Non-Interactive Zero-Knowledge From Non-Interactive Batch Arguments

Jeffrey Champion and David Wu

Non-interactive Proof for $\mathcal{L} \in \mathsf{NP}$

Completeness: "honest proofs verify"

Soundness: "no (efficient) prover can produce π that verifies with $x \notin \mathcal{L}$ "

Non-interactive Proof for $\mathcal{L} \in \mathsf{NP}$

Basic Questions:

- How short can π be?
- Can π hide information on w?

Non-interactive Proof for $\mathcal{L} \in \mathsf{NP}$

Basic Questions:

- How short can π be? Motivates "succinctness"
- Can π hide information on w? Motivates "zero-knowledge"

Recent work: [GOS12], [BCCT12], [DFH12], [Lip13], [PHGR13], [GGPR13], [BCI+13], [BCPR14], [Gro16], [BISW17], [BCC+17], [BISW18], [BBHR18], [CCH+19], [PS19], [LPWW20], [BKM20], [COS20], [CHM+20], [Set20], [JJ21], [ACL+22], [BS23], [CBBZ23]

Intuitively, a short enough proof should lose information about w...

Can we show that succinctness implies zero-knowledge?

Previous work [KMY20]

Succinct non-interactive argument where proof length < witness length

• OWFs + SNARG for NP \Rightarrow computational NIZK argument for NP

Previous work [KMY20]

Succinct non-interactive argument where proof length < witness length

• OWFs + SNARG for NP \Rightarrow computational NIZK argument for NP

SNARGs for NP with adaptive soundness require strong, non-falsifiable assumptions [GW11]

Can we relax succinctness and get an analogous result?

Batch Arguments for $\mathcal{L} \in NP$ [KVZ21], [CJJ21]

Why should we care about BARGs for NP?

- A lot of very recent work: [KVZ21], [CJJ21], [HJKS22], [WW22], [DGKV22], [GSWW22], [CGJ+22], [KLVW23]
- Batch languages can be viewed as a special subset of NP where we can get SNARGs from falsifiable assumptions despite Gentry-Wichs
- Succinct proofs of batch languages can still be useful in cases where a SNARG would be (e.g. aggregate signatures)
- BARGs for NP can also be used to get SNARGs for P [KVZ21], [CJJ21]

Note: BARG + NIZK \Rightarrow zkBARG *(requires certain properties)

This work

, Each output bit depends on a small number of input bits

Sub-exp secure local PRG

+

(Somewhere sound) BARG for NP

+

\Rightarrow

NIZK argument for NP with

- Computational ZK
- Adaptive soundness

Lossy PKE (dual-mode commitment)

Two modes: statistically hiding and statistically binding

Zero-knowledge: verifier does not see bits in $[m] \setminus I$

Soundness: prover has no control over the string \boldsymbol{r}

We can construct NIZKs in the HBM unconditionally!

Hidden-Bits Generators [QRW19], [KMY20]

Binding: $\exists \mathcal{V}^{Crs} \subseteq \{0,1\}^m$ such that: (1) \mathcal{V}^{Crs} is a **sparse** subset (2) No PPT prover can output a valid proof where $r_I \notin \mathcal{V}_I^{Crs}$ Hiding: No PPT verifier can distinguish $r_{\overline{I}}$ from uniform given (crs, I, r_I, π) sampled honestly

Note: HBG => NIZK

Warm-up: Constructing HBGs

Sketch of [KMY20]:

• **Hidden-bits string:** r = PRG(s) for random s

batch language

• Binding:

•

• *r*'s form sparse subset of $\{0,1\}^m$ (PRG expansion)

Proof: a SNARG proof that $\exists s$ s.t. $\forall i \in I: r_i = PRG(s)_i$

- No PPT prover can output valid π that disagrees with this set (SNARG soundness)
- Hiding:
 - $r_{\bar{I}}$ is close to uniform given (crs, I, r_I, π) sampled honestly (SNARG proof is short enough to argue leakage resilience)

What happens if we switch SNARG to BARG?

- BARG proof is longer than the PRG seed
- Each witness could be different seed

Warm-up: Constructing HBGs

Sketch of [KMY20]:

• **Hidden-bits string:** r = PRG(s) for random s

batch language

• Binding:

•

• *r*'s form sparse subset of $\{0,1\}^m$ (PRG expansion)

Proof: a SNARG proof that $\exists s$ s.t. $\forall i \in I: r_i = PRG(s)_i$

- No PPT prover can output valid π that disagrees with this set (SNARG soundness)
- Hiding:
 - $r_{\bar{I}}$ is close to uniform given (crs, I, r_I, π) sampled honestly (SNARG proof is short enough to argue leakage resilience)
- What happens if we switch SNARG to BARG?
 - BARG proof is longer than the PRG seed Fix: local PRG to shorten witness size
 - Each witness could be different seed Fix: commit to PRG seed and prove consistency

WTS: unrevealed blocks have high entropy

WTS: unrevealed blocks have high entropy

WTS: unrevealed blocks have high entropy

Hiding: No PPT verifier can distinguish $r_{\bar{I}}$ from a uniform bitstring given (crs, I, r_{I}, π) **Proof: Hiding** sampled honestly

Subsequent result [BKPRV23]

Focuses on understanding how batch arguments achieve statistical WI

(Somewhere sound) BARG for NP

+

Lossy PKE (dual-mode commitment)

Dual-mode NIZK arg. for NP with

- Computational ZK
- Adaptive soundness

or

- Statistical ZK
- Non-adaptive soundness

Open questions

- Can we weaken the lossy PKE assumption?
- Can we get ZAPs or NIWIs with similar assumptions?
- What else can we construct from BARGs?
- What other succinctness ⇒ hiding/privacy statements can we show?

Thanks for listening!

https://eprint.iacr.org/2023/695