
Non-Interactive Zero-Knowledge From
Non-Interactive Batch Arguments

Jeffrey Champion and David Wu

Non-interactive Proof for ℒ ∈ NP

π: 𝑥 ∈ ℒ

Prover(𝑥, 𝑤) Verifier(𝑥)

Soundness: “no (efficient) prover can
produce π that verifies with 𝑥 ∉ ℒ”

Completeness: “honest proofs verify”

Non-interactive Proof for ℒ ∈ NP

π: 𝑥 ∈ ℒ

Prover(𝑥, 𝑤) Verifier(𝑥)

Basic Questions:
• How short can 𝜋 be?
• Can 𝜋 hide information on 𝑤?

Non-interactive Proof for ℒ ∈ NP

π: 𝑥 ∈ ℒ

Prover(𝑥, 𝑤) Verifier(𝑥)

Basic Questions:
• How short can 𝜋 be? Motivates “succinctness”
• Can 𝜋 hide information on 𝑤? Motivates “zero-knowledge”

Recent work: [GOS12], [BCCT12], [DFH12], [Lip13], [PHGR13], [GGPR13], [BCI+13], [BCPR14], [Gro16], [BISW17], [BCC+17],
[BISW18], [BBHR18], [CCH+19], [PS19], [LPWW20], [BKM20], [COS20], [CHM+20], [Set20], [JJ21], [ACL+22], [BS23], [CBBZ23]

Intuitively, a short enough proof should lose information about 𝑤…

Can we show that
succinctness implies

zero-knowledge?

Previous work [KMY20]

• OWFs + SNARG for NP ⇒ computational NIZK argument for NP

Succinct non-interactive argument where proof length < witness length

Previous work [KMY20]

• OWFs + SNARG for NP ⇒ computational NIZK argument for NP

SNARGs for NP with adaptive soundness require strong, non-falsifiable assumptions [GW11]

Succinct non-interactive argument where proof length < witness length

Can we relax succinctness and get an analogous result?

Batch Arguments for ℒ ∈ NP [KVZ21], [CJJ21]

π: 𝑥1, … , 𝑥𝑚 ∈ ℒ

Succinctness: π = 𝑜 𝑚 ∗ (𝑥 + |𝑤|)

Prover(𝑥1, … , 𝑥𝑚, 𝑤1, … , 𝑤𝑚) Verifier(𝑥1, … , 𝑥𝑚)

Amortized over #
of statements

Why should we care about BARGs
for NP?
• A lot of very recent work: [KVZ21], [CJJ21], [HJKS22], [WW22], [DGKV22],

[GSWW22], [CGJ+22], [KLVW23]

• Batch languages can be viewed as a special subset of NP where we can get
SNARGs from falsifiable assumptions despite Gentry-Wichs

• Succinct proofs of batch languages can still be useful in cases where a SNARG
would be (e.g. aggregate signatures)

• BARGs for NP can also be used to get SNARGs for P [KVZ21], [CJJ21]

This work

Sub-exp secure local PRG

+

(Somewhere sound) BARG for NP

+

Lossy PKE (dual-mode commitment)

NIZK argument for NP with
- Computational ZK
- Adaptive soundness

⇒

Each output bit depends on a
small number of input bits

Two modes: statistically hiding and
statistically binding

Note: BARG + NIZK ⇒ zkBARG *(requires certain properties)

Proofs in the Hidden-Bits Model [FLS90]

π, 𝐼 ⊆ 𝑚
Prover(𝑥, 𝑤) Verifier(𝑥)

Prover has access to a
uniform string 𝑟

𝑟2 𝑟𝑚…𝑟3 𝑟5 𝑟6𝑟1𝑟 = 𝑟4

Proofs in the Hidden-Bits Model [FLS90]

π, 𝐼 ⊆ 𝑚
Prover(𝑥, 𝑤) Verifier(𝑥)

We can construct NIZKs in the HBM unconditionally!

Prover has access to a
uniform string 𝑟

Verifier only sees the
subset of bits in 𝐼

Soundness: prover has no control over
the string 𝑟

Zero-knowledge: verifier does not
see bits in 𝑚 ∖ 𝐼

𝑟2 𝑟𝑚…𝑟3 𝑟5 𝑟6𝑟1𝑟 = 𝑟4

From HBM NIZK to NIZK

𝜋𝑥 , 𝐼 ⊆ 𝑚
Prover(𝑥, 𝑤) Verifier(𝑥)

𝑟2 𝑟𝑚…𝑟3 𝑟5 𝑟6𝑟1𝑟 = 𝑟4

From HBM NIZK to NIZK

𝜋𝑥 , 𝐼 ⊆ 𝑚
Prover(𝑥, 𝑤) Verifier(𝑥)

CRS

𝑟 = (𝑟1, … , 𝑟𝑚)

Prover samples 𝑚 bits
from a sparse subset of
{0,1}𝑚 with randomness 𝜌
such that 𝜌 < 𝑚

𝜋𝐼 , 𝑟𝐼

proof that bits were “correctly” sampled

Verifier checks both
proofs are valid

Hidden-Bits Generators [QRW19], [KMY20]

Prover Verifier

𝑟 = (𝑟1, … , 𝑟𝑚)

CRS
Setup(1λ, 1𝑚)

GenBits(crs; 𝜌)

𝐼, 𝑟𝐼 , π = Prove(𝐼)

Verify(crs, 𝐼, 𝑟𝐼 ,π)

Binding: ∃𝒱crs ⊆ {0,1}𝑚 such that:
(1) 𝒱crs is a sparse subset
(2) No PPT prover can output a valid
proof where 𝑟𝐼 ∉ 𝒱𝐼

crs

Hiding: No PPT verifier can distinguish 𝑟Ī
from uniform given (crs, 𝐼, 𝑟𝐼 , 𝜋) sampled
honestly

Note: HBG => NIZK

randomness

Warm-up: Constructing HBGs
Sketch of [KMY20]:

• Hidden-bits string: 𝑟 = PRG 𝑠 for random 𝑠

• Proof: a SNARG proof that ∃𝑠 s.t. ∀𝑖 ∈ 𝐼: 𝑟𝑖 = PRG 𝑠 𝑖

• Binding:

• 𝑟’s form sparse subset of {0,1}𝑚 (PRG expansion)

• No PPT prover can output valid 𝜋 that disagrees with this set (SNARG soundness)

• Hiding:

• 𝑟Ī is close to uniform given (crs, 𝐼, 𝑟𝐼 , 𝜋) sampled honestly (SNARG proof is short enough to argue leakage resilience)

What happens if we switch SNARG to BARG?

• BARG proof is longer than the PRG seed

• Each witness could be different seed

batch language

Warm-up: Constructing HBGs
Sketch of [KMY20]:

• Hidden-bits string: 𝑟 = PRG 𝑠 for random 𝑠

• Proof: a SNARG proof that ∃𝑠 s.t. ∀𝑖 ∈ 𝐼: 𝑟𝑖 = PRG 𝑠 𝑖

• Binding:

• 𝑟’s form sparse subset of {0,1}𝑚 (PRG expansion)

• No PPT prover can output valid 𝜋 that disagrees with this set (SNARG soundness)

• Hiding:

• 𝑟Ī is close to uniform given (crs, 𝐼, 𝑟𝐼 , 𝜋) sampled honestly (SNARG proof is short enough to argue leakage resilience)

What happens if we switch SNARG to BARG?

• BARG proof is longer than the PRG seed Fix: local PRG to shorten witness size

• Each witness could be different seed Fix: commit to PRG seed and prove consistency

batch language

HBG Construction

Prover

crs = (crsBARG, crsBIND)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

PRG()𝑠1 𝑠2 𝑠3 𝑠𝑛…𝑠4

random seed

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
𝑠1

𝑠𝑛

… …commit
bit by bit

π = 𝜋𝐵𝐴𝑅𝐺(𝐼), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Verifier

Verify(crs, 𝐼, 𝑟𝐼 ,π): check
extraction and BARG proof

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

consider local indices

open commitments

check PRG output matches

Note: extractor seeds also in crs

Proof: Binding

Prover

crs = (crsBARG, crsBIND)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

PRG()𝑠1 𝑠2 𝑠3 𝑠𝑛…𝑠4

random seed

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
𝑠1

𝑠𝑛

… …commit
bit by bit

π = 𝜋𝐵𝐴𝑅𝐺(𝐼), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

Binding: ∃𝒱crs ⊆ {0,1}𝑚 such that:
(1) 𝒱crs is a sparse subset
(2) No PPT prover can output a valid
proof where 𝑟𝐼 ∉ 𝒱𝐼

crs

PRG achieves
sparsification

BARG soundness +
statistical binding
ensure that only PRG
outputs are valid

Note: full details are in the paper

Proof: Hiding

Prover

crs = (crsBARG, crsBIND)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

PRG()𝑠1 𝑠2 𝑠3 𝑠𝑛…𝑠4

random seed

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
𝑠1

𝑠𝑛

… …commit
bit by bit

π = 𝜋𝐵𝐴𝑅𝐺(𝐼), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

Note: full details are in the paper

Hiding: No PPT verifier can distinguish 𝑟Ī
from a uniform bitstring given (crs, 𝐼, 𝑟𝐼 , 𝜋)
sampled honestly

WTS: unrevealed blocks have high entropy

Proof: Hiding

Prover

crs = (crsBARG, crsHIDE)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

PRG()𝑠1 𝑠2 𝑠3 𝑠𝑛…𝑠4

random seed

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
0

0

… …commit
bit by bit

π = 𝜋𝐵𝐴𝑅𝐺(𝐼), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

Note: full details are in the paper

Hiding: No PPT verifier can distinguish 𝑟Ī
from a uniform bitstring given (crs, 𝐼, 𝑟𝐼 , 𝜋)
sampled honestly

WTS: unrevealed blocks have high entropy

only leakage on PRG
seed left is 𝜋𝐵𝐴𝑅𝐺

Proof: Hiding

Prover

crs = (crsBARG, crsHIDE)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
0

0

… …commit
bit by bit

π = 𝑙𝑒𝑎𝑘(𝑡), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

Note: full details are in the paper

Hiding: No PPT verifier can distinguish 𝑟Ī
from a uniform bitstring given (crs, 𝐼, 𝑟𝐼 , 𝜋)
sampled honestly

WTS: unrevealed blocks have high entropy

uniform string

by complexity leveraging and locality,
𝑡 is close to uniform as long as 𝜋𝐵𝐴𝑅𝐺
becomes correlated with 𝑡

𝜋𝐵𝐴𝑅𝐺 = 𝑙𝑒𝑎𝑘 𝑡 < 𝐵, so each
unrevealed block has desired entropy
and extractor yields uniform 𝑟Ī

Recap: this work

Prover

crs = (crsBARG, crsBIND)

Setup(1λ, 1𝑚)

GenBits(crs; 𝜌):

PRG()𝑠1 𝑠2 𝑠3 𝑠𝑛…𝑠4

random seed

𝑡3 𝑡𝑚𝐵𝑡2𝑡1 ...

𝐵1 = 𝑡1 … 𝑡𝐵 𝐵𝑚
…break 𝑡 into blocks:

𝑟1 𝑟𝑚…
=

=

Prove(𝐼):
𝑠1

𝑠𝑛

… …commit
bit by bit

π = 𝜋𝐵𝐴𝑅𝐺(𝐼), 𝐵𝐼 , 𝑐1, … , 𝑐𝑛

𝑡 =

Verifier

Verify(crs, 𝐼, 𝑟𝐼 ,π): check
extraction and BARG proof

Ext(𝐵1) Ext(𝐵𝑚)

hidden bits

𝑐1 …

Proving BARG statement 𝑖 ∈ [𝑚𝐵] :

𝑐2 𝑐𝑛

𝑐1

𝑐𝑛

𝑐3 𝑐4

𝑠1 𝑠3 𝑠4

𝑡𝑖

consider local indices

open commitments

check PRG output matches

Note: extractor seeds also in crs

We show: local PRG + BARG for NP + lossy PKE ⇒ NIZK for NP

Up to 𝑂(log(𝑛)) locality

Subsequent result
[BKPRV23]

(Somewhere sound) BARG for NP

+

Lossy PKE (dual-mode commitment)

Dual-mode NIZK arg. for NP with
- Computational ZK
- Adaptive soundness
or
- Statistical ZK
- Non-adaptive soundness

⇒

Focuses on understanding how batch
arguments achieve statistical WI

Open questions
• Can we weaken the lossy PKE assumption?

• Can we get ZAPs or NIWIs with similar assumptions?

• What else can we construct from BARGs?

• What other succinctness ⇒ hiding/privacy statements
can we show?

Thanks for listening!

https://eprint.iacr.org/2023/695

	Slide 1: Non-Interactive Zero-Knowledge From Non-Interactive Batch Arguments
	Slide 2: Non-interactive Proof for script cap L element of NP
	Slide 3: Non-interactive Proof for script cap L element of NP
	Slide 4: Non-interactive Proof for script cap L element of NP
	Slide 5: Can we show that succinctness implies zero-knowledge?
	Slide 6: Previous work [KMY20]
	Slide 7: Previous work [KMY20]
	Slide 8: Batch Arguments for script cap L element of NP [KVZ21], [CJJ21]
	Slide 9: Why should we care about BARGs for NP?
	Slide 10: This work
	Slide 11: Proofs in the Hidden-Bits Model [FLS90]
	Slide 12: Proofs in the Hidden-Bits Model [FLS90]
	Slide 13: From HBM NIZK to NIZK
	Slide 14: From HBM NIZK to NIZK
	Slide 15: Hidden-Bits Generators [QRW19], [KMY20]
	Slide 16: Warm-up: Constructing HBGs
	Slide 17: Warm-up: Constructing HBGs
	Slide 18: HBG Construction
	Slide 19: Proof: Binding
	Slide 20: Proof: Hiding
	Slide 21: Proof: Hiding
	Slide 22: Proof: Hiding
	Slide 23: Recap: this work
	Slide 24: Subsequent result [BKPRV23]
	Slide 25: Open questions
	Slide 26: Thanks for listening!

