Securely Sampling Biased Coins with Applications to Differential Privacy

Jeffrey Champion, abhi shelat, Jonathan Ullman
Northeastern University

This talk

Asymptotically and
concretely more efficient

Improved protocols for securely generating noise from common distributions
arising in differential privacy [DMNS'06]
eg.
geometric,
binomial,
poisson

Suppose two or more hospitals want to jointly compute statistics of their patients data

However, sharing data may be prohibited

An ideal solution: find a trusted third party

Trusted party

A trusted party is usually not available
Release only the output of the study

Secure Computation

> Even the output will reveal patient data [DNO3]

Encrypted protocol

f(${ }^{\text {曷) }}$

Reveal only the output

Differential Privacy [DMNS06]

Strong guarantee of privacy for the patients.
Widely deployed in practice (e.g. Google, Apple, Uber, US Census Bureau)

Have to design secure protocols

Bottleneck: generating random noise

Typical DP algorithms use noise from Gaussian, Laplace, or Exponential distributions:

Approximating using floating points can destroy privacy [Mironov'12]

Bottleneck: generating random noise

Discrete distributions are more amenable to secure computation:

Still need to sample with high precision to ensure privacy

Prior work

- Inspired by [DKMMN'06]
- Proposed combining differential privacy and secure computation
- Identified the problem of noise generation
- Gave protocols for sampling noise with various tradeoffs between resources
- [EKMPP'14] implemented floating point arithmetic in secure computation in order to compute Laplace noise
- [AC'15] implemented Laplace noise sampling with two parties using a cut-and-choose protocol (polynomial security)

Our Work - Theory

Reduce the complexity for sampling common noise distributions securely

- Improved amortized complexity for sampling a biased coin from $O(\lambda)$ to $O(\log \lambda)$
- Novel use of oblivious stacks [ZE'13]

Application to widely used differentially private algorithms (e.g. report-noisy-max/exponential mechanism [MT'07])

Our Work - Empirical

Full open source implementation in Obliv-C [ZE'15]

- Includes both our protocol and [DKMMN’06]

Experimental evaluation

- Consider a practical variant of our protocol (slightly worse asymptotic complexity)
- Improved cost, runtime, and communication for generating noise in specific differential privacy applications

Practical improvement

Experiment: generating d samples of geometric noise in 2PC with our method and the trivial method

[EKMPP'14] generate one Laplace sample in 15s [AC'15] generate one Laplace sample in 9s

Generating Noise Insecurely

Steps to sample geometric noise with parameter $0<p^{\circ}<1$

1. Sample a uniform real number: $0<u<1$
2. Compute the inverse CDF:

$$
F^{-1}(u)=\left\lfloor\frac{\ln (1-u)}{\ln (1-p)}\right\rfloor
$$

Computing logarithms is costly in MPC. Using finite arithmetic has hard-to-understand effects.

Generating Noise Insecurely: Biased Coins

Steps to sample geometric noise with parameter $0<p<1$

1. Find a coin with bias p ($\mathrm{P}[$ heads $]=p$)
2. Flip the coin until it comes up heads
3. Count the number of tails before the first heads

Only simple, discrete operations. Using finite precision has predictable effects.

Securely sampling fair coins

Sampling fair coins in a secure computation is easy

How can we convert fair coins to biased coins in a secure computation?

Insecure Biased Coins: Lazy Comparison

Stream of random bits

r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	\ldots

Binary expansion of bias $0<p<1$

b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	\ldots

Insecure Biased Coins: Lazy Comparison

Stream of random bits

0	1	1	1	0	0	...

rand

Binary expansion of bias (1/3)
bias

0	1	0	1	0	1	\ldots

Insecure Biased Coins: Lazy Comparison

$$
\begin{aligned}
& \text { If (rand } \neq \text { bias): } \\
& \text { output bias }
\end{aligned}
$$

No output

Insecure Biased Coins: Lazy Comparison

$$
\begin{gathered}
\text { If (rand } \neq \text { bias): } \\
\text { output bias }
\end{gathered}
$$

No output

Insecure Biased Coins: Lazy Comparison

If (rand \neq bias):
output bias

Stream of random bits

| 0 | 1 | 1 | 1 | 0 | 0 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\longrightarrow 1$

E[\# of comparisons] = 2 per coin $O(1)$ time per coin
Output: 0

Securely Generating Biased Coins?

If (rand \neq bias):
output bias

Stream of random bits

0	1	1	1	0	0	...

rand

Binary expansion of bias (1/3)
bias
\square

Securely Generating Biased Coins?

$$
\begin{aligned}
& \text { If (rand } \neq \text { bias): } \\
& \text { output bias }
\end{aligned}
$$

Stream of random bits

Binary expansion of bias (1/3)

```
\begin{array} { | l | l | l | l l l l l l l l } { \hline 0 } & { 1 } & { 0 } & { 1 } & { 0 } & { 1 } & { 0 } \\ { \hline } \end{array}
```

λ bits of precision (error $2^{-\lambda}$)

Securely Generating Biased Coins?

$$
\begin{gathered}
\text { If (rand } \neq \text { bias): } \\
\text { output bias }
\end{gathered}
$$

Stream of random bits

bias

Binary expansion of bias (1/3)

No output

Securely Generating Biased Coins?

If (rand \neq bias):
output bias

Stream of random bits

bias

Binary expansion of bias (1/3)
\square

No output

Securely Generating Biased Coins?

$$
\begin{aligned}
& \text { If (rand } \neq \text { bias): } \\
& \text { output bias }
\end{aligned}
$$

Stream of random bits

bias
\square

Binary expansion of bias (1/3)

Stopping at the third bit reveals the output even though the value is encrypted!

Securely Generating Biased Coins

Output rand ${ }^{2}<$ bias

Stream of random bits
Binary expansion of bias (1/3)

Our Work - Theory

Reduce the complexity for sampling common noise distributions securely

- Improved amortized complexity for sampling a biased coin from $O(\lambda)$ to $O(\log \lambda)$
- Novel use of oblivious stacks [ZE'13]

Application to widely used differentially private algorithms (e.g. report-noisy-max/exponential mechanism [MT’07])

Our Approach - secure lazy sampling

Stream of random bits

1	1	1	1	0	0	1

rand

Binary expansion of bias
bias
\square

Our Approach - secure lazy sampling

Stream of random bits

1	1	1	1	0	0	1

1. Get current bit of bias and compare to rand
2. If bits are not equal:
a. Make coin
b. Reset bias

Binary expansion of bias
bias

Need to produce correct bit of bias and hide when we restart bias

Output: 0

Want to hide whether a biased coin was output

Oblivious data structures

- Best known example: ORAM [GO’97]
- Major recent progress, but not suited for single bit data blocks
- Oblivious stacks [ZE13] are a more efficient alternative
- We modify the construction from [ZE13] to suit our application

Push-only stack

Conditional push

Given input element e and condition c :
If $c=1$:

If $c=0$:

Pop-only stack

Pop

Given reset bit r :

$$
\begin{array}{ll}
\text { If } r=1: & a \longleftarrow \square|b| c \\
\text { If } r=0: & b \longleftarrow \square \square
\end{array} \quad \text { (reset to initial and pop) }
$$

Pop-only stack

Conditional reset

Given reset bit r and condition c (stack is untouched):

$$
\begin{array}{ll}
\text { If } c=1: & \text { set } r=1 \\
\text { If } c=0: & \text { nothing }
\end{array}
$$

Oblivious stack complexity

Conditional push, pop, and conditional reset can all be implemented such that the amortized complexity per operation is $\mathrm{O}(\log n)$ for total capacity n

Oblivious Stacks in context

Stream of random bits

0	1	1	1	0	0	1

rand

bias
Pop-only stack (filled with binary expansion)

$$
r=0
$$

Push-only stack (receives coins)

Oblivious Stacks in context

Stream of random bits

0	1	1	1	0	0	1

Pop-only stack (filled with binary expansion)
bias

$$
r=0
$$

Push-only stack (receives coins)

$c=0, e=0 \xrightarrow{\text { Empty push }}$		

If $c=1$: push e

Oblivious Stacks in context

Stream of random bits

0	1	1	1	0	0	1

Oblivious Stacks in context

Stream of random bits

Pop-only stack (filled with binary expansion)

$r=\mathbb{Q}$

Push-only stack (receives coins)

$$
c=1, e=0 \xrightarrow{\text { Real push }} \begin{array}{|l|l|l|}
\hline & & \\
\hline
\end{array}
$$

$$
\text { If } c=1 \text { : push } e
$$

Oblivious Stacks in context

Stream of random bits

0	1	1	1	0	0	1

Pop-only stack (filled with binary expansion)
bias

$$
r=\mathbb{Q}
$$

Push-only stack (receives coins)

$$
\text { If } c=1 \text { : push } e
$$

Oblivious Stacks in context

Stream of random bits

$$
\begin{gathered}
\text { rand } \\
0
\end{gathered}
$$

Pop-only stack (filled with binary expansion)

Oblivious Stacks in context

Stream of random bits

Pop-only stack (filled with binary expansion)

Oblivious Stacks in context

Stream of random bits

Pop-only stack (filled with binary expansion)

Summary

Our secure sampling protocol allows us to:

- Exponentially reduce the amortized cost of flipping a biased coin
- Sample hundreds of times faster than previous implementations
- Generate 500 k samples from the geometric distribution in 7 min

We give the first complete, secure implementation of the exponential mechanism [MT07] for differential privacy

Thanks for listening!

Full paper: https://eprint.iacr.org/2019/823.pdf
Code: https://gitlab.com/neucrypt/securely sampling

