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No-Cloning vs No-Telegraphing

• Equivalent: a set of quantum states is clonable iff it is telegraphable

• Nehoran and Zhandry [NZ24] show that such an equivalence no 
longer holds when computational efficiency is considered: there are 
sets of states that can be cloned but cannot be telegraphed
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No-Cloning vs No-Telegraphing

• Equivalent: a set of quantum states is clonable iff it is telegraphable

• Nehoran and Zhandry [NZ24]: there are sets of states that can be 
efficiently cloned but cannot be efficiently telegraphed

Can we further leverage the computational 
hardness of telegraphing compared to cloning?
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Unclonable Cryptography

• Quantum money [Wie83]

• Quantum copy-protection [Aar09]

• Unclonable encryption [Got03, BL20]

…

Current constructions of these primitives use 
very strong or non-standard assumptions!
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encrypts random 𝑚 ∈ {0,1}𝜆

|ct′⟩ |ct′′⟩

Adversary Challenger

entangled

output 𝑚′ output 𝑚′′

Adversary wins if 𝑚 = 𝑚′ = 𝑚′′ 
with noticeable probability

Can be constructed information theoretically!

[BL20]
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|ct⟩
encrypts 𝑚𝑏 for random 𝑏 ∈ {0,1}

|ct′⟩ |ct′′⟩

Adversary Challenger

entangled

output 𝑏′ output 𝑏′′

𝑚0, 𝑚1

Adversary wins if 𝑏 = 𝑏′ = 𝑏′′ with 
noticeable probability over 1/2

No constructions in the plain model 
from standard assumptions!

[BL20]



Why Is Semantically Secure UE So Much Harder?

1. Entanglement makes the standard search to decision techniques 
challenging to implement

2. (Second stage) adversary learning the key along with a function of 
the ciphertext is at odds with most classical cryptographic 
techniques



Why Is Semantically Secure UE So Much Harder?

1. Entanglement makes the standard search to decision techniques 
challenging to implement

2. (Second stage) adversary learning the key along with a function of 
the ciphertext is at odds with most classical cryptographic 
techniques

Does untelegraphability still provide a meaningful notion here?



Semantically Secure Untelegraphable Encryption 

|ct⟩
encrypts 𝑚𝑏 for random 𝑏 ∈ {0,1}

st

Adversary Challenger

output 𝑏′

𝑚0, 𝑚1

Adversary wins if 𝑏 = 𝑏′ with 
noticeable probability over 1/2



Our Results

Untelegraphable Encryption (UTE):

• Information-theoretic semantic security in the plain model

• Collusion-resistant security from secret key encryption (SKE)

• Bounded-collusion security with small parameters from pseudorandom state generators (PRSG)

• Everlasting (collusion-resistant) security in the quantum random oracle model (QROM) 

• Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an 
unbounded polynomial number of decryptors

• Untelegraphable functional encryption

Applications:

• Hyper-efficient shadow tomography cannot exist if PRSGs exist, and “weakly-efficient” shadow 
tomography cannot exist in the QROM

• Secret sharing for all poly-size policies that is resilient to joint and unbounded classical leakage
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Our Results

Applications:

• Hyper-efficient shadow tomography cannot exist if collusion-resistant UTE exists, and “weakly-efficient” 
shadow tomography cannot exist if everlasting collusion-resistant UTE exists

• Secret sharing for all poly-size policies that is resilient to joint and unbounded classical leakage

Previously required oracles [Aar19,Kre21] 
or indistinguishability obfuscation [ÇG24]!

Can relax collusion-resistance to 
get a lower-bound from PRSGs!



Our Results

Applications:

• Secret sharing for all poly-size policies that is resilient to joint and unbounded classical leakage

[ÇGLR24]: limited to local leakage on each share 



Our Results

Untelegraphable Encryption (UTE):

• Information-theoretic semantic security in the plain model

• Collusion-resistant security from one-way functions (OWFs)

• Everlasting (collusion-resistant) security in the quantum random oracle model (QROM) 

• Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an 
unbounded polynomial number of decryptors

• Untelegraphable functional encryption

Applications:

• Hyper-efficient shadow tomography cannot exist if collusion-resistant UTE exists, and “weakly-efficient” 
shadow tomography cannot exist if everlasting collusion-resistant UTE exists

• Secret sharing for all poly-size policies that is resilient to joint and unbounded classical leakage

This Talk
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Functions like a regular SKE scheme:

KeyGen 1𝜆 → (ek, dk)

Decrypt dk, ct → 𝑚

Encrypt ek, 𝑚 → ct

But can also fake ciphertexts:

Fake ek → (ct, st)

Reveal st, 𝑚′ → dk′

Adversary Challenger

Security:

𝑚∗

ct∗, dk∗

guess if the ciphertext 
ct∗ and key dk∗ are fake

repeats

Encrypt ek, 𝑚

𝑚

[JL00,CHK05]

Can be constructed from OWFs!



Warm-Up: Constructing Semantically Secure UTE

• Ingredients:
• One-way secure UTE (follows from one-way secure UE)

• Universal hash family with domain {0,1}𝑛 and range {0,1}𝜆

• Construction (for 1-bit messages):
• Secret key: the OW secure UTE key skOW, a function ℎ from the hash 

family, and a random string 𝑟 ∈ {0,1} 

• Ciphertext: An encryption |ctOW⟩ of a random message 𝑥 ∈ 0,1 𝑛 and a 
string 𝑟′ = 𝑟 ⊕ ℎ 𝑥 ⊕ 𝑚
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• Ingredients:
• One-way secure UTE (follows from one-way secure UE)

• Universal hash family with domain {0,1}𝑛 and range {0,1}𝜆

• Construction:
• Secret key: the OW secure UTE key skOW, a random function ℎ from the 

hash family, and a random string 𝑟 ∈ {0,1}𝜆

• Ciphertext for message 𝑚 ∈ {0,1}𝜆: an encryption |ctOW⟩ of a random 
message 𝑥 ∈ 0,1 𝑛 and a string 𝑟′ = 𝑟 ⊕ ℎ 𝑥 ⊕ 𝑚

Functions like a 
“one-time NCE”
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st

Adversary Challenger

output 𝑏′

(skOW, ℎ)

(skOW, ℎ, 𝑟)

Adversary wins if 𝑏 = 𝑏′ with 
noticeable probability over 1/2

By OW security, 𝑥 has high entropy 
from the view of the second stage 
adversary even given skOW!

𝑚0, 𝑚1

(|ctOW⟩, 𝑟′)

uniform

𝑟′ ⊕ ℎ 𝑥 ⊕ 𝑚𝑏

Thus, ℎ(𝑥) is uniform and hides 
𝑚𝑏 by the leftover hash lemma



Collusion-Resistant UTE

• Ingredients:
• One-time semantically secure UTE (just shown)

• Non-Committing SKE

• Construction:
• Encryption and decryption key: the NCE encryption and decryption keys

• Ciphertext for message 𝑚: sample a secret key sk1UTE for the one-time 
UTE scheme, output an encryption |ct1UTE⟩ of 𝑚 along with an NCE 
encryption ctNCE of sk1UTE
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Proving Security

encrypts 0

st

Adversary Challenger

output 𝑏′

𝑚0, 𝑚1

Adversary wins if 𝑏 = 𝑏′ with 
noticeable probability over 1/2

repeats
samples random 𝑏 ∈ {0,1}

(|ct1UTE⟩, ctNCE)

fake encryption

(ek, dk)

dk

reveals sk1UTE  Can fake NCE part of a given 
query and still answer others

Can switch UTE ciphertext 
of the same query to an 
encryption of 0
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[Aar19]
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Set of 𝑀 binary outcome measurements that act 
on 𝑛 qubit states (represented by a circuit 𝐸)



Shadow Tomography

|𝜑⟩⨂𝑘

𝑘 copies of an 
unknown state

shadow 
tomographer 
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[Aar19]

𝐸: 𝑀 × ℋ → {0,1}

𝐶

Can be done with poly(log 𝑀 , 𝑛, 1/𝜖) copies!

Quantum circuit that estimates 
Pr[𝐸(𝑖, |𝜑⟩) = 1] up to error 𝜖

Set of 𝑀 binary outcome measurements that act 
on 𝑛 qubit states (represented by a circuit 𝐸)



Hyper-Efficient Shadow Tomography (HEST)
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𝐸: 𝑀 × ℋ → {0,1}

𝐶

A shadow tomography procedure is hyper-efficient if both 
the runtime and number of copies is poly(log 𝑀 , 𝑛, 1/𝜖)

Quantum circuit that estimates 
Pr[𝐸(𝑖, |𝜑⟩) = 1] up to error 𝜖

Set of 𝑀 binary outcome measurements that act 
on 𝑛 qubit states (represented by a circuit 𝐸)
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|𝜑⟩⊗𝑘

𝑘 copies of an 
unknown state

𝐸

|ct⟩⊗𝑘

𝑘 encryptions of 
a bit 𝑏 ∈ {0,1}

[𝑀]
indices for 𝐸

𝒟𝒦
set of decryption keys

circuit of interest

Decrypt
decryption circuit



shadow 
tomographer 

9000

Attacking UTE with HEST
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encrypts 𝑏
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Adversary Challenger

compare 𝐶 dk  to ½ and 
output 𝑏′ accordingly

0,1

Adversary wins if 𝑏 = 𝑏′ with 
noticeable probability over 1/2

repeats
samples random 𝑏 ∈ {0,1}

query 𝑘 times

(ek, dk)

dk
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Attacking UTE with HEST

|ct⟩
encrypts 𝑏

st = 𝐶

Adversary Challenger

compare 𝐶 dk  to ½ and 
output 𝑏′ accordingly

0,1

Adversary wins if 𝑏 = 𝑏′ with 
noticeable probability over 1/2

repeats
samples random 𝑏 ∈ {0,1}

query 𝑘 times

(ek, dk)

dk

Wins game with optimal  

advantage as long as 𝜖 <
1

2



Open Problems

• Ruling out HEST for pure states: collusion-resistant UTE 
with pure ciphertexts and non-trivial security is sufficient

• Everlasting UTE in the plain model

• More applications of UTE and untelegraphability



Thanks for listening!

https://arxiv.org/abs/2410.24189
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