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Improved protocols for securely generating 
noise from common distributions

Asymptotically and 
concretely more efficient

eg.
geometric,
binomial,
poisson

This talk

arising in differential 
privacy [DMNS’06] 



Suppose two or more hospitals want to jointly 
compute statistics of their patients data

patient data



However, sharing data may be prohibited



An ideal solution: find a trusted third party

Trusted party

f(      )  

Release only the output of the study

A trusted party is usually not available



Secure Computation
Encrypted protocol

f(      )  

Reveal only the output

Even the output will reveal 
patient data [DN03]



Differential Privacy [DMNS06]

Whole dataset Randomness

f(     ,       )

Private output

Strong guarantee of privacy for the patients.
Widely deployed in practice (e.g. Google, Apple, Uber, US Census Bureau)

Have to design secure protocols 
for the modified algorithm

Inject carefully calibrated 
random noise during the 
computation of f



Bottleneck: generating random noise

Typical DP algorithms use noise from Gaussian, Laplace, or Exponential distributions:

Gaussian Noise

Approximating using floating points can destroy privacy [Mironov’12]

Exponential Noise



Bottleneck: generating random noise

Discrete distributions are more amenable to secure computation:

Binomial Noise

Still need to sample with high precision to ensure privacy

Geometric Noise



Prior work

• Inspired by [DKMMN’06]
• Proposed combining differential privacy and secure computation

• Identified the problem of noise generation

• Gave protocols for sampling noise with various tradeoffs between resources

• [EKMPP’14] implemented floating point arithmetic in secure 
computation in order to compute Laplace noise

• [AC’15] implemented Laplace noise sampling with two 
parties using a cut-and-choose protocol (polynomial 
security)



Our Work – Theory

Reduce the complexity for sampling common noise 
distributions securely

• Improved amortized complexity for sampling a biased coin from 
O(λ) to O(log λ) 

• Novel use of oblivious stacks [ZE’13] 

Application to widely used differentially private algorithms 
(e.g. report-noisy-max/exponential mechanism [MT’07]) 



Our Work – Empirical

Experimental evaluation
• Consider a practical variant of our protocol (slightly worse

asymptotic complexity)
• Improved cost, runtime, and communication for generating noise 

in specific differential privacy applications

Full open source implementation in Obliv-C [ZE’15]
• Includes both our protocol and [DKMMN’06]



Practical improvement

east-east east-west

Number of samples Number of samples

[EKMPP’14] generate one Laplace sample in 15s
[AC’15] generate one Laplace sample in 9s

Experiment: generating d samples of geometric noise in 2PC with our method and the trivial method

Key
[DKMMN’06]
our protocol



Generating Noise Insecurely

Steps to sample geometric noise with parameter 0 < p < 1

Computing logarithms is costly in MPC. Using finite arithmetic has hard-to-understand effects.

1. Sample a uniform real number:
2. Compute the inverse CDF:

Mean 1/p



Generating Noise Insecurely: Biased Coins

Only simple, discrete operations. Using finite precision has predictable effects.

1. Find a coin with bias p (P[heads] = p)
2. Flip the coin until it comes up heads
3. Count the number of tails before the first heads

T T T T HT

Steps to sample geometric noise with parameter 0 < p < 1



Securely sampling fair coins

Sampling fair coins in a secure 
computation is easy 

How can we convert fair 
coins to biased coins in a 
secure computation?



Insecure Biased Coins: Lazy Comparison

Binary expansion of bias 0<p<1Stream of random bits

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 …𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 …



Insecure Biased Coins: Lazy Comparison

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 …0 1 1 1 0 0 …



Insecure Biased Coins: Lazy Comparison

0
biasrand

0

Stream of random bits

No output

Binary expansion of bias (1/3)

0 1 0 1 0 1 …0 1 1 1 0 0 …

If (rand ≠ bias):
output bias



Insecure Biased Coins: Lazy Comparison

1
biasrand

1

Stream of random bits

No output

Binary expansion of bias (1/3)

0 1 0 1 0 1 …0 1 1 1 0 0 …

If (rand ≠ bias):
output bias



Insecure Biased Coins: Lazy Comparison

0
biasrand

1

Stream of random bits

Output: 0

Binary expansion of bias (1/3)

0 1 0 1 0 1 …0 1 1 1 0 0 …

If (rand ≠ bias):
output bias

E[# of comparisons] = 2 per coin
O(1) time per coin



Securely Generating Biased Coins?

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 …0 1 1 1 0 0 …

If (rand ≠ bias):
output bias



Securely Generating Biased Coins?

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 00 1 1 1 0 0 1

λ bits of precision

(error 2−λ)

If (rand ≠ bias):
output bias

Homomorphic operation



Securely Generating Biased Coins?

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 00 1 1 1 0 0 1 0 0

No output

If (rand ≠ bias):
output bias



Securely Generating Biased Coins?

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 00 1 1 1 0 0 1 1 1

No output

If (rand ≠ bias):
output bias



Securely Generating Biased Coins?

Binary expansion of bias (1/3)
biasrand

Stream of random bits

0 1 0 1 0 1 00 1 1 1 0 0 1 1 0

Output: 0

Stopping at the third 
bit reveals the output 
even though the value 
is encrypted!

If (rand ≠ bias):
output bias



Securely Generating Biased Coins

Binary expansion of bias (1/3)Stream of random bits

0 1 0 1 0 1 00 1 1 1 0 0 1

Output rand ⩻ bias

Output: 0
Naïve solution: do the full comparison
O(λ) time per coin!

Stopping at the third 
bit reveals the output 
even though the value 
is encrypted!



Our Work – Theory

Reduce the complexity for sampling common noise 
distributions securely

• Improved amortized complexity for sampling a biased coin from 
O(λ) to O(log λ) 

• Novel use of oblivious stacks [ZE’13] 

Application to widely used differentially private algorithms 
(e.g. report-noisy-max/exponential mechanism [MT’07]) 



Our Approach – secure lazy sampling

Binary expansion of bias
biasrand

Stream of random bits

1 1 1 1 0 0 1 0 1 0 1 0 1 0



Our Approach – secure lazy sampling

0
biasrand

1

Stream of random bits Binary expansion of bias

Need to produce correct 
bit of bias and hide when 
we restart bias

Output: 0

Want to hide whether a biased coin was output

1. Get current bit of bias and 
compare to rand 
2. If bits are not equal:

a. Make coin
b. Reset bias 

1 1 1 1 0 0 1 0 1 0 1 0 1 0



Oblivious data structures

• Best known example: ORAM [GO’97]
• Major recent progress, but not suited for single bit data blocks

• Oblivious stacks [ZE13] are a more efficient alternative
• We modify the construction from [ZE13] to suit our application



Push-only stack

Conditional push

Given input element e and condition c:

If c = 1:

If c = 0:

e f

f

fCurrent stack:

Role:
Conditionally make coin



Pop-only stack

Pop

Given reset bit r:

If r = 1:

If r = 0:

b c

b ca

cb

a b cCurrent stack: Initial stack:

Role:
Get current bit of bias
Conditionally reset bias 

(reset to initial and pop)

(pop from current stack)



Pop-only stack

Conditional reset

Given reset bit r and condition c (stack is untouched):

If c = 1:    

If c = 0:

set r = 1

nothing

Role:
Get current bit of bias
Conditionally reset bias 



Oblivious stack complexity

Conditional push, pop, and conditional reset can all be 
implemented such that the amortized complexity per 
operation is O(log n) for total capacity n



Oblivious Stacks in context

Pop-only stack (filled with binary expansion)
biasrand

r = 0

Stream of random bits

0 1 1 1 0 0 1 0 1 0 1 0 1 0

Push-only stack (receives coins)



1 0 1 0 1

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

0
biasrand

0

c = 0, e = 0
Empty push

r = 0

Stream of random bits

0 1 1 1 0 0 1 0

If c = 1: push e



0 1 0 1

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

1
biasrand

1

c = 0, e = 1
Empty push

r = 0

Stream of random bits

00 1 1 1 0 0 1

If c = 1: push e



1 0 1

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

0
biasrand

1

c = 1, e = 0
Real push

Stream of random bits

r = 01

00 1 1 1 0 0 1

If c = 1: push e



1 0 1 0 1

0

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

0
biasrand

1

c = 1, e = 0
Real push

Stream of random bits

r = 01

00 1 1 1 0 0 1

If c = 1: push e



1 0 1 0 1

0 0

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

0
biasrand

0

c = 0, e = 0
Empty push

r = 0

Stream of random bits

00 1 1 1 0 0 1

If c = 1: push e



0 1 0 1

0 0

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

1
biasrand

0

c = 1, e = 1
Real push

Stream of random bits

r = 01

00 1 1 1 0 0 1

If c = 1: push e



0 1 0 1

1 0 0

Pop-only stack (filled with binary expansion)

Push-only stack (receives coins)

Oblivious Stacks in context

1
biasrand

0

c = 1, e = 1
Real push

Stream of random bits

r = 1

𝑐1 𝑐2 𝑐3
Have to repeat loop until we 
can guarantee stack is full

00 1 1 1 0 0 1

If c = 1: push e



Summary

Our secure sampling protocol allows us to:
• Exponentially reduce the amortized cost of flipping a biased coin

• Sample hundreds of times faster than previous implementations

• Generate 500k samples from the geometric distribution in 7 min

We give the first complete, secure implementation of the 
exponential mechanism [MT07] for differential privacy



Thanks for listening!
Full paper: https://eprint.iacr.org/2019/823.pdf

Code: https://gitlab.com/neucrypt/securely_sampling

https://eprint.iacr.org/2019/823.pdf
https://gitlab.com/neucrypt/securely_sampling

