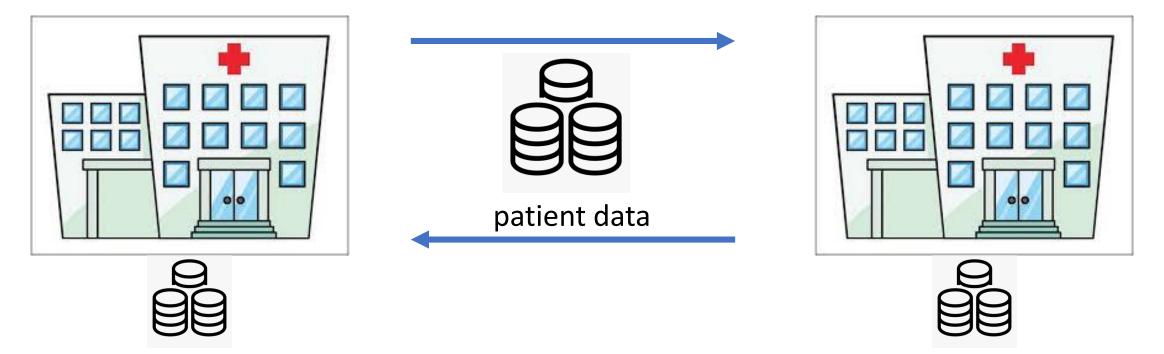
Securely Sampling Biased Coins with Applications to Differential Privacy

Jeffrey Champion, abhi shelat, Jonathan Ullman Northeastern University This talk

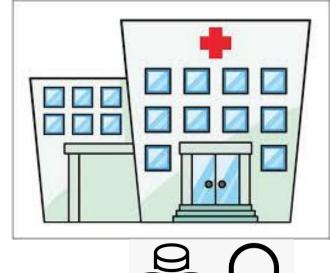
Asymptotically and concretely more efficient Improved protocols for securely generating noise from common distributions arising in differential privacy [DMNS'06] eg. geometric, binomial, poisson

Suppose two or more hospitals want to jointly compute statistics of their patients data

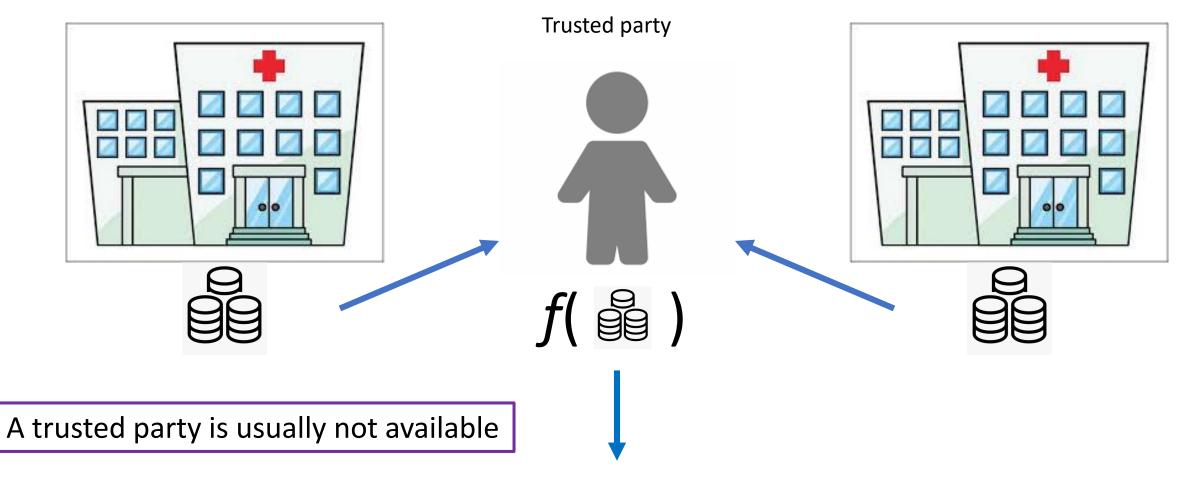


However, sharing data may be prohibited



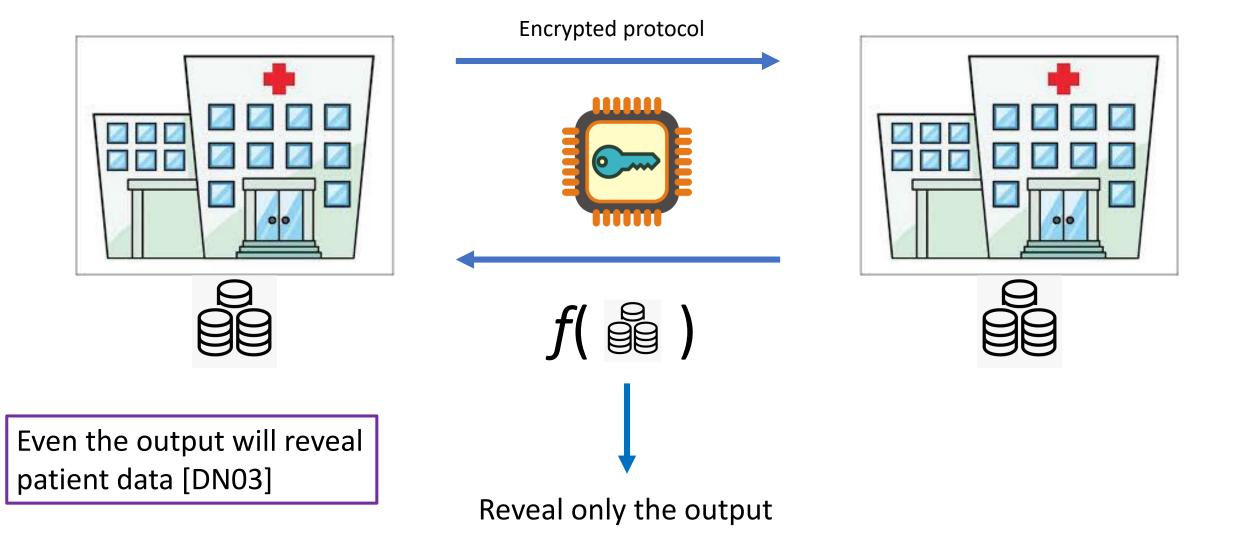


An ideal solution: find a trusted third party



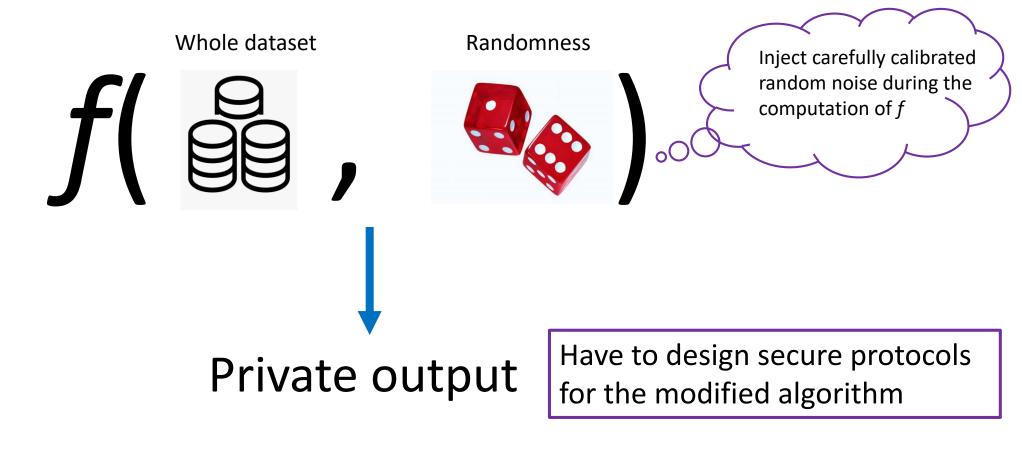
Release only the output of the study

Secure Computation



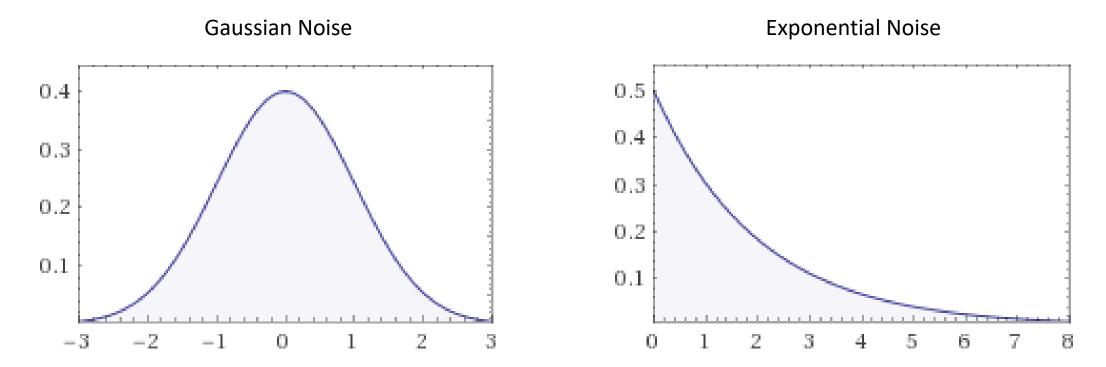
Differential Privacy [DMNS06]

Strong guarantee of privacy for the patients. Widely deployed in practice (e.g. Google, Apple, Uber, US Census Bureau)



Bottleneck: generating random noise

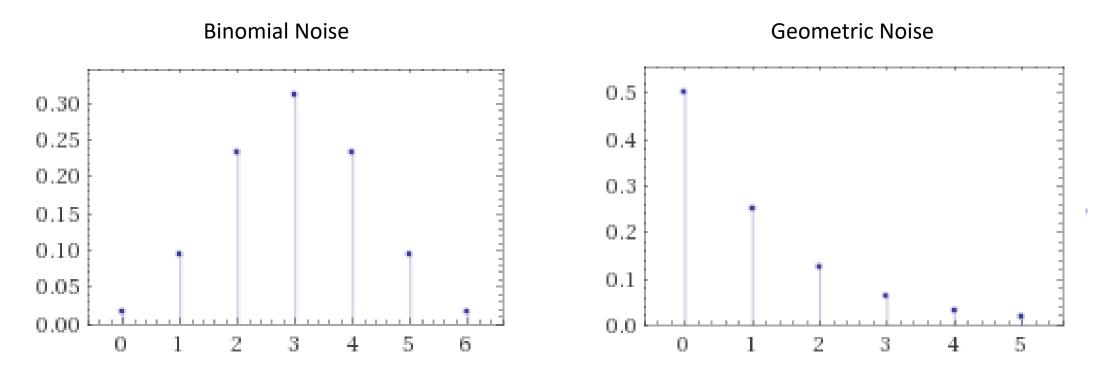
Typical DP algorithms use noise from Gaussian, Laplace, or Exponential distributions:



Approximating using floating points can destroy privacy [Mironov'12]

Bottleneck: generating random noise

Discrete distributions are more amenable to secure computation:



Still need to sample with high precision to ensure privacy

Prior work

- Inspired by [DKMMN'06]
 - Proposed combining differential privacy and secure computation
 - Identified the problem of noise generation
 - Gave protocols for sampling noise with various tradeoffs between resources
- [EKMPP'14] implemented floating point arithmetic in secure computation in order to compute Laplace noise
- [AC'15] implemented Laplace noise sampling with two parties using a cut-and-choose protocol (polynomial security)

Our Work – Theory

Reduce the complexity for sampling common noise distributions securely

- Improved amortized complexity for sampling a biased coin from $O(\lambda)$ to $O(\log \lambda)$
- Novel use of oblivious stacks [ZE'13]

Application to widely used differentially private algorithms (e.g. report-noisy-max/exponential mechanism [MT'07])

Our Work – Empirical

Full open source implementation in Obliv-C [ZE'15]

Includes both our protocol and [DKMMN'06]

Experimental evaluation

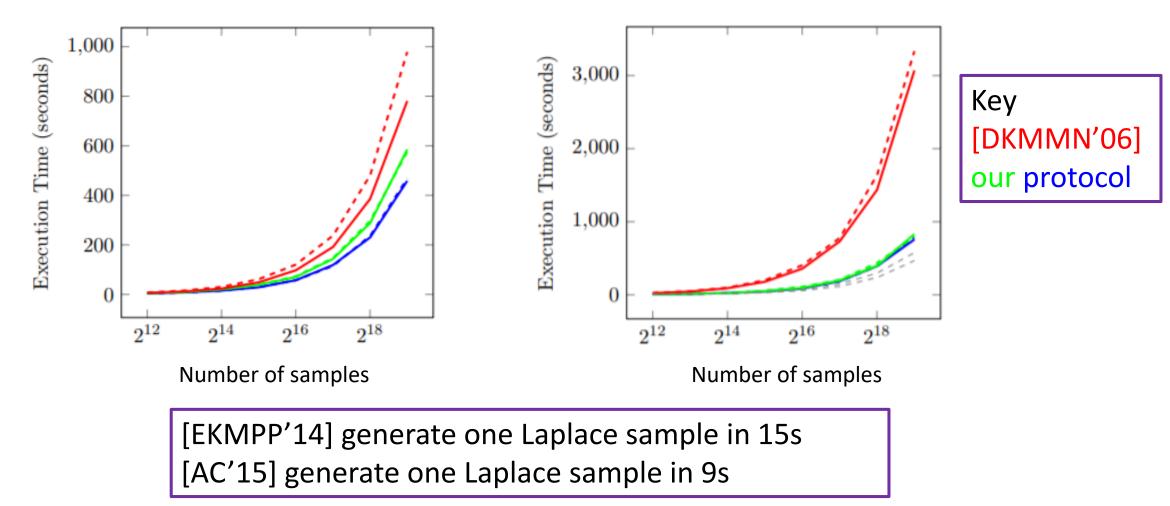
- Consider a practical variant of our protocol (slightly worse asymptotic complexity)
- Improved cost, runtime, and communication for generating noise in specific differential privacy applications

Practical improvement

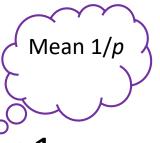
Experiment: generating *d* samples of geometric noise in 2PC with our method and the trivial method

east-east

east-west



Generating Noise Insecurely



Steps to sample geometric noise with parameter 0 < p' < 1

- 1. Sample a uniform real number: 0 < u < 1
- 2. Compute the inverse CDF:

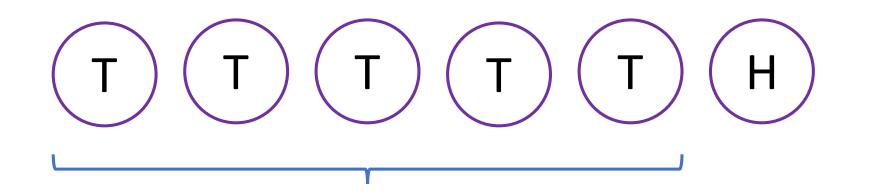
$$F^{-1}(u) = \left\lfloor \frac{\ln\left(1-u\right)}{\ln\left(1-p\right)} \right\rfloor$$

Computing logarithms is costly in MPC. Using finite arithmetic has hard-to-understand effects.

Generating Noise Insecurely: Biased Coins

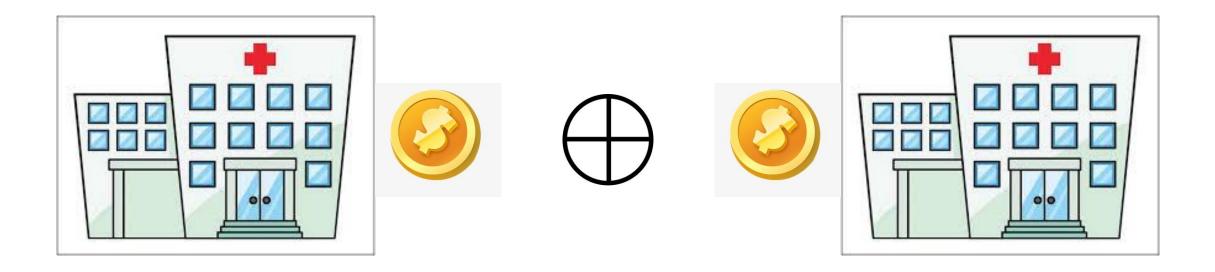
Steps to sample geometric noise with parameter 0 < p < 1

- 1. Find a coin with bias p (P[heads] = p)
- 2. Flip the coin until it comes up heads
- 3. Count the number of tails before the first heads



Only simple, discrete operations. Using finite precision has predictable effects.

Securely sampling fair coins

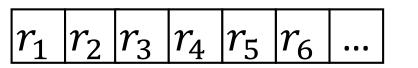


Sampling fair coins in a secure computation is easy

How can we convert fair coins to biased coins in a secure computation?

Insecure Biased Coins: Lazy Comparison

Stream of random bits

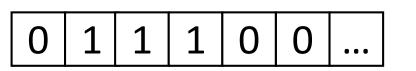


Binary expansion of bias 0<p<1

 $|b_2|b_3|b_4|b_5|b_6|\dots$

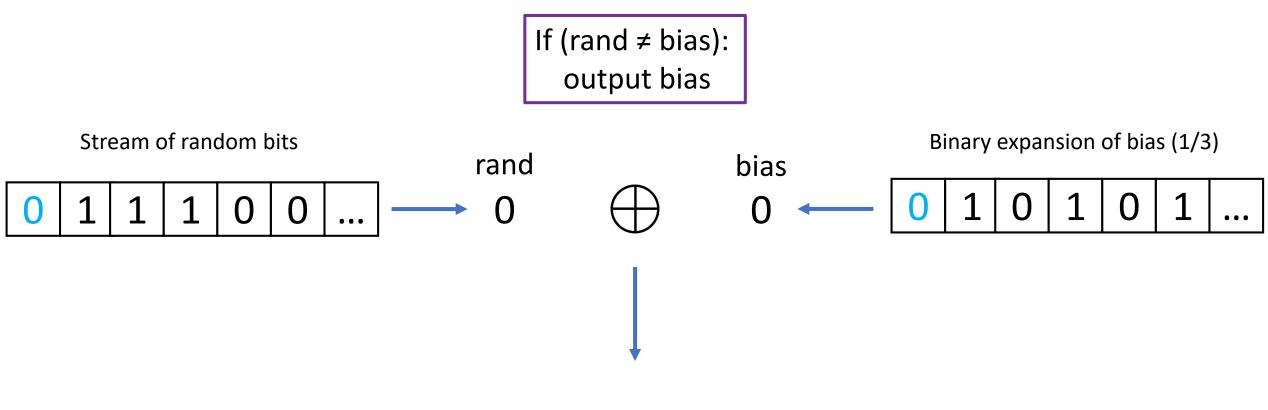
Insecure Biased Coins: Lazy Comparison

Stream of random bits



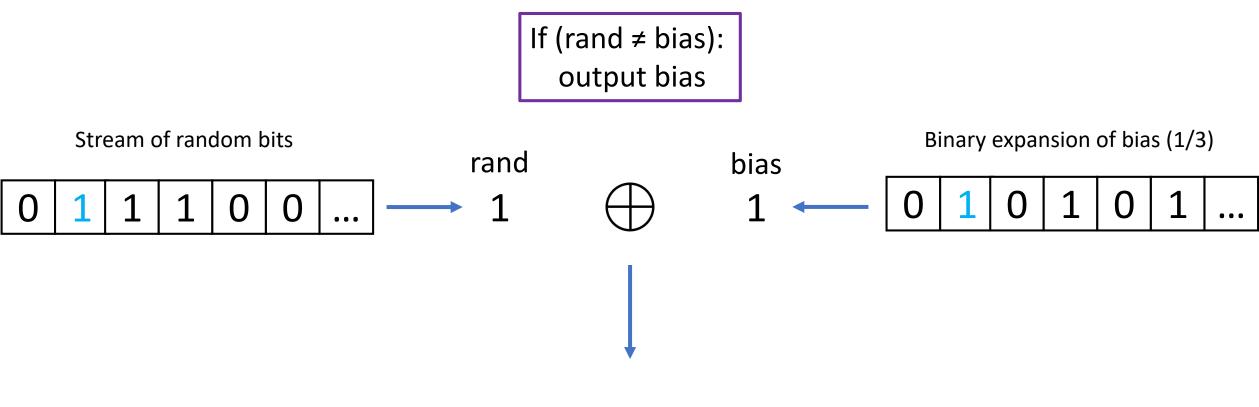
rand

Binary expansion of bias (1/3)



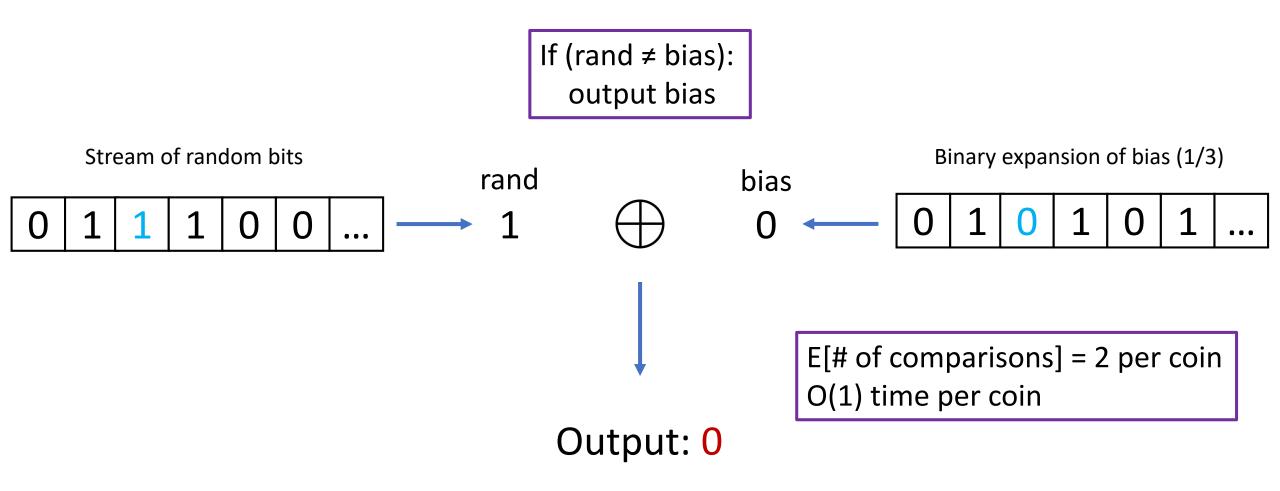
No output

Insecure Biased Coins: Lazy Comparison



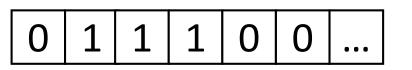
No output

Insecure Biased Coins: Lazy Comparison



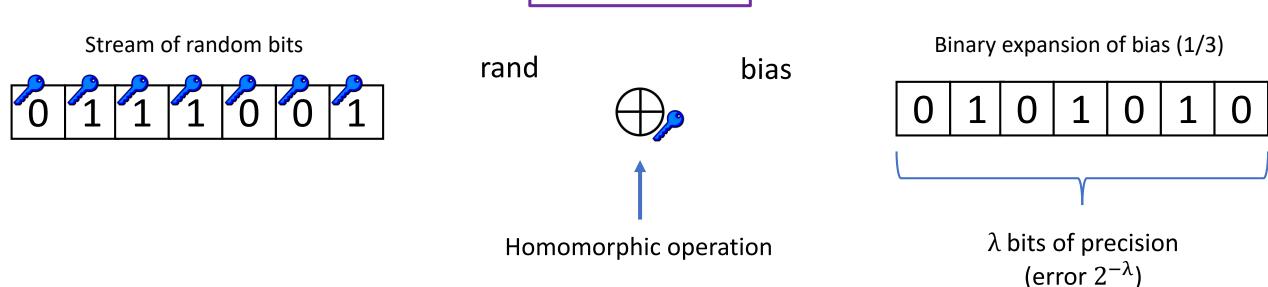
If (rand ≠ bias): output bias

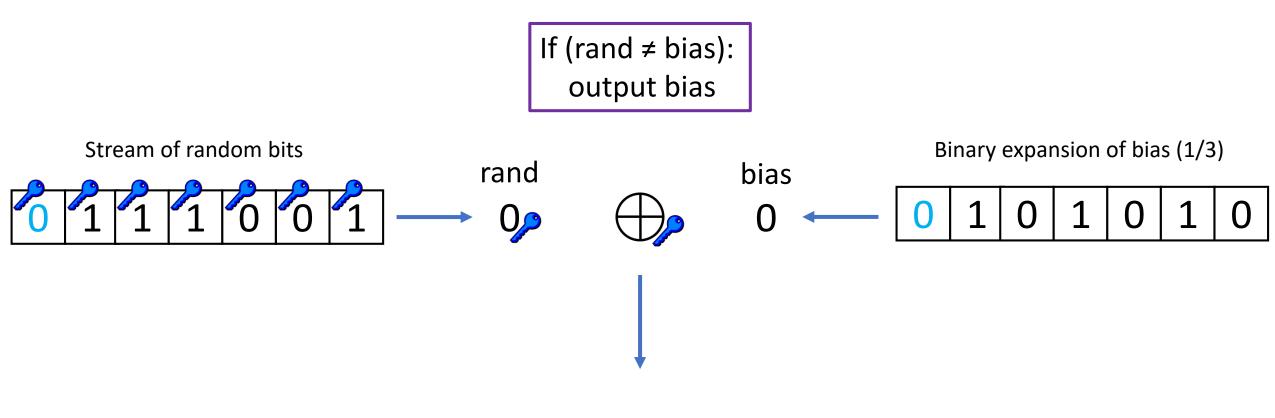
Stream of random bits



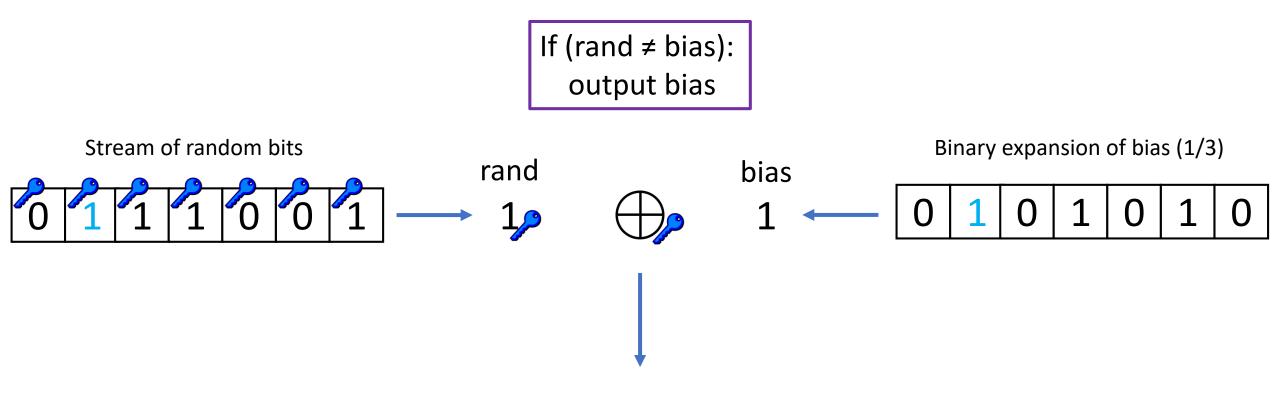
Binary expansion of bias (1/3)

If (rand ≠ bias): output bias

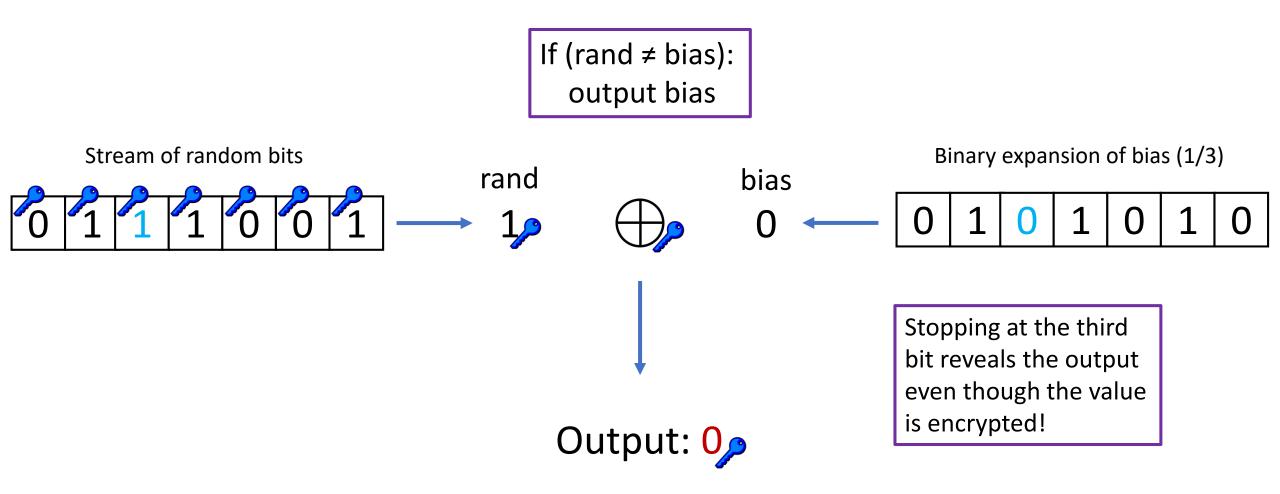


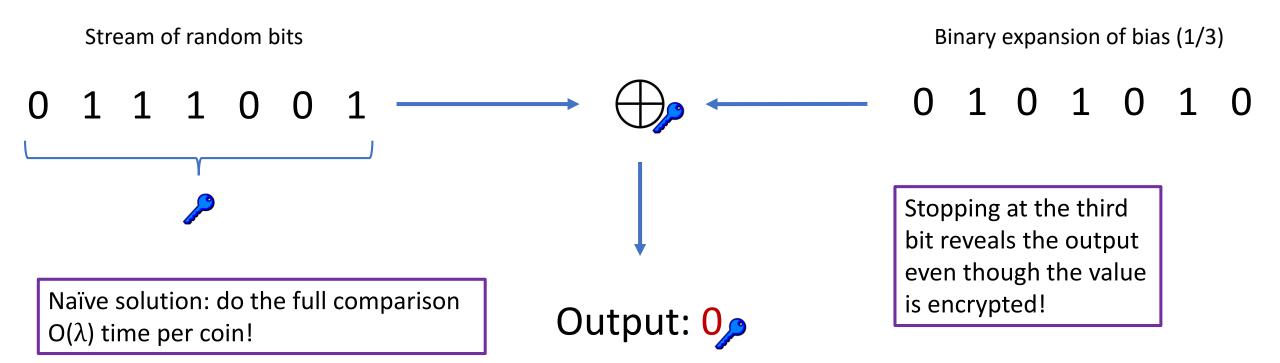


No output



No output





Our Work – Theory

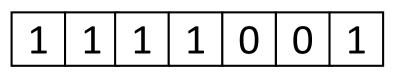
Reduce the complexity for sampling common noise distributions securely

- Improved amortized complexity for sampling a biased coin from $O(\lambda)$ to $O(\log \lambda)$
- Novel use of oblivious stacks [ZE'13]

Application to widely used differentially private algorithms (e.g. report-noisy-max/exponential mechanism [MT'07])

Our Approach – secure lazy sampling

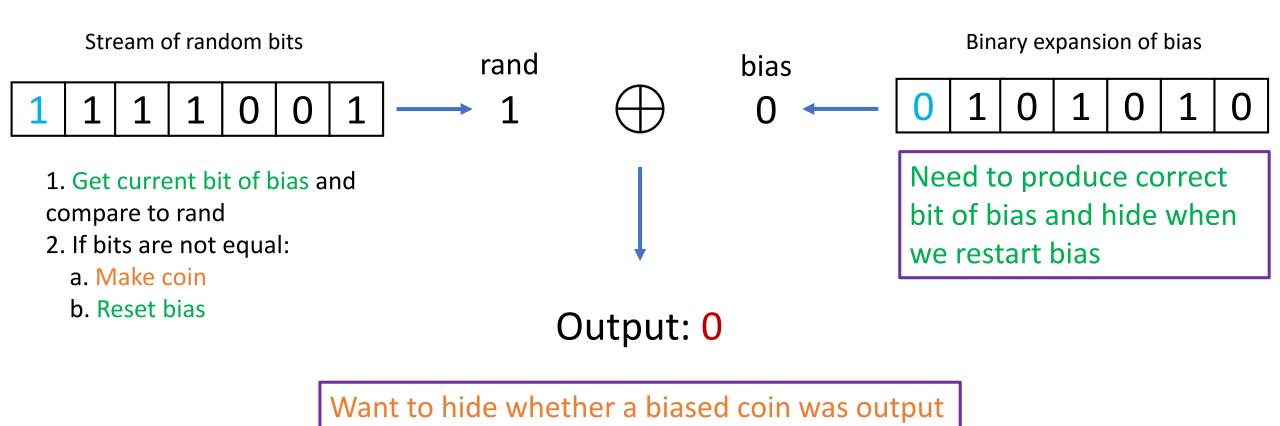
Stream of random bits



rand

Binary expansion of bias

Our Approach – secure lazy sampling



Oblivious data structures

- Best known example: ORAM [GO'97]
 - Major recent progress, but not suited for single bit data blocks
- Oblivious stacks [ZE13] are a more efficient alternative
 - We modify the construction from [ZE13] to suit our application

Role: Conditionally make coin

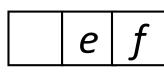
Push-only stack

Current stack:

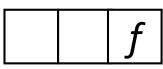
Conditional push

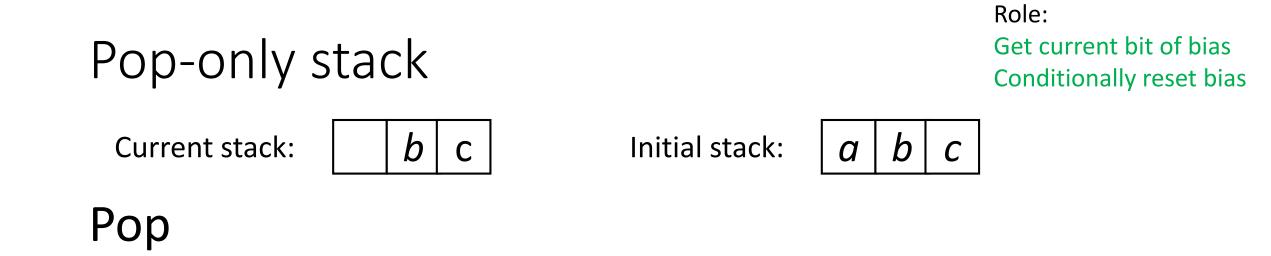
Given input element *e* and condition *c*:

If *c* = 1:

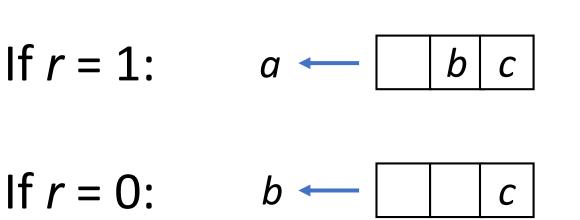


If *c* = 0:





Given reset bit *r*:



(reset to initial and pop)

(pop from current stack)

Pop-only stack

Role: Get current bit of bias Conditionally reset bias

Conditional reset

Given reset bit *r* and condition *c* (stack is untouched):

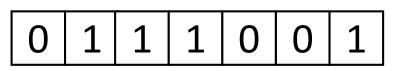
If *c* = 1: set *r* = 1

If c = 0: nothing

Oblivious stack complexity

Conditional push, pop, and conditional reset can all be implemented such that the amortized complexity per operation is O(log *n*) for total capacity *n*

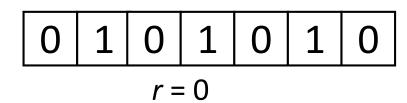
Stream of random bits



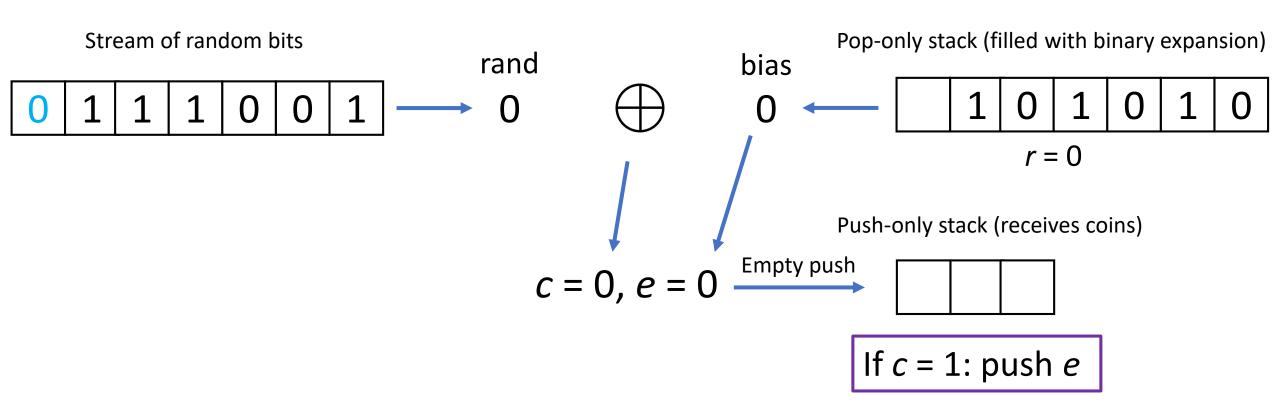
rand

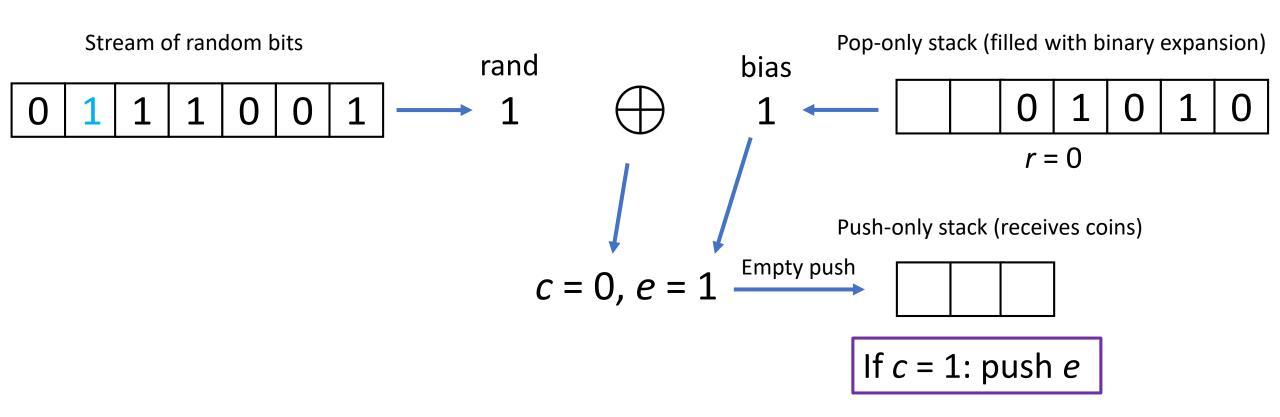
bias

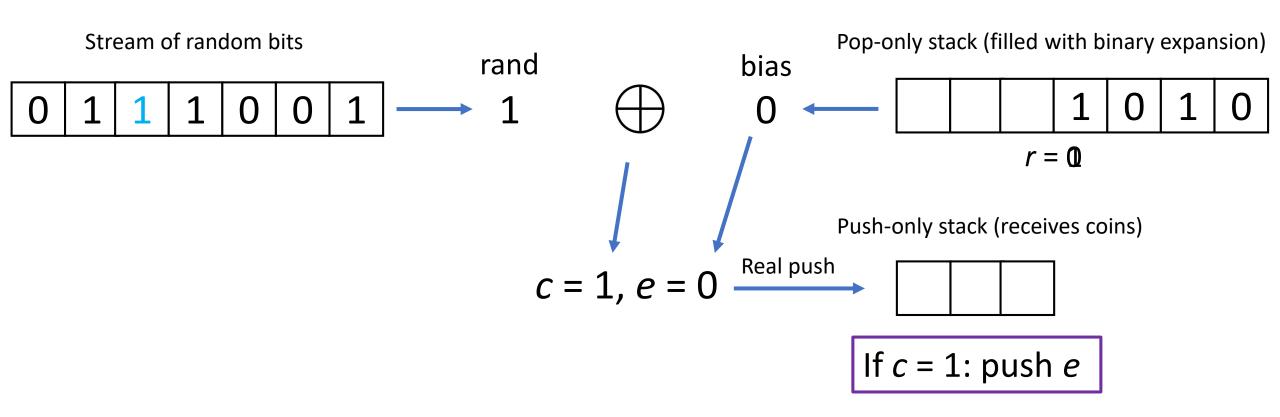
Pop-only stack (filled with binary expansion)

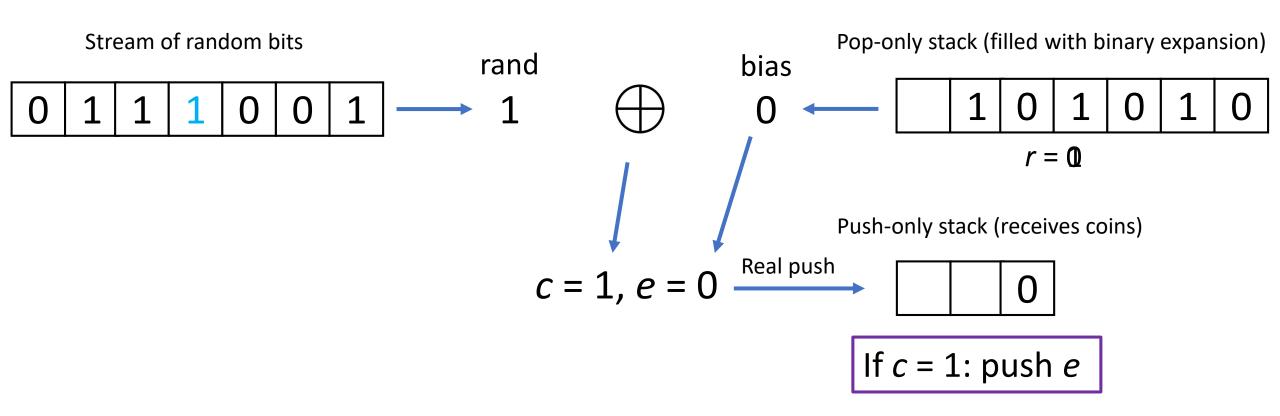


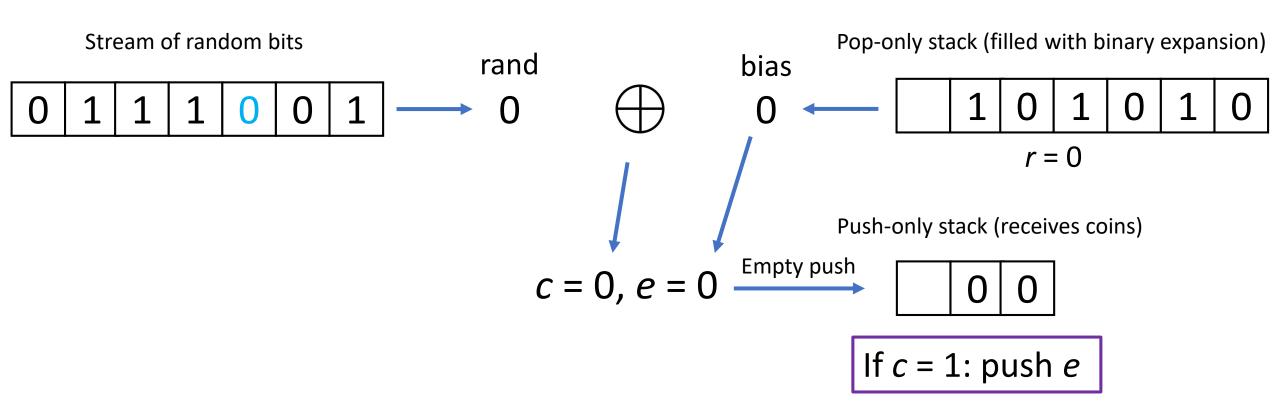
Push-only stack (receives coins)

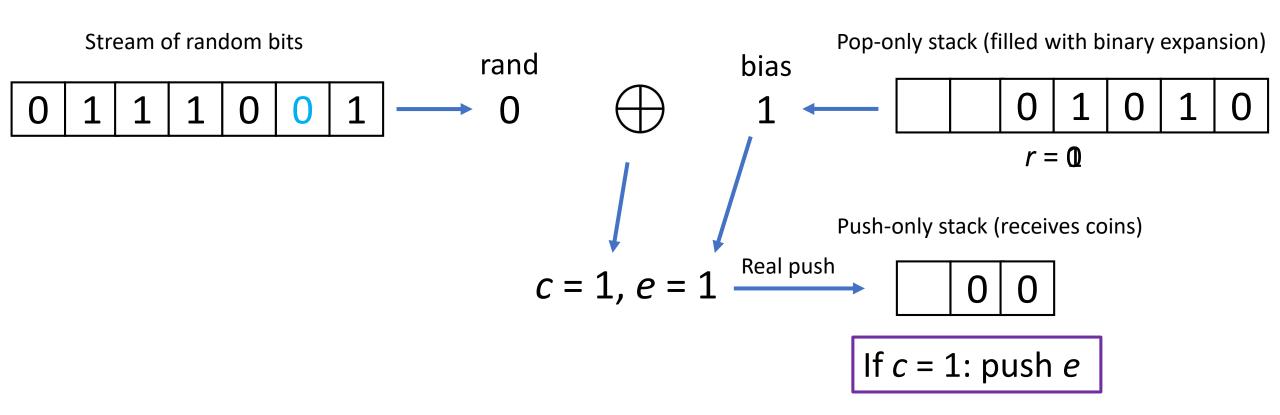


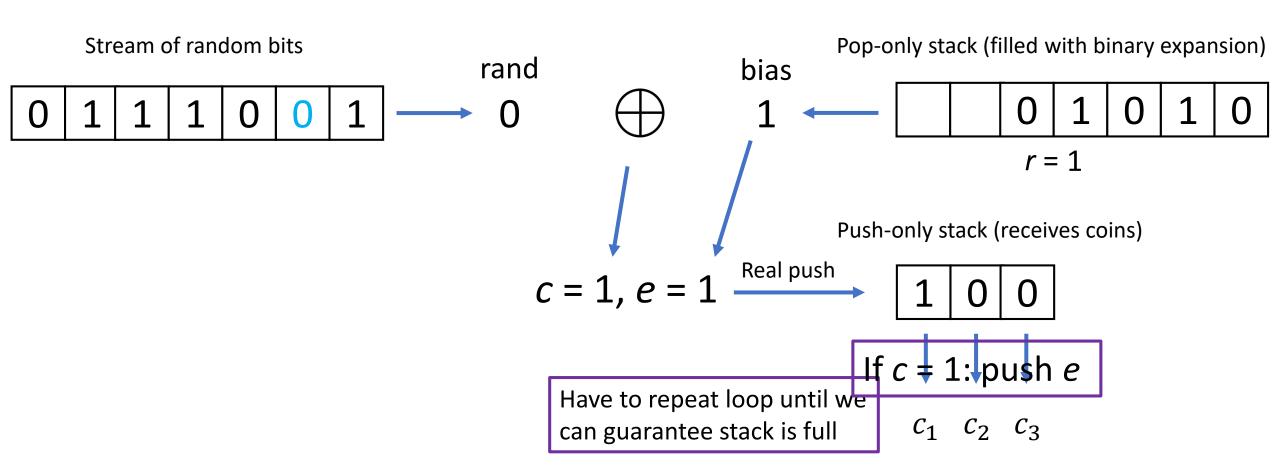












Summary

Our secure sampling protocol allows us to:

- Exponentially reduce the amortized cost of flipping a biased coin
- Sample hundreds of times faster than previous implementations
- Generate 500k samples from the geometric distribution in 7 min

We give the first complete, secure implementation of the exponential mechanism [MT07] for differential privacy

Thanks for listening!

Full paper: https://eprint.iacr.org/2019/823.pdf

Code: https://gitlab.com/neucrypt/securely_sampling