Untelegraphable Encryption and its Applications

Jeffrey Champion, Fuyuki Kitagawa, Ryo Nishimaki, Takashi Yamakawa

No-Cloning Theorem

No-Cloning Theorem

No-Telegraphing Theorem

(previously called no-teleportation)

No-Telegraphing Theorem

(previously called no-teleportation)

No-Cloning vs No-Telegraphing

Equivalent: a set of quantum states is clonable iff it is telegraphable

No-Cloning vs No-Telegraphing

Equivalent: a set of quantum states is clonable iff it is telegraphable

 Nehoran and Zhandry [NZ24]: there are sets of states that can be efficiently cloned but cannot be efficiently telegraphed

No-Cloning vs No-Telegraphing

• Equivalent: a set of quantum states is clonable iff it is telegraphable

 Nehoran and Zhandry [NZ24]: there are sets of states that can be efficiently cloned but cannot be efficiently telegraphed

Can we further leverage the computational hardness of telegraphing compared to cloning?

Unclonable Cryptography

Quantum money [Wie83]

Quantum copy-protection [Aar09]

Unclonable encryption [Got03, BL20]

•••

Unclonable Cryptography

Quantum money [Wie83]

Quantum copy-protection [Aar09]

• Unclonable encryption [Got03, BL20]

•••

Current constructions of these primitives use very strong or non-standard assumptions!

Unclonable Encryption (UE)

[BL20]

Unclonable Encryption (UE)

Adversary

Challenger

Semantically Secure UE

Semantically Secure UE

Why Is Semantically Secure UE So Much Harder?

1. Entanglement makes the standard search to decision techniques challenging to implement

2. (Second stage) adversary learning the key along with a function of the ciphertext is at odds with most classical cryptographic techniques

Why Is Semantically Secure UE So Much Harder?

 Entanglement makes the standard search to decision techniques challenging to implement

2. (Second stage) adversary learning the key along with a function of the ciphertext is at odds with most classical cryptographic techniques

Does untelegraphability still provide a meaningful notion here?

Semantically Secure Untelegraphable Encryption

Untelegraphable Encryption (UTE):

• Information-theoretic semantic security in the plain model

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)

Adversary can make many encryption queries, separates UTE from UE

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)

Second stage adversary can be computationally unbounded

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)
- Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an unbounded polynomial number of decryptors

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)
- Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an unbounded polynomial number of decryptors
- Untelegraphable functional encryption

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)
- Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an unbounded polynomial number of decryptors
- Untelegraphable functional encryption

Previously required oracles [Aar19,Kre21] or indistinguishability obfuscation [ÇG24]!

Can relax collusion-resistance to get a lower-bound from PRSGs!

Applications:

 Hyper-efficient shadow tomography cannot exist if collusion-resistant UTE exists, and "weakly-efficient" shadow tomography cannot exist if everlasting collusion-resistant UTE exists

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)
- Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an unbounded polynomial number of decryptors
- Untelegraphable functional encryption

Applications:

- Hyper-efficient shadow tomography cannot exist if collusion-resistant UTE exists, and "weakly-efficient" shadow tomography cannot exist if everlasting collusion-resistant UTE exists
- Secret sharing for all poly-size policies that is resilient to *joint* and *unbounded* classical leakage

[ÇGLR24]: limited to local leakage on each share

Untelegraphable Encryption (UTE):

- Information-theoretic semantic security in the plain model
- Collusion-resistant security from one-way functions (OWFs)
- Everlasting (collusion-resistant) security in the quantum random oracle model (QROM)
- Secure UTE from one-shot MACs in the classical oracle model, such that UE security is broken for an unbounded polynomial number of decryptors
- Untelegraphable functional encryption

This Talk

Applications:

- Hyper-efficient shadow tomography cannot exist if collusion-resistant UTE exists, and "weakly-efficient" shadow tomography cannot exist if everlasting collusion-resistant UTE exists
- Secret sharing for all poly-size policies that is resilient to joint and unbounded classical leakage

[JL00,CHK05]

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek,
$$m$$
) \rightarrow ct

$$Decrypt(dk, ct) \rightarrow m$$

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek, m) \rightarrow ct

 $Decrypt(dk, ct) \rightarrow m$

But can also **fake** ciphertexts:

Fake(ek) \rightarrow (ct, st)

Reveal(st, m') \rightarrow dk'

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek, m) \rightarrow ct

 $Decrypt(dk, ct) \rightarrow m$

But can also **fake** ciphertexts:

Fake(ek) \rightarrow (ct, st)

Reveal(st, m') \rightarrow dk'

Security:

Adversary

Challenger

[JL00,CHK05]

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek, m) \rightarrow ct

 $Decrypt(dk, ct) \rightarrow m$

But can also **fake** ciphertexts:

 $Fake(ek) \rightarrow (ct, st)$

Reveal(st, m') \rightarrow dk'

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek, m) \rightarrow ct

 $Decrypt(dk, ct) \rightarrow m$

But can also **fake** ciphertexts:

Fake(ek)
$$\rightarrow$$
 (ct, st)

Reveal(st, m') \rightarrow dk'

Primary Tool: Non-Committing SKE (NCE)

[JL00,CHK05]

Functions like a regular SKE scheme:

$$\text{KeyGen}(1^{\lambda}) \rightarrow (\text{ek, dk})$$

Encrypt(ek, m) \rightarrow ct

 $Decrypt(dk, ct) \rightarrow m$

But can also **fake** ciphertexts:

Fake(ek) \rightarrow (ct, st)

Reveal(st, m') \rightarrow dk'

Warm-Up: Constructing Semantically Secure UTE

- Ingredients:
 - One-way secure UTE (follows from one-way secure UE)
 - Universal hash family with domain $\{0,1\}^n$ and range $\{0,1\}^\lambda$

Warm-Up: Constructing Semantically Secure UTE

Ingredients:

- One-way secure UTE (follows from one-way secure UE)
- Universal hash family with domain $\{0,1\}^n$ and range $\{0,1\}^\lambda$

Construction:

• Secret key: the OW secure UTE key $\mathrm{sk}_{\mathrm{OW}}$, a random function h from the hash family, and a random string $r \in \{0,1\}^{\lambda}$

Warm-Up: Constructing Semantically Secure UTE

Ingredients:

- One-way secure UTE (follows from one-way secure UE)
- Universal hash family with domain $\{0,1\}^n$ and range $\{0,1\}^\lambda$

Construction:

- Secret key: the OW secure UTE key ${\rm sk}_{\rm OW}$, a random function h from the hash family, and a random string $r \in \{0,1\}^{\lambda}$
- Ciphertext for message $m \in \{0,1\}^{\lambda}$: an encryption $|\operatorname{ct}_{\mathrm{OW}}\rangle$ of a random message $x \in \{0,1\}^n$ and a string $r' = r \oplus h(x) \oplus m$

Functions like a "one-time NCE"

output b'

 m_b by the leftover hash lemma

output b'

Collusion-Resistant UTE

- Ingredients:
 - One-time semantically secure UTE (just shown)
 - Non-Committing SKE

Collusion-Resistant UTE

- Ingredients:
 - One-time semantically secure UTE (just shown)
 - Non-Committing SKE
- Construction:
 - Encryption and decryption key: the NCE encryption and decryption keys

Collusion-Resistant UTE

- Ingredients:
 - One-time semantically secure UTE (just shown)
 - Non-Committing SKE
- Construction:
 - Encryption and decryption key: the NCE encryption and decryption keys
 - Ciphertext for message m: sample a secret key $\mathrm{sk_{1UTE}}$ for the one-time UTE scheme, output an encryption $|\mathrm{ct_{1UTE}}\rangle$ of m along with an NCE encryption $\mathrm{ct_{NCE}}$ of $\mathrm{sk_{1UTE}}$

output b'

output b'

output b'

Can switch UTE ciphertext of the same query to an encryption of 0

output b'

Shadow Tomography

[Aar19]

Shadow Tomography

$$E: [M] \times \mathcal{H} \rightarrow \{0,1\}$$

Set of M binary outcome measurements that act on n qubit states (represented by a circuit E)

Shadow Tomography

$$E: [M] \times \mathcal{H} \rightarrow \{0,1\}$$

Set of M binary outcome measurements that act on n qubit states (represented by a circuit E)

Hyper-Efficient Shadow Tomography (HEST)

$$E: [M] \times \mathcal{H} \rightarrow \{0,1\}$$

Set of M binary outcome measurements that act on n qubit states (represented by a circuit E)

A shadow tomography procedure is *hyper-efficient* if both the runtime and number of copies is $poly(log(M), n, 1/\epsilon)$

k copies of an unknown state

k encryptions of a bit $b \in \{0,1\}$

k copies of an unknown state

k encryptions of a bit $b \in \{0,1\}$

 \mathcal{DK}

set of decryption keys

k copies of an unknown state

[M]

indices for *E*

E

circuit of interest

k encryptions of a bit $b \in \{0,1\}$

 \mathcal{DK}

set of decryption keys

Decrypt

decryption circuit

Attacking UTE with HEST

compare C(dk) to $\frac{1}{2}$ and

output b' accordingly

Attacking UTE with HEST

compare C(dk) to $\frac{1}{2}$ and

output b' accordingly

Open Problems

 Ruling out HEST for pure states: collusion-resistant UTE with pure ciphertexts and non-trivial security is sufficient

Everlasting UTE in the plain model

More applications of UTE and untelegraphability

Thanks for listening!

https://arxiv.org/abs/2410.24189