Non-Interactive Zero-Knowledge From
Non-Interactive Batch Arguments

Jeffrey Champion and David Wu

Non-interactive Proof for L € NP

Prover(x,w) Verifier(x)

mx €L

v X

Completeness: “honest proofs verify” Soundness: “no (efficient) prover can
produce m that verifies with x &€ L”

Non-interactive Proof for L € NP

Prover(x, w) g . Verifier(x)
é‘\ T:x € L 9

v X

Basic Questions:
* How short can T be?
e Can m hide information on w?

Non-interactive Proof for L € NP

Prover(x, w) g Verifier(x)

mx €L

v X

Basic Questions:
 How short can w be? Motivates “succinctness”
 Can m hide information on w? Motivates “zero-knowledge”

Recent work: [GOS12],[BCCT12], [DFH12], [Lip13], [PHGR13],[GGPR13], [BCI+13], [BCPR14], [Grol6], [BISW17], [BCC+17],
[BISW18], [BBHR18], [CCH+19], [PS19], [LPWW20], [BKM20], [COS20], [CHM+20], [Set20], [JJ21], [ACL+22], [BS23], [CBBZ23]

Intuitively, a short enough proof should lose information about w...

Can we show that
succinctness implies
zero-knowledge?

Previous work [KMY20]

Succinct non-interactive argument where proof length < witness length

* OWEFs+SNARG for NP = computational NIZK argument for NP

Previous work [KMY20]

Succinct non-interactive argument where proof length < witness length

e OWEFs+ SNARG for NP = computational NIZK argument for NP

SNARGs for NP with adaptive soundness require strong, non-falsifiable assumptions [GW11]

Can we relax succinctness and get an analogous result?

Batch Arguments for L € NP [KVZ21], [CJJ21]

Prover(xy, ..., Xoq, W1, «oe» Wypy) Verifier(xq, ..., X;)

v X

Amortized over #
of statements

Succinctness: || = o(m) * (|x| + |w])

Why should we care about BARGS
for NP?

* Alot of veryrecent work: [KVZ21], [CJJ21], [HIKS22], [WW22], [DGKV22],
[GSWW22], [CGJ+22], [KLVW23]

« Batch languages can be viewed as a special subset of NP where we can get
SNARGs from falsifiable assumptions despite Gentry-Wichs

* Succinct proofs of batch languages can still be useful in cases wherea SNARG
would be (e.g. aggregate signatures)

« BARGs for NP can also be used to get SNARGs for P [KVZ21], [CJJ21]

Note: BARG + NIZK = zkBARG *(requires certain properties)

This work

Each output bit depends on a

/ small number of input bits

Sub-exp secure local PRG

+ NIZK argument for NP with
(Somewhere sound) BARG for NP — - Computational ZK
+ - Adaptive soundness

Lossy PKE (dual-mode commitment)

\ Two modes: statistically hiding and
statistically binding

Proofs in the Hidden-Bits Model [FLS90]

Prover has access to a
uniform string r

&1

r

r3

T4

I's

Tg | -

m

v X

Verifier(x)

Proofs in the Hidden-Bits Model [FLS90]

r = |2 |13 |14 |15 |76 | |Bn

Prover(x,w) Verifier(x)

Verifier only sees the
subset of bits in

Prover has access to a
uniform string r

v X

Zero-knowledge: verifier does not Soundness: prover has no control over
see bitsin [m] \ I the string r

We can construct NIZKs in the HBM unconditionally!

From HBM NIZK to NIZK

&1

e |1

Verifier(x)

From HBM NIZK to NIZK

CRS
Prover(x, w) &, ! Verifier(x)
T[x, I - [m] 3
Verifier checks both
r= 0y) T, 1 proofs are valid

Prover samples m bits . B »
proof that bits were “correctly” sampled

from a sparse subset of
{0,1}" with randomness p
such that |p| <m

Hidden-Bits Generators [QRW19], [KMY20]

Setup(14,1™)
randomness CRS

/

GenBits(crs; p) Prover

\

r= (1)

Verifier

I, r;, T = Prove(l)

v X

Verify(crs, I, 17,m)

Binding: 3V < {0,1}™ such that: Hiding: No PPT verifier can distinguish rj

(1) VIS is a sparse subset from uniform given (crs, I, 17,) sampled

(2) No PPT prover can output a valid honestly
crs
Note: HBG => NIZK

proof where r; € 1,

Warm-up: Constructing HBGs

Sketch of [KMY20]:
« Hidden-bits string: r = PRG(s) for random s
* Proof: a SNARG proof that@s.t. Vi € I: r; = PRG(s);

batch language

* Binding:

» 1’s form sparse subset of {0,1}'* (PRG expansion)

* No PPT prover can output valid that disagrees with this set (SNARG soundness)
* Hiding:

ri is close to uniform given (crs, I, 17, ™) sampled honestly (SNARG proof is short enough to argue leakage resilience)

What happens if we switch SNARG to BARG?

 BARG proof is longer than the PRG seed

 Each witness could be different seed

Warm-up: Constructing HBGs

Sketch of [KMY20]:
« Hidden-bits string: r = PRG(s) for random s
* Proof: a SNARG proof that@s.t. Vi € I: r; = PRG(s);

batch language

* Binding:
» 1’s form sparse subset of {0,1}'* (PRG expansion)
* No PPT prover can output valid that disagrees with this set (SNARG soundness)

* Hiding:
ri is close to uniform given (crs, I, 17, ™) sampled honestly (SNARG proof is short enough to argue leakage resilience)
What happens if we switch SNARG to BARG?
 BARG proof is longer than the PRG seed Fix: local PRG to shorten witness size
 Each witness could be different seed Fix: commit to PRG seed and prove consistency

HBG Construction

A 1m
— Setup(14,1™)
crs = (crsBARG, crsBIND)

Note: extractor seeds also in crs

Prover GenBits(crs; p): Prove(l): -
C =
5 % = Verifier
_ commit .
random seed : bit by bit :
PR S1|S L AN v
G(1 [S52]53 [S4 Sn) Sn Verify(crs, I,7;,m): check
. . t i BAR f
Proving BARG statement i € [mB] : extraction and G proo
t=|tg Ly {3 tmB 3 J 3 < Y consider local indices
open commitments
break t into blocks:| B, = ¢t ...tp B, 1
[J [J check PRG output matches
Ext(B,) Ext(B,,)

T = (Tgarc (D), By, ¢y, +evs C)

hidden bits |r; r

Binding: 3PCrs ¢ {0,1}" such that: P rOOf: Bi n d i ng

(1) VIS is a sparse subset

A 1m
(2) No PPT prover can output a valid — Setup(1%,1™)
proof where 1; ¢ Vlcrs crs = (crsBARG, crsBIND)

Prover GenBits(crs; p): Prove(l): -
S1 > ’
_ commit
random seed * | bit by bit
C
PRG(S1 152 |S3 /S4 LSn) Sn >
\ Proving BARG statement i € [mB]:
Cl C2 C3 C . CTl
t=|t; |ty |ts tmp
AL A S BARG soundness +
}'{ }4 statistical binding
break t into blocks: B =ty..tg B, ' ensure that only PRG
l] l ' PRG achieves outputs are valid
Ext(B Ext(B e
Xti 1) Xi m) sparsification : / \
hidden bits |ry | 1 = (parc (D), By, 1, ey Co)

Note: full details are in the paper

WTS: unrevealed blocks have high entropy

Hiding: No PPT verifier can distinguish r; P rOOf. H id i ng

from a uniform bitstring given (crs, I, 1, 1)

sampled honestly — Setup(1%,1™)
crs = (crsBARG, crsBIND)

Prover GenBits(crs; p): Prove(l): -
S1 > v
commit
random seed : bit by bit
C
PRG(S1|S2|S3 [Sa| - Lsn) Sn >
Proving BARG statement i € [mB] :
C1 Co C3 C Cn,
t=1t [t2 | E3 tmp
& 52
break t into blocks:| B, =t ...tp B /
Ext(B,) Ext(B,,)
hidden bits 1 'm m = (T[BARG(I)' BI,Cl, ...,Cn)

Note: full details are in the paper

WTS: unrevealed blocks have high entropy

Hiding: No PPT verifier can distinguish r; P rOOf. H id i ng

from a uniform bitstring given (crs, I, 1, 1)

sampled honestly — Setup(1%,1™)
crs = (crsBARG, crsHIDE)

Prover GenBits(crs; p): Prove(l): 2
O >
commit
random seed : bit by bit
C
PRG(S1 152 |S3 /S4 LSn) 0 >
Proving BARG statement i € [mB] :
Cl ¢ C3 ¢ cee Cn
t=1t |t |3 tmp
only leakage on PRG
break t into blocks:| B, = ¢t ...tp B, seed left is Ty AR
Ext(B,) Ext(B,,) /
hidden bits |1 T = (mgarc (D), By, C1y oovr C)

Note: full details are in the paper

WTS: unrevealed blocks have high entropy

Hiding: No PPT verifier can distinguish r; P rOOf. H id i ng

from a uniform bitstring given (crs, I, 17,)

sampled honestly — Setup(1%,1™)
crs = (crsBARG, crsHIDE)

Prover GenBits(crs; p): Prove(l):
0
by complexity leveraging and locality,
t is close to uniform as long as mg4r¢
becomes correlated with t 0

uniform string

v

commit
bit by bit

[
»

Proving BARG statement i € [mB] :

C

C3

C

C1
t=1ty |t |3 tmp
break t into blocks:| B, = ¢t ...tp B,
Ext(B;) Ext(By)
hidden bits |1y Tm

|5 arc| = |leak(t)| < B, so each
unrevealed block has desired entropy
and extractoryields uniform ry

1t = (leak(t), B}, ¢y, ..., Cp)

Note: full details are in the paper

Recap: this work

A 1m
— Setup(14,1™)
crs = (crsBARG, crsBIND)

Note: extractor seeds also in crs

Prover GenBits(crs; p): Prove(l): -
C -
5 > N\C ~u Verifier
_ commit .
random seed : bit by bit :
> ¢ Vv
PRG(51 |52 |53 [S4 LSn) Sn Verify(crs, I, 77,m): check
extraction and BARG proof

Proving BARG statement i € [mB] :

Cn,

consider local indices

3
t=|(t; |t, |3 tmp
< S2 D < S4 D .
open commitments

C1 Cy C C

break t into blocks:| B, = ¢t ...tp B,,
‘ EXt(BL) / ' EXt(BL) ' check PRG output matches
XWby XWbm
hidden bits | T Up to O(log(n)) locality = (wgapc (D), By, €1, v\ Cp)
/

We show: local PRG + BARG for NP + lossy PKE = NIZK for NP

Subsequent result
|[BKPRV23] Focuses o understanding how it

Dual-mode NIZK arg. for NP with

(Somewhere sound) BARG for NP - Computational ZK
- Adaptive soundness

: > .

Lossy PKE (dual-mode commitment) - Statistical ZK
- Non-adaptive soundness

Open questions

 Can we weaken the lossy PKE assumption?
 Can we get ZAPs or NIWIs with similar assumptions?

* What else can we construct from BARGs?

 What other succinctness = hiding/privacy statements
can we show?

Thanks for listening!

https://eprint.iacr.org/2023/695

	Slide 1: Non-Interactive Zero-Knowledge From Non-Interactive Batch Arguments
	Slide 2: Non-interactive Proof for script cap L element of NP
	Slide 3: Non-interactive Proof for script cap L element of NP
	Slide 4: Non-interactive Proof for script cap L element of NP
	Slide 5: Can we show that succinctness implies zero-knowledge?
	Slide 6: Previous work [KMY20]
	Slide 7: Previous work [KMY20]
	Slide 8: Batch Arguments for script cap L element of NP [KVZ21], [CJJ21]
	Slide 9: Why should we care about BARGs for NP?
	Slide 10: This work
	Slide 11: Proofs in the Hidden-Bits Model [FLS90]
	Slide 12: Proofs in the Hidden-Bits Model [FLS90]
	Slide 13: From HBM NIZK to NIZK
	Slide 14: From HBM NIZK to NIZK
	Slide 15: Hidden-Bits Generators [QRW19], [KMY20]
	Slide 16: Warm-up: Constructing HBGs
	Slide 17: Warm-up: Constructing HBGs
	Slide 18: HBG Construction
	Slide 19: Proof: Binding
	Slide 20: Proof: Hiding
	Slide 21: Proof: Hiding
	Slide 22: Proof: Hiding
	Slide 23: Recap: this work
	Slide 24: Subsequent result [BKPRV23]
	Slide 25: Open questions
	Slide 26: Thanks for listening!

