
Copyright

by

Jonathan Bryan Li

2025

1

The Thesis Committee for Jonathan Bryan Li
certifies that this is the approved version of the following thesis:

Specialized Solvers for Structured Convex Programs in

High-Dimensional Statistics

SUPERVISING COMMITTEE:

Kevin Tian, Supervisor

Qiang Liu

2

Specialized Solvers for Structured Convex Programs in

High-Dimensional Statistics

by

Jonathan Bryan Li

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

The University of Texas at Austin

May 2025

3

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T. S. Eliot

Every valley shall be lifted up,

and every mountain and hill be made low;

the uneven ground shall become level,

and the rough places a plain.

Isaiah 40:4 (ESV)

4

Acknowledgments

This thesis would not have been possible without the support, guidance, and encour-

agement of many incredible individuals, each of whom has contributed in meaningful

ways to its completion.

First and foremost, I would like to thank my advisor, Kevin Tian. It is no

exaggeration to say that I might never have pursued research had I not taken Kevin’s

Continuous Algorithms class. It was Kevin’s first time teaching a class at UT, but

his enthusiasm for the subject and his remarkable talent for conveying complex ideas

in intuitive ways sparked my own curiosity for theoretical computer science. As an

advisor and mentor, Kevin has been a seemingly infinite source of wisdom and pa-

tience, teaching me not only technical skills like how to write a bibliography or better

understand linear algebra, but also invaluable lessons in how to communicate ideas

clearly and organize research thoughtfully. There were times when I procrastinated or

asked far too many trivial questions, leading me to wonder whether I truly deserved

such a supportive advisor. Yet Kevin never lost patience, always encouraging me and

always helping me grow.

Next, I would like to thank Arun Jambulapati for being an exceptional col-

laborator and mentor. Meeting Arun after having read so many of his papers was a

surreal and inspiring experience — his brilliance in person matched what I had ad-

mired on paper. Arun motivated me to dive deeper into areas such as spectral graph

theory and numerical linear algebra, and I continue to be awed by both the breadth

5

and depth of his knowledge.

I would like to thank everyone else in the Tian Group — Syamantak, Shourya,

Chutong, Yusong, Jennifer, and Saloni — for a wonderful year filled with thought-

provoking reading groups and research discussions. I hope to continue learning about

diffusion models and differential privacy in the future.

I am deeply grateful to Qiang Liu for serving as a reader for this thesis and for

introducing me to the field of machine learning theory. I would also like to thank the

rest of UT Statistical Learning & AI Group and the entire GDC 4th floor for fostering

such an intellectually stimulating and supportive environment.

To Nathaniel and Gracie, two of my closest friends throughout college —

thank you for your constant advice, encouragement, and companionship. From Seoul

to Austin to Tromsø, we have been on countless adventures together, and I cannot

wait to embark on our next one. I would also like to thank Arthur, Steph, Simmy,

Baltej, and Jin for all the laughter and great memories we have shared over the years.

To Minshin, Toby, Gloria, Jaeni, Erin, Faith, James, Lydia, Dogyu, Hannah,

and Jay — thank you for being the best life group I could have asked for. We

experienced many ups and downs together, and I am grateful for how we grew as

a result. Your support provided me the encouragement and motivation to complete

this thesis, and I will always associate my thesis-writing days with the memories that

we made this year. I would also like to thank everyone else at AKPC for being part

of such a compassionate and faithful community.

To my childhood friends — Ben, Sharan, Kev, and Matthew — thank you

for helping me recognize my potential in math and encouraging me to pursue great

ambitions. I would not be where I am today without your influence and support.

Min Joo, thank you for being such a great friend and role model over the years.

From our silly antics during the pandemic to your down-to-earth advice, you have

always been someone I have learned from and admired. You are, in so many ways,

truly an inspiration.

6

It is difficult to express in words the gratitude that I have for my parents and

sister. They recognized and nurtured my interest in math from an early age and have

always been an unwavering source of love and support. Knowing that I can always

rely on them brings me comfort during challenging times — something I often take

for granted but deeply appreciate.

Finally, I would like to thank the almighty God for bringing each of these

wonderful people into my life and for His constant grace and love. Soli Deo Gloria.

7

Preface

This thesis was written during my fifth and final year at The University of Texas

at Austin, as part of the Integrated Five-Year Bachelor’s and Master’s Program in

Computer Science. It represents the culmination of my graduate studies, shaped by

an interest in the interplay between optimization, machine learning, and theoretical

computer science.

The goal of this thesis is to develop and analyze fast algorithms for solving

problems in high-dimensional statistics that can be formulated as convex programs.

By leveraging the structure of specific problems, we provide algorithms that signifi-

cantly outperform black-box convex programming solvers in both theory and practice,

particularly in the high-dimensional regime.

This thesis is organized into two main chapters, each corresponding to a dis-

tinct research problem and time period in my graduate work.

Chapter 2 roughly corresponds to work conducted between July and October

2024. It focuses on the analysis of an algorithm for solving a specific class of packing

linear programs where the constraint is given by the Ky Fan k-norm. We also discuss

an application of Ky Fan packing to fair principal component analysis, a concept that

may be of interest to the trustworthy machine learning community.

Chapter 3 roughly corresponds to work conducted from November 2024 to

April 2025. It is a simplified version of a paper written with Arun Jambulapati and

8

Kevin Tian, focusing on a fast algorithm for transforming datasets into a strong

geometric condition known as radial isotropic position. The algorithm is based on an

implicit, box-constrained Newton’s method, where a sparsification subroutine is used

to speed up the computation of matrix-vector products. We omit the details of the

sparsification algorithm but give a comprehensive analysis of the main algorithm in

both the well-conditioned and smoothed analysis settings.

9

Abstract

Specialized Solvers for Structured Convex Programs in

High-Dimensional Statistics

Jonathan Bryan Li, MSCompSci
The University of Texas at Austin, 2025

SUPERVISOR: Kevin Tian

Convex programming is a fundamental tool of modern optimization, with ap-

plications in areas such as machine learning, combinatorial optimization, and graph

theory. Despite their broad utility, general-purpose convex programming solvers such

as cutting-plane methods and interior-point methods often struggle to scale efficiently

in high-dimensional or large-scale settings. To address these limitations, we develop

specialized algorithms that bypass the computational bottlenecks of black-box solvers.

Specifically, we give efficient algorithms for solving Ky Fan packing linear programs

and for computing approximate Forster transforms — two problems with a plethora

of applications — and show that our algorithms significantly improve upon state-of-

the-art runtimes based on standard convex optimization techniques.

10

Contents

Acknowledgments 5

Preface 8

1 Introduction 13
1.1 Black-box convex programming . 14
1.2 Overview . 15

1.2.1 Primary objectives . 15
1.2.2 Main contributions . 16

1.3 Notation . 17

2 Ky Fan Packing 19
2.1 Packing linear programs . 19

2.1.1 The Ky Fan k-norm . 20
2.2 Ky Fan packing algorithm . 22

2.2.1 Future work . 27
2.3 Application to fair principal component analysis 27

2.3.1 SDP formulation of fair PCA 31

3 Fast Forster Transforms 32
3.1 Radial isotropic position . 32

3.1.1 Equivalent characterizations 34
3.2 Prior and related work . 40

3.2.1 Forster transforms via maximum entropy 42
3.2.2 Forster transforms via operator scaling 43
3.2.3 Reductions between graph primitives 43

11

3.3 Our results . 44
3.3.1 Main theorem . 45
3.3.2 Implicit sparsification . 47
3.3.3 Smoothed regime . 48
3.3.4 Computational model . 51

3.4 Optimizing Barthe’s objective via Newton’s method 51
3.4.1 Hessian stability of Barthe’s objective 52
3.4.2 Termination condition . 57
3.4.3 Box-constrained Newton’s method 58
3.4.4 Proof of Theorem 3.1 . 63

3.5 Conditioning of smoothed matrices 65
3.5.1 Diameter bound for deep vectors 66
3.5.2 Conditioning of wide and near-square smoothed matrices . . . 70
3.5.3 Conditioning of tall smoothed matrices 73
3.5.4 Assumption 3.1 for smoothed matrices 76
3.5.5 Extension to non-uniform c . 78

A Mathematical Facts 80
A.1 Matrix theory . 80
A.2 Convex analysis . 81
A.3 Useful inequalities . 84

Bibliography 85

12

Chapter 1

Introduction

Modern data science and statistical learning theory are characterized by increasingly

complex computational problems. As datasets grow in both size and dimensionality,

traditional methods often struggle to provide efficient, robust, or fair algorithms for

statistical primitives. The goal of this thesis is to address several algorithmic chal-

lenges at the intersection of theoretical computer science and practical data analysis,

with a particular focus on structured convex programs.

In recent decades, convex programming has emerged as a powerful technique

in mathematical optimization, with widespread applications ranging from control

theory to machine learning to combinatorial optimization. Although black-box convex

programming solvers have been known for decades, these traditional algorithms often

fail to capitalize on the structure of problems in high-dimensional statistics, leading

to poor scaling behavior for modern datasets.

In this thesis, we will specialize our discussion to the following problems.

Packing semidefinite programs. A subclass of convex programs, these problems,

as well as their dual covering semidefinite programs, investigate optimal convex com-

binations of vectors and matrices under various norm constraints. Solvers for packing

13

semidefinite programs can often be used as a black-box subroutine in practical algo-

rithms for, e.g., sparse recovery, clustering, and principal component analysis.

Radial isotropic position. In many data-driven applications, it is desirable that

the dataset satisfies certain regularity conditions after a preprocessing step. Radial

isotropic position is a strong geometric condition that combines the well-known reg-

ularizations of normalization and isotropic position, and it has found applications

in functional analysis, communication complexity, coding theory, and the design of

learning algorithms. Previous algorithms for radial isotropic position were based on

applying black-box convex optimization techniques, and we give a significantly faster

algorithm by designing a custom solver.

1.1 Black-box convex programming

Semidefinite programming (SDP) is a generalization of linear programming (LP) and

quadratic programming (QP) that optimizes a linear objective function over a spec-

trahedron, i.e. the intersection of the positive semidefinite cone with an affine space.

The standard form of an SDP is

max
⟨Ai,X⟩≤bi ∀i∈[n]

X∈Sd×d
⪰0

⟨C,X⟩ , 1 (1.1)

where {Ai}i∈[n],C ⊂ Sd×d and b ∈ Rn. A standard duality result shows that the dual

of (1.1) is

min∑
i∈[n] yiAi⪰C

y∈Rn
≥0

b⊤y. (1.2)

Both the primal and dual forms of SDPs have been well-studied in the literature, with

applications in areas such as machine learning [LCB+04, dGJL07, AW08, RSL18,

1See Section 1.3 for notation used throughout the thesis.

14

JLT20, Zha20], combinatorial optimization [GW94, KMS98, ARV09], and graph the-

ory [MS16, LS17, GSW22]. Polynomial-time high-accuracy SDP solvers have existed

for decades, and there are long lines of work dedicated to cutting-plane methods

[Kha80, GLS81, Vai96, GV02, BV04a, LSW15, JLSW20] and interior-point methods

[Kar84, NN94, Ans00, JKL+20, HJS+22] for solving SDPs.

Cutting-plane methods, and sometimes interior-point methods, extend to gen-

eral convex programs, including our approach to radial isotropic position. However,

even state-of-the-art cutting-plane methods are far too slow for practical applications,

which motivates the development of specialized solvers.

1.2 Overview

This thesis is divided into two main chapters. In Chapter 2, we investigate Ky Fan

packing LPs and an application to fair principal component analysis. In Chapter 3,

we give a fast algorithm for computing approximate Forster transforms.

1.2.1 Primary objectives

Our primary objective in Chapter 2 is to provide an algorithm that solves a Ky Fan

packing LP, a natural variant of the well-studied ℓ∞ packing LP. The problem can

roughly be stated as follows: given A ∈ Rd×n
≥0 , find primal solution x ∈ ∆n with

∥Ax∥ ≤ 1 + ϵ or dual solution y ∈ Y with A⊤y ≥ (1 − ϵ)1, where ∥·∥ is a suitable

norm and Y is a suitable dual set.

Our primary objective in Chapter 3 is to design a fast algorithm for computing

approximate Forster transforms, which can be thought of as finding an invertible

R ∈ Rd×d such that the unit vectors {(Rai) ∥Rai∥−1
2 }i∈[n] are in approximate isotropic

position, where {ai}i∈[n] ⊂ Rd is the given dataset. Here, our notion of approximate

isotropic position means that the second moment matrix is within a exp(±ϵ) factor

of Id.

15

1.2.2 Main contributions

Our main contributions consist of the following four theorems, where we give brief,

informal statements. Formal statements and detailed discussions of prior and related

work can be found in the respective chapters.

Theorem 1.1 (Informal, see Theorem 2.1). There is an algorithm that solves the

ϵ-approximate Ky Fan k-norm packing LP for A ∈ Rd×n
≥0 in time

Õ

(
nnz(A) · k

ϵ2

)
.

Theorem 1.2 (Informal, see Theorem 3.1). In the well-conditioned setting, there

is an algorithm that computes an ϵ-approximate Forster transform, with probability

≥ 1− δ, in time

O

(
ndω−1

(n

δϵ

)o(1))
.

Theorem 1.3 (Informal, see Theorem 3.2). Let Π := In − 1
n
1n1

⊤
n . There is an

algorithm that takes a matrix-vector product oracle O for a graph Laplacian L and

returns a graph Laplacian L̃ satisfying

L+∆Π ⪯ L̃ ⪯
(
nTr(L)
∆δ

)o(1)

(L+∆Π) and nnz(L̃) = n ·
(
nTr(L)
∆δ

)o(1)

using (nTr(L)
∆δ

)o(1) queries to O and n · (nTr(L)
∆δ

)o(1) additional time.

Theorem 1.4 (Informal, see Theorem 3.3). In the smoothed analysis setting, there

is an algorithm that computes an ϵ-approximate Forster transform, with probability

≥ 1− δ, in time

O

(
ndω

(n

δϵ

)o(1))
.

To our knowledge, all of these runtimes are state-of-the-art for the problems

that they solve. We conjecture that the runtime in Theorem 1.1 can be improved,

which we discuss in more detail in Section 2.2.1.

16

1.3 Notation

Throughout this thesis, we will use the following notation.

General notation. For d ∈ N, [d] := {1, 2, . . . , d} = {i ∈ N | i ≤ d}. Vectors are

denoted in lowercase boldface, and matrices are denoted in capital boldface. Õ hides

polylogarithmic factors in the problem parameters. ∥·∥ and ⟨·, ·⟩ denote a norm and

inner product, respectively. In particular, ∥·∥p denotes the ℓp or Schatten p-norm,

and ∥·∥op, ∥·∥tr, and ∥·∥F denote the Schatten ∞-, 1-, and 2-norms, respectively. For

a norm ∥·∥, x ∈ Rd, and r > 0, B∥·∥(x, r) := {y ∈ Rd | ∥x− y∥ ≤ r} denotes the ball

of radius r around x; if unspecified, ∥·∥ = ∥·∥2 and x = 0 is assumed. ∇k denotes

the kth partial derivative tensor of a k-times differentiable multivariate function. ei

denotes the ith standard basis vector of the vector space over R of the appropriate

dimension. IE denotes the indicator function of event E . conv(S) denotes the convex

hull of a set S.

Matrices and tensors. 0 and 1 denote the all-zeroes and all-ones tensors, respec-

tively, and I denotes the identity matrix; when the dimensions are not specified in a

subscript, the appropriate dimensions are assumed. Vectors in Rd are assumed to be

d × 1 matrices when appropriate. Span(A), rank(A), nnz(A), A⊤, and A† denote

the span, rank, number of nonzero entries, transpose, and Moore–Penrose inverse of

a matrix A, respectively. Tr(A) denotes the trace of A ∈ Rd×d. For A ∈ Rn×d and

k ∈ [min(n, d)], σk(A) denotes the kth largest singular value of A. For real matrices

A and B with the same dimensions, ⟨A,B⟩ := Tr(A⊤B) denotes the Frobenius inner

product. ◦ denotes the entrywise (Hadamard) product. ω denotes the matrix multi-

plication exponent, currently known to be approximately 2.37134 [ADV+25]. Tmv(A)

denotes the time required to compute Av for an arbitrary v. For a k-way tensor T

operating on a set of ℓ ∈ [k] inputs {v1, . . . ,vℓ}, T[v1, . . . ,vℓ] denotes the resulting

(k − ℓ)-way tensor, e.g. M[u,v] = u⊤Mv when M is a matrix. Ai: and A:j denote

the ith row and jth column of a matrix A, respectively; for sets of indices I and J ,

17

AI:, A:J , and AI:J denote the submatrices (Ai:)i∈I , (A:j)j∈J , and (Aij)i∈I,j∈J , respec-

tively. For A ∈ Rd×d, I ⊆ [d], and J := [d] \ I, SC(A, I) := AI:I − AI:JA
†
J :JAJ :I

denotes the Schur complement onto AI:I .

Symmetric matrices. Sd×d, Sd×d
≻0 , and Sd×d

⪰0 denote the sets of real symmetric,

positive definite, and positive semidefinite (PSD) d× d matrices, respectively, and ⪯

denotes the Loewner order. For w ∈ Rd, diag (w) denotes the diagonal matrix with

diagonal entries given by w. For A ∈ Sd×d with spectrum λ and eigendecomposition

UΛU⊤ (as guaranteed by Fact A.1) and a function f : λ → R, f(A) denotes the

matrix Uf(Λ)U⊤, where f(Λ) is applied on the diagonal entrywise. For A,B ∈ Sd×d
⪰0

and ϵ > 0, A ≈ϵ B denotes the chain of inequalities exp(−ϵ)A ⪯ B ⪯ exp(ϵ)A. We

will also use the obvious extension of this notion to nonnegative scalars and vectors.

ΠE ∈ Sd×d
⪰0 denotes the projection matrix onto a subspace E ⊆ Rd. For A ∈ Sd×d

⪰0 ,

∥·∥A denotes the Mahalanobis seminorm induced by A, i.e. ∥v∥A =
√
v⊤Av.

Probability. ∆n := {x ∈ Rn
≥0 | ∥x∥1 = 1} denotes the n-dimensional probability

simplex. ∼i.i.d. denotes that a collection of random variables is independent and

identically distributed according to a given probability distribution. For µ ∈ Rd and

Σ ∈ Sd×d
≻0 , N (µ,Σ) denotes the d-variate Gaussian distribution, i.e. the probability

distribution on Rd with probability density function given by

f(x) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

For probability measures P and Q on Ω that are absolutely continuous with respect

to a measure µ,

DKL(P ∥ Q) :=

∫
Ω

p(x) log

(
p(x)

q(x)

)
µ(dx)

denotes the Kullback–Leibler divergence between P and Q.

18

Chapter 2

Ky Fan Packing

In this chapter, we extend the work of [MRWZ16, JLT20, DKK+21] to obtain a fast

algorithm for solving Ky Fan packing linear programs. In Section 2.3, we then discuss

potential applications to fairness in data analysis through a variant of the standard

principal component analysis technique.

2.1 Packing linear programs

In its standard form, a packing linear program is given by

max
x∈Rn

≥0

Ax≤1

1⊤x, (2.1)

where A ∈ Rd×n
≥0 . The dual of (2.1) is the covering linear program

min
y∈Rd

≥0

A⊤y≥1

1⊤y. (2.2)

Packing and covering LPs, as well as their generalizations to packing and covering

SDPs, have been well-studied in the literature [LN93, PST95, You01, DJ07, Nes08,

JY11, AHK12, ALO16, PTZ16, AO19], with applications in areas such as combinato-

rial optimization, machine learning, and robust statistics [CMY20, JLT20, DKK+21].

19

[JLL+20] observed that by a standard binary search, solving (2.1) is equivalent

to solving the following problem.

Problem 2.1 (ℓ∞ packing linear program). Given A ∈ Rd×n
≥0 , find primal solution

x ∈ ∆n with ∥Ax∥∞ ≤ 1 or dual solution y ∈ ∆d with A⊤y ≥ 1.

Intuitively, a primal solution is a convex combination of the columns of A

so that no coordinate exceeds 1, while a dual solution is a convex combination of

the rows of A so that every coordinate is at least 1. In many applications, we are

interested in an approximate solution to Problem 2.1 in the following sense.

Problem 2.2 (Approximate ℓ∞ packing linear program). Given A ∈ Rd×n
≥0 and ϵ ∈

[0, 1
2
], find primal solution x ∈ ∆n with ∥Ax∥∞ ≤ 1 + ϵ or dual solution y ∈ ∆d with

A⊤y ≥ (1− ϵ)1.

[MRWZ16] gives a solver for Problem 2.2, which runs in time

O

(
nnz(A) · log(d) log(nd/ϵ)

ϵ2

)
.

As analyzed by [JLT20], the [MRWZ16] algorithm can be interpreted as implementing

approximate entropic mirror descent, which is the approach that we will take for our

analysis.

A natural variant of Problem 2.2 considers the constraint ∥Ax∥ ≤ 1 + ϵ for

some other norm ∥·∥, where the dual set is adjusted accordingly. [JLT20] gives a

modified version of the [MRWZ16] solver for ℓp norms, as well as a generalized solver

for Schatten p-norm packing SDPs in the cases where p is an odd integer.

2.1.1 The Ky Fan k-norm

In this chapter, we work with the Ky Fan k-norm, which is defined as follows.

Definition 2.1 (Ky Fan k-norm). For x ∈ Rd with entries
∣∣x(1)

∣∣ ≥ ∣∣x(2)

∣∣ ≥ · · · ≥∣∣x(d)

∣∣ and k ∈ [d], the Ky-Fan k-norm of x is defined as

∥x∥(k) :=
∑
i∈[k]

∣∣x(i)

∣∣ .
20

For A ∈ Rn×d and k ∈ [min(n, d)], the Ky-Fan k-norm of A is defined as the Ky-Fan

k-norm of the singular values of A.

The Ky Fan k-norm is a well-studied and useful concept of independent inter-

est, with applications such as matrix completion [CT10], robust statistics [WGR+09],

and low-rank approximation [Wat93, DV22].

Remark 2.1. When k = 1 or k = d, we recover the familiar norms ∥·∥(1) = ∥·∥∞ and

∥·∥(d) = ∥·∥1. The Ky Fan k-norm can thus be seen as an alternative to the ℓp norm as

an interpolation between ∥·∥1 and ∥·∥∞. Additionally, the Ky Fan k-norm of x ∈ Rd

can be computed in O(d) time by using a linear-time selection algorithm to find the

kth largest absolute value and then summing the |xi| above this threshold.

Throughout this chapter, we let k ∈ [d] and ∥·∥∗ denote the dual of the Ky

Fan k-norm. We establish a closed form for ∥·∥∗ through the following lemma.

Lemma 2.1. ∥x∥∗ = max
(

∥x∥1
k

, ∥x∥∞
)
.

Proof. Let ∥x∥ = max
(

∥x∥1
k

, ∥x∥∞
)
. Then the dual norm of ∥·∥ is

max
∥x∥1≤k,∥x∥∞≤1

⟨x, ·⟩ ,

which is clearly the Ky Fan k-norm, so the conclusion follows by the uniqueness of

the dual norm (Fact A.12).

Lemma 2.1 suggests that when extending Problem 2.2 to the Ky Fan k-norm,

the dual set for y should be

Y :=
{
y ∈ Rd

≥0 | ∥y∥1 = k, ∥y∥∞ ≤ 1
}
. (2.3)

We can now define the following problem.

Problem 2.3 (Approximate Ky Fan packing linear program). Given A ∈ Rd×n
≥0 and

ϵ ∈ [0, 1
2
], find primal solution x ∈ ∆n with ∥Ax∥(k) ≤ 1 + ϵ or dual solution y ∈ Y

with A⊤y ≥ (1− ϵ)1.

21

2.2 Ky Fan packing algorithm

Throughout this section, we follow notation (2.3) and define the following regularizer,

patterned off [DKK+21]:

ϕ(y) := ⟨y, log y⟩ − ∥y∥1 ,

where log is taken entrywise. We first present several facts about ϕ.

Lemma 2.2. ϕ is 1-strongly convex on Y with respect to ∥·∥∗.

Proof. By Fact A.13, it suffices to show that ∇2ϕ(y)[x,x] ≥ ∥x∥2∗ for all y ∈ Y and

x ∈ Rd. Note that ∇2ϕ(y) = diag (y−1), where inversion is entrywise.

Suppose ∥x∥∗ =
∥x∥1
k

. Then

∇2ϕ(y)[x,x] =
∑
i∈[d]

x2
i

yi

=
1

k

∑
i∈[d]

x2
i

yi

∑
i∈[d]

yi

 ≥ 1

k

∑
i∈[d]

|xi|

2

=
∥x∥21
k
≥ ∥x∥2∗ ,

where the first inequality uses Titu’s lemma (Fact A.16).

Otherwise, ∥x∥∗ = ∥x∥∞. Then

∇2ϕ(y)[x,x] =
∑
i∈[d]

x2
i

yi

≥
∑
i∈[d]

x2
i ≥ ∥x∥

2
∞ = ∥x∥2∗ ,

where the first inequality uses y ≤ 1 entrywise.

Fact 2.1 (Lemma 7.3, [CMY20]). For x ∈ Rd, let

τ(x) := max

{
τ

∣∣∣∣∣ τ > 0,
exp(τ)∑

j∈[d] exp(min(τ,xj))
≤ 1

k

}
. (2.4)

Then for all i ∈ [d],

[∇ϕ∗(x)]i =
k exp(min(τ(x),xi))∑
j∈[d] exp(min(τ(x),xj))

, (2.5)

where ϕ∗(x) := maxy∈Y ⟨y,x⟩ − ϕ(y) is the convex conjugate of ϕ.

22

Remark 2.2. For any x ∈ Rd, τ(x) can be efficiently computed by binary searching

for the number of thresholded xj in (2.4) in O(log(d)) time and then solving for τ .

Filling out ∇ϕ∗(x) using (2.5) then takes O(d) additional time.

Fact 2.2. For x ∈ Rd, ϕ∗(x) is a k log(d
k
)-additive approximation of ∥x∥(k), i.e.

∥x∥(k) ≤ ϕ∗(x) ≤ ∥x∥(k) + k log

(
d

k

)
.

We now present our algorithm for solving Problem 2.3.

Algorithm 1: KyFanPackingLP(A, ϵ)

Input: A ∈ Rd×n
≥0 , ϵ ∈ [0, 1

2
]

1 K ← 3k log(d)
ϵ

, η ← 1
2K

, T ← 27k log(d) log(nd/ϵ)
ϵ2

2 [w0]i ← ϵ
n2d

for all i ∈ [n], z← 0, t← 0
3 while ∥Awt∥(k) ≤ K, ∥wt∥1 ≤ K do
4 vt ← ∇ϕ∗(Awt)
5 gt ← max(0,1−A⊤vt) entrywise
6 wt+1 ← wt ◦ (1 + ηgt), z← z+ vt, t← t+ 1
7 if t ≥ T then
8 return y← 1

T
z

9 return x← wt

∥wt∥1

Theorem 2.1. Algorithm 1 solves Problem 2.3 in O
(
nnz(A) · k log(d) log(nd/ϵ)

ϵ2

)
time.

To prove Theorem 2.1, we follow the potential argument and mirror descent

interpretation of [JLT20]. Here, we define the potential at time t to be

Φt := ϕ∗(Awt)− ∥wt∥1 .

We start by showing that the potential is monotonically nonincreasing.

Lemma 2.3. For all 0 ≤ t < T , Φt+1 ≤ Φt.

Proof. For any 0 ≤ t < T , let x := wt, x′ := wt+1, and g := gt. For s ∈ [0, 1], define

xs := sx′ + (1− s)x,

Q(s) := ∇2ϕ∗(Axs)[A(ηg ◦ x),A(ηg ◦ x)],

23

and

R(s) :=
〈
∇ϕ∗(Axs)−∇ϕ∗(Ax),A(ηg2 ◦ x)

〉
,

where g2 := g ◦ g. By nonnegativity and g ≤ 1 entrywise,∫ 1

0

(1− s)R(s)ds =
∫ 1

0

(1− s)

∫ s

0

∇2ϕ∗(Axu)[A(ηg ◦ x),A(ηg2 ◦ x)]duds

≤
∫ 1

0

(1− s)

∫ s

0

Q(u)duds

≤
∫ 1

0

∫ s

0

Q(u)duds

=

∫ 1

0

(1− s)Q(s)ds,

(2.6)

where the fourth line used the Fubini–Tonelli theorem. Thus

ϕ∗(Ax′)− ϕ∗(Ax)− ⟨∇ϕ∗(Ax),A(ηg ◦ x)⟩

=

∫ 1

0

(1− s)Q(s)ds

≤
∫ 1

0

(1− s) ⟨∇ϕ∗(Axs), (A(ηg ◦ x)) ◦ (A(ηg ◦ x))⟩ ds

≤ ηK

∫ 1

0

(1− s)
〈
∇ϕ∗(Axs),A(ηg2 ◦ x)

〉
ds

=
ηK

2

〈
∇ϕ∗(Ax),A(ηg2 ◦ x)

〉
+ ηK

∫ 1

0

(1− s)R(s)ds

≤ ηK

2

〈
∇ϕ∗(Ax),A(ηg2 ◦ x)

〉
+ ηK

∫ 1

0

(1− s)Q(s)ds,

(2.7)

where the third line used

∇2ϕ∗(Axs) ⪯ diag (∇ϕ∗(Axs)) ,

the fourth line used the Cauchy–Schwarz inequality and Ax ≤ K1 entrywise, and

the sixth line used (2.6). Rearranging (2.7) and using ηK = 1
2

gives

ϕ∗(Ax′)− ϕ∗(Ax)− ⟨∇ϕ∗(Ax),A(ηg ◦ x)⟩ ≤ 1

2

〈
∇ϕ∗(Ax),A(ηg2 ◦ x)

〉
≤
〈
∇ϕ∗(Ax),A(ηg2 ◦ x)

〉
.

24

Now, we can conclude

Φt+1 − Φt = ϕ∗(Ax′)− ϕ∗(Ax)− ∥ηg ◦ x∥1
≤ η

(〈
∇ϕ∗(Ax),A((g + g2) ◦ x)

〉
− ⟨g,x⟩

)
= η

〈
A⊤v ◦ (g + g2)− g,x

〉
≤ 0,

where v := ∇ϕ∗(Ax) and the third line used Fact A.19 entrywise for A⊤v.

Lemma 2.4. Φ0 ≤ 2k log(d).

Proof. Since Φt is a k log(d
k
)-additive approximation of ∥Awt∥(k)−∥wt∥1 by Fact 2.2

and the entries of A can be assumed to be bounded by n
ϵ
,1

Φ0 ≤ ∥Aw0∥(k) − ∥w0∥1 + k log

(
d

k

)
≤ k

d
− ϵ

nd
+ k log

(
d

k

)
≤ 2k log(d).

Lemma 2.5. For all 0 ≤ t < T , if Φt ≤ 2k log(d) and ∥Awt∥(k) > K or ∥wt∥1 > K,

then x := wt

∥wt∥1
satisfies ∥Ax∥(k) ≤ 1 + ϵ.

Proof. Let 0 ≤ t < T . By Fact 2.2, Lemma 2.3, and Lemma 2.4,

∥Awt∥(k) − ∥wt∥1 ≤ Φt ≤ 2k log(d). (2.8)

Suppose ∥wt∥1 > K. Rearranging (2.8) and dividing by ∥wt∥1 gives

∥Ax∥(k) ≤
∥wt∥1 + 2k log(d)

∥wt∥1
≤ 1 +

2k log(d)

∥wt∥1
≤ 1 + ϵ.

Otherwise, let ∥Awt∥(k) > K. Since(
3

ϵ
− 2

)
k log(d) = K − 2k log(d) < ∥Awt∥(k) − 2k log(d) ≤ ∥wt∥1 ,

rearranging (2.8) and dividing by ∥wt∥1 gives

∥Ax∥(k) ≤
∥wt∥1 + 2k log(d)

∥wt∥1
≤ 1 +

2k log(d)(
3
ϵ
− 2
)
k log(d)

≤ 1 + ϵ.

1cf. Lemma 16, [JLT20].

25

Lemma 2.6. If ∥wT∥1 ≤ K, then y := 1
T

∑
0≤t<T vt ∈ Y satisfies A⊤y ≥ (1− ϵ)1.

Proof. Let u ∈ ∆n. For 0 ≤ t < T , where xt :=
wt

∥wt∥1
∈ ∆n,

DKL(xt+1 ∥ u)−DKL(xt ∥ u) =
∑
i∈[n]

ui log

(
[xt]i
[xt+1]i

)

=
∑
i∈[n]

ui

(
log

(
∥wt+1∥1
∥wt∥1

)
+ log

(
1

1 + η[gt]i

))

≤ log

(
∥wt+1∥1
∥wt∥1

)
− η(1− η) ⟨gt,u⟩ ,

(2.9)

where the inequality uses gt ≤ 1 entrywise and Fact A.20. Summing (2.9) across all

T iterations, telescoping, and rearranging,

η(1− η)
∑

0≤t<T

⟨gt,u⟩ ≤ log

(
∥wT∥1
∥w0∥1

)
+DKL(x0 ∥ u)−DKL(xT ∥ u)

≤ log

(
∥wT∥1
∥w0∥1

)
+DKL(x0 ∥ u).

Since ∥w0∥1 =
ϵ
nd

, ∥wT∥1 ≤ K, DKL(x0 ∥ u) ≤ log(n), and 1
η(1−η)

≤ 3K,

∑
0≤t<T

⟨gt,u⟩ ≤
1

η(1− η)

(
log

(
ndK

ϵ

)
+ log(n)

)
=

1

η(1− η)
log

(
n2dK

ϵ

)
≤ 3K · 3 log

(
nd

ϵ

)
.

Since gt ≥ 1−A⊤vt entrywise for all iterations, we have

〈
1−A⊤y,u

〉
=

1

T

∑
0≤t<T

〈
1−A⊤vt,u

〉
≤ 1

T

∑
0≤t<T

⟨gt,u⟩ ≤
9K log(nd

ϵ
)

T
= ϵ.

Taking u = ei for each i ∈ [d] shows that A⊤y ≥ (1− ϵ)1.

Finally, to show that y ∈ Y , note that each

vt = ∇ϕ∗(Awt) ∈ argmax
y∈Y

⟨y,Awt⟩ − ϕ(y) ⊆ Y

by Fact A.15, so y ∈ Y by convexity.

26

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Correctness of primal feasibility follows from Lemma 2.5. Cor-

rectness of dual feasibility follows from Lemma 2.6. The runtime follows from Line 7,

since each iteration cost is dominated by Tmv(A) = O(nnz(A)). (Remarks 2.1 and

2.2 imply that in each iteration, everything else can be done in O(d) time, and we

work under the standard assumption that nnz(A) ≥ max(n, d).)

2.2.1 Future work

We conjecture that it is sufficient to set

η = Ω

(
k

K

)
and T = O

(
log(d) log(nd

ϵ
)

ϵ2

)

in Algorithm 1, so that the resulting runtime of O
(
nnz(A) · log(d) log(nd/ϵ)

ϵ2

)
matches

the runtime of the [MRWZ16] solver for Problem 2.2. The bottleneck of our analysis

lies in the proof of Lemma 2.3, where our proof strategy requires ηK < 1. We leave

the resolution of this conjecture, as well as a generalization to Ky Fan packing SDPs,

to future work.

2.3 Application to fair principal component analysis

Principal component analysis (PCA) is a widely used statistical technique for di-

mensionality reduction, data analysis, and pattern recognition [JC16]. The primary

objective of PCA is to reduce the complexity of high-dimensional data while preserv-

ing its underlying structure. The general-purpose nature of PCA makes it particularly

useful in applications ranging from machine learning [KL20] to finance [Mav22].

In its most basic form, the PCA problem (or 1-PCA problem) seeks to find

argmax
v∈Rd

∥v∥2=1

〈
vv⊤,A

〉
(2.10)

27

for a given A ∈ Sd×d
⪰0 . It is a standard result that (2.10) is a unit eigenvector of A with

largest eigenvalue. A natural generalization of (2.10), known as the k-PCA problem,

seeks to find

argmax
V∈Rd×k

V⊤V=Ik

〈
VV⊤,A

〉
(2.11)

for a given k ∈ [d]. In many applications, A = X⊤X represents the covariance matrix

of datapoints X, where finding (2.11) intuitively translates to finding k orthogonal

directions, or principal components, that capture the most variation in the data.

[JKL+24] showed that the following algorithm finds a solution to the k-PCA

problem given an oracle for the 1-PCA problem. In fact, an approximate oracle for

1-PCA suffices to find an approximate solution to the k-PCA problem, for a suitable

notion of approximation.

Algorithm 2: BlackBoxPCA(A, k,O)
Input: A ∈ Sd×d

⪰0 , k ∈ [d], an oracle O that takes A ∈ Sd×d
⪰0 as input and

returns a unit vector v ∈ Rd in (2.10)
1 for i ∈ [k] do
2 vi ← O(A)
3 A← (I− viv

⊤
i)A(I− viv

⊤
i)

4 return V← {vi}i∈[k] ∈ Rd×k

Due to its nature as a fundamental statistical technique, the PCA prob-

lem has been studied, modified, and generalized in many ways, including robust

PCA [CLMW11, JLT20], sparse PCA [Mac08, ZX18], and differentially private PCA

[LKJO22]. In this section, we investigate a generalization called fair PCA. We men-

tion that there are several distinct generalizations of PCA known as “fair PCA” in the

literature [STM+18, KHFM22, KDRZ23]; we will work with the following definition.

Definition 2.2 (Fair k-PCA). Let A1,A2, . . . ,An ∈ Sd×d
⪰0 , and let k ∈ [d]. The fair

k-PCA problem is to find a matrix in

argmax
V∈Rd×k

V⊤V=Ik

min
i∈[n]

〈
VV⊤,Ai

〉
. (2.12)

28

To see why this problem is called “fair” PCA, suppose there are m examples

divided into n subgroups. Let Fi ∈ Rmi×d be the feature matrix corresponding to the

mi examples in the ith subgroup, and let Fi := Fi − 1mi
µ⊤

i be the centered version

of Fi, where µi =
1
mi
F⊤

i 1mi
is the mean feature vector of the ith subgroup. Then by

setting

Ai =
1

mi

F
⊤
i Fi for all i ∈ [n],

(2.12) has the interpretation of being k orthogonal principal components that capture

the most variation for all of the subgroups. This definition arises naturally and holds

potential applications to fairness in machine learning.

Unfortunately, the natural generalization of Algorithm 2 does not compute

approximate solutions to the fair k-PCA problem that are better than a constant

factor, as shown in the following proposition.

Algorithm 3: BlackBoxFairPCA({Ai}i∈[n], k,O)
Input: A1, . . . ,An ∈ Sd×d

⪰0 , k ∈ [d], an oracle O that takes A1, . . . ,An ∈ Sd×d
⪰0

as input and returns a unit vector v ∈ Rd in

argmax
v∈Rd

∥v∥2=1

min
i∈[n]

〈
vv⊤,Ai

〉
1 for i ∈ [k] do
2 vi ← O({Ai}i∈[n])
3 for j ∈ [n] do
4 Aj ← (I− viv

⊤
i)Aj(I− viv

⊤
i)

5 return V← {vi}i∈[k] ∈ Rd×k

Proposition 2.1. For n > 1, k > 1, and d > k, Algorithm 3 is at most a 1
2
-

approximation algorithm for fair k-PCA. Even in the smallest nontrivial case of n =

2, k = 2, and d = 3, Algorithm 3 is at most a 3
4
-approximation algorithm for fair

k-PCA.

Proof. We first show that Algorithm 3 is at most a 3
4
-approximation algorithm for

fair k-PCA in the case n = 2, k = 2, and d = 3 by giving an explicit instance.

29

Let ϵ > 0, A1 = diag (1, 0, 2 + ϵ), and A2 = diag (0, 1, 1 + ϵ). It is clear that

v1 =
(
0 0 1

)⊤. Projecting out the v1 direction yields the updates

A1 ← diag (1, 0, 0) and A2 ← diag (0, 1, 0) .

Now v2 =
(

1√
2

1√
2

0
)⊤

, so

V =

0 1√
2

0 1√
2

1 0

 ,

which gives mini∈[n]
〈
VV⊤,Ai

〉
= min(5

2
+ ϵ, 3

2
+ ϵ) = 3

2
+ ϵ. However,

U =

0 0
0 1
1 0


gives mini∈[n]

〈
UU⊤,Ai

〉
= min(2 + ϵ, 2 + ϵ) = 2 + ϵ, so the approximation ratio of

Algorithm 3 is at most 3
4

in this case.

Now we extend the above instance to n ≥ 2, k = 2, and d = n+ 1. For ϵ > 0

and i ∈ [n−1], let Ai = diag (δ1i, δ2i, . . . , δni, 2 + ϵ), where δij is the Kronecker delta,

and let An = diag (0, . . . , 0, 1, 1 + ϵ). Then Algorithm 3 outputs

V =


0 1√

n
...

...
0 1√

n

1 0

 ,

which gives an objective value of 1 + 1
n
+ ϵ, but

U =


0 0
...

...
0 0
0 1
1 0


achieves an objective value of 2 + ϵ. Taking n → ∞ shows that the approximation

ratio of Algorithm 3 is at most 1
2
.

30

2.3.1 SDP formulation of fair PCA

Although Proposition 2.1 suggests that fair k-PCA cannot be solved using a fair

1-PCA oracle, we can formulate an SDP relaxation of (2.12). We first recall the

following fact from convex analysis.

Fact 2.3. For any linear function f : Rd → R and set S ⊆ Rd,

min
x∈S

f(x) = min
x∈conv(S)

f(x).

We note that ∆n = conv({ei | i ∈ [n]}) and

Fd×d
k :=

{
Y ∈ Sd×d

⪰0 | Tr(Y) = k,Y ⪯ Id
}

= conv
({

VV⊤ | V ∈ Rd×k,V⊤V = Ik
})

,

where Fd×d
k is known as the k-Fantope. Thus by Fact 2.3,

max
V∈Rd×k

V⊤V=Ik

min
i∈[n]

〈
VV⊤,Ai

〉
= max

V∈Rd×k

V⊤V=Ik

min
i∈[n]

〈
VV⊤,

∑
j∈[n]

[ei]jAj

〉

= max
V∈Rd×k

V⊤V=Ik

min
w∈∆n

〈
VV⊤,

∑
j∈[n]

wjAj

〉

≤ max
Y∈Fd×d

k

min
w∈∆n

〈
Y,
∑
j∈[n]

wjAj

〉
,

which can now be solved using a Ky Fan packing SDP solver.2

2As mentioned in Section 2.2.1, we do not provide a Ky Fan packing SDP solver in this work.

31

Chapter 3

Fast Forster Transforms

This chapter is based on [JLT25], with Arun Jambulapati and Kevin Tian.

3.1 Radial isotropic position

Transforming a dataset A = {ai}i∈[n] ⊂ Rd into a canonical representation enjoy-

ing a greater deal of regularity is a powerful idea that has had myriad applications

throughout computer science, statistics, and related fields. Examples of common such

representations include the following.

• Normalization: Replacing each ai with the unit vector ãi := ai ∥ai∥−1
2 in the

same direction. Such a transformation exists whenever all of the {ai}i∈[n] are

nonzero vectors.

• Isotropic position: Replacing each ai with ãi := Rai for an invertible R ∈
Rd×d, such that

∑
i∈[n] ãiã

⊤
i = Id. Such a transformation exists whenever the

{ai}i∈[n] span Rd.

Recently, a common generalization of both of these representations known as

radial isotropic position has emerged as a desirable data processing step in many set-

tings. Although the concept of radial isotropic position first arose in early work on

32

algebraic geometry [GGMS87] and functional analysis [Bar98], it has since enabled

many surprising results in algorithms and complexity. For example, radial isotropic

position played a pivotal role in breakthroughs spanning disparate areas such as com-

munication complexity [For02], subspace recovery [HM13], coding theory [DSW14],

frame theory [HM19], active and noisy learning of halfspaces [HKLM20, DKT21,

DTK23], and robust statistics [Che24].

We now formally define the concept of radial isotropic position.

Definition 3.1 (Radial isotropic position). Let c ∈ (0, 1]n satisfy ∥c∥1 = d, and

let ϵ ∈ (0, 1). We say that A ∈ Rn×d with rows {ai}i∈[n] is in (c, ϵ)-radial isotropic

position (or, (c, ϵ)-RIP) if

exp(−ϵ)Id ⪯
∑
i∈[n]

ci ·
aia

⊤
i

∥ai∥22
⪯ exp(ϵ)Id. (3.1)

If ϵ is omitted then ϵ = 0 by default, and if c is omitted then c = d
n
1n by default.

For an invertible matrix R ∈ Rd×d, we say that R is a (c, ϵ)-Forster transform of A

if AR⊤ is in (c, ϵ)-RIP:

exp(−ϵ)Id ⪯
∑
i∈[n]

ci ·
(Rai) (Rai)

⊤

∥Rai∥22
⪯ exp(ϵ)Id. (3.2)

In other words, R is a c-Forster transform of A ∈ Rn×d representing the

dataset A = {ai}i∈[n] ⊂ Rd if the transformed-and-normalized vectors

{(Rai) ∥Rai∥−1
2 }i∈[n]

are in isotropic position. Note that ∥c∥1 = d in Definition 3.1 is necessary as ϵ→ 0,

by taking traces of (3.1). For example, c = d
n
1n induces an empirical second moment

matrix with uniform weights. After applying a Forster transform, the new dataset

then exhibits desirable properties that are useful in downstream applications.

To briefly demystify Definition 3.1, let A ∈ Rn×d with rows {ai}i∈[n] have

rank(A) = d (so n ≥ d). Then, it is well-known that A can be scaled by invertible

33

R ∈ Rd×d so that

RA⊤diag (c)AR⊤ =
∑
i∈[n]

ci (Rai) (Rai)
⊤ = Id. (3.3)

Indeed, choosing R = (A⊤diag (c)A)−
1
2 suffices. The condition (3.3) is sometimes

referred to as being scaled to be in c-isotropic position, and there are natural ϵ-

approximate generalizations.

Similarly, as long as all ai ̸= 0d, there is a diagonal scaling S so that SA has

unit-norm rows: let

S = diag (s) where si =
1

∥ai∥2
for all i ∈ [n] =⇒ ∥[SA]i:∥2 = 1 for all i ∈ [n].

(3.4)

Each of the transformations (3.3) and (3.4) is used in many applications to improve

the regularity of a point set given by viewing the rows of A as points in Rd. The

purpose of c-radial isotropic position (Definition 3.1) is to give a Forster transform

matrix R ∈ Rd×d inducing a scaling S = diag (s) via s−1
i = ∥Rai∥2 for all i ∈ [n],

such that the left-and-right scaled matrix SAR⊤ simultaneously has unit-norm rows,

and is in c-isotropic position. Our goal is to efficiently approximate R.

3.1.1 Equivalent characterizations

Not all point sets admit a c-Forster transform. Many of the aforementioned results

and applications [GGMS87, Bar98, For02, CLL04, HM13, DSW14, HKLM20, DKT21,

DTK23] leverage certain necessary and sufficient conditions for the existence of a c-

Forster transform instead of using Definition 3.1 directly. We mention several of these

conditions that are relevant to our development here; a more extensive survey can be

found in [AKS20].

First, [GGMS87, Bar98] (see also [CLL04, HKLM20]) show that a c-Forster

transform of A exists if and only if c belongs to the basis polytope of the independence

matroid induced by A. A more intuitive and equivalent way of phrasing this result is

given by the following proposition.

34

Proposition 3.1 (Lemma 4.19, [HKLM20]). Given a point set A := {ai}i∈[n] ⊂ Rd

and c ∈ (0, 1]n satisfying ∥c∥1 = d, the following conditions are equivalent, where

A ∈ Rn×d has rows A.

1. For any ϵ > 0 there exists R ∈ Rd×d, a (c, ϵ)-Forster transform of A.

2. For every k ∈ [d], every k-dimensional linear subspace V ⊆ Rd satisfies∑
i∈[n]
ai∈V

ci ≤ k. (3.5)

One direction of Proposition 3.1 is straightforward: if a k-dimensional subspace

V is too “heavy” (i.e., (3.5) is violated) then there still exists a heavy subspace under

any transform R. Taking the trace of both sides of the definition (3.2) restricted

to this heavy subspace yields a contradiction for sufficiently small ϵ. In the case of

c = d
n
1n, (3.5) simply translates to no k-dimensional subspace containing more than

k
d
· n of the points. One simple way for this condition to hold is if A is in general

position. Note also that by taking V = Span(A), (3.5) implies that n ≥ d and A has

full rank.

The other direction is significantly more challenging, and [HKLM20] gives an

iterative construction based on decompositions with respect to the basis polytope of

A = {ai}i∈[n], which we define here.

Definition 3.2 (Basis polytope). Consider a point set A = {ai}i∈[n]. Let B ⊆ 2[n]

be the set of subsets B ⊆ [n] such that {ai}i∈B is a basis of Rd, i.e., it is a linearly-

independent set that spans Rd. Letting 1B ∈ {0, 1}n denote the 0-1 indicator vector

of each B ∈ B, we let

P(A) := conv
(
{1B}B∈B

)
denote the basis polytope corresponding to the independent set matroid induced by

A.

35

The following result of [CLL04] shows that Proposition 3.1 is an equivalent

formulation of the basis polytope characterization of radial isotropic position; see

also [Bar98, DSW14, HKLM20] for interpretations of this condition.

Proposition 3.2 (Theorem 4.4, [CLL04]). The conditions in Proposition 3.1 hold iff

c ∈ P(A).

Another dual viewpoint on Forster transforms is from the perspective of scaling

the dataset to induce certain leverage scores, which are defined as follows.

Definition 3.3 (Leverage scores). Let A ∈ Rn×d have rows {ai}i∈[n] ⊂ Rd. The

leverage scores τ of A are given by

τ i(A) := a⊤
i

(
A⊤A

)†
ai. (3.6)

As described in our derivation (3.3), (3.4), c-RIP can equivalently be viewed

as being induced by a pair (R, s), where the diagonal scaling s is an implicit function

of the Forster transform R.

We may ask if this correspondence goes the other direction; are there condi-

tions on s ∈ Rn
>0 such that one can deduce R ∈ Rd×d that scales A to be in c-RIP?

The following observation, patterned from [DR24], shows the answer is yes: finding

s ∈ Rn
>0 such that

τ (SA) = c, where S := diag (s) , (3.7)

implies that R = (A⊤S2A)−
1
2 is a c-Forster transform of A.

Lemma 3.1. Given a point set A := {ai}i∈[n] ⊂ Rd and c ∈ (0, 1]n satisfying ∥c∥1 =

d, suppose (3.5) holds. Then letting A ∈ Rn×d have rows A, if some s ∈ Rn
>0 satisfies

τ (SA) = c, where S := diag (s), then

∑
i∈[n]

ci ·
(Rai) (Rai)

⊤

∥Rai∥22
= Id for R :=

(
A⊤S2A

)− 1
2 . (3.8)

36

More generally, for any ϵ > 0, if τ (SA) ≈ϵ c, then

∑
i∈[n]

ci ·
(Rai) (Rai)

⊤

∥Rai∥22
≈ϵ Id for R :=

(
A⊤S2A

)− 1
2 . (3.9)

Proof. We prove (3.9), which implies (3.8) by taking ϵ → 0. Indeed, by using

τ (SA) ≈ϵ c,

τ i (SA) = s2i ∥Rai∥22 ≈ϵ ci =⇒ ci

∥Rai∥22
≈ϵ s

2
i for all i ∈ [n].

This directly implies that (3.9) holds:

∑
i∈[n]

ci ·
(Rai) (Rai)

⊤

∥Rai∥22
≈ϵ

∑
i∈[n]

s2i (Rai) (Rai)
⊤ = R

∑
i∈[n]

s2iaia
⊤
i

R = Id.

Thus, while Forster transforms are right scalings R ∈ Rd×d putting A in

isotropic position, we can equivalently find a left scaling s ∈ Rn
>0 that balances A’s

rows to have target leverage scores c of our choice.

The final characterization that we discuss here was given in the seminal work

[Bar98]. We fix a point set A := {ai}i∈[n] ⊂ Rd that forms the rows of A ∈ Rn×d. We

also let c ∈ (0, 1]n satisfy ∥c∥1 = d, such that the condition (3.5) holds. For some

ϵ ∈ (0, 1), we will use Barthe’s characterization to give an algorithm for computing a

(c, ϵ)-Forster transform of A.

To ease our exposition we fix the following notation throughout, for t ∈ Rn:

Z (t) := A⊤diag (exp (t))A =
∑
i∈[n]

exp (ti) aia
⊤
i ,

R (t) := Z (t)−
1
2 =

(
A⊤diag (exp (t))A

)− 1
2 ,

S (t) := diag (s(t)) , where s(t) := exp

(
t

2

)
,

ãi(t) := R (t) ai, for all i ∈ [n].

(3.10)

37

In (3.10), we let exp be applied to a vector argument entrywise. Note that all of the

matrices and vectors in (3.10) correspond to those arising in our earlier discussion,

after reparameterizing the problem by t = 2 log(s) entrywise. This reparameterization

becomes convenient shortly.

[Bar98] gives an algorithmic proof of Propositions 3.1 and 3.2 by explicitly

characterizing the scaling s ∈ Rn
>0 in Lemma 3.1 such that τ (SA) = c for S :=

diag (s), by way of a t ∈ Rn that achieves s = s(t). To explain, we first define

Barthe’s objective:

f (t) := −⟨c, t⟩+ log det (Z (t)) . (3.11)

Then Barthe’s result can be stated as follows.

Proposition 3.3 (Proposition 6, [Bar98]). Following notation (3.10), (3.11), f :

Rn → R is a convex function, and its minimizer is attained iff A, c satisfy ∥c∥1 = d

and the condition (3.5). Moreover, letting t⋆ := argmint∈Rn f(t), R(t⋆) is a c-Forster

transform of A.

Proposition 3.3 can be somewhat demystified by computing the derivatives of

Barthe’s objective. We introduce one additional piece of notation here:

Mi(t) := si(t)
2ãi(t)ãi(t)

⊤ = R (t)
(
exp (ti) aia

⊤
i

)
R (t) , for all i ∈ [n]. (3.12)

Fact 3.1. Following notation (3.10), (3.11), we have for all (i, j) ∈ [n]× [n] that

∇if (t) = −ci + Tr (Mi(t)) ,

∇2
ijf (t) = Tr (Mi(t)) Ii=j − Tr (Mi(t)Mj(t)) .

(3.13)

From Fact 3.1 we can glean several different parts of Proposition 3.3. For

example, the fact that
∑

i∈[n] Mi(t) = R(t)Z(t)R(t) = Id, combined with Kadison’s

inequality [Kad52] (see also Theorem 2.3.2, [Bha07]), shows that for all vectors v ∈
Rd, ∑

i∈[n]

viMi(t)

2

⪯
∑
i∈[n]

v2
iMi(t).

38

In particular, taking a trace of both sides above shows

∇2f(t)[v,v] = Tr

∑
i∈[n]

v2
iMi(t)

− Tr

∑
i∈[n]

viMi(t)

2 ≥ 0,

which implies that f is convex. Similarly, letting t⋆ minimize f , we have from (3.13)

that

ci = Tr (Mi(t
⋆)) = τ i (S (t⋆)A) for all i ∈ [n]. (3.14)

Using the characterization of S(t⋆) in (3.14) as obtaining the leverage scores c, and

applying Lemma 3.1, we have shown that R(t⋆) is indeed a c-Forster transform of A,

as stated in Proposition 3.3.

For completeness, we sketch a proof of the other direction of Proposition 3.3.

By Proposition 3.2, it suffices to show that if c is in the basis polytope of the rows of

A, then f attains a finite infimum.

Let B ⊆ 2[n] be the set of subsets B ⊆ [n] such that {ai}i∈B is a basis of Rd.

Since c is in the basis polytope, there exist {wB}B∈B ⊂ [0, 1] such that∑
B∈B

wB = 1 and c =
∑
B∈B

wB1B.

For all S ⊆ [n] such that |S| = d and S ̸∈ B, we let wS = 0. For all t ∈ Rn, by the

Cauchy–Binet formula (Fact A.6),

det(Z(t)) =
∑
S⊆[n]
|S|=d

exp

(∑
i∈S

ti

)
det(AS:)

2

=
∑
S⊆[n]
|S|=d
wS ̸=0

wS exp

(∑
i∈S

ti

)
det(AS:)

2

wS

+
∑
S⊆[n]
|S|=d
wS=0

exp

(∑
i∈S

ti

)
det(AS:)

2

≥
∑
S∈B
wS ̸=0

wS exp

(∑
i∈S

ti

)
det(AS:)

2

wS

≥
∏
S∈B
wS ̸=0

(
exp

(∑
i∈S

ti

)
det(AS:)

2

wS

)wS

= exp(⟨c, t⟩)
∏
S∈B
wS ̸=0

(
det(AS:)

2

wS

)wS

,

39

where the fourth line uses Fact A.17. Since wS ̸= 0 implies det(AS:)
2 > 0, it follows

that

f(t) ≥
∑
S∈B
wS ̸=0

wS log

(
det(AS:)

2

wS

)
> −∞

for all t ∈ Rn.

3.2 Prior and related work

The goal of our work is designing efficient algorithms for computing a (c, ϵ)-Forster

transform of A ∈ Rn×d, whenever one exists. This goal is inspired by advancements

in the complexity of simpler, but related, dataset transformation problems called

matrix balancing and scaling, for which [CMTV17, ALdOW17] achieved nearly-linear

runtimes in well-conditioned regimes. Indeed, as the list of applications of radial

isotropic position grows, so too does the importance of designing efficient algorithms

for finding them.

Given the algorithmic significance of Forster transforms, it is perhaps sur-

prising that investigations of their computational complexity are relatively nascent.

Previous strategies for obtaining polynomial-time algorithms can largely be grouped

under two categories, optimizing Barthe’s objective and iterative scaling methods.

The first approach was followed by [HM13] (see also discussion in [HM19,

Che24]), who proceeded via cutting-plane methods (CPMs), and [AKS20], who used

first-order methods (e.g., gradient descent). However, it is somewhat challenging to

quantify the accuracy needed in solving (3.11) to induce a (c, ϵ)-Forster transform

for ϵ > 0, because Barthe’s objective is not strongly convex. For example, combining

Lemmas B.6, B.9 of [HM13] with Corollary 4 of [HM19] gives an estimate of ≈
ϵ exp(−nd) additive error sufficing. Our work drastically improves this estimate (cf.

Lemma 3.3), showing it is enough to obtain an additive error that is polynomial in ϵ

and mini∈[n] ci.

An optimistic bound on [HM13]’s runtime scales as ≈ n2dω−1 + n3 (using

40

the state-of-the-art CPM [JLSW20]), where additional poly(n, d) factors are saved

using our improved error bounds. Incomparably, [AKS20] gave runtimes for first-

order methods depending polynomially on either the inverse target accuracy 1
ϵ

(and

hence precluding high-accuracy solutions), or the inverse strong convexity of Barthe’s

objective, which is data-dependent but can lose exp(d) factors or worse.

Instead of optimizing Barthe’s objective, [DTK23, DR24] recently gave alter-

native approaches that either iteratively refine a right-scaling R ∈ Rd×d to satisfy

(3.2), or refine a left-scaling s ∈ Rn
>0 to satisfy (3.7). These algorithms have the

advantage of running in strongly polynomial time, i.e., the number of arithmetic op-

erations needed only depends on n and 1
ϵ
, rather than problem conditioning notions

such as bit complexity. Designing strongly polynomial time algorithms is an inter-

esting and important goal in its own right. For instance, [DTK23] was motivated

by the connection of Forster transforms to learning halfspaces with noise [DKT21],

a robust generalization of linear programming, which is a basic problem for which

strongly polynomial time algorithms are unknown. In a different direction, [DR24]

showed that a strongly polynomial algorithm for matrix scaling by [LSW00] could be

adapted to Forster transforms.

Unfortunately, the resulting runtimes from these direct iterative methods that

sidestep Barthe’s objective are quite large. For example, [DTK23] claim a runtime

of at least ≈ n5d11ϵ−5, and a recent improvement in [DR24] still requires at least

≈ n4dω−1 log(1
ϵ
) time.

There are a few other approaches to polynomial-time computation of approxi-

mate Forster transforms based on more general formulations of the problem, see e.g.,

[AGL+18, SV19]. We discuss these algorithms in more detail in Section 3.2.1 but note

that they appear to lack explicit runtime bounds, and we believe they are subsumed

by those described thus far.

In summary, existing methods for computing (c, ϵ)-Forster transforms have

runtimes at least ≈ n2dω−1 + n3 (weakly polynomial) or ≈ n4dω−1 (strongly poly-

41

nomial). On the other hand, for related problems such as matrix scaling, near-

optimal runtimes are known in well-conditioned regimes, via structured optimization

methods that more faithfully capture the geometry of relevant objectives [CMTV17,

ALdOW17].

3.2.1 Forster transforms via maximum entropy

An alternative characterization of Forster transforms was followed by [SV19], who

studied certain maximum entropy distribution representations of specified marginals

c with respect to an index set S, which we briefly explain for context. In our setting

of finding a c-Forster transform of A ∈ Rn×d, the index set S consists of all S ⊆ [n]

with |S| = d, and the underlying π(S) is the determinantal measure with π(S) ∝

det([A⊤A]S:S). Then, Section 8.3 of [SV19] applies the Cauchy–Binet formula to

show that

min
t∈Rn
−⟨c, t⟩+ log det

∑
i∈[n]

exp (ti) aia
⊤
i


=min

t∈Rn
log

(∑
S∈S

exp (⟨1S − c, t⟩) det
([
A⊤A

]
S:S

))

=min
t∈Rn

log

(∑
S∈S

π (S) exp (⟨1S − c, t⟩)

)
+ log

(∑
S∈S

det
([
A⊤A

]
S:S

))
,

where the starting expression is Barthe’s objective (3.11). This shows that computing

Forster transforms falls within the framework of Section 7 in [SV19], which exactly

gives polynomial-time algorithms for optimizing functions in the form of the ending

expression above.

The runtime of [SV19] is not explicit, and we believe that it runs more slowly

than more direct approaches such as CPMs [HM13]. Similarly, [BLNW20] develop

interior-point methods for solving maximum entropy optimization problems of the

above form, but with runtimes scaling polynomially in |S|, which in our setting is ≈

42

nd. Finally, we mention [CKYV19, CKV20],1 which also study variants of maximum

entropy problems. Interestingly, [CKYV19] also applies a box-constrained Newton’s

method. However, it is unclear to us whether our problem falls in their framework,

and their claimed runtimes (see Theorem 4.1, [CKYV19]) depend at least on n4.5.

3.2.2 Forster transforms via operator scaling

In another direction, [GGdOW17] discovered a nontrivial connection between com-

puting Forster transforms (phrased in an equivalent way of computing Brascamp-

Lieb constants, see Proposition 1.8, [GGdOW17]) and a related problem called op-

erator scaling. This implies that polynomial-time algorithms for operator scaling

[GGdOW16, GGdOW17, IQS17, AGL+18] apply to our problem as well. However,

none of the aforementioned algorithms for operator scaling have an explicitly specified

polynomial, and a crude analysis results in fairly substantial blowups. Also, some of

these algorithms have more explicit and stronger variants analyzed in [DTK23, DR24],

so we believe they are subsumed by our existing discussion.

More generally, there is an active body of research on generalizations of opera-

tor scaling and Forster transforms [GGdOW17, Fra18, BFG+18, BFG+19], for which

several state-of-the-art results are via variants of Newton’s method, broadly defined.

It would be interesting to explore if the ideas developed in this paper could extend

to those settings as well.

3.2.3 Reductions between graph primitives

Our work on implicit sparsification (Theorem 3.2) fits into a line of work that aims to

characterize which fast (i.e., n1+o(1)-time) graph primitives imply others by reduction.

This theme was explicitly considered by [ACSS20] (see also related work by [Qua21]),

1To provide some context, [CKV20] is the conference version of an unpublished preprint
[CKYV19]. The box-constrained Newton’s method discussed here only appears in the preprint
version.

43

who studied these primitives for graphs implicitly defined by low-dimensional kernels.

Among the three primitives of (1) fast matrix-vector multiplication, (2) fast spectral

sparsification, and (3) fast Laplacian system solving, it was known previously that

(3) reduces to (1) and (2) [ST04], and that (1) reduces to (2) and (3) [ACSS20]. Our

work makes progress on this reduction landscape, as it shows (2) reduces to (1) (and

hence, (3) also reduces to (1)). We mention that Theorem 5 in [JLM+23] gives a

related, but slower, ≈ n2-time reduction from (2) to (3).

Our work is also thematically connected to prior work on spectral sparsifi-

cation under weak graph access, e.g., in streaming and dynamic settings [KLM+17,

ADK+16]. Specifically, several of the rounding-via-sketching tools used to prove The-

orem 3.2 are inspired by [KMM+20]. Their result is incomparable to ours, as we are

unable to directly access a sketch of the graph, so we instead use these tools to speed

up an optimization method rather than identify the sparsifier in one shot.

3.3 Our results

The state of affairs in Section 3.2 prompts the natural question: can we obtain sub-

stantially faster algorithms for computing a (c, ϵ)-Forster transform? Our main con-

tribution is to design such algorithms, primarily specialized to two settings which we

call the well-conditioned and smoothed analysis regimes. We note that the distinction

between well-conditioned and poorly-conditioned instances is a common artifact of

fast algorithms for scaling problems, see e.g., discussions in [CMTV17, ALdOW17,

BLNW20]. In particular, analogous works to ours for matrix scaling and balancing

[CMTV17, ALdOW17] obtain nearly-linear runtimes in well-conditioned regimes, and

polynomial runtime improvements in others.

For a fixed pair A ∈ Rn×d and c ∈ (0, 1]n satisfying ∥c∥1 = d, we use the

following notion of conditioning for the associated problem of computing a c-Forster

transform of A.

44

Assumption 3.1. For f defined in (3.11), there is t⋆ ∈ argmint∈Rn f(t) satisfying

∥t⋆∥∞ ≤ log(κ).

To justify this, recall that t⋆ ∈ argmint∈Rn f(t) induces the optimal left scal-

ing, in the sense of (3.7), via s(t⋆) = exp(1
2
t), entrywise. Further, Barthe’s objective

is invariant to translations by 1n:

f (t+ α1n) = −⟨c, t+ α1n⟩+ log det (Z (t+ α1n))

= −⟨c, t⟩ − αd+ log det (Z(t)) + log det (exp(α)Id) = f(t).
(3.15)

Thus, we can always shift any minimizing t⋆ so that its extreme coordinates

average to 0, which achieves the tightest ℓ∞ bound on t⋆ via shifts by 1n. This shows

that κ in Assumption 3.1 is the ratio of the largest and smallest entries of the optimal

scaling s ∈ Rn
>0 achieving (3.7).

3.3.1 Main theorem

We now state our main result on computing Forster transforms.

Theorem 3.1. Let A ∈ Rn×d, c ∈ (0, 1]n satisfy Assumption 3.1, and let δ, ϵ ∈

(0, 1). There is an algorithm that computes R, a (c, ϵ)-Forster transform of A, with

probability ≥ 1− δ, in time

O

(
ndω−1 log (κ)

(
n log(κ)

δϵcmin

)o(1)
)
, where cmin := min

i∈[n]
ci.

In the well-conditioned regime where κ = poly(n), Theorem 3.1 improves

upon the state-of-the-art runtimes for radial isotropic position by a factor of ≈

max(n, n2d1−ω), up to a subpolynomial overhead in problem parameters.2 More-

over, Theorem 3.1 approaches natural limits for computing Forster transforms. For

2As discussed earlier, to our knowledge, even that CPMs [HM13] obtain runtimes of ≈ n2dω−1+n3

for well-conditioned instances was unknown previously. This is enabled by our improved error
tolerance analysis in Lemma 3.3.

45

example, using current techniques, it takes ≈ ndω−1 time to perform basic relevant

operations such as evaluating Barthe’s objective (3.11), or verifying that a given right

scaling R ∈ Rd×d or left scaling s ∈ Rn
>0 places a dataset in radial isotropic position.

Interestingly, our algorithm for optimizing Barthe’s objective (3.11) is a variant

of the box-constrained Newton’s method of [CMTV17, ALdOW17], originally devel-

oped for approximate matrix scaling and balancing. For this reason, it is perhaps

surprising that Theorem 3.1 depends linearly on n. Indeed, merely writing down the

Hessian of Barthe’s objective takes n2 time, which dominates the runtime of Theo-

rem 3.1 for n≫ d.

We were inspired to use this tool by noticing similarities between the derivative

structure of Barthe’s objective (Fact 3.1) and the softmax function, which can be

viewed as the one-dimensional case of Barthe’s objective. Previously, the softmax

function was known to be Hessian stable in the ℓ∞ norm (Definition 3.4), enabling

local optimization oracles that can be implemented via Newton’s method [CJJ+20]

over ℓ2 or ℓ∞ norm balls.

It is much more challenging to prove that Barthe’s objective is Hessian sta-

ble, as the proof in [CJJ+20] does not naturally extend to non-commuting variables.

Nonetheless, we give a different proof inspired by Kadison’s inequality in operator

algebra [Kad52] to establish Hessian stability of Barthe’s objective in Section 3.4.1.

We complement this result in Section 3.4.2 with bounds on the additive error on

Barthe’s objective required to obtain a (c, ϵ)-Forster transform, for an approximation

tolerance ϵ > 0. By using the leverage score characterization (3.7) of exact Forster

transforms, and performing a local perturbation analysis at the optimizer, we show

that poly(ϵ,mini∈[n] ci) error suffices. This significantly sharpens prior error toler-

ance bounds from [HM13, Che24], which scaled exponentially in a polynomial of the

problem parameters.

With these stability bounds in place, the rest of Section 3.4 makes small mod-

ifications to the [CMTV17] analysis. We show that by using fast matrix multipli-

46

cation, each Hessian can be computed in ≈ n2dω−2 time (Lemma 3.5), and that

box-constrained Newton steps can be efficiently implemented using the constrained

optimization methods from [CPW21]. We then obtain the stated runtime via a tech-

nical tool of potential independent interest.

We mention here that the use of this last technical tool leads to the subpoly-

nomial overheads in Theorem 3.1. By using explicit Hessian evaluations, we obtain

an alternate runtime of

O

(
n2dω−2 log (κ) polylog

(
n log(κ)

δϵcmin

))
,

as described more formally in Lemma 3.5 and Remark 3.1, which yields (improved)

polylogarithmic dependences on 1
δ
, 1
ϵ
, and 1

cmin
, at the cost of a multiplicative overhead

of ≈ n
d
.

3.3.2 Implicit sparsification

Our fastest runtimes are obtained by using an implicit sparsifier for certain struc-

tured matrices. To explain its relevance to our setting, while the Hessian of Barthe’s

objective ∇2f is n× n and fully dense (as given in Fact 3.1), its structure is appeal-

ing in several regards. While we do not know how to compute ∇2f faster than in

≈ n2dω−2 time, we can access it via matrix-vector products in O(ndω−1) time (cf.

Lemma 3.5). In addition, ∇2f is actually a graph Laplacian, i.e., it belongs to a

family of matrices that have enabled many powerful algorithmic primitives, such as

spectral sparsification. For example, breakthroughs by [SS11, ST14] show that any

n × n graph Laplacian L admits constant-factor spectral approximations with only

≈ n nonzero entries.

In this work, we add a new primitive to the graph Laplacian toolkit. We

consider the following problem, which to our knowledge has not been explicitly studied

before: given an (implicit) Laplacian L accessible only via a matrix-vector product

oracle, how many queries are needed to produce an (explicit) spectral sparsifier of

47

L? The sparsifier can then be used as a preconditioner, enabling faster second-order

methods. Our main result to this end is the following.

Theorem 3.2. Let L be an n × n graph Laplacian, and let O : Rn → Rn be an

oracle that returns Lv on input v ∈ Rn. Let δ ∈ (0, 1), ∆ ∈ (0,Tr(L)), and let

Π := In − 1
n
1n1

⊤
n be the projection matrix to the subspace of Rn orthogonal to 1n.

There is an algorithm that takes as inputs (O, δ,∆), and with probability ≥ 1− δ, it

returns L̃, an n× n graph Laplacian satisfying

L+∆Π ⪯ L̃ ⪯
(
nTr(L)
∆δ

)o(1)

(L+∆Π) , nnz(L̃) = n ·
(
nTr(L)
∆δ

)o(1)

, (3.16)

using (nTr(L)
∆δ

)o(1) queries to O, and n · (nTr(L)
∆δ

)o(1) additional time.

For δ = poly(1
n
) and poly(n)-well conditioned graph Laplacians, Theorem 3.2

produces a spectral sparsifier of a Laplacian L using no(1) matrix-vector products and

n1+o(1) additional time. The approximation quality of the sparsifier is somewhat poor,

i.e., no(1), but in algorithmic contexts (such as that of Theorem 3.1), this is sufficient

for use as a low-overhead preconditioner.

We believe Theorem 3.2 may be of independent interest to the graph algo-

rithms and numerical linear algebra communities, as it enhances the flexibility of

existing Laplacian-based tools. We are optimistic that its use can extend the reach

of fast second-order methods for combinatorially-structured optimization problems.

The proof of Theorem 3.2 extends the work of [JLM+23], which uses a reduc-

tion to packing SDPs and applies packing SDP solvers from the literature [ALO16,

PTZ16, JLT20] along with a homotopy scheme. For brevity, we omit the rather

technical proof here and refer instead to Section 4 of [JLT25].

3.3.3 Smoothed regime

Our third main contribution is to provide explicit bounds on the problem conditioning

κ in Assumption 3.1, for “beyond worst-case” inputs A. We specialize our result to the

48

smoothed analysis setting, a well-established paradigm for beyond worst-case analysis

in the theoretical computer science community [ST04, Rou20]. In our smoothed

setting, we perturb entries of our input by Gaussian noise at noise level σ > 0.

This is a standard smoothed matrix model used in the study of linear programming

algorithms [ST04, SST06].

Here, we state the basic variant of our conditioning bound in the smoothed

analysis regime.

Theorem 3.3. Let A ∈ Rn×d have rows {ai}i∈[n] such that ∥ai∥2 = 1 for all i ∈ [n],

let c := d
n
1n, let δ ∈ (0, 1), and let σ ∈ (0, δ

10nd
). Let Ã := A +G, where G ∈ Rn×d

has entries ∼i.i.d. N (0, σ2). Then with probability ≥ 1− δ, if n ≥ Cd where C is any

constant larger than 1, Assumption 3.1 holds for Barthe’s objective f defined with

respect to (Ã, c), where

log(κ) = O

(
d log

(
1

σ

))
.

That is, A in Theorem 3.3 is a “base worst-case instance” that is smoothed

into a more typical instance Ã, which our conditioning bound of κ ≈ (1
σ
)O(d) applies

to.

The assumption in Theorem 3.3 that A has unit norm rows is relatively mild;

rescaling rows does not affect the (base) Forster transform problem, and our result still

applies if row norms are in a poly(n) multiplicative range. Further, while Theorem 3.3

is stated for uniform marginals c = d
n
1n, we show in Corollary 3.1 that as long as the

marginals c are bounded away from 1 entrywise by a constant, a similar conditioning

estimate still holds for sufficiently large n. The requirement that n ≥ Cd for C > 1

is a minor bottleneck of our approach, discussed in Remark 3.2.

We are aware of few explicit conditioning bounds for Forster transforms such

as Theorem 3.3, so we hope it (and techniques used in establishing it) become useful

in future studies. Among conditioning bounds that exist presently, Lemma B.6 of

[HM13] (cf. discussion in Corollary 4, [HM19]) shows that for A with rows in general

49

position, we have log(κ) = O(n log(1
D
)), where D is the smallest determinant of a

nonsingular d × d submatrix of A. In particular, D can be inverse-exponential in d

(or worse) for poorly-behaved instances. A crude lower bound of D ≳ exp(−d3) was

provided in [Che24] for essentially the smoothed model we consider in Theorem 3.3.

On the other hand, [DTK23, DR24], who respectively design strongly polyno-

mial methods for iteratively updating an approximate Forster transform R ∈ Rd×d

or dual scaling s ∈ Rn
>0, bound related conditioning quantities. Both papers contain

results (cf. Section 5, [DTK23] and Section 4, [DR24]) showing that any iterate has

a “nearby” iterate in bounded precision, that does not significantly affect some po-

tential function of interest. These results do not appear to directly have implications

for Assumption 3.1, and provide rather large bounds on the bit complexity (focusing

on worst-case instances). Nonetheless, exploring connections in future work could be

fruitful.

Most relatedly, Theorem 1.5 of [AKS20] proves that for target marginals c

that are “deep” inside the basis polytope for independent sets of A’s rows, log(κ) ≲ d.

However, [AKS20] does not give estimates on the deepness of marginals in concrete

models, and indeed our approach to proving Theorem 3.3 is to provide such explicit

bounds in the smoothed analysis regime.

To prove Theorem 3.3, in Definition 3.6 we first extend an approach of [AKS20]

that defines a notion of deepness of marginal vectors c inside the basis polytope

induced by A’s independent row subsets. As we recall in Section 3.5.1, [AKS20]

argues that if c has deepness of η = Ω(1), then we can obtain a conditioning bound

of log(κ) ≈ d in Assumption 3.1. In the case of c = d
n
1n, this roughly translates to a

robust variant of (3.5) that says: for all subspaces E ⊆ Rd of dimension k, at most a

≈ k
d

fraction of A’s rows (after smoothing by Gaussian noise) should lie at distance

poly(1
n
) from E. The rest of Section 3.5 proves this deepness result for smoothed

matrices Ã = A+G.

The key challenge is to avoid union bounding over a net of all possible sub-

50

spaces E; for dim(E) = Θ(d), this naïve approach would require taking n ≳ d2

samples, as nets of Θ(d)-dimensional subspaces have cardinality ≈ exp(d2). We in-

stead show in Lemma 3.9 that deepness is implied by appropriate submatrices of Ã

having large singular values, allowing us to apply union bounds to a smaller number

of data-dependent subspaces. We combine this observation with singular value esti-

mates from the random matrix theory literature to prove Theorem 3.3. Our argument

requires some casework on the subspace dimension; we handle wide and near-square

submatrices in Section 3.5.2 and tall submatrices in Section 3.5.3.

Directly combining Theorems 3.1 and 3.3 shows that for smoothed instances,

the complexity of computing an approximate Forster transform is at most ≈ ndω,

up to a subpolynomial factor. While it is worse than our well-conditioned runtime,

our method in Theorem 3.1 still improves upon state-of-the-art algorithms based on

CPMs by a factor of ≈ max(n
d
, n3d−ω) in this regime.

3.3.4 Computational model

We briefly mention that we work in the real RAM model, where we bound the number

of basic arithmetic operations. Prior work on optimizing Barthe’s objective [HM13,

AKS20] also worked in this model. A detailed investigation of the numerical stability

of Forster transforms is an important direction for future work, but it is outside of

our scope.

3.4 Optimizing Barthe’s objective via Newton’s method

In this section, we give our algorithm for computing approximate Forster transforms.

We first define the following notion of multiplicative stability for analyzing

Newton’s method, patterned off [CMTV17, KSJ18, CJJ+20].

Definition 3.4 (Hessian stability). We say that twice-differentiable f : Rn → R is

51

(r, ϵ)-Hessian stable with respect to norm ∥·∥ if for all x,y ∈ Rn with ∥x− y∥ ≤ r,

∇2f(x) ≈ϵ ∇2f(y).

[CMTV17] called this property “second-order robustness.” Our algorithm is

a variant of the box-constrained Newton’s method of [CMTV17], which solves box-

constrained quadratics to optimize a Hessian-stable function in ∥·∥∞ to high precision.

We first make our key technical observation in Section 3.4.1: that Barthe’s ob-

jective is Hessian-stable with respect to ∥·∥∞. We then give a termination condition

in Section 3.4.2 that suffices for t ∈ Rn to induce an ϵ-Forster transform R(t). In

Section 3.4.3, we leverage our implicit Laplacian sparsification algorithm from Theo-

rem 3.2 to implement the iteration of the [CMTV17] Newton’s method. We put all

the pieces together in Section 3.4.4 to give our main result.

Throughout this section, we fix a pair A ∈ Rn×d and c ∈ (0, 1]n satisfying

∥c∥1 = d and (3.5). We follow the notation outlined in Section 3.1, in particular,

(3.10), (3.11), and (3.12). We also will state our results under the diameter bound in

Assumption 3.1.

3.4.1 Hessian stability of Barthe’s objective

In this section, we prove the following key structural result enabling our approach.

Proposition 3.4. For all r > 0, f is (r, 2r)-Hessian stable with respect to ∥·∥∞.

A similar result to Proposition 3.4 was previously established for the softmax

objective

t→ log

∑
i∈[n]

exp(ti)

 ,

in Lemma 14, [CJJ+20], using more elementary techniques, i.e., directly establishing

that the softmax satisfies the following third-order regularity property.

52

Definition 3.5 (Quasi-self-concordance). We say that thrice-differentiable and con-

vex f : Rn → R is M -quasi-self-concordant (QSC) with respect to norm ∥·∥ if for all

u,h,x ∈ Rn, ∣∣∇3f(x)[u,u,h]
∣∣ ≤M ∥h∥ ∥u∥2∇2f(x) .

We provide an alternative proof of the following result in [CJJ+20], which is

of independent interest.

Proposition 3.5. The softmax function

g(t) = log

∑
i∈[n]

exp(ti)


is 2-QSC with respect to ∥·∥∞.

Proof. For x ∈ Rn, define P (x) as the distribution over ei given by

Pr
y∼P (x)

[y = ei] = exp(xi − g(x)).

Observe that
∑

i∈[n] exp(xi − g(x)) = 1, so P (x) is indeed a probability distribution.

By straightforward calculation, where ⊗ denotes the outer product,

∇g(x) = Ey∼P (x)[y]

∇2g(x) = Ey∼P (x)[(y −∇g(x))⊗ (y −∇g(x))]

∇3g(x) = Ey∼P (x)[(y −∇g(x))⊗ (y −∇g(x))⊗ (y −∇g(x))]

Now by Hölder’s inequality (Fact A.18) and the fact that ∥y∥1 = 1 and ∥∇g(x)∥1 = 1,

|⟨y −∇g(x),h⟩| ≤ ∥y −∇g(x)∥1 ∥h∥∞ ≤ 2 ∥h∥∞

for all h ∈ Rn. Thus∣∣∇3g(x)[u,u,h]
∣∣ = ∣∣Ey∼P (x)[⟨y −∇g(x),h⟩ (y −∇g(x))⊗ (y −∇g(x))][u,u]

∣∣
≤ 2 ∥h∥∞∇

2g(x)[u,u]

for all u,h,x ∈ Rn, as desired.

53

Due to complications arising from Barthe’s objective being defined with respect

to potentially non-commuting matrices, we follow a substantially different approach

in this section. We first prove the following helper lemma, which shows that taking

a Schur complement preserves the Loewner order.

Lemma 3.2. If M,N ∈ Sd×d
⪰0 and M ≈ϵ N, then

SC (M, S) ≈ϵ SC (N, S) for all S ⊆ [d].

Proof. It suffices to show that if A,B ∈ Sd×d
⪰0 ,

A ⪰ B =⇒ SC (A, S) ⪰ SC (B, S) . (3.17)

The claim then follows by applying (3.17) with (A,B) ← (exp(ϵ)M,N) and ←

(exp(ϵ)N,M), since SC(αM, S) = αSC(M, S) for any scaling coefficient α ∈ R.

We now establish (3.17). It is well-known (see, e.g., Appendix A.5.5 of [BV04b])

that

x⊤SC (A, S)x = min
y∈RSc

(
x
y

)⊤

A

(
x
y

)
for all S ⊆ [d] and x ∈ RS, where Sc := [d] \ S. Now (3.17) follows from

x⊤SC (A, S)x = min
y∈RSc

(
x
y

)⊤

A

(
x
y

)
≥ min

y∈RSc

(
x
y

)⊤

B

(
x
y

)
= x⊤SC (B, S)x.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Throughout, fix t, t′ ∈ Rn with ∥t− t′∥∞ ≤ r. Our goal is

to show

∇2f(t) ≈2r ∇2f(t′).

We follow the notation (3.10), (3.12), and whenever the argument is dropped, it is

implied to be at t; we will use a superscript ′ whenever the argument is at t′. So, for

54

example, Mi ≡Mi(t) and M′
i ≡Mi(t

′) for all i ∈ [n]. Also, to ease notation in this

proof we define

Ci := exp (ti) aia
⊤
i , C

′
i := exp (t′i) aia

⊤
i ,

so that Mi = RCiR for all i ∈ [n]. We first claim that for all i ∈ [n],

Ci 0 · · · 0 Ci 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
0 0 · · · 0 0 0 · · · 0
Ci 0 · · · 0 Ci 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
0 0 · · · 0 0 0 · · · 0


≈r



C′
i 0 · · · 0 C′

i 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
0 0 · · · 0 0 0 · · · 0
C′

i 0 · · · 0 C′
i 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
...

...
0 0 · · · 0 0 0 · · · 0


, (3.18)

where both matrices in (3.18) have dimensions (n+1)d×(n+1)d, and only the (1, 1),

(i+1, 1), (1, i+1), and (i+1, i+1)-indexed d× d blocks are nonzero. We can verify

(3.18) by direct expansion with respect to a 2d-dimensional test vector with blocks

x,y, which reduces the claim to

(x+ y)⊤Ci(x+ y) ≈r (x+ y)⊤C′
i(x+ y) ⇐= Ci ≈r C

′
i,

where the latter fact above follows from ∥t− t′∥∞ ≤ r. Summing (3.18) for all i ∈ [n]

shows

L ≈r L
′, where L :=



∑
i∈[n] Ci C1 C2 · · · Cn

C1 C1 0 · · · 0
C2 0 C2 · · · 0
...

...
...

Cn 0 0 · · · Cn

 ,

L′ :=



∑
i∈[n] C

′
i C′

1 C′
2 · · · C′

n

C′
1 C′

1 0 · · · 0
C′

2 0 C′
2 · · · 0

...
...

...
C′

n 0 0 · · · C′
n

 .

55

Next, using Lemma 3.2 to take Schur complements of L,L′ onto the index set [(n +

1)d] \ [d] shows

K ≈r K
′, where K :=


C1 −C1Z

−1C1 · · · −C1Z
−1Cn

−C2Z
−1C1 · · · −C2Z

−1Cn
...

−CnZ
−1C1 · · · Cn −CnZ

−1Cn

 ,

K′ :=


C′

1 −C′
1(Z

′)−1C′
1 · · · −C′

1(Z
′)−1C′

n

−C′
2(Z

′)−1C′
1 · · · −C′

2(Z
′)−1C′

n
...

−C′
n(Z

′)−1C′
1 · · · C′

n −C′
n(Z

′)−1C′
n

 ,

where we used that Z =
∑

i∈[n] Ci and Z′ =
∑

i∈[n] C
′
i. Finally, fix some vector

v ∈ Rn. Let

J := vv⊤ ⊗ Z−1 =


v2
1Z

−1 v1v2Z
−1 v1v3Z

−1 · · · v1vnZ
−1

v1v2Z
−1 v2

2Z
−1 v2v3Z

−1 · · · v2vnZ
−1

v1v3Z
−1 v2v3Z

−1 v2
3Z

−1 · · · v3vnZ
−1

...
...

...
v1vnZ

−1 v2vnZ
−1 v3vnZ

−1 · · · v2
nZ

−1

 ,

where ⊗ denotes the Kronecker product. Similarly define J′ := vv⊤⊗(Z′)−1. Because

we established each Ci ≈r C
′
i, we also have Z ≈r Z

′ and thus Z−1 ≈r (Z
′)−1. By well-

known properties of the Kronecker product (cf. Theorem 2.3, [Sch13]), we conclude

that J ≈r J
′. We have thus shown:

K ≈r K
′, J ≈r J

′.

Now by Fact A.4, ⟨K,J⟩ ≈2r ⟨K′,J′⟩. The conclusion follows upon realizing

⟨K,J⟩ =
∑
i∈[n]

v2
i Tr

(
Z−1Ci

)
−

∑
(i,j)∈[n]×[n]

vivjTr
(
Z−1CiZ

−1Cj

)
=
∑
i∈[n]

v2
i Tr (Mi)−

∑
(i,j)∈[n]×[n]

vivjTr (MiMj) = v⊤∇2f(t)v,

and similarly, ⟨K′,J′⟩ = v⊤∇2f(t′)v, by comparing to Fact 3.1 and using Fact A.3.

This establishes v⊤∇2f(t)v ≈2r v
⊤∇2f(t′)v for all v ∈ Rn, as desired.

56

3.4.2 Termination condition

In this section, we quantify the suboptimality gap (with respect to Barthe’s objective)

needed for t ∈ Rn to induce a (c, ϵ)-Forster transform R(t), as a function of ϵ and

problem parameters. Our proof makes use of local adjustments and is inspired by a

similar technique in [CMTV17].

Lemma 3.3. Let ϵ ∈ (0, 1), and suppose t ∈ Rn satisfies

f (t)− f (t⋆) ≤
ϵ2mini∈[n] c

2
i

2
, (3.19)

where t⋆ ∈ argmint∈Rn f(t). Then R(t) is a (c, ϵ)-Forster transform.

Proof. We prove the contrapositive. Suppose R(t) is not a (c, ϵ)-Forster transform.

By Lemma 3.1, there are two cases of leverage score violations to consider. We

show that both cases contradict (3.19), by designing local improvements to t in any

coordinate with a violating leverage score.

Case 1. Suppose that for some i ∈ [n], we have τ i(S(t)A) > exp(ϵ)ci ≥

(1+ ϵ)ci by Fact A.21. Let t′ := t− δei for some choice of δ > 0 that we will optimize

later. Then,

f (t)− f (t′) = log

(
det (Z(t))

det (Z(t′))

)
− δci

= log

(
det (Z(t))

det
(
Z(t) + (exp(−δ)− 1) exp (ti) aia⊤

i

))− δci

= log

(
det (Z(t))

det (Z(t))
(
1 + (exp(−δ)− 1) exp (ti) a⊤

i Z(t)
−1ai

))− δci

= log

(
det (Z(t))

det (Z(t)) (1 + (exp(−δ)− 1) τ i(S(t)A))

)
− δci

= − log (1 + (exp(−δ)− 1) τ i(S(t)A))− δci

≥ (1− exp(−δ))τ i(S(t)A)− δci

≥
(
δ − δ2

2

)
τ i(S(t)A)− δci > δϵci −

δ2

2
≥ 1

2
(ϵci)

2 ,

57

where the first two lines expanded definitions, the third line uses the matrix determi-

nant lemma (Fact A.7), the fourth line uses the definition of leverage scores (3.6), the

sixth line uses Fact A.22, and the seventh line uses Fact A.24, τ i(S(t)A) > (1+ ϵ)ci,

and τ i(S(t)A) ≤ 1 (Fact A.5). By choosing the optimal δ = ciϵ, we have a contra-

diction to (3.19).

Case 2. Suppose that for some i ∈ [n], we have τ i(S(t)A) < exp(−ϵ)ci ≤ ci
1+ϵ

by Fact A.23. Let t′ := t + δei for some choice of δ > 0 that we will optimize later.

Then, following analogous derivations as before,

f (t)− f (t′) = − log (1 + (exp (δ)− 1) τ i(S(t)A)) + δci

> − log

(
1 + (exp (δ)− 1)

ci
1 + ϵ

)
+ δci

= log (1 + ϵ)− (1− ci) log

(
1 +

ϵ

1− ci

)
≥ 1

2
(ϵci)

2 ,

where the second line uses τ i(S(t)A) < ci
1+ϵ

, the third line chose δ = log(1 + ϵ
1−ci

)

and used Fact A.25. Again this gives a contradiction to (3.19). We remark that the

case of ci = 1 can be handled using a limiting argument.

3.4.3 Box-constrained Newton’s method

Thus far we have established that f is Hessian stable in ∥·∥∞ (Proposition 3.4) and

needs to be minimized to error
ϵ2mini∈[n] c

2
i

2

for our desired application (Lemma 3.3). We also are given under Assumption 3.1

that the global minimizer lies inside B∞(log(κ)).

It remains to give an algorithm for efficiently optimizing Hessian stable func-

tions. Fortunately, such a toolkit was provided by [CMTV17, CPW21]. The former

work designed an approximation-tolerant box-constrained Newton’s method, tailored

towards objectives whose Hessians display a certain combinatorial structure, and the

latter work showed how to optimize box-constrained quadratics in these structured

Hessians. We can leverage this toolkit due to the next observation.

58

Lemma 3.4. For all t ∈ Rn, ∇2f(t) is a graph Laplacian, i.e., ∇2
ijf(t) ≥ 0 iff i = j,

and ∑
j∈[n]

∇2
ijf(t) = 0 for all i ∈ [n].

Proof. The first property is immediate by inspection of (3.13), and using that all the

Mi(t) ∈ Sd×d
⪰0 . The second property follows because

∑
j∈[n]Mj(t) = Id, so for all

i ∈ [n] we have∑
j∈[n]

∇2
ijf(t) = Tr (Mi(t))−

〈
Mi(t),

∑
j∈[n]

Mj(t)

〉
= Tr (Mi(t))− ⟨Mi(t), Id⟩ = 0.

We remark that Lemma 3.4 gives another short proof of f ’s convexity: it

is well-known that graph Laplacians are PSD matrices, which follows e.g., by the

Gershgorin circle theorem.

One complication that arises in our algorithm is that computing the Hessian

∇2f is more expensive than providing matrix-vector query access to it, due to a

convenient factorization.

Lemma 3.5. Given t ∈ Rn, we can compute ∇f(t) in O(ndω−1) time and ∇2f(t) in

O(n2dω−2) time. Additionally, given t,v ∈ Rn, we can compute ∇2f(t)v in O(ndω−1)

time.

Proof. Recall the formulas for ∇f(t) and ∇2f(t) in Fact 3.1. For the former claim,

following (3.10), (3.12), we first compute S(t)A in time O(nd), which lets us compute

Z(t) in time O(ndω−1) by multiplying d×n and n×d matrices. We can then compute

AR(t) to obtain all of the vectors ãi(t) in O(ndω−1) time. This lets us obtain all

Tr(Mi(t)) = si(t)
2∥ãi(t)∥22 in O(nd) additional time.

It remains to compute the n × n matrix with (i, j)th entry Tr(Mi(t)Mj(t)).

Observe that

Tr(Mi(t)Mj(t)) = si(t)
2sj(t)

2 ⟨ãi(t), ãj(t)⟩2 .

59

Thus it is enough to form the matrix with (i, j)th entry ⟨ãi(t), ãj(t)⟩, multiply it

entrywise by si(t)sj(t), and entrywise square it, in O(n2) time. The former matrix

is AZ(t)−1A⊤, which takes time O(n2dω−2) time to compute by multiplying n × d,

d× d, and d× n matrices.

For the latter claim, we can again first compute

diag
(
{Tr (Mi(t))}i∈[n]

)
v

in time O(ndω−1) using the steps described above. To implement ∇2f(t)v, it remains

to compute〈
Mi(t),

∑
j∈[n]

vjMj(t)

〉
= exp(ti)

R(t)

∑
j∈[n]

vjMj(t)

R(t)

 [ai, ai]

for all i ∈ [n]. Observe that

C := R(t)

∑
j∈[n]

vjMj(t)

R(t) = Z(t)−1

∑
j∈[n]

vj exp(tj)aja
⊤
j

Z(t)−1,

which can be computed in O(ndω−1) time by first forming the middle matrix on the

right-hand side via multiplying d × n and n × d matrices. Finally, to compute all

C[ai, ai], we can take the rows of AC and obtain their dot products with rows of A

which requires O(ndω−1) time to compute.

To capitalize on the faster matrix-vector access given by Lemma 3.4, we will

apply Theorem 3.2 to sparsify the Hessian of a regularized variant of Barthe’s objec-

tive. Next, we require a tool from [CPW21] for optimizing box-constrained quadratics

in a graph Laplacian.

Proposition 3.6 (Theorem 1.1, [CPW21]). Let δ ∈ (0, 1), let l,u ∈ Rn have l ≤ u

entrywise, let b, t ∈ Rn, and let L ∈ Sn×n
⪰0 be a graph Laplacian with nnz(L) ≤ m.

Let

W := {w ∈ Rn | li ≤ ti +wi ≤ ri for all i ∈ [n]} .

60

There is an algorithm O(L,b,W) that runs in time O((n+m)1+o(1) log(1
δ
)), and with

probability ≥ 1− δ, it returns v ∈ W satisfying

⟨b,v⟩+ 1

2
L [v,v] ≤ 1

2
min
w∈W

{
⟨b,w⟩+ 1

2
L [w,w]

}
.

In [CPW21] it was only stated for the case l = 0n and u is ∞ in each co-

ordinate, i.e., the box constraint is simply the positive orthant Rn
≥0. However, the

techniques extend straightforwardly to general box constraints [CPW25].

We now show how to use Proposition 3.6 to efficiently optimize an ℓ∞-Hessian

stable function. The following proof is based on Theorem 3.4, [CMTV17], but adapts

it to tolerate multiplicative error in the Hessian computation. We note that a similar

multiplicatively-robust generalization appeared earlier as Lemma 20, [AJJ+22], but

was too restrictive for our purposes.

Lemma 3.6. Let convex F : Rn → R be (1, 2)-Hessian stable with respect to ∥·∥∞,

and let t⋆ ∈ argmint∈Rn F (t) have ∥t⋆∥∞ ≤ log(κ). For t ∈ Rn, α ≥ 1, let L̃ ∈ Sn×n
⪰0

be a graph Laplacian with

∇2F (t) ⪯ L̃ ⪯ α∇2F (t) .

Then for any t ∈ B∞(log(κ)), if t′ ← t+O(8L̃,∇F (t),B∞(t, 1)∩B∞(log(κ))), where

O is as in Proposition 3.6, we have

F (t′)− F (t⋆) ≤
(
1− 1

240α log(κ)

)
(F (t)− F (t⋆)) .

Proof. For any u with ∥t− u∥∞ ≤ 1, Hessian stability of F yields the bounds

F (u)− F (t)− ⟨∇F (t),u− t⟩ =
∫ 1

0

(1− λ)∇2F ((1− λ) t+ λu) [u− t,u− t] dλ

≤
∫ 1

0

(1− λ) e2L̃ [u− t,u− t] dλ

≤ e2

2
L̃ [u− t,u− t] ≤ 4L̃ [u− t,u− t] ,

F (u)− F (t)− ⟨∇F (t),u− t⟩ ≥ 1

2αe2
L̃ [u− t,u− t] ≥ 1

15α
L̃ [u− t,u− t] .

(3.20)

61

Next define

δ̂ := argmin
∥δ∥∞≤1

t+δ∈B∞(log(κ))

⟨∇F (t), δ⟩+ 4L̃ [δ, δ] ,

and observe that for δ := t′ − t = O(8L̃,∇F (t),B∞(t, 1) ∩ B∞(log(κ))), we have

⟨∇F (t), δ⟩+ 4L̃ [δ, δ] ≤ 1

2

(
⟨∇F (t), δ̂⟩+ 4L̃[δ̂, δ̂]

)
≤ 1

2

(
⟨∇F (t), δ⋆⟩+ 4L̃[δ⋆, δ⋆]

)
,

for any ∥δ⋆∥∞ ≤ 1 with t+ δ⋆ ∈ B∞(log(κ)),

(3.21)

from the oracle guarantee and definition of δ̂. Hence, applying the upper bounds in

(3.20) and (3.21),

F (t′) ≤ F (t) + ⟨∇F (t) , δ⟩+ 4L̃ [δ, δ]

≤ F (t) +
1

2

(
⟨∇F (t), δ⋆⟩+ 4L̃[δ⋆, δ⋆]

)
,

(3.22)

for our choice of δ⋆ satisfying the bounds in (3.21). We choose δ⋆ = c
2 log(κ)

(t⋆ − t)

where c = 1
60α

. First observe that this is a valid choice of movement, because

t+ δ⋆ =

(
1− c

2 log(κ)

)
t+

c

2 log(κ)
t⋆ ∈ B∞ (log(κ)) ,

∥δ⋆∥∞ ≤
1

2 log(κ)
(∥t∥∞ + ∥t⋆∥∞) ≤ 2 log(κ)

2 log(κ)
= 1,

where both inequalities used that t, t⋆ ∈ B∞(log(κ)), which is a convex set. Thus,

1

2

(
⟨∇F (t), δ⋆⟩+ 4L̃[δ⋆, δ⋆]

)
=

1

120α

(〈
∇F (t),

1

c
δ⋆

〉
+

1

15α
L̃

[
1

c
δ⋆,

1

c
δ⋆

])
≤ 1

120α

(
F

(
t+

1

c
δ⋆

)
− F (t)

)
≤ − 1

240α log(κ)
(F (t)− F (t⋆)) .

The first inequality above used the lower bound in (3.20), and the second inequality

used convexity of F . At this point, combining with (3.22) yields the conclusion.

62

3.4.4 Proof of Theorem 3.1

In this section we put together the pieces we have built to obtain our final algorithm.

To begin, we note that under Assumption 3.1, the following simple initial function

error bound holds.

Lemma 3.7. Under Assumption 3.1, letting t⋆ ∈ argmint∈Rn f(t) ∩ B∞(log(κ)), we

have that

f (0n)− f (t⋆) ≤ d log2(κ)

2
.

Proof. We first note that for all t,v ∈ Rn, we have

∇2f(t) [v,v] ≤ diag
(
{Tr (Mi(t))}i∈[n]

)
[v,v] =

∑
i∈[n]

τ i (S(t)A)v2
i ≤ d ∥v∥2∞ ,

i.e., f is d-smooth with respect to ∥·∥∞ (we used Fact A.5 in the last inequality

above). Thus by the second-order Taylor expansion from t⋆ to 0n, and using that

∇f(t⋆) = 0n,

f(0n) = f(t⋆) +

∫ 1

0

(1− λ)∇2f ((1− λ) t⋆) [t⋆, t⋆] dλ

≤ f(t⋆) +
d

2
∥t⋆∥2∞ ≤ f(t⋆) +

d log2(κ)

2
.

We can now prove Theorem 3.1, the main result of this section.

Theorem 3.1. Let A ∈ Rn×d, c ∈ (0, 1]n satisfy Assumption 3.1, and let δ, ϵ ∈

(0, 1). There is an algorithm that computes R, a (c, ϵ)-Forster transform of A, with

probability ≥ 1− δ, in time

O

(
ndω−1 log (κ)

(
n log(κ)

δϵcmin

)o(1)
)
, where cmin := min

i∈[n]
ci.

63

Proof. Throughout this proof, we let f be Barthe’s objective, and

F (t) := f(t) +
ϵ2c2min

4n log2(κ)
t⊤Πt,

where Π := In − 1
n
1n1

⊤
n . Our goal is to optimize F to error ϵ2c2min

4
over B∞(log(κ)).

To see why this suffices, note that for all t ∈ B∞(log(κ)), we have t⊤Πt ≤ ∥t∥22 ≤

n log2(κ), and hence any ϵ2c2min

4
-minimizer t of F over B∞(log(κ)) satisfies

f(t)− f(t⋆) ≤ F (t)− F (t⋆) +
ϵ2c2min

4
≤ ϵ2c2min

2
,

where t⋆ is as in Lemma 3.7. Now, applying Lemma 3.3 gives the claim, because

computing R(t) does not dominate the stated runtime (as described in Lemma 3.5).

Note that each time we apply Lemma 3.6 with α ← (n log(κ)
ϵcmin

)o(1), we improve the

function error by a multiplicative 1− Ω((α log(κ))−1). Moreover, the initial function

error is bounded as in Lemma 3.7. Thus to obtain the stated runtime, it is enough

to show how to implement each call to Lemma 3.6 with α← (n log(κ)
ϵcmin

)o(1), in time

O

(
ndω−1

(
n log(κ)

δϵcmin

)o(1)
)

(3.23)

Adjusting δ by the number of calls and taking a union bound then gives the claim.

To achieve this runtime we first produce a sparse graph Laplacian matrix L̃

satisfying (3.16) for ∆ :=
ϵ2c2min

4 log2(κ)
and L← ∇2f(t) for some iterate t. Recalling that

Tr(L) ≤ Tr(Id) = d, Theorem 3.2 and Lemma 3.5 guarantee that we can compute

such a L̃ with probability ≥ 1 − δ within time (3.23). Given L̃, the per-iteration

runtime follows from Proposition 3.6, which does not dominate.

Remark 3.1. For highly-accurate solutions or extremely small failure probabilities

(i.e., δ, ϵ smaller than an inverse polynomial in n), the subpolynomial dependences

on 1
δ
, 1

ϵ
in Theorem 3.1 could be dominant factors. However, these subpolynomial

factors only arise due to the use of Theorem 3.2 to sparsely approximate Hessians of

64

Barthe’s objective. If we instead directly compute the Hessians via Lemma 3.5, then

slightly modifying the proof of Theorem 3.1 yields an alternate runtime of

O

(
n2dω−2 log (κ) polylog

(
n log(κ)

δϵcmin

))
.

This runtime gives a worse dependence on n, but improves the dependences on other

parameters (i.e., 1
δ
, 1
ϵ
, 1
cmin

) from subpolynomial to polylogarithmic.

3.5 Conditioning of smoothed matrices

In this section, we provide an ℓ∞ diameter bound for a minimizing vector of Barthe’s

objective, when computing a Forster transform of a smoothed matrix of the form

Ã = A+G, where A ∈ Rn×d and G ∈ Rn×d has entries ∼i.i.d. N (0, σ2).

We first define a notion of deepness in Section 3.5.1 and derive a diameter bound

for deep vectors, patterned off [AKS20]. In Sections 3.5.2 and 3.5.3, we show tail

bounds for the singular values of a smoothed matrix. We combine these results to

prove Theorem 3.3 in Section 3.5.4, our main result on the conditioning of Forster

transforms of smoothed matrices.

Throughout this section, we follow notation (3.10), (3.11), (3.12) from Sec-

tion 3.1 and make the following simplifying, and somewhat mild, assumption on the

relationship between n and d.

Assumption 3.2. n ≥ Cd for some constant C > 1.

We mention that our result in Theorem 3.3 is stated for the case of c = d
n
1n,

which is the most interesting setting we are aware of in typical applications. However,

we discuss the case of general c in Section 3.5.5, where our techniques readily apply

under a strengthening of Assumption 3.2.

65

3.5.1 Diameter bound for deep vectors

Our strategy for our diameter bound follows an analysis in [AKS20], based on the

assumption that c lies nontrivially inside the interior of the basis polytope (cf. Propo-

sition 3.2).

We start by extending Definition 1.4 and proving a stronger version of Lemma

4.4 from [AKS20].

Definition 3.6 (Deepness). Let c ∈ Rn
>0 satisfy ∥c∥1 = d, η ∈ [0, 1], and ∆ ≥ 0.

We say that c lies (η,∆)-deep inside the basis polytope of {ai}i∈[n] ⊂ Rd if for all

k ∈ [d− 1] and subspaces E ⊆ Rd with dimension k,∑
i∈[n]

ciI∥ai−ΠEai∥2≤∆ ≤ (1− η)k.

When c = d
n
1n, this is equivalent to the following: for all k ∈ [d − 1] and subspaces

E with dimension k, at most (1−η)kn
d

of the ai satisfy ∥ai −ΠEai∥2 ≤ ∆.

We remark that every vector in the basis polytope is (0, 0)-deep by Proposi-

tion 3.2. Furthermore, increasing ∆ potentially increases the number of ci considered

in the sum, and increasing η tightens the inequality, so (η,∆)-deepness becomes a

stronger condition for larger values of η and ∆.

We now show, following [AKS20], that deepness in the basis polytope implies

a diameter bound.

Lemma 3.8. Let µ,M, η,∆ > 0 and A ∈ Rn×d with rows {ai}i∈[n] satisfying µ ≤
∥ai∥22 ≤ M for all i ∈ [n]. If c ∈ Rn

>0 has minimum entry cmin and lies (η,∆)-deep

inside the basis polytope of {ai}i∈[n], then there exists t⋆ ∈ argmint∈Rn f(t) satisfying

∥t⋆∥∞ ≤
1

2
log

(
M

µcmin

(
4M

η∆2

)d−1
)
.

Proof. Let t⋆ ∈ argmint∈Rn f(t) such that mini∈[n] t
⋆
i = 0, which exists by Proposi-

tion 3.2, Proposition 3.3, and (3.15). Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of

R := R(t⋆).

66

Fix k ∈ [d − 1]. Let E be a k-dimensional subspace spanned by eigenvectors

of R with eigenvalues λd,λd−1, . . . ,λd−k+1. By Proposition 3.3, R is a c-Forster

transform of A, so ∑
i∈[n]

ci ·
(Rai) (Rai)

⊤

∥Rai∥22
= Id.

Projecting onto E⊥ and taking a trace of both sides,

∑
i∈[n]

ci ·
∥ΠE⊥Rai∥22
∥Rai∥22

= Tr

∑
i∈[n]

ci ·
(ΠE⊥Rai) (ΠE⊥Rai)

⊤

∥Rai∥22


= Tr (ΠE⊥) = d− k.

(3.24)

Now, consider the ai such that ∥ai −ΠEai∥2 > ∆, and decompose these ai as ai =

yi + zi, where yi ∈ E and zi ∈ E⊥. Then ∥zi∥2 > ∆ and ∥yi∥2 <
√
∥ai∥22 −∆2 ≤

√
M −∆2. Since E and E⊥ are both spanned by eigenvectors of R, Ryi and Rzi

are orthogonal, and ∥Rai∥22 = ∥Ryi∥22 + ∥Rzi∥22. Furthermore, since E is spanned

by eigenvectors with eigenvalues at most λd−k+1 and E⊥ is spanned by eigenvectors

with eigenvalues at least λd−k,

∥Ryi∥2 ≤ λd−k+1 ∥yi∥2 ≤ λd−k+1

√
M −∆2

and ∥Rai∥2 ≥ ∥Rzi∥2 ≥ λd−k ∥zi∥2 ≥ λd−k∆.

It follows that
∥ΠE⊥Rai∥22
∥Rai∥22

=

∥∥∥∥ΠE⊥
Rai

∥Rai∥2

∥∥∥∥2
2

= 1−
∥∥∥∥ΠE

Rai

∥Rai∥2

∥∥∥∥2
2

= 1− ∥Ryi∥22
∥Rai∥22

≥ 1−
λ2

d−k+1(M −∆2)

λ2
d−k∆

2
.

Combining this with (3.24) and the (η,∆)-deepness of c,

d− k =
∑
i∈[n]

ci ·
∥ΠE⊥Rai∥22
∥Rai∥22

≥
∑
i∈[n]

ciI∥ai−ΠEai∥2>∆ ·
∥ΠE⊥Rai∥22
∥Rai∥22

≥
(
1−

λ2
d−k+1(M −∆2)

λ2
d−k∆

2

)∑
i∈[n]

ciI∥ai−ΠEai∥2>∆

≥
(
1−

λ2
d−k+1(M −∆2)

λ2
d−k∆

2

)
(d− (1− η)k),

67

which rearranges to

λd−k

λd−k+1

≤
(
d− k + ηk

ηk
· M −∆2

∆2

) 1
2

. (3.25)

Since (3.25) holds for all k ∈ [d− 1],

λ1

λd

=
∏

k∈[d−1]

λd−k

λd−k+1

≤
∏

k∈[d−1]

(
d− k + ηk

ηk
· M −∆2

∆2

) 1
2

=

(
M −∆2

∆2

) d−1
2 ∏

k∈[d−1]

(
d− k + ηk

ηk

) 1
2

=

(
M −∆2

∆2

) d−1
2
⌊ d

1+η⌋∏
k=1

(
d− k + ηk

ηk

) 1
2

d−1∏
k=⌊ d

1+η⌋+1

(
d− k + ηk

ηk

) 1
2

≤
(
M −∆2

∆2

) d−1
2
⌊ d

1+η⌋∏
k=1

(
2(d− k)

ηk

) 1
2

d−1∏
k=⌊ d

1+η⌋+1

(
2

η

) 1
2

=

(
2(M −∆2)

η∆2

) d−1
2
⌊ d

1+η⌋∏
k=1

(
d− k

k

) 1
2

=

(
2(M −∆)2

η∆2

) d−1
2
(
d− 1⌊

d
1+η

⌋) 1
2

≤
(
4(M −∆2)

η∆2

) d−1
2

≤
(
4M

η∆2

) d−1
2

,

(3.26)

where the fourth line uses d−k+ηk
ηk

≤ 2(d−k)
ηk

for k ≤ d
1+η

and d−k+ηk
ηk

≤ 2 ≤ 2
η

for

k ≥ d
1+η

and the sixth line uses
(
a
b

)
≤ 2a.

Let j ∈ [n] such that t⋆j = ∥t⋆∥∞, and note that the largest eigenvalue of Z(t⋆)

is 1
λ2
d
. Thus

1

λ2
d

= max
∥x∥2=1

∑
i∈[n]

exp(t⋆i) ⟨ai,x⟩2 ≥ max
∥x∥2=1

exp(t⋆j) ⟨aj,x⟩2

= ∥aj∥22 exp(t
⋆
j) ≥ µ exp(∥t⋆∥∞).

(3.27)

Let ℓ ∈ [n] such that t⋆ℓ = 0. Since t⋆ minimizes f , we have

cℓ = Tr(Mℓ(t
⋆)) = ∥Raℓ∥22 ≤ λ2

1 ∥aℓ∥22 ≤Mλ2
1 (3.28)

68

by Fact 3.1. Combining (3.27) and (3.28) gives

λ2
1

λ2
d

≥ µcmin

M
exp(∥t⋆∥∞),

and combining with (3.26) and rearranging gives

∥t⋆∥∞ ≤ log

(
M

µcmin

(
4M

η∆2

)d−1
)
.

Since f is invariant to translations by 1n and mini∈[n] t
⋆
i = 0 by assumption, we can

shift t⋆ to obtain a minimizer that has extreme coordinates averaging to 0, which

gives the result.

With Lemma 3.8 in hand, we must show M
µ

and 1
∆

are polynomially bounded

for an appropriate choice of η, in the smoothed setting. The bulk of our remaining

analysis establishes this result.

Remark 3.2. Our strategy in this section is to restrict η to be a constant, e.g., η = 0.1,

in which case our goal is to show that at most 0.9k
d
n of the vectors in {ai}i∈[n] lie close

to any k-dimensional subspace. If, for instance, n
d
< 1.1, this is clearly impossible,

because choosing k = 1 implies that not even a single vector lies close to any 1-

dimensional subspace, which is false just by taking Span(ai) for any i ∈ [n]. Thus,

the restriction n
d
≥ 1.1 (or more generally, a constant bounded away from 1) is

somewhat inherent in the regime η = Ω(1). It is possible that our strategy can be

modified to extend to even smaller n, but for simplicity, we focus on the setting of

Assumption 3.2.

To frame the rest of the section, we provide a helper lemma relating the con-

dition in Definition 3.6 to appropriate submatrices having small singular values.

Lemma 3.9. Let A = {ai}i∈[m] ∈ Rd×m, k < m, and ∆ > 0. Suppose there exists a

k-dimensional subspace E of Rd such that ∥ai −ΠEai∥2 ≤ ∆ for all i ∈ [m]. Then

σk+1(A) ≤
√
m∆.

69

Proof. Let V ∈ Rd×(d−k) have columns that form an orthonormal basis for E⊥. By

assumption, ∥∥VV⊤ai

∥∥2
2
=
∥∥V⊤ai

∥∥2
2
≤ ∆2 for all i ∈ [m].

By the min-max theorem,

σk+1(A) = min
E⊆Rd

dim(E)=d−k

max
x∈E

∥x∥2=1

∥∥A⊤x
∥∥
2

≤ max
x∈Span(V)
∥x∥2=1

∥∥A⊤x
∥∥
2
= max

v∈Rd−k

∥v∥2=1

∥∥A⊤Vv
∥∥
2
.

Observe that A⊤V has rows {V⊤ai}i∈[m], so by the Cauchy–Schwarz inequality,∥∥A⊤Vv
∥∥2
2
=
∑
i∈[m]

〈
V⊤ai,v

〉2 ≤∑
i∈[m]

∆2 = m∆2

for all v ∈ Rd−k with ∥v∥2 = 1. It follows that σk+1(A) ≤
√
m∆.

In Sections 3.5.2 and 3.5.3, we show that with high probability, the conclusion

of Lemma 3.9 is violated for all appropriately-sized smoothed submatrices. This shows

that the premise of Lemma 3.9 is also violated, which we establish in Section 3.5.4,

so that c = d
n
1n is indeed (η,∆)-deep.

3.5.2 Conditioning of wide and near-square smoothed matrices

Throughout this section, we let

η := 1− 1√
C
, K :=

3
√
C, k ∈ [d− 1], and m :=

⌈
(1− η)kn

d

⌉
.

Remark 3.3. We note that these definitions imply 0 < η < 1− 1
C

and 1 < K < (1−η)C.

Indeed, nothing in our analysis relies on our choices of η and K other than the fact

that they are constants that satisfy these inequalities, which limit our analysis in the

following places.

• In Lemma 3.10, we require (1 − η)C > 1 (equivalently, η < 1 − 1
C
) so that

m− k = Ω(m).

70

• In Lemma 3.11, we require K < (1− η)C so that d− k = Ω(d).

• In Lemma 3.11 and Lemma 3.16, we require K > 1, and in Theorem 3.3, we

require η > 0.

We first use the following results from the literature to establish tail bounds

for the singular values of smoothed matrices in the cases m ≤ d and d < m ≤ Kd,

i.e., m that are at most a constant factor larger than d. In Section 3.5.3, we use a

different argument to handle m > Kd.

Fact 3.2 (Theorem 1.2, [Sza91]). Let G ∈ Rd×d have entries ∼i.i.d. N (0, 1). Then for

all j ∈ [d],

Pr

[
σd−j+1(G) <

αj√
d

]
≤
(√

2eα
)j2

.

Fact 3.3 (Theorem 2.4, [BKMS21]). Let M,N ∈ Rd×d such that σi(M) ≥ σi(N) for

all i ∈ [d]. Then for every t ≥ 0, there exists a joint distribution on pairs of matrices

(G,H) ∈ Rd×d × Rd×d such that the marginals G and H have entries ∼i.i.d. N (0, 1)

and

Pr[σi(M+ tG) ≥ σi(N+ tH)] = 1 for all i ∈ [d].

We note that these results imply tail bounds for the singular values of square

smoothed matrices: given σ > 0, A ∈ Rd×d, and G ∈ Rd×d with entries ∼i.i.d. N (0, 1),

we let M ← A, N ← 0, t ← σ, and (G,H) have the distribution in Fact 3.3. Then

by Fact 3.3 and Fact 3.2,

Pr

[
σd−j+1(A+ σG) <

ασj√
d

]
≤ Pr

[
σd−j+1(σH) <

ασj√
d

]
= Pr

[
σd−j+1(H) <

αj√
d

]
≤
(√

2eα
)j2

.

(3.29)

Lemma 3.10. Under Assumption 3.2, let δ ∈ (0, 1), σ ∈ (0, 1
2
), η := 1 − 1√

C
,

k ∈ [d − 1], m := ⌈ (1−η)kn
d
⌉, A ∈ Rn×d, G ∈ Rn×d have entries ∼i.i.d. N (0, σ2),

Ã := A+G, and suppose m ≤ d. Then for any S ⊆ [n] with |S| = m,

Pr
[
σk+1(ÃS:) ≤

√
m∆

]
≤ δ

(d− 1)
(
n
m

) , where ∆ =

(
δσ

n

)O(1)

.

71

Proof. Remove any d−m columns of ÃS: to obtain B ∈ Rm×m. We have σk+1(ÃS:) ≥

σk+1(B) by the min-max theorem:

σk+1(ÃS:) = max
E⊆Rd

dim(E)=k+1

min
x∈E

∥x∥2=1

∥∥∥ÃS:x
∥∥∥
2
≥ max

E⊆Rm

dim(E)=k+1

min
x∈E

∥x∥2=1

∥Bx∥2 = σk+1(B).

Then, by (3.29) with d← m and j ← m− k,

Pr

[
σk+1(ÃS:) ≤

ασ(m− k)√
m

]
≤ Pr

[
σk+1(B) ≤ ασ(m− k)√

m

]
≤
(√

2eα
)(m−k)2

.

(3.30)

Let C ′ := 1
2

(
1− 1

(1−η)C

)
> 0, and note that

m− k ≥
(
(1− η)n

d
− 1

)
k =

(
1− d

(1− η)n

)(
(1− η)kn

d

)
≥ C ′m.

Setting α = m∆
σ(m−k)

≤ ∆
C′σ

in (3.30),

Pr
[
σk+1(ÃS:) ≤

√
m∆

]
≤
(√

2eα
)(m−k)2

≤

(√
2e∆

C ′σ

)(m−k)2

.

Now, we can set ∆ = C′
√
2e
(δσ
n
)

2
C′ ≤ C′σ√

2e
(δ
n
)

2
C′ to give

(√
2e∆

C ′σ

)(m−k)2

≤
(
δ

n

) 2(m−k)2

C′

≤
(
δ

n

)2m(m−k)

≤
(
δ

n

)m+1

≤ δm+1

n
(
n
m

) ≤ δ

(d− 1)
(
n
m

) ,
which establishes the claim.

Lemma 3.11. In the setting of Lemma 3.10, the result holds if we suppose instead

that d < m ≤ Kd, where K := 3
√
C.

Proof. Similarly to the proof of Lemma 3.10, remove any m−d rows of ÃS: to obtain

B ∈ Rd×d. Then

Pr

[
σk+1(ÃS:) ≤

ασ(d− k)√
d

]
≤ Pr

[
σk+1(B) ≤ ασ(d− k)√

d

]
≤
(√

2eα
)(d−k)2

.

(3.31)

72

Since m ≤ Kd, we have (1−η)kn
d
≤ Kd, which implies k ≤ Kd2

(1−η)n
≤ Kd

(1−η)C
< d. Thus

d− k ≥ K ′d, where K ′ := 1− K
(1−η)C

> 0. Setting α =
√
md∆

σ(d−k)
≤

√
K∆
K′σ

in (3.31),

Pr
[
σk+1(ÃS:) ≤

√
m∆

]
≤
(√

2eα
)(d−k)2

≤

(√
2eK∆

K ′σ

)(d−k)2

.

Now, we can set ∆ = K′
√
2eK

(
δσ
n

) 2K
K′ ≤ K′σ√

2eK

(
δ
n

) 2K
K′ to give

(√
2eK∆

K ′σ

)(d−k)2

≤
(
δ

n

) 2K(d−k)2

K′

≤
(
δ

n

)2Kd

≤
(
δ

n

)m+1

≤ δm+1

n
(
n
m

) ≤ δ

(d− 1)
(
n
m

) ,
which establishes the claim.

3.5.3 Conditioning of tall smoothed matrices

In this section we provide tools for lower bounding the smallest singular value of a

random Ω(d)× d smoothed matrix Ã = A+G, where G has entries ∼i.i.d. N (0, σ2).

Specifically we provide estimates, for sufficiently small α, on the quantity

Pr
[
σd

(
Ã
)
< α

]
. (3.32)

We first use the following standard result bounding ∥Ã∥op.

Lemma 3.12. Let σ ∈ (0, 1), m ≥ d, A ∈ Rm×d have rows {ai}i∈[m] such that

∥ai∥2 = 1 for all i ∈ [m], G ∈ Rm×d have entries ∼i.i.d. N (0, σ2), and Ã := A +G.

Then there exists a constant Cop > 0 such that for all δ ∈ (0, 1),

Pr

[
∥Ã∥op > Cop

√
m+ log

(
1

δ

)]
≤ δ.

Proof. By Theorem 4.4.5, [Ver24], we have that for some constant Cop > 2,

Pr

[
∥G∥op >

Cop

2

√
m+ log

(
1

δ

)]
≤ δ,

where we used σ ≤ 1. The conclusion follows as ∥A∥op ≤ ∥A∥F ≤
√
m.

73

We also require the definition of an ϵ-net and a standard bound on its size.

Definition 3.7. Let S ⊆ Rd, N ⊂ S be finite, and ϵ ∈ (0, 1). We say that N is an

ϵ-net of S if

sup
u∈S

min
v∈N
∥v − u∥2 ≤ ϵ.

Fact 3.4 (Corollary 4.2.13, [Ver24]). Let ∂B2(1) denote the boundary of the unit norm

ball in Rd. For all ϵ ∈ (0, 1), there exists an ϵ-net of ∂B2(1) with |N | ≤ (3
ϵ
)d.

We next observe that it suffices to provide estimates on a net, given an operator

norm bound.

Lemma 3.13. Let m ≥ d, ϵ ∈ (0, 1), and N be an ϵ-net of ∂B2(1) ⊂ Rd, and suppose

that Ã ∈ Rm×d satisfies ∥Ã∥op ≤ ρ. Then σd(Ã) ≥ minv∈N∥Ãv∥2 − ϵρ.

Proof. Let u realize σd(Ã) in the definition σd(Ã) = minu∈∂B2(1)∥Ãu∥2. Then if we

define v := argminv∈N∥u− v∥2, the result follows from the triangle inequality:

∥Ãu∥2 ≥ ∥Ãv∥2 − ∥Ã∥op ∥u− v∥2 ≥ min
v∈N
∥Ãv∥2 − ϵρ.

Finally, we provide tail bounds on the contraction given by Ã on a single fixed

vector.

Lemma 3.14. In the setting of Lemma 3.12, let v ∈ Rd have ∥v∥2 = 1. Then,

Pr
[
∥Ãv∥2 < α

]
≤
(α
σ

)m
for all α ∈ (0, 1).

Proof. Observe that if ∥Ãv∥2 ≤ α, then every coordinate of Ãv is bounded by α.

Each coordinate of Ãv is distributed independently as N (⟨ai,v⟩ , σ2). Now the claim

follows because for all i ∈ [m],

Pr
ξ∼N (⟨ai,v⟩,σ2)

[|ξ| < α] = Pr
ξ∼N (1

σ
⟨ai,v⟩,1)

[
|ξ| < α

σ

]
=

1√
2π

∫ α
σ

−α
σ

exp

(
−
(ξ − 1

σ
⟨ai,v⟩)2

2

)
dξ ≤ α

σ
.

74

We can now prove our main tail bound on σd(Ã).

Lemma 3.15. In the setting of Lemma 3.12, suppose that m ≥ Kd for a constant

K > 1. Then there exists a constant β > 0 such that

Pr
[
σd

(
Ã
)
< α

]
≤ 2

(
2α

σ

) (K−1)m
2K

for all α ∈

(
0,

σ
K+3
K−1

βm
2

K−1

)
.

Proof. Let δ := 2
(
2α
σ

) (K−1)m
2K . By Lemma 3.12, there exists Cop > 0 such that

Pr
[
∥Ã∥op > ρ

]
≤ δ

2
for ρ := Cop

√
m+ log

(
2

δ

)
.

Let L > 0 be a constant such that
√

log(c
2
) ≤ Lc

K−1
4 for all c ≥ 2, and let

β := max

(
2e,
(
2

K+1
2 · 6CopL

) 4
K−1

)
≥ 2e.

Then for the stated range of α,

α ≤ σ

2e
=⇒ ρ = Cop

√
m+

(K − 1)m

2K
log
(σ

2α

)
≤ 2Cop

√
m log

(σ

2α

)
.

Let ϵ := α
ρ
, and let N be an ϵ-net of ∂B2(1) ∈ Rd with size |N | ≤ (3

ϵ
)d, as guaranteed

by Fact 3.4. Then by taking a union bound over Lemma 3.14 applied to each v ∈ N ,

Pr
[
minv∈N∥Ãv∥2 < 2α

]
is at most

|N |
(
2α

σ

)m

≤

(
6Cop

√
m log(σ

2α
)

α

)m
K (

2α

σ

)m

=

(
6Cop

√
m log(σ

2α
)

α

)m
K (

2α

σ

) (K+1)m
2K

(
2α

σ

) (K−1)m
2K

≤

(
2

K+1
2 · 6Cop

√
m log(σ

2α
)

σ
K+1

2

· σ
K+3

4 α
K−1

4

2
K+1

2 · 6CopL
√
m

)m
K (

2α

σ

) (K−1)m
2K

≤

(
2

K+1
2 · 6Cop

√
m log(σ

2α
)

σ
K+1

2

· σ
K+1

2

2
K+1

2 · 6Cop
√
m log(σ

2α
)

)m
K (

2α

σ

) (K−1)m
2K

=

(
2α

σ

) (K−1)m
2K

=
δ

2
,

75

where the third line uses

α
K−1

4 ≤ σ
K+3

4

2
K+1

2 · 6CopL
√
m

=⇒ α
K−1

2 ≤ σ
K+3

4 α
K−1

4

2
K+1

2 · 6CopL
√
m

for the stated range of α and the fourth line uses
√

log(c
2
) ≤ Lc

K−1
4 for c ≥ 2. The

claim follows from a union bound on the above two events and Lemma 3.13.

Applying Lemma 3.15 then gives our extension to tall matrices.

Lemma 3.16. In the setting of Lemma 3.10, the result holds if we suppose instead

that m > Kd, where K := 3
√
C, and in addition that A has rows {ai}i∈[n] satisfying

∥ai∥2 = 1 for all i ∈ [n].

Proof. Let β be the constant in Lemma 3.15, and let α =
√
m∆, where

∆ =
1

2

(
δσ

βn

) 4K
K−1

+1

≤ σ

2
√
m

(
δσ

βn

) 4K
K−1

∈

(
0,

σ
K+3
K−1

βm
2

K−1
+ 1

2

)
.

By Lemma 3.15,

Pr
[
σk+1(ÃS:) ≤

√
m∆

]
≤ Pr

[
σd(ÃS:) ≤

√
m∆

]
≤ 2

((
δσ

βn

) 4K
K−1

) (K−1)m
2K

≤
(
δ

n

)2m

≤
(
δ

n

)m+1

≤ δm+1

n
(
n
m

) ≤ δ

(d− 1)
(
n
m

) ,
which establishes the claim.

3.5.4 Assumption 3.1 for smoothed matrices

We can now put together the previous results to give a diameter bound for smoothed

matrices. To begin, we show simple norm bounds on the rows of a smoothed matrix.

Lemma 3.17. Under Assumption 3.2, let δ ∈ (0, 1), 1
σ
≥ 10(d + log(n

δ
)), A ∈ Rn×d

have rows {ai}i∈[n] such that ∥ai∥2 = 1 for all i ∈ [n], G ∈ Rn×d have entries

∼i.i.d. N (0, σ2), and Ã := A+G have rows {ãi}i∈[n]. Then with probability ≥ 1− δ,
1
6
≤ ∥ãi∥22 ≤ 2 for all i ∈ [n].

76

Proof. By using the inequalities

1

2
∥ai∥22 − ∥gi∥22 ≤ ∥ai + gi∥22 ≤

3

2
∥ai∥22 + 3 ∥gi∥22 ,

it is enough to show that for all i ∈ [n], the probability that ∥gi∥22 ≥
1
6

is bounded by
δ
n
. This follows from a standard χ2 tail bound, e.g., Lemma 1, [LM00], for our choice

of σ.

It remains to show that d
n
1n is deep inside the basis polytope of the rows of Ã,

so that we can use Lemma 3.8 to obtain a diameter bound for minimizing Barthe’s

objective.

Lemma 3.18. In the setting of Lemma 3.17, d
n
1n is (η,∆)-deep inside the basis

polytope of the rows of Ã with probability ≥ 1−δ, where η := 1− 1√
C

and ∆ =
(
δσ
n

)O(1).

Proof. Let k ∈ [d−1]. By Lemma 3.9, if some m := ⌈ (1−η)kn
d
⌉ rows of Ã indexed by S

violate the condition for (η,∆)-deepness, then σk+1(ÃS:) ≤
√
m∆. By Lemma 3.10,

Lemma 3.11, and Lemma 3.16,

Pr
[
σk+1(ÃS:) ≤

√
m∆

]
≤ δ

(d− 1)
(
n
m

)
for any S ⊆ [n] with |S| = m, in every range of k ∈ [d − 1]. By a union bound over

all S, the failure probability is at most δ
d−1

. The result follows by a union bound over

all k ∈ [d− 1].

At this point, we have all the tools necessary to prove Theorem 3.3.

Theorem 3.3. Let A ∈ Rn×d have rows {ai}i∈[n] such that ∥ai∥2 = 1 for all i ∈ [n],

let c := d
n
1n, let δ ∈ (0, 1), and let σ ∈ (0, δ

10nd
). Let Ã := A +G, where G ∈ Rn×d

has entries ∼i.i.d. N (0, σ2). Then with probability ≥ 1− δ, if n ≥ Cd where C is any

constant larger than 1, Assumption 3.1 holds for Barthe’s objective f defined with

respect to (Ã, c), where

log(κ) = O

(
d log

(
1

σ

))
.

77

Proof. By Lemma 3.17, in the relevant range of σ, the conclusion

1

6
≤ ∥ãi∥22 ≤ 2

holds for all i ∈ [n] with probability ≥ 1− δ
2
. Moreover, let ∆ = (δσ

n
)O(1) so that d

n
1n

is (η,∆)-deep inside the basis polytope of the rows of Ã with probability ≥ 1− δ
2

by

Lemma 3.18. By a union bound on these events, with probability ≥ 1 − δ, we can

apply Lemma 3.8 and conclude that there exists t⋆ ∈ argmint∈Rn f(t) satisfying

∥t⋆∥∞ ≤
1

2
log

(
12n

d

(
8

η∆2

)d−1
)

= O

(
d log

(
1

σ

))
.

3.5.5 Extension to non-uniform c

Our smoothed diameter bound in Theorem 3.3 is stated with respect to uniform

marginals c = d
n
1n. However, the analysis in this section can be straightforwardly ex-

tended to hold for c with nonuniform entries by a reduction, as long as c is sufficiently

bounded away from 1n entrywise.

Corollary 3.1. In the setting of Theorem 3.3, if we suppose instead that c ∈ (0, 1]n

satisfies ∥c∥1 = d and c ≤ c · d
n
1n entrywise, where 1 < c < C ≤ n

d
for constants

c, C, then Assumption 3.1 holds for Barthe’s objective f defined with respect to (Ã, c),

where

log(κ) = O

(
d log

(
1

σ

)
+ log

(
1

cmin

))
and cmin := min

i∈[n]
ci.

Proof. Our proof of Lemma 3.18 shows that with probability ≥ 1 − δ in the setting

of Theorem 3.3, d
n
1n is (η,∆)-deep for a constant η arbitrarily close to 1− 1

C
, where

C ≤ n
d

(see Remark 3.3). However, this also implies that for all k ∈ [d − 1] and

k-dimensional subspaces E, recalling Definition 3.6,∑
i∈[n]

ciI∥ai−ΠEai∥2≤∆ ≤ c
∑
i∈[n]

d

n
I∥ai−ΠEai∥2≤∆ ≤ c(1− η)k = (1− (1− c(1− η)))k.

78

Thus, we have shown that c is also (1− c(1− η),∆)-deep. Since η can be arbitrarily

close to 1− 1
C

and c < C, we can verify that the new parameter 1− c(1− η) satisfies

0 < 1 − c(1 − η) < 1 − 1
C
, so the rest of our proof applies (propagating constant

changes appropriately) by Remark 3.3.

79

Appendix A

Mathematical Facts

In this appendix, we provide, without proof, several mathematical results that are

used throughout the thesis. While many of these results are well-known within their

respective domains, they are included here for completeness and convenience. De-

tailed proofs and broader discussions of these results can be found in the standard

literature; we refer to e.g. [Bha07, HJ12] for matrix theory and [Roc70, BV04b] for

convex analysis.

A.1 Matrix theory

Fact A.1 (Spectral theorem). Let A ∈ Sd×d. Then there exist an orthogonal matrix

U ∈ Rd×d and a diagonal matrix Λ ∈ Rd×d such that A = UΛU⊤ and the diagonal

entries of Λ are the eigenvalues of A.

Fact A.2. Let A ∈ Sd×d. The following are equivalent.

1. A ∈ Sd×d
⪰0 (resp. A ∈ Sd×d

≻0).

2. v⊤Av ≥ 0 for all v ∈ Rd (resp. v⊤Av > 0 for all v ∈ Rd \ {0}).

3. The eigenvalues of A are nonnegative (resp. positive).

80

4. There exists n ∈ N and B ∈ Rn×d (resp. invertible B ∈ Rd×d) such that

A = B⊤B.

Fact A.3. For matrices A,B with compatible dimensions, Tr(AB) = Tr(BA).

Fact A.4. If A,B,C,D are PSD matrices of the same dimension and A ⪯ B and

C ⪯ D, then ⟨A,C⟩ ≤ ⟨B,D⟩.

Fact A.5. For all A ∈ Rn×d, we have τ (A) ∈ [0, 1]n, and
∑

i∈[n] τ i(A) = rank(A).

Fact A.6 (Cauchy–Binet formula). Let A ∈ Rd×n and B ∈ Rn×d. Then

det(AB) =
∑
S⊆[n]
|S|=d

det(A:S) det(BS:).

Fact A.7 (Matrix determinant lemma). Let A ∈ Rd×d be invertible and u,v ∈ Rd.

Then det(A+ uv⊤) = (1 + v⊤A−1u) det(A).

Fact A.8 (Min-max theorem). Let A ∈ Rn×d. For all k ∈ [min(n, d)],

σk(A) = min
S⊆Rd

dim(S)=d−k+1

max
x∈S

∥x∥2=1

∥Ax∥2 = max
S⊆Rd

dim(S)=k

min
x∈S

∥x∥2=1

∥Ax∥2 .

A.2 Convex analysis

Definition A.1 (Convex set). A set S ⊆ Rd is convex if (1 − λ)x + λy ∈ S for all

x,y ∈ S and λ ∈ [0, 1].

Definition A.2 (Convex function). A function f : S → R ∪ {±∞} is convex if S is

convex and f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) for all x,y ∈ S and λ ∈ [0, 1].

If the inequality is strict, then f is strictly convex.

Fact A.9. S is a convex set iff its characteristic function

χS(x) :=

{
0 x ∈ S

∞ x ̸∈ S

81

is a convex function. f : S → R ∪ {±∞} is a convex function iff its epigraph

epi(f) := {(x, r) ∈ S × R | r ≥ f(x)}

is a convex set.

Throughout the rest of this section, S ⊆ Rd is assumed to be a convex set.

Definition A.3 (Effective domain). The effective domain of f : S → R ∪ {±∞} is

dom(f) := {x ∈ S | f(x) < +∞}.

Definition A.4 (Closed function). A function f : S → R∪ {±∞} is closed if epi(f)

is closed.

Definition A.5 (Proper function). A function f : S → R ∪ {±∞} is proper if it is

finite on a nonempty set.

Definition A.6 (Subgradient). A vector g is a subgradient of f : S → R at x ∈ S if

f(y) ≥ f(x) + ⟨g,y − x⟩ for all y ∈ S.

∂f(x) denotes the set of subgradients of f at x.

Fact A.10 (First-order condition). A differentiable function f : S → R is convex iff

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ for all x,y ∈ S.

Fact A.11 (Second-order condition). A twice-differentiable function f : S → R is

convex iff ∇2f(x) ∈ Sd×d
⪰0 for all x ∈ dom(f).

Definition A.7 (Dual norm). Let ∥·∥ be a norm on Rd. The dual norm of ∥·∥ is

∥·∥∗ := max∥x∥≤1 ⟨x, ·⟩.

Fact A.12. For any norm ∥·∥ on Rd, ∥·∥∗∗ = ∥·∥.

82

Definition A.8 (Strong convexity). A function f : S → R is µ-strongly convex on S

with respect to ∥·∥ if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)− µλ(1− λ)

2
∥x− y∥2 for all x,y ∈ S.

Fact A.13. If f : S → R is differentiable, then f is µ-strongly convex on S with

respect to ∥·∥ iff

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2 for all x,y ∈ S.

If f is twice-differentiable, then f is µ-strongly convex on S with respect to ∥·∥ iff

∇2f(x)[y,y] ≥ µ ∥y∥2 for all x,y ∈ S.

Definition A.9 (Smoothness). A differentiable function f : S → R is L-smooth on

S with respect to ∥·∥ if

∥∇f(y)−∇f(x)∥∗ ≤ L ∥x− y∥ for all x,y ∈ S,

where ∥·∥∗ is the dual norm of ∥·∥.

Fact A.14. If f : S → R is differentiable and convex, then f is L-smooth on S with

respect to ∥·∥ iff

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 for all x,y ∈ S.

If f is twice-differentiable and possibly nonconvex, then f is L-smooth on S with

respect to ∥·∥ iff ∣∣∇2f(x)[y,y]
∣∣ ≤ L ∥y∥2 for all x,y ∈ S.

Definition A.10 (Convex conjugate). Let X be a real topological vector space with

dual space X∗, and let f : X → R ∪ {±∞}. The convex conjugate (or Fenchel dual,

or Legendre transform) of f is the function f ∗ : X∗ → R ∪ {±∞} given by

f ∗(x∗) := sup
x∈X
⟨x∗,x⟩ − f(x) for all x∗ ∈ X∗.

Fact A.15. Let f ∗ be the convex conjugate of a convex, closed, and proper function

f . Then f ∗∗ = f , and for all x∗ ∈ X∗, x ∈ ∂f ∗(x∗) iff x ∈ argmaxx∈X ⟨x∗,x⟩−f(x).

83

A.3 Useful inequalities

Fact A.16 (Titu’s lemma). For all u ∈ Rd and v ∈ Rd
>0, we have∑

i∈[d]

ui

2

≤

∑
i∈[d]

u2
i

vi

∑
i∈[d]

vi

 .

Fact A.17 (Weighted AM–GM inequality). For all x ∈ Rd
≥0 and w ∈ ∆d, we have∏

i∈[d]

xwi
i ≤

∑
i∈[d]

wixi.

Fact A.18 (Hölder’s inequality). For all x,y ∈ Rd and p, q ∈ [1,∞] satisfying 1
p
+ 1

q
=

1, we have

|⟨x,y⟩| ≤ ∥x∥p ∥y∥q .

Fact A.19. For all c ∈ R, we have c(max(0, 1− c)+max(0, 1− c)2) ≤ max(0, 1− c).

Fact A.20. For all b, c ∈ [0, 1], we have log(1
1+bc

) ≤ −b(1− b)c.

Fact A.21. For all c ∈ R, we have 1 + c ≤ exp(c).

Fact A.22. For all c > −1, we have log(1 + c) ≤ c.

Fact A.23. For all c > −1, we have exp(−c) ≤ 1
1+c

.

Fact A.24. For all c > 0, we have c− c2

2
≤ 1− exp(−c).

Fact A.25. For all b, c ∈ (0, 1), we have 1
2
((1− b)c)2 ≤ log(1 + c)− b log(1 + c

b
).

84

Bibliography

[ACSS20] Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms

and hardness for linear algebra on geometric graphs. In 61st IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2020,

pages 541–552. IEEE, 2020. 3.2.3

[ADK+16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger,

and Richard Peng. On fully dynamic graph sparsifiers. In IEEE 57th

Annual Symposium on Foundations of Computer Science, FOCS 2016,

pages 335–344. IEEE Computer Society, 2016. 3.2.3

[ADV+25] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu,

Zixuan Xu, and Renfei Zhou. More asymmetry yields faster matrix

multiplication. In Proceedings of the 2025 Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2025, pages 2005–2039. SIAM,

2025. 1.3

[AGL+18] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira,

and Avi Wigderson. Operator scaling via geodesically convex optimiza-

tion, invariant theory and polynomial identity testing. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, pages 172–181. ACM, 2018. 3.2, 3.2.2

85

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative

weights update method: a meta-algorithm and applications. Theory

Comput., 8(1):121–164, 2012. 2.1

[AJJ+22] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin

Tian. Semi-streaming bipartite matching in fewer passes and optimal

space. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2022, pages 627–669. SIAM, 2022. 3.4.3

[AKS20] Shiri Artstein-Avidan, Haim Kaplan, and Micha Sharir. On radial

isotropic position: Theory and algorithms. CoRR, abs/2005.04918,

2020. 3.1.1, 3.2, 3.3.3, 3.3.4, 3.5, 3.5.1, 3.5.1

[ALdOW17] Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi

Wigderson. Much faster algorithms for matrix scaling. In 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017,

pages 890–901. IEEE Computer Society, 2017. 3.2, 3.3, 3.3.1

[ALO16] Zeyuan Allen-Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using opti-

mization to obtain a width-independent, parallel, simpler, and faster

positive SDP solver. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages

1824–1831. SIAM, 2016. 2.1, 3.3.2

[Ans00] Kurt M. Anstreicher. The volumetric barrier for semidefinite program-

ming. Math. Oper. Res., 25(3):365–380, 2000. 1.1

[AO19] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing

and covering LP solvers - achieving width-independence and -convergence.

Math. Program., 175(1-2):307–353, 2019. 2.1

86

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows,

geometric embeddings and graph partitioning. J. ACM, 56(2):5:1–5:37,

2009. 1.1

[AW08] Arash A. Amini and Martin J. Wainwright. High-dimensional analy-

sis of semidefinite relaxations for sparse principal components. In 2008

IEEE International Symposium on Information Theory, ISIT 2008, pages

2454–2458. IEEE, 2008. 1.1

[Bar98] Franck Barthe. On a reverse form of the brascamp-lieb inequality. In-

ventiones Mathematicae, 134(2):335–361, 1998. 3.1, 3.1.1, 3.1.1, 3.1.1,

3.1.1, 3.3

[BFG+18] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira,

Michael Walter, and Avi Wigderson. Efficient algorithms for tensor

scaling, quantum marginals, and moment polytopes. In 59th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2018,

pages 883–897. IEEE Computer Society, 2018. 3.2.2

[BFG+19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira,

Michael Walter, and Avi Wigderson. Towards a theory of non-commutative

optimization: Geodesic 1st and 2nd order methods for moment maps

and polytopes. In 60th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2019, pages 845–861. IEEE Computer Soci-

ety, 2019. 3.2.2

[Bha07] Rajendra Bhatia. Positive Definite Matrices. Princeton University

Press, 2007. 3.1.1, A

[BKMS21] Jess Banks, Archit Kulkarni, Satyaki Mukherjee, and Nikhil Srivastava.

Gaussian regularization of the pseudospectrum and davies’ conjecture.

Communications on Pure and Applied Mathematics, 74(10):2114–2131,

2021. 3.3

87

[BLNW20] Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter.

Interior-point methods for unconstrained geometric programming and

scaling problems. CoRR, abs/2008.12110, 2020. 3.2.1, 3.3

[BV04a] Dimitris Bertsimas and Santosh S. Vempala. Solving convex programs

by random walks. J. ACM, 51(4):540–556, 2004. 1.1

[BV04b] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, 2004. 3.4.1, A

[Che24] Yeshwanth Cherapanamjeri. Computing approximate centerpoints in

polynomial time. In 65th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2024, pages 1654–1668. IEEE, 2024. 3.1,

3.2, 3.3.1, 3.3.3

[CJJ+20] Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee,

Aaron Sidford, and Kevin Tian. Acceleration with a ball optimization

oracle. In Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020,

NeurIPS 2020, 2020. 3.3.1, 3.4, 3.4.1, 3.4.1

[CKV20] L. Elisa Celis, Vijay Keswani, and Nisheeth K. Vishnoi. Data pre-

processing to mitigate bias: A maximum entropy based approach. In

Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, volume 119 of Proceedings of Machine Learning Research,

pages 1349–1359. PMLR, 2020. 3.2.1, 1

[CKYV19] L. Elisa Celis, Vijay Keswani, Ozan Yildiz, and Nisheeth K. Vishnoi.

Fair distributions from biased samples: A maximum entropy optimiza-

tion framework. CoRR, abs/1906.02164, 2019. 3.2.1, 1

88

[CLL04] Eric Carlen, Elliott Lieb, and Michael Loss. A sharp analog of young’s

inequality on sn and related entropy inequalities. The Journal of Geo-

metric Analysis, 14:487–520, 2004. 3.1.1, 3.1.1, 3.2

[CLMW11] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust

principal component analysis? J. ACM, 58(3):11:1–11:37, 2011. 4

[CMTV17] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian

Vladu. Matrix scaling and balancing via box constrained newton’s

method and interior point methods. In 58th IEEE Annual Sympo-

sium on Foundations of Computer Science, FOCS 2017, pages 902–913.

IEEE Computer Society, 2017. 3.2, 3.3, 3.3.1, 3.4, 3.4, 3.4.2, 3.4.3, 3.4.3

[CMY20] Yeshwanth Cherapanamjeri, Sidhanth Mohanty, and Morris Yau. List

decodable mean estimation in nearly linear time. In 61st IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2020, pages

141–148. IEEE, 2020. 2.1, 2.1

[CPW21] Li Chen, Richard Peng, and Di Wang. 2-norm flow diffusion in near-

linear time. In 62nd IEEE Annual Symposium on Foundations of Com-

puter Science, FOCS 2021, pages 540–549. IEEE, 2021. 3.3.1, 3.4.3,

3.4.3, 3.6, 3.4.3

[CPW25] Li Chen, Richard Peng, and Di Wang. Personal communication, 2025.

3.4.3

[CT10] Emmanuel J. Candès and Terence Tao. The power of convex relax-

ation: near-optimal matrix completion. IEEE Trans. Inf. Theory,

56(5):2053–2080, 2010. 2.1.1

[dGJL07] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and

Gert R. G. Lanckriet. A direct formulation for sparse PCA using

semidefinite programming. SIAM Rev., 49(3):434–448, 2007. 1.1

89

[DJ07] Florian Diedrich and Klaus Jansen. Faster and simpler approximation

algorithms for mixed packing and covering problems. Theor. Comput.

Sci., 377(1-3):181–204, 2007. 2.1

[DKK+21] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin

Tian. List-decodable mean estimation in nearly-pca time. In Ad-

vances in Neural Information Processing Systems 34: Annual Confer-

ence on Neural Information Processing Systems 2021, NeurIPS 2021,

pages 10195–10208, 2021. 2, 2.1, 2.2

[DKT21] Ilias Diakonikolas, Daniel Kane, and Christos Tzamos. Forster decom-

position and learning halfspaces with noise. In Advances in Neural

Information Processing Systems 34: Annual Conference on Neural In-

formation Processing Systems 2021, NeurIPS 2021, pages 7732–7744,

2021. 3.1, 3.1.1, 3.2

[DR24] Daniel Dadush and Akshay Ramachandran. Strongly polynomial frame

scaling to high precision. In Proceedings of the 2024 ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2024, pages 962–981. SIAM,

2024. 3.1.1, 3.2, 3.2.2, 3.3.3

[DSW14] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic

barrier for 3-lcc’s over the reals. In Symposium on Theory of Comput-

ing, STOC 2014, pages 784–793. ACM, 2014. 3.1, 3.1.1, 3.1.1

[DTK23] Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane. A strongly

polynomial algorithm for approximate forster transforms and its appli-

cation to halfspace learning. In Proceedings of the 55th Annual ACM

Symposium on Theory of Computing, STOC 2023, pages 1741–1754.

ACM, 2023. 3.1, 3.1.1, 3.2, 3.2.2, 3.3.3

[DV22] Xuan Vinh Doan and Stephen A. Vavasis. Low-rank matrix recovery

with ky fan 2-k-norm. J. Glob. Optim., 82(4):727–751, 2022. 2.1.1

90

[For02] Jurgen Forster. A linear lower bound on the unbounded error proba-

bilistic communication complexity. Journal of Computer and System

Sciences, 65(4):612–625, 2002. 3.1, 3.1.1

[Fra18] Cole Franks. Operator scaling with specified marginals. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, pages 190–203. ACM, 2018. 3.2.2

[GGdOW16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigder-

son. A deterministic polynomial time algorithm for non-commutative

rational identity testing. In IEEE 57th Annual Symposium on Foun-

dations of Computer Science, FOCS 2016, pages 109–117. IEEE Com-

puter Society, 2016. 3.2.2

[GGdOW17] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigder-

son. Algorithmic and optimization aspects of brascamp-lieb inequal-

ities, via operator scaling. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2017, pages 397–

409. ACM, 2017. 3.2.2

[GGMS87] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova.

Combinatorial geometries, convex polyhedra, and schubert cells. Ad-

vances in Mathematics, 63(3):301–316, 1987. 3.1, 3.1.1

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellip-

soid method and its consequences in combinatorial optimization. Comb.,

1(2):169–197, 1981. 1.1

[GSW22] Elisabeth Gaar, Melanie Siebenhofer, and Angelika Wiegele. An sdp-

based approach for computing the stability number of a graph. Math.

Methods Oper. Res., 95(1):141–161, 2022. 1.1

91

[GV02] Jean-Louis Goffin and Jean-Philippe Vial. Convex nondifferentiable

optimization: A survey focused on the analytic center cutting plane

method. Optim. Methods Softw., 17(5):805–867, 2002. 1.1

[GW94] Michel X. Goemans and David P. Williamson. .879-approximation al-

gorithms for MAX CUT and MAX 2sat. In Proceedings of the Twenty-

Sixth Annual ACM Symposium on Theory of Computing, pages 422–431.

ACM, 1994. 1.1

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge

University Press, Cambridge, 2012. A

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe

Zhang. Solving SDP faster: A robust IPM framework and efficient

implementation. In 63rd IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2022, pages 233–244. IEEE, 2022. 1.1

[HKLM20] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan.

Point location and active learning: Learning halfspaces almost opti-

mally. In 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, pages 1034–1044. IEEE, 2020. 3.1, 3.1.1, 3.1,

3.1.1, 3.1.1

[HM13] Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust

subspace recovery. In COLT 2013 - The 26th Annual Conference on

Learning Theory, volume 30 of JMLR Workshop and Conference Pro-

ceedings, pages 354–375. JMLR.org, 2013. 3.1, 3.1.1, 3.2, 3.2.1, 2, 3.3.1,

3.3.3, 3.3.4

[HM19] Linus Hamilton and Ankur Moitra. The paulsen problem made sim-

ple. In 10th Innovations in Theoretical Computer Science Conference,

ITCS 2019, volume 124 of LIPIcs, pages 41:1–41:6. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2019. 3.1, 3.2, 3.3.3

92

[IQS17] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Construc-

tive non-commutative rank computation is in deterministic polynomial

time. In 8th Innovations in Theoretical Computer Science Conference,

ITCS 2017, volume 67 of LIPIcs, pages 55:1–55:19. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2017. 3.2.2

[JC16] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a

review and recent developments. Phil. Trans. R. Soc. A., 2016. 2.3

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and

Zhao Song. A faster interior point method for semidefinite program-

ming. In 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, pages 910–918. IEEE, 2020. 1.1

[JKL+24] Arun Jambulapati, Syamantak Kumar, Jerry Li, Shourya Pandey, Ankit

Pensia, and Kevin Tian. Black-box k-to-1-pca reductions: Theory and

applications. In The Thirty Seventh Annual Conference on Learning

Theory, volume 247 of Proceedings of Machine Learning Research, pages

2564–2607. PMLR, 2024. 2.3

[JLL+20] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and

Kevin Tian. Positive semidefinite programming: mixed, parallel, and

width-independent. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2020, pages 789–802. ACM,

2020. 2.1

[JLM+23] Arun Jambulapati, Jerry Li, Christopher Musco, Kirankumar Shiragur,

Aaron Sidford, and Kevin Tian. Structured semidefinite programming

for recovering structured preconditioners. In Advances in Neural Infor-

mation Processing Systems 36: Annual Conference on Neural Informa-

tion Processing Systems 2023, 2023. 3.2.3, 3.3.2

93

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An

improved cutting plane method for convex optimization, convex-concave

games, and its applications. In Proceedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2020, pages 944–

953. ACM, 2020. 1.1, 3.2

[JLT20] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian

principal component analysis and width-independent schatten packing.

In Advances in Neural Information Processing Systems 33: Annual Con-

ference on Neural Information Processing Systems 2020, 2020. 1.1, 2,

2.1, 2.1, 9, 1, 4, 3.3.2

[JLT25] Arun Jambulapati, Jonathan Li, and Kevin Tian. Radial isotropic po-

sition via an implicit newton’s method. CoRR, abs/2504.05687, 2025.

3, 3.3.2

[JY11] Rahul Jain and Penghui Yao. A parallel approximation algorithm

for positive semidefinite programming. In IEEE 52nd Annual Sympo-

sium on Foundations of Computer Science, FOCS 2011, pages 463–471.

IEEE Computer Society, 2011. 2.1

[Kad52] Richard V. Kadison. A generalized schwarz inequality and algebraic

invariants for operator algebras. Annals of Mathematics, 56(3):494–

503, 1952. 3.1.1, 3.3.1

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-

gramming. Comb., 4(4):373–396, 1984. 1.1

[KDRZ23] Matthäus Kleindessner, Michele Donini, Chris Russell, and Muham-

mad Bilal Zafar. Efficient fair PCA for fair representation learning. In

International Conference on Artificial Intelligence and Statistics, vol-

ume 206 of Proceedings of Machine Learning Research, pages 5250–5270.

PMLR, 2023. 4

94

[Kha80] Leonid G. Khachiyan. Polynomial algorithms in linear programming.

USSR Computational Mathematics and Mathematical Physics, 20(1):53–

72, 1980. 1.1

[KHFM22] Mohammad Mahdi Kamani, Farzin Haddadpour, Rana Forsati, and

Mehrdad Mahdavi. Efficient fair principal component analysis. Mach.

Learn., 111(10):3671–3702, 2022. 4

[KL20] Ferath Kherif and Adeliya Latypova. Principal component analysis. In

Machine Learning, pages 209–225. Academic Press, 2020. 2.3

[KLM+17] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco,

and Aaron Sidford. Single pass spectral sparsification in dynamic

streams. SIAM J. Comput., 46(1):456–477, 2017. 3.2.3

[KMM+20] Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco,

Navid Nouri, Aaron Sidford, and Jakab Tardos. Fast and space efficient

spectral sparsification in dynamic streams. In Proceedings of the 2020

ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages

1814–1833. SIAM, 2020. 3.2.3

[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate

graph coloring by semidefinite programming. J. ACM, 45(2):246–265,

1998. 1.1

[KSJ18] Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Global

linear convergence of newton’s method without strong-convexity or lip-

schitz gradients. CoRR, abs/1806.00413, 2018. 3.4

[LCB+04] Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El

Ghaoui, and Michael I. Jordan. Learning the kernel matrix with

semidefinite programming. J. Mach. Learn. Res., 5:27–72, 2004. 1.1

95

[LKJO22] Xiyang Liu, Weihao Kong, Prateek Jain, and Sewoong Oh. DP-PCA:

statistically optimal and differentially private PCA. In Advances in

Neural Information Processing Systems 35: Annual Conference on Neu-

ral Information Processing Systems 2022, NeurIPS 2022, 2022. 4

[LM00] Béatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic

functional by model selection. The Annals of Statistics, 28(5):1302–

1338, 2000. 3.5.4

[LN93] Michael Luby and Noam Nisan. A parallel approximation algorithm for

positive linear programming. In Proceedings of the Twenty-Fifth An-

nual ACM Symposium on Theory of Computing, pages 448–457. ACM,

1993. 2.1

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spec-

tral sparsification. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, pages 678–687. ACM,

2017. 1.1

[LSW00] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A determin-

istic strongly polynomial algorithm for matrix scaling and approximate

permanents. Comb., 20(4):545–568, 2000. 3.2

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting

plane method and its implications for combinatorial and convex opti-

mization. In IEEE 56th Annual Symposium on Foundations of Com-

puter Science, FOCS 2015, pages 1049–1065. IEEE Computer Society,

2015. 1.1

[Mac08] Lester W. Mackey. Deflation methods for sparse PCA. In Advances in

Neural Information Processing Systems 21, Proceedings of the Twenty-

Second Annual Conference on Neural Information Processing Systems,

pages 1017–1024. Curran Associates, Inc., 2008. 4

96

[Mav22] Masiala Mavungu. Computation of financial risk using principal com-

ponent analysis. Algorithmic Finance, 10(1-2):1–20, 2022. 2.3

[MRWZ16] Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Ap-

proximating the solution to mixed packing and covering lps in parallel

o~(epsilonˆ{-3}) time. In 43rd International Colloquium on Automata,

Languages, and Programming, ICALP 2016, volume 55 of LIPIcs, pages

52:1–52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

2, 2.1, 2.2.1

[MS16] Andrea Montanari and Subhabrata Sen. Semidefinite programs on

sparse random graphs and their application to community detection. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2016, pages 814–827. ACM, 2016. 1.1

[Nes08] Yurii E. Nesterov. Rounding of convex sets and efficient gradient

methods for linear programming problems. Optim. Methods Softw.,

23(1):109–128, 2008. 2.1

[NN94] Yurii E. Nesterov and Arkadii Nemirovskii. Interior-point polynomial

algorithms in convex programming, volume 13 of Siam studies in applied

mathematics. SIAM, 1994. 1.1

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approxima-

tion algorithms for fractional packing and covering problems. Math.

Oper. Res., 20(2):257–301, 1995. 2.1

[PTZ16] Richard Peng, Kanat Tangwongsan, and Peng Zhang. Faster and sim-

pler width-independent parallel algorithms for positive semidefinite pro-

gramming. CoRR, abs/1201.5135v3, 2016. 2.1, 3.3.2

97

[Qua21] Kent Quanrud. Spectral sparsification of metrics and kernels. In Pro-

ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2021, pages 1445–1464. SIAM, 2021. 3.2.3

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press,

1970. A

[Rou20] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms.

Cambridge University Press, 2020. 3.3.3

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite

relaxations for certifying robustness to adversarial examples. In Ad-

vances in Neural Information Processing Systems 31: Annual Confer-

ence on Neural Information Processing Systems 2018, NeurIPS 2018,

pages 10900–10910, 2018. 1.1

[Sch13] Kathrin Schacke. On the kronecker product, 2013. 3.4.1

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by

effective resistances. SIAM J. Comput., 40(6):1913–1926, 2011. 3.3.2

[SST06] Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng. Smoothed

analysis of the condition numbers and growth factors of matrices. SIAM

J. Matrix Anal. Appl., 28(2):446–476, 2006. 3.3.3

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algo-

rithms: Why the simplex algorithm usually takes polynomial time. J.

ACM, 51(3):385–463, 2004. 3.2.3, 3.3.3

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms

for preconditioning and solving symmetric, diagonally dominant linear

systems. SIAM J. Matrix Anal. Appl., 35(3):835–885, 2014. 3.3.2

98

[STM+18] Samira Samadi, Uthaipon Tao Tantipongpipat, Jamie Morgenstern,

Mohit Singh, and Santosh S. Vempala. The price of fair PCA: one

extra dimension. In Advances in Neural Information Processing Sys-

tems 31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, pages 10999–11010, 2018. 4

[SV19] Damian Straszak and Nisheeth K. Vishnoi. Maximum entropy distribu-

tions: Bit complexity and stability. In Conference on Learning Theory,

COLT 2019, volume 99 of Proceedings of Machine Learning Research,

pages 2861–2891. PMLR, 2019. 3.2, 3.2.1

[Sza91] Stanislaw J. Szarek. Condition numbers of random matrices. Journal

of Complexity, 7(2):131–149, 1991. 3.2

[Vai96] Pravin M. Vaidya. A new algorithm for minimizing convex functions

over convex sets. Math. Program., 73:291–341, 1996. 1.1

[Ver24] Roman Vershynin. High-Dimensional Probability: An Introduction with

Applications in Data Science. Cambridge University Press, 2024. 3.5.3,

3.4

[Wat93] G. A. Watson. On matrix approximation problems with ky fank norms.

Numer. Algorithms, 5(5):263–272, 1993. 2.1.1

[WGR+09] John Wright, Arvind Ganesh, Shankar R. Rao, YiGang Peng, and

Yi Ma. Robust principal component analysis: Exact recovery of cor-

rupted low-rank matrices via convex optimization. In Advances in

Neural Information Processing Systems 22: 23rd Annual Conference on

Neural Information Processing Systems 2009, pages 2080–2088. Curran

Associates, Inc., 2009. 2.1.1

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing

and covering. In 42nd Annual Symposium on Foundations of Computer

99

Science, FOCS 2001, pages 538–546. IEEE Computer Society, 2001.

2.1

[Zha20] Richard Y. Zhang. On the tightness of semidefinite relaxations for

certifying robustness to adversarial examples. In Advances in Neu-

ral Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, 2020. 1.1

[ZX18] Hui Zou and Lingzhou Xue. A selective overview of sparse principal

component analysis. Proc. IEEE, 106(8):1311–1320, 2018. 4

100

	Acknowledgments
	Preface
	Introduction
	1.1 Black-box convex programming
	1.2 Overview
	1.2.1 Primary objectives
	1.2.2 Main contributions

	1.3 Notation

	Ky Fan Packing
	2.1 Packing linear programs
	2.1.1 The Ky Fan k-norm

	2.2 Ky Fan packing algorithm
	2.2.1 Future work

	2.3 Application to fair principal component analysis
	2.3.1 SDP formulation of fair PCA

	Fast Forster Transforms
	3.1 Radial isotropic position
	3.1.1 Equivalent characterizations

	3.2 Prior and related work
	3.2.1 Forster transforms via maximum entropy
	3.2.2 Forster transforms via operator scaling
	3.2.3 Reductions between graph primitives

	3.3 Our results
	3.3.1 Main theorem
	3.3.2 Implicit sparsification
	3.3.3 Smoothed regime
	3.3.4 Computational model

	3.4 Optimizing Barthe's objective via Newton's method
	3.4.1 Hessian stability of Barthe's objective
	3.4.2 Termination condition
	3.4.3 Box-constrained Newton's method
	3.4.4 Proof of Theorem 3.1

	3.5 Conditioning of smoothed matrices
	3.5.1 Diameter bound for deep vectors
	3.5.2 Conditioning of wide and near-square smoothed matrices
	3.5.3 Conditioning of tall smoothed matrices
	3.5.4 Assumption 3.1 for smoothed matrices
	3.5.5 Extension to non-uniform c

	Mathematical Facts
	A.1 Matrix theory
	A.2 Convex analysis
	A.3 Useful inequalities

	Bibliography

