More Verifier Efficient Interactive Proofs For Bounded Space

Joshua Cook
Program To Run

- Deterministic Machine M in TISP[T, S]
 - Time T, Space S
- Think $S \ll n \ll T$
 - $S = n^\alpha$, $T = 2S^\beta$, for $\alpha, \beta > 1$

$O(\log(n) + \log(S))$
Arthur Doesn’t Have Time!

Arthur wants to run M. Doesn’t have exponential time in S!

Merlin can help, but untrusted. Has exponential time, but just $2^{O(S)}$.
Interactive Proofs (IPs)

Untrusted Merlin
(Prover P)
Randomized Arthur
(Verifier V)

Many Questions and Answers.
Results
Interactive Time

$L \in \text{ITIME}[T_V, T_P]$

Verifier time T_V, Prover time T_P

Completeness: If $x \in L$,
then P convinces V with probability $\frac{2}{3}$

Soundness: If $x \not\in L$,
then NO P' convinces V with probability $\frac{1}{3}$
Main Result for TISP\([T, S]\)

US: \[\text{ITIME}[\tilde{\Omega}(\log(T)S + n), 2^{O(S)}] \]

(Previous Best, time not explicit prior)

Sha: \[\text{ITIME}[\tilde{\Omega}(\log(T)(S + n)), 2^{O(\log(T)(S + n))}] \]

GKR: \[\text{ITIME}[\tilde{\Omega}(\log(T)S^2 + n), 2^{O(S)}] \]

RRR: \[\text{ITIME}[T^{o(1)}S^2 + n, T^{1+o(1)}S^{O(1)}] \]
Us Vs Shamir

IP for SPACE[n^α] \quad T = 2^S
Verifier Time n^β

α vs β

Ours is better when S < n

Our prover is ALWAYS faster

2^O(S) vs 2^O(S^2)
IPs for Randomized Space

- Let $L \in \text{BPSPACE}[S]$
- Standard: Saks Zhou, $L \in \text{SPACE}[S^{3/2}]$:
 - Shamir, L has time S^3 verifier
- Us, Use Nisan’s PRG with Our IP:
 - Reduction: space S, input length S^2
 - Our IP, L has time S^2 verifier
 - Match’s deterministic IP
Nondeterministic Result

IP for NTISP[T, S]

US: \(\text{ITIME}[\tilde{O}(\log(T)^2S + n), 2^{O(S)}] \)

Sha: \(\text{ITIME}[\tilde{O}(\log(T)^2(S + n)), 2^{O(\log(T)(S + n))}] \)

GKR: \(\text{ITIME}[\tilde{O}(\log(T)S^2 + n), 2^{O(S)}] \)

RRR: NA
Us Vs GKR

IP for NTISP\([_2^n \alpha, n]\)
Verifier Time \(n^\beta\)

\(\alpha \ vs \ \beta\)

Ours is better
When \(T \ll 2^S\)
Deterministic Algorithm

Both Prover \(2^{O(S)}\)
Proof
Proof Outline

Us
- Space to Matrix
 - Simpler reduction
- Matrix Sum Check
 - Simpler
- Arithmetize Multitape
 - Allows $S < n$

Shamir
- Space to QBF
 - Needs conditioning
- QBF Sum Check
 - Requires Specific Format Reduction
- Arithmetize Single
Why Not Single Tape TM?

Single tape TM require $S > n$

Concern, need $\tilde{O}(n + S)$ time arithmetization

Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor
Reduction To Matrix
Computation Graph

View space S program as 2^S state graph, G

Edges are state transitions

Graph is a function of Input, Program

Accepts IFF there is a length T path from start to end.

Edges are fast to compute
Adjacency Matrix

Represent G as an adjacency, \(M \)

Algorithm accepts in time \(T \) iff

\[
M^T_{\text{start, end}} = 1
\]

By repeated squaring,

\[
M^T = M^{2^t}
\]

For \(t = \log(T) \)

Run matrix sum check \(\log(T) \) times
Matrix Sum Check
Sum Check (LFKN)

Given: individual degree \(d \) polynomial, \(p: \mathbb{F}^S \rightarrow \mathbb{F} \), and \(\alpha \in \mathbb{F} \)

Reduce claim: \(\alpha = \sum_{a \in \{0,1\}^S} p(a) \)

To new claim: \(\Box = p(b) \)

some \(\Box \in \mathbb{F}, b \in \mathbb{F}^S \)
Sum Check Protocol

- Ask for $p_1(x) = \sum_{a \in \{0,1\}^{s-1}} p(x, a)$
- Check if $\alpha = p_1(0) + p_1(1)$
- Set b_1 randomly
- Ask for $p_2(x) = \sum_{a \in \{0,1\}^{s-2}} p(b_1, x, a)$
- Check if $p_1(b_1) = p_2(0) + p_2(1)$
- ...
Sum Check Idea (Schwartz-Zippel)

If $\alpha \neq \sum_{a \in \{0,1\}^s} p(a)$, then p_1 is incorrect.

p_1 is degree d, equal to true $p_1 \leq d$ places

$\Pr[\text{agree at } b_1] \leq d / |F|$
Sum Check Performance

There exists an IP with verifier V, prover P:

Completeness: If $\alpha = \sum_{a \in \{0,1\}^s} p(a)$, with P, V gives $\beta \in \mathbb{F}$ and $b \in \mathbb{F}^S$ s.t. $\beta = p(b)$

Soundness: If $\alpha \neq \sum_{a \in \{0,1\}^s} p(a)$, for any P', V gives $\beta = p(b)$ with probability $< Sd / |\mathbb{F}|$

Time: Verifier $Sd \tilde{O}(\log(|\mathbb{F}|))$ Prover $2^{O(S)} \tilde{O}(\log(|\mathbb{F}|))$
Matrix Multilinear Extension

For $2^S \times 2^S$ matrix M containing elements of \mathbb{F}

Let $M : \mathbb{F}^S \times \mathbb{F}^S \rightarrow \mathbb{F}$ be s.t.

M is multilinear (individual degree 1)

For any $a, c \in \{0,1\}^S$, $M(a, c) = M_{a,c}$
Matrix Sum Check (Thaler)

By definition
\[M_{a,c}^2 = \sum_{b \in \{0,1\}^s} M_{a,b} M_{b,c} \]

Also have
\[M^2(a,c) = \sum_{b \in \{0,1\}^s} M(a,b)M(b,c) \]

For claim \(\alpha = M^2(a,c) \), let \(p(b) = M(a,b)M(b,c) \)
Sum check reduces to \(\square = M(a,b)M(b,c) \)
Product Reduction

Reduce claim: $\square = p(a)p(b)$
To new claim: $\alpha' = p(c)$

• Let $\psi: \mathbb{F} \rightarrow \mathbb{F}^S$ be line s.t. $\psi(0) = a$, $\psi(1) = b$
 $\psi(x) = (1-x) a + x b$

• Ask for degree S polynomial $q(x) \overset{\text{def}}{=} p(\psi(x))$

• Check if $\square = q(0)q(1)$

• For random z, set $\alpha' = q(z)$, $c = \psi(z)$
 $\alpha' = q(z) = p(\psi(z)) = p(c)$
Repeated Square Rooting

For start a, end b:
Verifier given claim $M^T_{a,b} = 1$, or $M^T(a,b) = 1$
Reduce to claim $M^{2^{t-1}}(a',b') = \alpha'$, $M^{2^{t-2}}(a'',b'') = \alpha''$...

After $\log(T)$ times, have claim $M(a^*,b^*) = \alpha^*$
Uses $S \log(T)$ operations over \mathbb{F}
Arithmetization
Calculate M, multilinear extension

From program definition, $M_{a,b}$ simple.

How to calculate M?

Sum over every edge in program, simple formula can calculate easily.
Two Tape TM

Program has two tapes, input and working, \(\Lambda \) program transitions

Input \(x \),
Initial state \(a = (p, i, h, w) \)
Final state \(b = (p', i', h', w') \)

\(p, p' \) TM program states,
\(i, i' \) input heads
\(h, h' \) working space heads
\(w, w' \) working space contents
Transition Function

\[\sum_{\lambda \in \Lambda} u(\lambda, p) v(\lambda, p') \text{Inp}(\lambda, x, i, i') \text{Wrk}(\lambda, h, h', w, w') \]

- \(u \) : \(\lambda \) is from state \(p \)
- \(v \) : \(\lambda \) is to state \(p' \)
- \(\text{Inp} \) : \(x \) at \(i \) has symbol in \(\lambda \), \(i' \) is \(i+1 \) or \(i-1 \) from \(\lambda \)
- \(\text{Wrk} \) : \(w \) at \(h \) from \(\lambda \), \(h' \) is \(h+1 \) or \(h-1 \) from \(\lambda \), \(w' \) at \(h \) from \(\lambda \), \(w' = w \) elsewhere

Use different symbols! Calculate extensions separately!
Closer Look: \(\text{Wrk}(\lambda, h, h', w, w') \)

\[
\sum_{i \in [S]} \text{eq}(i, h) \text{eq}(i+D(\lambda), h') \text{bef}(i, w, w') \text{aft}(i, w, w') \\
\text{eq}(\text{us}(\lambda), w_i) \text{eq}(\text{vs}(\lambda), w'_i)
\]

\(\text{eq} \) checks equality, \(D \) 1 for R, -1 for L

\(\text{bef} \) equality before i, \(\text{aft} \) equality after i

\(\text{us} \) starting symbol, \(\text{vs} \) ending symbol

Use different symbols! Calculate extensions separately!
Calculate \textbf{Wrk} Efficiently

- \textit{eq}(w_i, w'_i) = w_i w'_i + (1 - w'_i)(1 - w_i)
- \textit{bef}(i+1, w, w') = \textit{bef}(i, w, w') \textit{eq}(w_i, w'_i)
- \textit{bef}(i, w, w') can be calculated for each \textit{i} in \textit{O(S)} operations. \textit{aft} similarly
- Similarly, \textit{eq}(i, h) for each \textit{i} with \textit{O(S)} ops.
- Only \textit{O(S)} operations in \textit{Wrk}
Finishing up Arithmetization

- \textbf{Inp} similarly calculated in \(O(n)\) operations
- Total \(M\) only takes \(O(n + S)\) operations.
Prover Time

Entire M can be constructed in time $\sim 2^{2S}$

Each M^k for $k = 2^i$ in time $\sim \log(T)2^{\omega S}$

Any $M^k(a, b)$ calculated in time $\sim 2^{2S}$
Open Problems

- Remove log(T) factor from verifier time
- Do nondeterministic algorithms have same verifier time as deterministic?
- Same verifier time, poly(T) time prover?
- Gives quadratic gap interactive hierarchy
 - Fine grain interactive hierarchy?
Citations