm for verifying the correctness of a

circuit template. The algorithm starts by constructing a product program [19]
that encodes the simultaneous execution of both the witness template P[Σω]
and the constraint template P[ΣΦ] (lines 3–4). Because circuit languages force
programmers to write constraint and witness templates with the same shared
control-flow structure, constructing a suitable product program is very easy: We
introduce two different copies Sc, Sw of the non-input signals and replace each
hole □i in P with Ai[Sw/S];ϕi[Sc/S] where Ai = Σω[□i] and ϕi = ΣΦ[□i].

The second step of the algorithm statically analyzes the constructed product
program P⊗ and tries to infer invariants of the form sc = sw establishing that
two copies of the same signal s have the same value. If so, we can treat signal s
as an input signal after deleting all assignments to sw and renaming the different
copies sc and sw in P⊗ both as s (performed by Simplify at line 7). Finally,
the algorithm instruments the resulting program to contain suitable assertions
and assumptions by calling Instrument at line 9 and attempts to discharge the
assertions by calling VerifyProduct at line 10.

Assumptions. The rest of this section assumes that all signals and data vari-
ables are modeled as (possibly flattened) single-dimensional arrays. Following
existing circuit languages, we also disallow multiple assignments to signals.

5.1 Inference of Equivalent Signals via Static Analysis

In this section, we present the InferEquivalences algorithm from Fig-
ure 12, which uses lightweight static analysis to infer equivalent signal pairs
(sc, sw) ∈ (Sw × Sc). The algorithm first constructs a so-called symbolic store
Σ to represent values of array elements as symbolic expressions over the inputs
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1: procedure InferEquivalences(P⊗, S)
2: Σ ← ConstructSymbolicStore(P⊗); E ← ∅
3: for s ∈ S do
4: if IsEquivalent(Σ, sw, sc) then E ← E ∪ {s}
5: return E

Fig. 12: Algorithm for inferring equivalent signals

ς fresh variable

Σ ⊢ ⋆ : ς
(Unknown)

Σ ⊢ E : φ (υ, φ) ∈ dom(Σ)

Σ ⊢ υ[E] : Σ(υ, φ)
(Arr-1)

Σ ⊢ E : φ (υ, φ) ̸∈ dom(Σ)
¬IsInput(υ) Σ ⊢ ⋆ : φ′

Σ ⊢ υ[E] : φ′ (Arr-2)

Σ ⊢ E : φ (υ, φ) ̸∈ dom(Σ)
IsInput(υ)

Σ ⊢ υ[E] : υ[φ]
(Arr-3)

IsConst(E) ∨ IsTemplParam(E)

Σ ⊢ E : E
(Basic)

Σ ⊢ Ei : φi

Σ ⊢ f(E1, . . . , En) : f(φ1, . . . , φn)
(Arith)

Fig. 13: Look-up rules. Every application of Unknown produces a fresh variable.

(line 2) and then checks pair-wise equality between them (line 4). The symbolic
expressions φ in our analysis are defined by the grammar:

φ := α | c | ς | sin[φ] | φ⊕ φ

Here, sin is an input signal, α a template parameter, c a constant, ς an unknown,
and ⊕ an arithmetic operator. Symbolic expressions represent immutable values,
ensuring that syntactically identical expressions are equal. To improve precision
and enable relational reasoning, fresh variables ς are used to represent unknowns
instead of the standard top element ⊤ in abstract interpretation. For a symbolic
expression φ, Unknown(φ) indicates that it corresponds to a fresh variable ς.

The symbolic store Σ maps array elements (υ, φ) to symbolic expressions,
where υ is a signal or data variable, and φ represents an array index. For instance,
(sw, 0) 7→ sin[1] indicates that index 0 of sw is (transitively) assigned to the
second element of sin. Figure 14 defines a flow-sensitive analysis for constructing
Σ, using lookup rules from Figure 13 to perform on-demand initialization of
input arrays, as their sizes are not statically known. In Figure 14, the rule Asgn-
Sig processes assignments to signals, updating the entry (sw, φ1) with φ2 via a
strong update [24], since circuit languages ensure signals are assigned only once.
For data variables, the Asgn-Var rule adopts a conservative approach, handling
potential aliasing by updating (v, φ) and invalidating other entries (v, φi) that
might alias φ. The Cstr rule tracks equality constraints on signals sc. The final
three rules handle sequencing, conditionals, and loops, where the join operator
is defined in Figure 15. Finally, the While rule requires the symbolic store Σ1

to be a fixed-point solution for the loop.

Once the symbolic store is constructed, the IsEquivalent procedure (sum-
marized in Figure 16) uses these symbolic expressions to deduce that two signals
sc, sw are equivalent, denoted Σ ⊢ sc ∼ sw. According to Figure 16, signals sc, sw
are equivalent if (a) they have the same set of written indices and (b) their values
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Σ ⊢ E1 : φ1 Σ ⊢ E2 : φ2

Σ ⊢ sw[E1]← E2 : Σ[(sw, φ1)← φ2]
(Asgn-Sig)

Σ ⊢ ⋆ : φ′

Σ ⊢ Havoc(v, φ) : Σ[(v, φ)← φ′]
(Havoc)

Σ ⊢ E1 : φ Σ ⊢ E2 : φ′

Θ = {(φi | (v, φ) ∈ Dom(Σ) ∧ SAT(φ = φi)}
Σ ⊢ Havoc(v, φ1); . . . ;Havoc(v, φ|Θ|) : Σ

′

Σ ⊢ v[E1]← E2 : Σ′[(v, φ)← φ′]
(Asgn-Var)

Σ ⊢ E : φ Σ ⊢ E′ : φ′ Σ′ = Σ[(sc, φ)← φ′]

Σ ⊢ sc[E] == E′ : Σ′ (Cstr)

Σ ⊢ S1 : Σ1

Σ1 ⊢ S2 : Σ2

Σ ⊢ S1;S2 : Σ2
(Seq)

Σ ⊢ S1 : Σ1

Σ ⊢ S2 : Σ2 Σ′ ← Σ1 ⊔Σ2

Σ ⊢ if(C) S1 else S2 : Σ′ (If)

Σ ⊑ Σ1

Σ1 ⊢ S : Σ2

Σ2 ⊑ Σ1

Σ ⊢ while(C) S : Σ1
(While)

Fig. 14: Symbolic store construction. Σ1 ⊑ Σ2 holds if, for all elements (υ, φ) ∈
Dom(Σ1), Σ1(υ, φ) ⊑ Σ1(υ, φ). φ1 ⊑ φ2 holds if φ1 = φ2 or Unknown(φ2).

φ1 = φ2

φ1 ⊔ φ2 = φ1
(SymExp-1)

φ1 ̸= φ2 Σ ⊢ ⋆ : φ

φ1 ⊔ φ2 : φ
(SymExp-2)

(υ, φ) ̸∈ Dom(Σi) Σi ⊢ ⋆ : φ′

(Σ1 ⊔Σ2)[(υ, φ)] = φ′ (One)
(υ, φ) ∈ Dom(Σ) ∩ Dom(Σ′)

(Σ ⊔Σ′)[(υ, φ)] = Σ[(υ, φ)] ⊔Σ′[(υ, φ)]
(Both)

Fig. 15: Rules defining join operation on symbolic stores

at these indices are equal. Here, we use the notation φ ≡ φ′ to indicate that φ
and φ′ are equivalent expressions (e.g., α+1 ≡ 1+α). The theorems stating the
soundness of our analysis can be found in the extended version of the paper [25],
along with their proofs.

5.2 Product Program Simplification and Instrumentation

The next step in the algorithm uses the static analysis results to simplify the
product program. Figure 17 presents the Simplify procedure as inference rules
E ⊢ S ⇝ S′, where S simplifies to S′ under inferred equivalences E . The proce-
dure deletes assignments like sw[E] ← E if sw and sc are equivalent (S-Asg1)
and substitutes all occurrences of sc and sw with s for any s ∈ E (S-Expr). Next,
given the simplified program P⋆, the Instrument procedure generates the in-
strumented program PI such that PI is safe if and only if the original template is
correct. This procedure is summarized in Figure 18 and appends an assertion at
the end of the product program stating pair-wise equivalence between the output
signals. It also recursively instruments the body of P⋆, as summarized in the first
three rows of Figure 18. In particular, constraints of the form e1[Sc] == e2[S

′
c]

are rewritten into an assertion assert(e1[Sw] = e2[S
′
w]) on the witness variables

and an assumption assume(e1[Sc] = e2[S
′
c]) on the constraint variables. The as-
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∀(sw, φ) ∈ dom(Σ). ∃(sc, φ′) ∈ dom(Σ). φ ≡ φ′ ∧ Σ(sc, φ) ≡ Σ(sw, φ)
∀(sc, φ) ∈ dom(Σ). ∃(sw, φ′) ∈ dom(Σ). φ ≡ φ′ ∧ Σ(sw, φ) ≡ Σ(sc, φ)

Σ ⊢ sc ∼ sw
(Sig-Equiv)

Fig. 16: Rule describing the IsEquivalent procedure

S = {s | s ∈ Sigs(E) ∧ s ∈ E}
E ⊢ E ⇝ E[S/Sc, S/Sw]

(S-Expr)
s ∈ E

E ⊢ s[E1]← E2 ⇝ skip
(S-Asg1)

s ̸∈ E E ⊢ E1 ⇝ E′
1 E ⊢ E2 ⇝ E′

2

E ⊢ s[E1]← E2 ⇝ s[E′
1]← s[E′

2]
(S-Asg2)

Fig. 17: Simplify procedure. Sigs(E) returns the normalized (i.e., without c, w sub-
scripts) versions of the signals in E. We omit the trivial rules (e.g., for sequencing).

sumption ensures counterexamples are limited to executions where JΦK(σ) holds,
enforcing the antecedent in Def. 2. On the other hand, the assertion enforces that
witnesses satisfy constraints JΦK(σ′), corresponding to the first conjunct in the
consequent Def. 2. Finally, the second conjunct in the consequent of Def. 2 is
enforced by the assertions placed at the end of the product program.

5.3 Verification of Instrumented Product Program

The verification algorithm (Figure 19) operates in two phases. In the first phase,
it populates an environment Λ with information about loop counters, calling
InferBounds (line 7) to compute lower and upper bounds for each counter κ via
interval analysis [26] and invoking InferStepSize to determine κ’s step size. The
second phase (lines 9–15) computes inductive loop invariants, initializing them
in the first iteration and weakening each invariant until soundness is ensured.
Specifically, for each loop L, InferLoopInv is invoked at line 13 to compute
an inductive invariant for L assuming that Ψ [L] over-approximates L’s true
precondition. These loop pre-conditions (Ψ) are computed through standard
post-condition computation, using invariants I for preceding loops. However,
since the “invariants” computed in the first iteration may be stronger than the
true invariant, these pre-conditions may also be too strong. Hence, the algorithm
weakens both the pre-conditions and the invariants until a fixed-point is reached.
Upon convergence, it generates verification conditions and checks their validity.

Inferring loop invariants. Figure 20 outlines our procedure for generating
loop invariants, based on a standard Houdini-style approach [27] with two dis-
tinguishing features. First, it uses a novel technique (ConjecturePredicates)
to construct the predicate universe; second, it includes a boolean parameter
check-pre to control whether predicates are filtered using pre-condition ψ. Dur-

Instr(e1[Sc] == e2[S′
c]) ≜ assume(e1[Sc] = e2[S′

c])assert(e1[Sw] = e2[S′
w]);

Instr(s[E1]← E2) ≜ s[E1]← E2

Instr(S1;S2) ≜ Instr(S1); Instr(S2)

Instrument(P⊗) ≜ Instr(P⊗); assert(∀s ∈ OutputSignals(P⊗). sw ≡ sc)

Fig. 18: Instrumentation procedure, Instrument
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1: procedure VerifyProduct(P⊗ )
2: # I, Ψ map each loop to their invariant and pre-conditions respectively

3: (I, Ψ)← (∅,∅); Λ← ∅
4: # Phase 1: Infer information about loop counters

5: for L ∈ Loops(P⊗) do
6: (κ, I[L])← (InferLoopCounter(L), true)
7: Λ[κ]← (InferBounds(κ, L), InferStepSize(κ, L))

8: # Phase 2: Weaken invariants until they are sound

9: done← false; first← true
10: while ¬done do
11: (Ψ, done)← (ComputeSP(P⊗, I), true)
12: for L ∈ Loops(P⊗) do
13: I ← InferLoopInv(L, Ψ [L], Λ,¬first)
14: if I ̸= I[L] then done← false; I[L]← I

15: first ← false
16: # Generate VCs and check their validity

17: return Valid(GenVC(P⊗, I))
Fig. 19: Verification algorithm; procedures in sans serif font are explained in text.

1: procedure InferLoopInv(L, ψ,Λ, check-pre)
input: Loop L with condition C and body B, pre-condition ψ,

2: counter environment Λ, boolean check-pre
3: # Conjecture predicates that are likely to be part of the invariant

4: Π ← ConjecturePredicates(L,Λ)
5: # Remove predicates not implied by pre-condition

6: if check-pre then Π ← {φ | φ ∈ Π ∧ ψ ⇒ φ}
7: # Houdini-style fixed-point computation; done initialized to false

8: while ¬done do
9: done← true

10: for φ ∈ Π do
11: if ̸⊢ {C ∧

∧
pi∈Π pi} B {φ} then Π ← Π\{φ}; done← false

12: return
∧

p∈Π p

Fig. 20: Invariant inference algorithm. If Π is empty, then we define
∧

p∈Π p to be True.

ing the first invocation, check-pre is false, so the inferred invariant could be too
strong (satisfying consecution but not initiation). In subsequent calls, check-pre
is true, ensuring that predicates failing initiation are eventually filtered out.

ConjecturePredicates (Figure 21) generates candidate predicates for a loop
L, returning a set of guarded array equality (GAE) predicates which are of the
form ∀x. ϕ(x) → sc[f(x)] = sw[f(x)]. To explain our algorithm, we utilize the
example in Figure 22 for which the required invariant is:

∀x, y. (0 ≤ x < i ≤ N ∧ 0 ≤ y < M) ∨ (x = i ∧ 0 ≤ y < j ≤M)→
sw[N ∗ x+ y] = sc[N ∗ x+ y]

for (var i = 0; i < N; i++) {
for (var j = 0; j < M; j++) {
s_w[N*i + j] <-- a;
s_c[N*i + j] == a;}}

Fig. 22: Loop Example

Here, the guard captures all loop counter values
cx, cy for which sw[N ∗ cx + cy] was written before
the current iteration. To infer such predicates, the al-
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1: procedure ConjecturePredicates(L,Λ )
input: Loop L and counter environment Λ
output: Candidate guarded array equality predicates Π

2: W ← SignalWrites(L) Π ← {};
3: for (sw, f(κ1, . . . , κn)) ∈ W do
4: # Infer constraints over counters κ1, . . . , κn, sorted outermost to innermost

5: (φ,φa)← (false, true)
6: for κi ∈ [κ1, . . . , κn] do
7: # generate constraints φκi on κi assuming φa =

∧n
i=1 xi = κi

8: (li, ui, si)← Λ[κi]
9: φκi ← ϕa ∧ (li ≤ xi < κ ≤ ui ∧ xi − li mod si = 0)

10: for κj ∈ [κi+1, . . . , κn] do
11: (lj , uj , sj)← Λ[κ′]
12: φκi ← φκi ∧ (lj ≤ xj < uj ∧ xj − lj mod sj = 0)

13: # Add constraints φκi to φ and add assumption xi = κi to φa

14: (φ,φa)← (φ ∨ φκ, φa ∧ xi = κi);
15: Π ← Π ∪ {∀x1, . . . , xn. φ→ sw[f(x1, . . . , xn)] = sc[f(x1, . . . , xn)]}
16: return Π

Fig. 21: Algorithm for generating guarded array equality predicates.

gorithm first identifies all writes in the loop (line 2),
represented as tuples (sw, f(κi, ..., κj)), where f(κi, ..., κj) is the symbolic ex-
pression for the index written in sw. In this example, the only write is to sw at
N ∗ i+ j, so the algorithm conjectures sw[N ∗ i+ j] = sc[N ∗ i+ j] as the array
equality component of the GAE predicate.

For each inferred array equality predicate, the algorithm constructs its guard
φ by iterating over loop counter variables from outermost to innermost. For each
counter κi, it synthesizes a predicate φκi capturing all feasible values for counters
[κi, . . . , κn], assuming parent counters hold their current iteration values (φa).
Lines 10–14 compute φκi

using loop bounds and step sizes from Λ, ensuring
the predicate accounts for all inner counter values during successful executions
of prior iterations. The final guard φ is updated as φ ∨ φκi

, while φa adds the
assumption xi = κi. Going back to the example, the counter environment maps
i to [0, N) and step size 1, and j to [0,M) and step size 1. The procedure first
generates φi as 0 ≤ xi < i ≤ N ∧ 0 ≤ xj < M . Next, it updates φa with xi = i
and computes φj for the inner loop as xi = i ∧ 0 ≤ xj < j ≤ M . Finally, φ
becomes φi ∨ φj , yielding the desired guard:

(0 ≤ xi < i ≤ N ∧ 0 ≤ xj < M) ∨ (xi = i ∧ 0 ≤ xj < j ≤M)

We refer the interested reader to the extended version of the paper [25] for an
example demonstrating a more complex loop invariant.

6 Implementation
We implemented our approach in a tool called Zequal and built it on top of

the Circom compiler [28]. Zequal discharges SMT queries via Z3 [29] in the the-
ory of integers. Finite field operations are modeled by performing all operations
modulo the BN254 prime. For expressions composed of additions, subtractions,
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or multiplications, the modulo reduction is moved to the outermost expression
to reduce the number of large mod operations. In cases where an operation is
not supported by the theory of integers (e.g. bitwise arithmetic, exponentiation,
finite field inverse), we model these operations with uninterpreted functions and
include appropriate axioms.

Although Section 5 describes our procedure as operating on a single product
program, real-world circuits and witness generators are often composed of sub-
circuit invocations. Zequal verifies such circuits by assuming the consistency
of any invoked subcircuit. A circuit can therefore be verified by checking the
consistency of all invoked sub-circuits in addition to the circuit itself.

7 Evaluation
In this section, we present the results of an experimental evaluation that is

designed to answer the following research questions: (1) Can Zequal be used to
verify real-world circuits? (2) Does Zequal uncover buggy ZK circuit templates
in the wild? (3) How important is the proposed static analysis for successful
verification? (4) Can static analysis be used on its own to prove consistency? To
answer questions (1) and (2), we analyze what percentage of circuits Zequal
can verify/falsify. To answer the latter two questions, we perform two ablation
studies that disable static analysis and deductive verification respectively.

Benchmarks. We evaluate Zequal on Circom programs gathered from the 20
most popular Circom projects (measured by GitHub stars). After excluding four
repositories that use unsupported features (e.g., incompatible with Zequal’s
version of the Circom compiler), we retain 464 templates from 16 unique reposito-
ries, spanning over 290K lines of code. Collectively, these projects span a variety
of applications, including cryptographic primitives, games, and machine learn-
ing components. For all projects, Zequal attempts to verify the consistency of
each template declared within the source code. Since all templates rely on prim-
itives provided by circomlib, which serves as a foundational library for Circom
development, Zequal employs stubs of circomlib circuits when analyzing other
projects. These stubs capture the behavior of circomlib components, enabling
Zequal to reason about templates in other repositories without requiring their
full implementation. To evaluate Zequal on these benchmarks, we make minor
semantics-preserving modifications to a small subset of the templates in order to
ensure that they comply with Zequal’s assumptions (e.g., our implementation
assumes that array sizes only reference template parameters rather than local
variables).

Experimental Setup. The experiments were conducted on a MacBook Pro®
with an M1 Max CPU, 64 GB of memory, and MacOS 12.3.1. Each benchmark
was allocated a runtime of 10 minutes. Each experiment requires verifying the
correctness of a specific template, assuming all external templates are correct.

Main Results. Table 1 summarizes the results of our evaluation. Out of 464
benchmarks, Zequal successfully verifies the correctness of 306 templates, mean-
ing it can verify correctness for any instantiation of the templates in 66% of the
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Project # templates LoC # verified # cex # failed Verif. time
tornado-core 5 102 5 (100%) 0 (0%) 0 (0%) 0.40
semaphore 2 50 2 (100%) 0 (0%) 0 (0%) 2.41
circomlib 103 28,660 69 (67%) 24 (23%) 10 (10%) 7.28

maci 52 2,171 40 (77%) 9 (17%) 3 (6%) 1.74
stealthdrop 36 161,251 17 (47%) 13 (36%) 6 (17%) 13.58
circom-ecdsa 63 68,359 36 (57%) 22 (35%) 5 (8%) 1.65
hydra-s1-zkps 4 152 4 (100%) 0 (0%) 0 (0%) 2.31

zkshield 5 238 2 (40%) 1 (20%) 2 (40%) 6.14
circomlib-ml 37 897 34 (92%) 3 (8%) 0 (0%) 5.75
eigen-zkvm 21 23,856 11 (52%) 6 (29%) 4 (19%) 10.85

zk-nullifier-sig 44 1,762 24 (55%) 13 (30%) 7 (16%) 16.49
tornado-nova 7 190 5 (71%) 2 (29%) 0 (0%) 1.77
darkforest-eth 22 699 13 (59%) 8 (36%) 1 (5%) 3.84
ed25519-circom 20 2,186 8 (40%) 10 (50%) 2 (10%) 3.86

unirep 14 595 12 (86%) 1 (7%) 1 (7%) 1.42
zk-hunt 29 995 24 (83%) 4 (14%) 1 (3%) 1.68
Overall 464 292,163 306 (66%) 116 (25%) 42 (9%) 5.71

Table 1: Results. The column called “#verified” shows the number of benchmarks
for which Zequal is able to prove correctness, “# cex” shows the number of
benchmarks for which Zequal is unable to prove the validity of the generated
VC and “# failed” shows the number of benchmarks for which Zequal times
out or returns unknown. The last column called “verif. time” shows the average
running time of Zequal for those benchmarks that were successfully verified.

benchmarks. Zequal is also highly efficient, with an average verification time of
just 5.71 seconds per template. For the remaining 158 benchmarks, verification
does not succeed. In 42 cases (9%), Zequal exceeds the 10-minute time limit or
the tool returns unknown, primarily due to the Z3 timing out on SMT queries.
In the remaining 116 benchmarks (25%), Zequal identifies counterexamples to
the validity of the generated VC. These counterexamples occur for two reasons:
(1) some template instantiations are genuinely incorrect, or (2) the template
is correct, but verification fails due to analysis imprecision, such as weak loop
invariants.

Reason for failure # (%)
True positive 26 (22%)
Insufficient loop invariant 61 (53%)
Imprecise loop bound 10 (9%)
Imprecise template stub 8 (7%)
Imprecise operation modeling 11 (9%)

Fig. 23: Results of the failure analysis.

Failure analysis. Next, we examine
the scenarios in which Zequal is un-
able to prove correctness. The find-
ings from this failure analysis are sum-
marized in Figure 23. Among the
cases where verification fails, 22% are
true positives, which are discussed in
more detail below. For the remaining
benchmarks, Zequal fails to verify
correctness for four primary reasons:

– Insufficient loop invariant: For 61 of the failure cases (53% of false positives),
the loop invariant inferred by Zequal is too weak. For instance, several
benchmarks require invariants that capture precise valuations of sc and sw
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to establish the consistency of a signal s across multiple loops. We refer the
interested reader to the extended version of the paper [25] for a representative
example.

– Imprecise loop bounds: Recall that our approach relies on static analysis of
loop counters to infer bounds and step sizes as a precursor to loop invariant
generation. 10 of the failure cases (i.e., 9% of false positives) are due to
imprecision in the static analysis of loop counters.

– Imprecise template stubs: Recall that our approach utilizes stubs of circomlib
templates when analyzing other projects. In some cases, the stubs are not
sufficiently precise, accounting for 7% of false positives.

– Imprecise modeling: As discussed in Section 6, Zequal uses uninterpreted
functions to model operations that are not supported by the theory of in-
tegers. Roughly 9% of false positives are caused by imprecision in the SMT
encoding.

True positive analysis. Among the 116 potentially vulnerable circuits we man-
ually inspected, 26 were confirmed to correspond to real bugs. However, since
Zequal assumes that external template invocations are safe, these 26 templates
could also have cascading effects on other benchmarks. We therefore reran Ze-
qual without this assumption, and identified an additional 20 buggy bench-
marks. Hence, Zequal identified a total of 46 buggy templates in the wild.

Of the 46 falsified templates, 41 exhibit violations of the determinism prop-
erty explored in prior work [8, 10] under some instantiation of the template
parameters. On the other hand, 5 benchmarks are incorrect despite being deter-
ministic and fail to properly validate their inputs. In practice, an attacker can
easily take advantage of such bugs in the validation logic to trick the verifier
into accepting proofs that should be classified as invalid. An example of an in-
correct but deterministic benchmark can be found in the extended version of the
paper [25].

Comparison with prior work . As discussed previously, 41 out of the 46 incorrect
templates also violate the determinism property studied in prior work [8, 10].
Therefore, in principle, these 41 bugs could be uncovered by an existing tools like
QED2 and CIVER, which specialize in refuting determinism. However, existing
tools for determinism checking are limited to analyzing fully instantiated circuits
and cannot directly handle templates.

To evaluate how Zequal compares with existing determinism checkers, we
instantiated the 41 non-deterministic templates with the smallest parameter
values that expose the bug. This approach avoids scalability issues caused by
larger parameter values while ensuring that the bug remains detectable. Using
state-of-the-art tools, QED2 and CIVER, we then attempted to identify the
non-determinism bugs within a time limit of 10 minutes. Among the 41 non-
deterministic circuits, QED2 successfully detected the issue in 22 (54%) circuits
but failed to do so for the remaining 19 (46%) cases. Similarly, CIVER success-
fully detected the issue in 27 (66%) circuits but failed to do so for the remaining
14 (34%) cases.
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These results highlight a significant limitation of existing open source deter-
minism checking tools: their ability to refute determinism diminishes in practice
due to scalability challenges, even when working with specific circuit instan-
tiations. In contrast, Zequal directly analyzes templates and verifies a much
stronger property for any instantiation, without requiring manually-crafted pa-
rameter templates. However, Zequal cannot automatically refute correctness,
even when restricted to determinism, making it a complementary approach
rather than a replacement.

Ablation Study. To assess the significance of the key design choices in Zequal,
we compare its performance against two ablated versions:

– Zequal-nsa: This variant disables the static analysis described in Section 5.1.
Without static analysis, Zequal-nsa bypasses simplifications of the product
program and directly invokes the verification procedure. This evaluation high-
lights the contribution of static analysis in reducing verification complexity.

– Zequal-osa: This variant relies solely on the static analysis results to deter-
mine correctness. Specifically, it uses the IsEquivalent procedure to verify
whether all signals in the ZK circuit are equivalent. If this equivalence holds,
all instrumented assertions reduce to true, and the circuit is deemed correct.
This approach examines the standalone utility of static analysis without lever-
aging the full verification pipeline in Zequal.

Tool # verified
Zequal-nsa 205 (44%)
Zequal-osa 150 (32%)

Zequal 306 (66%)
Fig. 24: Ablation study

The results of the ablation study, shown in Fig-
ure 24, highlight the importance of both the static
analysis and the proposed verification pipeline.
Specifically, Zequal-nsa verifies over 100 fewer
benchmarks than Zequal due to the increased
complexity of the product program, which leads
to a significantly higher number of timeouts. On
the other hand, Zequal-osa is much faster since it relies solely on lightweight
static analysis, but it verifies only half as many benchmarks as Zequal. These
results demonstrate that static analysis alone is insufficient for proving correct-
ness, reinforcing the necessity of the full verification pipeline.

8 Related Work
Formal Verification of ZK Circuits. Recent work has explored using formal ver-
ification to check the correctness of ZK circuits [8, 10–12, 30–33]. One line of
work uses interactive theorem provers to verify functional correctness [12, 30, 31].
For example, CODA [12] uses a custom circuit DSL embedded in Coq which
is equipped with a rich type system for specifying circuit properties. Its type
checker uses a combination of tactics along with manually proved lemmas to
check correctness in Coq. Another line of work uses SMT solvers for automated
verification [8, 10, 11, 32, 33], focusing on specific circuit properties rather than
full functional correctness. The most related work to ours is QED2 [8], which
checks the determinism of ZK circuits using a combination of static analysis
and SMT solvers like Zequal. However, unlike Zequal, QED2 checks a weaker
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property and is limited to instantiated circuits (without loops), whereas Zequal
can directly analyze circuit templates.
Relational Verification. Checking relational properties between programs often
involves building product programs [34–38], and a key challenge is determin-
ing a suitable alignment between programs. For instance, Churchill et al. [35]
check program equivalence by using manually provided tests to generate program
traces and synthesize alignment predicates from the trace states. They then lift
the alignment predicates back to the source code to construct the product pro-
gram. In contrast, Zequal leverages the natural alignment between constraints
and witness generators in circuit DSLs and performs static analysis to substan-
tially simplify the product program.
Array Invariants. There is an extensive body of work on generating quantified
invariants for loops with array variables [39–44]. For example, Flanagan et al.
[40] use predicate abstraction and Skolemization to construct quantified invari-
ants, while Gulwani et al. [42] employ a quantified abstract domain to express
universally quantified formulas over arrays. Although these techniques could be
applied in our setting, we leverage a domain-specific insight: Most loop invariants
express equality between the witness and constraint components of signal arrays.
This allows us to generate high-quality templates and efficiently construct loop
invariants in most cases.

9 Conclusion
This paper presents Zequal, a framework for verifying the consistency of

zero-knowledge circuit templates by combining static analysis and deductive
verification. Zequal formalizes the consistency requirement for circuit DSLs
and introduces a verification method that directly operates on templates, pro-
viding guarantees for any circuit instantiated from them. We have evaluated
the proposed approach through an extensive experimental study on 464 real-
world benchmarks drawn from popular Circom projects. The results show that
Zequal terminates on 91% of the benchmarks within a 10-minute time limit
and successfully verifies 72% of the cases where it terminates. For benchmarks
where verification fails, a systematic failure analysis reveals that roughly 22%
of counterexamples correspond to true positives. Zequal also uncovers several
bugs that a state-of-the-art tool, QED2, cannot detect. This capability arises
from two key advantages: First, Zequal is not limited to verifying determinism,
and, second, it can reason about all possible instantiations of the template in a
scalable manner. Additionally, ablation studies validate the design choices be-
hind Zequal, showing that the combination of lightweight static analysis and
deductive verification is critical for making the approach effective.
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