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Figure 1: We develop a novel approach to symmetric frame field design in volumes. Here we show integer grid parameterizations and frame
field streamlines of approximately octahedral fields computed on a collection of animal models. Our method automatically recovers fields
with complex topologies and is capable of producing parameterizations which conform to complex geometries in practice, as evidenced here.

Abstract
This paper studies the problem of unconstrained (e.g. not orthogonal or unit) symmetric frame field design in volumes. Our
principal contribution is a novel (and theoretically well-founded) local integrability condition for frame fields represented
as a triplet of symmetric tensors of second, fourth, and sixth order. We also formulate a novel smoothness energy for this
representation. To validate our discritization, we study the problem of seamless parameterization of volumetric objects. We
compare against baseline approaches by formulating a smooth, integrable, and approximately octahedral frame objective in
our discritization. Our method is the first to solve these problems with automatic placement of singularities while also enforcing
a symmetric proxy for local integrability as a hard constraint, achieving significantly higher quality parameterizations, in
expectation, relative to other frame field design based approaches.

Keywords: frame field optimization, integrability, volumetric
parameterization

1 Introduction

Volumetric symmetric frame fields—generalizations of vector fields
that assign to each point a smoothly-varying set of unlabeled vec-
tors and their opposite vectors—arise naturally in applications
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‡ Supported by CMMI-2310666 and HCC-2212048

within and without computer graphics. In medicine, MRI ma-
chines collect volumetric data which can be post-processed into
tensor fields and visualized as curves and surfaces for various clin-
ical and research applications. For example, a frontier of medi-
cal imaging research are algorithms for diffusion MRI [LCD∗09],
which produce tractography reconstructions of interwoven neural
tissues. These reconstructions can be useful clinically for brain sur-
geons in planning operations that avoid severing vital neural path-
ways. In structural engineering, the finite element method can be
used to predict the stress distribution of a part under load. This
stress tensor field can be used as input into topology optimization
pipelines to manufacture parts with improved strength-to-weight
ratios [AJL∗19, KS23].

Symmetric frame fields have seen increasing use in the ge-
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ometry processing community as the natural data structure for
encoding orientation of a volumetric parameterization. In partic-
ular, many popular volume hexahedralization algorithms begin
by optimizing for a symmetric frame field with “good” topo-
logical properties to use as a guide during the remeshing pro-
cess [Eri14, LZC∗18, LB23]. A robust frame-field-based hexahe-
dral meshing pipeline has remained out of reach, however, despite
the considerable efforts of the community [PCS∗22] and significant
interest from engineering fields.

Key Challenge and Contribution In the above applications, vol-
umetric symmetric frame fields serve as an intermediate represen-
tation in a multi-step process of frame field optimization followed
by integration of the frame field into isosurfaces or streamlines. A
significant limitation of the optimize-then-integrate methodology
is that, unlike in the vector field case where local integrability is
a simple linear constraint that can be incorporated into the design
optimization, in the symmetric frame field setting in volumes no
analogous constraint has been formulated despite ongoing interest
in this topic by the community [CCR24]. Consequently a designed
symmetric frame field can be arbitrarily non-integrable and restor-
ing integrability (such as by trying to integrate it using e.g. Cube-
Cover [NRP11]) can require large, global adjustments to the field
that violate design objectives.

Our work fills this gap: we show that discrete (local) integrability
of a symmetric frame field on a tetrahedral volume mesh can be
expressed as linear constraints on certain tensor representations of
the field (where the entries of these tensors are polynomials in the
natural representation of a frame field, as 9 DOFs per point).

1.1 Core Concepts and Definitions

As discussed above, in this paper we focus on symmetric
frame fields: 23-vector fields, in the nomenclature of Vaxman et
al.’s [VCD∗16] taxonomy, on a 3D volume Ω ⊂ R3. One straight-
forward representation of such a field is an assignment of a trio of
vectors { fff 1(ppp), fff 2(ppp), fff 3(ppp)} to each point ppp in Ω, where it is un-
derstood that permuting the fff i or flipping any of their signs yields
the same symmetric frame. We will write FFF ∈ R3×3 for the matrix
with the fff i as its columns.

The redundancy in this matrix representation can be understood
in terms of a quotient space of R3×3. Let O be the octahedral
group. Elements g ∈ O have a representation in GL(3) as a prod-
uct g = DDDPPP of a 3× 3 diagonal matrix DDD with entries ±1 and a
permutation matrix PPP. The octahedral group acts on matrices by
right-multiplication, MMM 7→ MMMDDDPPP, which permutes the columns of
MMM and alters their signs. Two matrices

FFF =
[

fff 1 fff 2 fff 3

]
, G =

[
ggg1 ggg2 ggg3

]
thus represent the same 23-vector frame if FFF = Gg for some g ∈O.
In this case we write FFF ∼ G. Following Palmer et al.’s [PBS20]
similar notation for octahedral fields, we will write R3×3/O for
the quotient space of 3-symmetric direction frames and GL(3)/O
for the space of non-degenerate (i.e., linearly independent) such
frames. Note that GL(3)/O is not a manifold, though it is locally

Euclidean in neighborhoods where all three directions fff i have pair-
wise distinct magnitudes. A 23-vector field is therefore a section Γ

of Ω×R3×3/O.

Throughout the paper we will work with FFF rather than its image
under the quotient map, since the entries of FFF are convenient de-
grees of freedom for numerical optimization. But of course a choice
of vector trio FFF is simply one representative out of several possi-
ble, and quantities such as smoothness, integrability, etc. must be
measured with respect to R3×3/O rather than R3×3.

In neighborhoods of Ω away from Γ’s singular points and
curves, it is possible to locally comb the frame field, i.e. to find
three smoothly varying vector fields ccci with CCC ∼ FFF at every point
in the neighborhood. Just as with polyvector fields in two dimen-
sions, it is generally not possible to extend this local combing to a
global splitting of a symmetric frame field into three smooth vector
fields due to the presence of topological dislocations along singular
curves of the frame field.

Discretization In this paper we assume that Ω is discretized as a
tetrahedral mesh, and discretize symmetric frame fields as an as-
signment of a frame Fi ∈ R3×3/O to every tetrahedron i.

Why GL(3)/O? Most work in geometry processing, especially in
the realm of 3D parameterization and hex meshing, focus on octa-
hedral frames, with FFF at every point a rotation and uniform scaling
of the canonical Euclidean coordinate frame†. Forcing frames to
be octahedral does have advantages in that it prevents appearance
of highly-anisotropic frames, degenerate (coplanar or vanishing)
frames, etc. Unfortunately, octahedral frames are not a good choice
when it comes to integrability: an integrable octahedral frame im-
plies existence of a local conformal parameterization. Under even
mild additional constraints (such as alignment of frames with the
boundary), the problem of finding an integrable octahedral frame
becomes infeasible, due to the paucity of conformal maps in three
dimensions (only Möbius transformations). For these reasons, in
this paper we make the opposite design decision of enforcing in-
tegrability exactly and relaxing the octahedral property to a soft
penalty, and evaluate the consequences of this decision on two re-
lated volumetric parameterization tasks.

2 Related Work

To our knowledge, this paper is the first to study the general prob-
lem of formulating a local integrability constraint for generic sym-
metric frame fields in volumes. However, we build upon a substan-
tial body of literature covering related topics including representa-
tion, design, and integration of vector and frame fields.

Since our work is focused on volumetric frame fields, we do
not comprehensively review papers on 2D vector fields, RoSys,
or related structures. We refer to the surveys by de Goes et
al. [dGLB∗14] and Vaxman et al. [VCD∗16] for more details.

† Note that octahedral frames should not be confused with the octahedral
group; the latter describes the symmetries of all 23-vector fields, of which
the octahedral frame fields are a subset.
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Figure 2: Some example applications of symmetric frame fields
across scientific disciplines. Clockwise from top-left: the Metropol
Parasol is one of the worlds largest wooden structures, in Seville,
Spain (image courtesy of Flickr and Paul VanDerWerf). A render-
ing of the chiral nematic phase of liquid crystals (beautifulchem-
istry.net). An application of frame field optimization to the develop-
ment of truss structures of varying densities, together with a render
illustrating a potential application of these trusses for use in fab-
ricating lightweight mars lander legs (Figure 17 of [AJL∗19]). An
iridescent photo of the smectic (layered) liquid crystal phase which
is modeled well by the Aviles-Giga PDE (Ji-Hoon Lee and the Case
Western Liquid Crystal and Complex Fluids Group). Diffusion ten-
sor imaging of the human brain [FTd∗14].

Designing Volumetric Fields Symmetric frame fields (i.e. 2k-
vector fields) have been studied in both two [PPTSH14, DVPSH14]
and three dimensions. The jump to three dimensions introduces
substantial additional complexity, since the most convenient 2D
representations exploit the geometry of the complex plane and do
not have obvious 3D analogues. Moreover field singularities in
3D have much richer geometry (networks of singular curves and
points) and topology than in 2D; several recent papers study this
topology with the goal of identifying and, ideally, using local oper-
ations to repair singular structures that are unsuitable for applica-
tions like hexahedral meshing [LZC∗18, ZCFM23, LB23]. Algo-
rithms for frame field design can be taxonomized based on whether
they assume that the singular structure is provided, or try to opti-
mize for the singularities automatically.

Prescribed Singularities Given the singular points of a symmet-
ric frame field S, it can be globally combed on a covering space
of Ω\S with topology given by the singular structure. This insight
substantially simplifies the problem of designing frame fields in
the case where the singular structure is prescribed in advance, ei-
ther through use of manual tools [PRK∗17] or via a two-phase opti-
mization [LLX∗12, LZC∗18]. Corman and Crane [CC19] use simi-
lar ideas to design octahedral frame fields given prescribed singular

structure. This latter work is primarily concerned with integrability
of the octahedral frames in the sense of trivial monodromy rather
than in the sense of volumetric parameterization, i.e. this work pro-
poses an integrability constraint on the derivative, which is a nec-
essary but not sufficient condition to guarantee field integrability.
The major limitation of these approaches is the inability to optimize
the singular structure jointly with the frame field in cases when a
“good” singular structure isn’t known in advance.

Automatic Methods Many methods for symmetric frame field
design with automatic singularity placement further restrict the
frames to be octahedral, which allows leveraging representa-
tions of the frames based on the 4th band of spherical harmon-
ics [HTWB11, RSL16, SVB17], 4th order tensors [CHRS19] or
quaternions [GJTP17]. By enriching the 4th band of spherical har-
monics with additional harmonics from the 2nd and 0th row, Palmer
et al. [PBS20] allow for design of more general orthogonally de-
composable (“odeco”) frames. An automatic method for designing
odeco frame fields together with a symmetric integrability penalty
was studied in 2D by Couplet et al. [CCR24], and preliminary work
extending this formulation to 3D was documented in Couplet’s the-
sis [Cou24]. This formulation of symmetric integrability is imple-
mented by expressing a vanishing Lie bracket condition in terms
tensor coefficients, and developed only for odeco fields. Desobry et
al.’s work [DCOC∗21] also uses direct products of the even bands
of spherical harmonics to design unit frames that are not necessarily
everywhere-orthogonal. In contrast, we believe we are first to pro-
pose a representation that can robustly handle arbitrary symmetric
frame fields without constraints on norms or angles.

Metric-driven approaches [FHTB23, VS09] design frame fields
in two passes, first computing a compatible metric g which encodes
constraints like crease alignment and then solving for a smooth field
relative to this metric. As integrability is not enforced during the
frame field design step, the fields which result from this procedure
will not be integrable. The one exception is when g is taken from
a hex mesh already, but there is no proposed algorithm for solving
for such a metric field in general in their paper. We evaluate against
their implementation with g = I.

We stress that to our knowledge, no existing automatic method
for frame field design guarantees locally integrable frame fields in
any sense.

Integrability Constraints Local integrability constraints have
been formulated for many discrete geometric objects other than
symmetric frame fields, ranging from ordinary vector fields [PP03]
to poly-vector fields [DVPSH15] to Chebyshev nets [SFCBCV19]
to the conformal factor of conformal deformations [CPS15].

Integration Algorithms Given a designed symmetric frame field,
the CubeCover algorithm [NRP11] uses mixed-integer program-
ming to find a seamless or integer-grid parameterization of
Ω whose gradients match the frame field as closely as pos-
sible at each point. Related algorithms have been developed
for similar problems, e.g. integration of 2D cross or frame
fields [KNP07, BZK09] (possibly after rescaling to improve local
integrability [RLL∗06, CIE∗16]), stripe patterns [KCPS15] or rib-
bons on surfaces [VZF∗19], vorticity fields [WPS14], etc. Single

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 26 J. Vekhter & Z. Chen & E. Vouga / Mint

vector fields in 3D can be projected to the nearest integrable field
via Hodge decomposition [ZDWT19, RPPG19, CDG02]. While ex
post facto projection and integration can sometimes yield good re-
sults in practice (particularly when integration error is small), the
error in the resulting reconstruction is hard to predict or control
compared to when integrability is included in the design process
from the start.

Applications Symmetric frame fields (or more restrictive vari-
ants such as octahedral frame fields) are commonly used in field-
guided approaches to volumetric parameterization and hexahedral
meshing. Pietroni et al. [PCS∗22] survey various approaches, in-
cluding methods for applying non-trivial local mesh repair op-
erations [LBK16] necessary to realize robust hexahedral meshes
in practice. The Aviles-Giga energy [AG87] constrains line fields
to be everywhere unit and integrable and is a natural model of
the smectic phase of liquid crystals. Researchers in that commu-
nity [NWZ18] have developed their own computational methods
for optimizing this energy and analyzing the resulting singular
structures in symmetric fields [PPicv∗19] in parallel to the geom-
etry processing community. Finally, Arora et al. [AJL∗19] pro-
pose designing truss structures that follow streamlines of volumet-
ric stress, following an argument by Michell from 1901 that such
a truss structure is optimally material-efficient. All of these appli-
cations benefit from the ability to design frame fields that are auto-
matically locally integrable.

3 Overview

We discretize volumes Ω as tetrahedral meshes and symmetric
frame fields as frames FFF ∈ R3×3 per tetrahedron. The entries of FFF
will also ultimately be our optimization variables in applications.
However, as discussed in the Introduction, the matrices FFFg, for
g any element of O, all correspond to the same symmetric frame
in R3×3/O. An energy or constraint function f is therefore only
well-defined if f (FFFg) = f (FFF) for every element g of the octahedral
group. To ensure that our optimization respects octahedral symme-
try of the frames, we will define constraints and energies in terms
of a (symmetric) three-tensor moment representation of the frame
field L(FFF), rather than in terms of the (not permutation invariant
entries of) FFF directly.

3.1 Lifts and k-th Moments

In regions where all three vector magnitudes are distinct, elements
of GL(3)/O have a unique representation as a matrix M2 =∑i fff i fff T

i
with the frame vectors as its eigenvectors with eigenvalues ∥ fff i∥

2.
On R3×3/O more generally this mapping is not injective, but the
object M2 is nevertheless useful to work with since it can be eas-
ily computed from any representative frame FFF and is invariant
to the specific choice of representative frame (e.g. for any sign
flips and permutation of the frame vectors FFFDDDPPP, we have that
M2 = ∑i fff iDDDPPPPPPT DDDT fff T

i , and the signs/permutations cancel out).

Tensor products of higher order can be used similarly to sym-
metrize FFF . We write the lift Lk of a frame FFF to kth order symmetric
moment tensor as

Lk(FFF) = ∑
i

fff⊗k
iii . (1)

Note that when k is even, the lift satisfies the symmetry Lk(FFF) =
Lk(FFFg) for all g ∈ O; the lift is thus a well-defined map from
R3×3/O into R3k

. (And for this reason a variant of this lift opera-
tion has seen use [PBS20] for designing orthogonal frame fields.)

3.2 Key Idea and Outline

We define an overall mapping from symmetric frames FFF to the
space of moments M= R32

⊕R34
⊕R36

:

L(FFF) = [L2(FFF),L4(FFF),L6(FFF)] .

In Appendix A we prove that L is an injective map from R3×3/O
to M; in other words, that FFF can be uniquely recovered from
{Lk(FFF)}k=2,4,6 up to octahedral symmetry. This property proves
that M is a suitable space on which to define optimization energies
for symmetric frame fields, and will also be used to prove correct-
ness of our local integrability constraint; the reader more interested
in how to use our representation for optimization than in technical
theory may skip this, but it is a key theoretical contribution of this
work.

We will work with this moment representation of symmetric
frames throughout the rest of the paper:

• We define local integrability of discrete symmetric frame fields
in Section 4, as well as a notion of smoothness of symmetric
frame fields.

• In Section 5, we introduce a model objective function (that we
name MINT MESH) for recovering approximately octahedral
fields for the application of computing boundary-aligned seam-
less and integer-grid parameterizations of 3D volumes that are as
octahedral as possible.

• In Section 6, we document several nonstandard features of the
numerical method we use to recover small residual minimizers
of the MINT MESH optimization problem in practice.

• In Section 7 we distill a set of quality metric from the literature in
order to evaluate the degree to which volume parameterizations
are integrable, boundary aligned, and octahedral; and compare
the fields produced by our method to those from several baseline
algorithms.

• In Appendix B we give some motivation for studying the partic-
ular notion of smoothness over the symmetric frame representa-
tion that is introduced in this paper. In Appendix C we document
some additional algorithmic details of our numerical method.

4 Integrability of Symmetric Frame Fields

In this section we first define local integrability of symmetric frame
fields in the smooth and discrete setting, then present our main con-
tribution: a set of necessary and sufficient constraints on the repre-
sentative vectors fff i of a discrete symmetric frame field ensuring
that the field is discretely locally integrable.

Smooth Local Integrability The notion of local combing allows
us to immediately generalize local integrability of vector fields to
23-vector fields: in particular, on a neighborhood N where a sym-
metric frame field FFF(ppp) can be combed—away from the field’s sin-
gularities, where there exists three smooth vector fields ccci(ppp) with
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Octahedral Frame Field Singular Lines

Frame Field with Isolines Singular Lines with Isolines

Figure 3: This figure depicts the streamlines of a combed symmet-
ric frame field on a polyhedral domain. The color map assigns
colors to streamlines based on their orientation, meaning paral-
lel flows share the same color—a technique inspired by DTI imag-
ing [DHL09]. Top left: Streamlines of an approximately octahe-
dral symmetric frame field on a polyhedral domain. Top right: The
singular structure of the symmetric frame field. Bottom row: An
overlay of the above visualizations with an integer grid parameter-
ization of the symmetric frame field (see Section 7 for details on
how we evaluate our solver). The key idea is to study a method for
enforcing an integrability constraint on symmetric frame fields.

CCC(ppp) ∼ FFF(ppp) for ppp ∈ N—the field is locally integrable if there
exist three scalar potentials φi : N → R with ccci =∇φi; or equiva-
lently, if ∇× ccci = 0.

Discrete Local Integrability Given a symmetric frame field on
the tetrahedra of a volume mesh, we can ask, analogously to the
smooth setting, for each vector field in a local combing of the frame
field to be discretely integrable, i.e., the gradient of a discrete po-
tential function φ on the mesh’s vertices (extended to a piecewise-
linear function on the volume via the hat basis). Following [PP03]’s
characterization of discrete vector field integrability we can make
this condition precise: a symmetric frame field is discretely locally
integrable if, for every pair of tetrahedra sharing a common face F
there exists a σ ∈ O with

fff i · eee = (GGGσ)i · eee (2)

for each i ∈ {1,2,3} and every edge eee on F , where FFF and GGG are
the representative vector frames on the two tets. In this definition σ

plays the role of a local combing of the symmetric frame field on
the two-tet “diamond” surrounding F .

This definition can be used to formulate a meaningful measure
of local symmetric integrability. On a tet mesh, we evaluate the min
discrepancy in the above equation to obtain a scalar per facet:

Qlocint = min
σ∈O

A(F)

ℓ(F) ∑
eee∈F

(
3

∑
i=1

∥ fff i · eee− (GGGσ)i · eee∥
2)2 (3)

with A(F) the area of the facet, ℓ(F) the dual length between cen-
troids.

The principle drawback of this characterization of discrete sym-
metric frame field integrability is that it cannot be easily enforced
during frame field design, since Equation (2) involves a large num-
ber of discrete variables σ (one per interior face of the mesh). We
next show how to reformulate these constraints into an equivalent
form without this limitation. In Figure 10 we establish that our pro-
posed formulation in Eq. (5) is an effective surrogate for Eq. (3).

4.1 Moment-based Symmetric Integrability

In this section we will show how to express local integrability of
a symmetric frame field in terms of Lk(FFF) and Lk(GGG) for frames
FFF and GGG on two neighboring tets. The use of the moment tensors
rather than the frames themselves will obviate the need for local
combing, and allow us to express integrability as polynomial con-
straints on the entries of the representative frames FFF i with no addi-
tional discrete variables.

The key insight is the following: let vvv1,vvv2, . . .vvvk be any set of
vectors tangent to the common face F of the two neighboring tetra-
hedra, and let MMMk = Lk(FFF) and NNNk = Lk(GGG). Then if the field is
discretely integrable, it must hold that for k even,

MMMk(vvv1,vvv2, . . .vvvk) = ∑
i

∏
j

fff i · vvv j

= ∑
i

∏
j

gggi · vvv j

= NNNk(vvv1,vvv2, . . .vvvk).

This fact follows from Equation (2) by expressing each vector vvvi in
a basis of edges of F and invoking invariance of NNNk to the choice
of σ.

We can express the above equation compactly as MMMk = NNNk in
terms of the restriction MMMk = MMMk|F of MMMk to the plane tangent to
F . Equivalently, let πππi be the projection of fff i onto F . If we choose
an arbitrary basis for the tangent space of F and write fff i ∈ R2 for
the expression of πππi in this basis, we have as a necessary condition
on discrete integrability that for all even k,

Lk
(
FFF
)
= Lk

(
GGG
)
, (4)

where FFF ∈ R2×3 is the matrix with columns fff i.

In practice we choose to enforce this constraint via a penalty on
its residual when k = 2, 4, and 6:

Eint =
A(F)

ℓ(F) ∑
F

3

∑
k=1

∥∥L2k
(
FFF
)
−L2k

(
GGG
)∥∥2

F , (5)

where the outer sum is over all interior facets F of the tet mesh; FFF
and GGG are the frames on the tets neighboring F , A(F) is the area of
the facet, ℓ(F) is the dual length between centroids and ∥∥F is the
Frobenius norm.

© 2025 The Author(s).
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Sufficiency Intuitively, one might expect that enforcing Equa-
tion (4) for sufficiently many different values of k constrains FFF and
GGG to be locally integrable in the sense of Equation (2). In fact, this
is true, and it is enough to enforce Equation (4) for k ∈ {2,4,6}
as in Equation (5). For if L(FFF) = L(GGG) then it follows from injec-
tivity of L (and suitable zero-padding of the tensors in question)
that FFF ∼ GGG and therefore Equation (2) holds. The counterexample
in Equation (25) (where without loss of generality we can take F
to be parallel to the xy plane) shows that enforcing Equation (4) for
k = 2,4 is not enough to guarantee local integrability of the discrete
frame field.

Implementation Notes Naively, each tensor in Equation (4) has
22k entries; however many of these are redundant due to the tensor
symmetries. Grouping together redundant constraints leaves((

2
2

))
+

((
2
4

))
+

((
2
6

))
= 15

total unique tensor coefficients per interior face of the tet mesh that
must be computed to evaluate Equation (5).

4.2 Compatible Smoothness Operator

Our method is called MINT for the Moment based INTegrability
constraint discritized in section 4.1. However, this constraint is not
enough on its own to formulate interesting symmetric frame field
design objectives. One basic, but not entirely straightforward, ques-
tion is how to “correctly” formulate a notion of smoothness over
R3×3/O. In this paper studied a Laplacian acting on the same in-
jective representation of R3×3/O we use to enforce integrability:

Higher Order Moment Laplacian Following Palmer et
al. [PBS20], we regularize smoothness of symmetric frame fields
using a Dirichlet-like energy ∥∇Lk(FFF)∥2

F on the moment tensors.
Accordingly we propose the following discrete smoothness energy,
written using the notation of Section 4:

Esmooth = ∑
F

A(F)

2ℓ(F)

3

∑
k=1

∥L2k (FFF)−L2k (GGG)∥2
F , (6)

with A(F) the area of facet F , ℓ(F) is the dual length between
centroids

See Appendix B for additional discussion of this Laplacian.

5 MINT MESH: Formulation

Much previous work on symmetric frame field design is motivated
by the task of locally-injective seamless volume parameterization:
an extension of uv-mapping to volumes Ω ⊂ R3 with applications
in hexahedral meshing, medical imaging, and computational fab-
rication. In this section, we present an optimization algorithm for
designing a symmetric frame field FFF to guide seamless parame-
terization. This algorithm exploits our moment-based frame field
representation to promote local integrability of FFF during the design
process. We then globally integrate the designed FFF into a parame-
terization φφφ using the CubeCover algorithm [NRP11].

We follow previous work [LB23] in considering two variations
of the parameterization task. Seamless parameterization requires
that the image of each singular line of φφφ has two integer coordinates
(with singular points at the intersection of singular lines mapping
to points of the lattice Z3). An integer-grid parameterization addi-
tionally requires that the image of every point of ∂Ω has an integer
coordinate; this latter constraint is necessary to construct from the
parameterization a hexahedral mesh.

Below, we formulate several additional optimization terms use-
ful when trying to recover approximately octahedral parameteri-
zations. We then combine these terms, together with our notions
of integrability and smoothness to specify a concrete optimization
problem for computing boundary-aligned seamless and integer-grid
parameterizations of 3D volumes that are as octahedral as possible
(MINT MESH).

All of these energies are ultimately implemented as functions of
the discrete frame field F, represented as per-tetrahedron frames FFF
with frame vectors fff i.By using energies obviously invariant under
the action of O on the frames, we ensure the energies are well-
defined irrespective of the choice of representative frame FFF on each
tetrahedron.

5.1 Approximately Octahedral Fairing

Here we develop three additional objective terms we use to regular-
ize our frame field optimization towards approximately octahedral
solutions. We note that there is still considerable research remain-
ing in designing interesting design objectives for symmetric frame
field design. One particularly natural extension we don’t consider
is a log barrier term to prevent inverted elements, as often used in
the parametrization literature.

Orthogonality The energy

Eorth = ∑
T

V (T )

2 ∑
i̸= j

(
fff i · fff j

)2
(7)

promotes symmetric frame fields whose vectors are pairwise or-
thogonal (“odeco”), where the sum is over all tetrahedra T with
volume V (T ) and associated frame FFF .

Unit Norm As a fairness term to promote symmetric frame fields
whose vectors are as-unit-as-possible, we propose the straightfor-
ward

Eunit = ∑
T

V (T )

2

3

∑
i=1

(
∥ fff i∥

2 −1
)2

. (8)

Plane Alignment Given a prescribed direction ddd, the following
energy penalizes deviation of a frame vector fff i from the plane or-
thogonal to ddd. In other words, this energy requires the isosurface of
one scalar potential φ to contain ddd:

Eplane(T ,ddd, i) =
V (T )

2
(ddd · fff i)

2 , (9)

For Eplane we place one energy term for each boundary facet
which penalizes two of the frame vectors from leaving the tangent

© 2025 The Author(s).
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Singular Lines Isolines v.s. Dual Streamlines Integrability Error Error Density

0 1.0

0 1.0

Figure 4: The integer grid paramemterization on a twisted trian-
gle torus model. In the top row, frame fields are computed using
MINT MESH. In the bottom they are computed using the same en-
ergy model without an integrability constraint, denoted as MINT

OCTA. Here we see a clear qualitative improvement in integer grid
parametrization by applying our symmetric integrability formula-
tion.

plane. This is the same boundary condition as is used in the baseline
octahedral frame field solver from [FHTB23].

5.2 An As-Octahedral-As-Possible Objective

Putting the above terms together allows us to formulate the follow-
ing fairness objective:

Emesh = Esmooth +λorthEorth +λunitEunit +λplaneEplane. (10)

In this paper, for the sake of doing a concrete experiment, we study
this objective with λorthog = 0.1, λunit = 10−5, and λplane = 10−6.

We enforce an additional hard constraint that one of the frame
vectors is aligned to the surface normal at the volume boundary.
To avoid over-constraining the problem at sharp edges and cor-
ners, we add a ghost tetrahedron adjacent to every boundary facet
of the input mesh, each with its own frame, and we associate the
normal n̂nn(T ) of the boundary facet to the ghost tetrahedron T . In
Appendix C, we summarize additional subdivision rules which we
apply to pre-process an input mesh to ensure that no tet is adjacent
to more than one ghost tet.

The full MINT MESH optimization problem is then:

argmin
F

Emesh s.t. (11)

Eint = 0,

fff 1(T ) = n̂nn(T ) ∀ ghost tets T .

For our experiments in Section 7, we also consider a variant of
Equation (11) without the integrability constraint, which we term
MINT OCTA. Both MINT OCTA and MINT MESH depart from pre-
vious work in only enforcing that frames be “as octahedral as possi-
ble,” allowing anisotropy and non-orthogonality in the solutions as
necessary. We will establish that MINT OCTA is comparable with

LMFF RAY

METRIC GUIDED

MINT MESH v.s. METRIC GUIDED difference

MINT OCTA

MINT MESH

Qint Qsjac

Qbalign Qdet

Figure 5: We compare the performance of our proposed method by
evaluating the quality of integer grid parameterizations obtained
on models from the HexMeI dataset of industrial models. To en-
sure consistency, we remesh these models using TetWild, targeting
a lower resolution of approximately 3k tetrahedra. Notably, the two
baseline solvers do not produce identical results on these meshes,
despite both implementing a tetrahedral-based version of [RSL16].
These plots assess performance across various metrics discussed
in Section 7.1. On this practical dataset, our method produces
boundary-aligned parameterizations that significantly outperform
the baselines with respect to these quality metrics.

baseline frame field design methods for the seamless and integer-
grid parameterization tasks, and that MINT MESH in many cases
improves the parameterization quality.

In Section 6, we provide more details on the numerical algo-
rithm which we use to recover solutions to this problem in practice.
In Figure 4 we illustrate how our symmetric integrability constraint
changes the result of integer grid parameterization on a twisted tri-
angular torus model.

6 MINT MESH: Numerical Method

On a high level, our approach is to apply Newton’s method to di-
rectly solve the (highly) non-linear optimization problem in Equa-
tion (11). In this section, we expand on some essential algorith-
mic details of our numerical method. More implementation details
are available in Appendix C, and source code for a reference im-
plementation of our method is available at https://github.
com/the13fools/Mint3D.

6.1 Problem Setup

While we needed to make a concrete choice of parameters to
perform our experiments, results on specific models may benefit

© 2025 The Author(s).
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Singular Lines Int-Grid Isolines vs Streamlines Error Density

0 1.0

0 1.0

12k Tets

100k Tets

Figure 6: In this figure we probe the sensitivity of MINT MESH

to mesh resolution, on the s08o_cross_cyls_dr model from the
HexMeS dataset. Our default formulation produces a result with
many degenerate frames on the relatively low resolution mesh in-
cluded with the dataset, but improves dramatically after using
TetWild [HZG∗18] to remesh the geometry to one with approxi-
mately 10x the number of tets. We plot the results relative to in-
teger grid parameterization. (Top), we show the results on a mesh
with 12,638 tetrahedra, driven to full convergence (86 newton it-
erations). (Bottom), we perform the solve on a mesh with approx-
imately 10 times more elements (e.g. 101061 tetrahedra), showing
partially converged results (30 newton iterations - where the weight
on the Eint term is approx 5x the weight on Esmooth).

from increasing the mesh resolution, adjusting hyperparameters,
and changing the initialization.

Resolution Dependence While we made an effort to include
scaling coefficients in our energies so that they converge under
mesh refinement, our default choice of parameters may produce
frame fields with degeneracies on low resolution/low quality in-
put meshes. In Figure 6, we illustrate how frame field quality from
MINT MESH improves under subdivision. This example was used
as a challenging test case in Couplet’s thesis [Cou24] (as docu-
mented in Fig. 4.12 of that work). Figure 19 documents how fields
depend on model parameters on this geometry.

Choice of Hyperparameters The quality of the MINT MESH re-
sults can be improved by tuning the weights of the various terms
Equation (10) (as we illustrate in Figure 19). We include addi-
tional discussion on how to tune these weights in Appendix C. In
particular, the presence/absence of degenerate (zero-volume) and
inverted (negative-volume) frames is sensitive to these parameter
choices, suggesting that the robustness of our formulation could be
improved by including a barrier penalty on volume inversion in the
objective function.

Sensitivity to Initialization The problem we are solving is non-
convex, and the minimum that our reference implementation con-
verges to is initialization dependent. We illustrate an example of
this initialization dependence in Figure 7.

For evaluation in Section 7, we chose an initialization strategy
that we found yields relatively reliable results. We first compute a

Singular Lines with Seamless Isolines Isolines vs Streamlines Error Density

0 1.0

0 1.0

0 1.0

Rand Odeco: with one SDF gradient and 10−4 norm others

Rand Odeco: with one SDF gradient and unit norm others

Random Unit Norm Init

Figure 7: In this figure we show the impact of different initializa-
tions on the converged results of MINT MESH. In the top row we
illustrate the result from our default configuration, where one frame
is initialized to a signed distance field, and the other two are ini-
tialized to be random orthogonal vectors with norm 10−4. In the
center row, we initialize in the same way, except the vectors orthog-
onal to the SDF gradient are set to have unit norm. In the bottom
row, we initialize all frame vectors to be random with unit norm.
We plot the plot the results relative to seamless integration in this
figure (e.g. without integer boundary constraints). This experiment
demonstrates that on some examples our formulation may converge
to qualitatively different minima depending on initialization.

signed distance field (SDF) d on the interior of each mesh, and set
fff 1 =∇d on each interior (non-ghost) tetrahedron. We initialize the
other two frame vectors to two random vectors with norm 10−4 that
are orthogonal to each other and to the SDF gradient. Recall that on
ghost tets, we set fff 1 to the normal of the adjacent mesh boundary
facet as a hard constraint. For ghost tets adjacent to a sharp surface
feature, we initialize one of the two other frame vectors to be in the
tangent plane perpendicular to the feature edge with norm 25.

We find that the energy landscape of the Esmooth objective is of-
ten locally convex despite the high order of the expression (see
Figure 18)—minimizing smoothness on its own will converge re-
liably to the same solution from a wide basin of initial conditions.
As such, choosing a fairness term with a high smoothness weight
generally reduces the initialization dependence of solutions. For
our choice of hyperparameters, Equation (11) converges to simi-
lar qualitative solutions for a wide range of initializations on many
models, but in Figure 7 we illustrate an example where this is not
the case.

We also tried setting the frame vectors orthogonal to the SDF
gradient to have unit norm at initialization rather than norm 10−4.
While this choice typically leads to the solver to converge in signif-
icantly fewer iterations, and in some cases to solutions with lower
energy, fields resulting from this choice of initialization are more

© 2025 The Author(s).
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likely to converge to qualitatively different minima in repeated tri-
als, and so we did not use it in our experiments.

6.2 Integrability Constraint Enforcement

Recovering solutions to Eq. 11 with small constraint residual is not
straightforward.

The tensors in Equation (4) are polynomials of up to de-
gree 6 in the frame vector coefficients, and standard optimiza-
tion packages have limited support for general polynomial con-
straints in large, sparse problems. An additional numerical chal-
lenge is that the constraint has a large null space. This is a property
shared by per-simplex discretizations of vector field integrability
as well [PP03, TLHD03]. Applying a black box numerical linear
algebra method (e.g. LUQ decomposition [Jac]) to remove the con-
straint kernel made the constraint matrix significantly denser and
degraded overall performance in our experiments, but remains an
intriguing idea for future work.

Deflated Penalty Method We instead take the approach of enforc-
ing integrability constraints via a sequence of sub-problems, where
each sub-problem solves Equation (11) using a soft integrability
penalty potential with incrementally increasing relative stiffness.
Specifically, at iteration i of the algorithm, we solve for Fi+1 by:

Fi+1 = argmin
F

108
(

1
λpen

)i

Emesh +Eint s.t. (12)

fff 1(T ) = n̂nn(T ) ∀ ghost tets T .

using the previous solution Fi as the initial guess (or the initial-
ization described in the previous section for F0). The optimization
problem at each iteration is solved using Newton’s method. We set
λpen =

√
2 and terminate the procedure when (λpen)

i > 1025. (Note
that scaling down Emesh is mathematically equivalent to scaling up
Eint; we choose our formulation to maintain numerical stability of
the Newton solve as i increases.)

For this approach, due to the high-order nature of Eint, an ex-
tremely small residual is required to ensure that it translates to a
useful bound on local integrability in the sense of Equation (2). In
Figure 10, we plot the average constraint residual and local inte-
grability residual over our data sets with and without constraint en-
forcement. This figure establishes degree to which this numerical
method succeeds in reducing the constraint residual relative to an
ablation, as well as the extent to which this reduction in constraint
residual translates to a reduction in local integrability residual.

Regularizing the Constraint Directly solving Equation (12)
surfaces a numerical instability. When the penalty term gets
large the optimization problem begins to become under-
determined. In the limit where there is no Emesh term,
all integrable frame fields have equal en-
ergy. In practice we begin to observe discon-
tinuities in between iterations as the solver
“jumps” from one integrable frame field to
another around when (λpen)

i > 1012, i.e. the
factor in front of Emesh is smaller than .001).
We illustrate what the singular structure of

such a field looks like at this point without any regularization on
the inset sphere.

A simple and effective approach to addressing this issue is to
place a large diagonal regularizer on the constraint. We replace Eint
in Equation (12) with:

E
∼

int = Eint +λregI. (13)

In our experiments, we set λreg = 10−1; intuitively, this diagonal
regularizer adds “viscosity” to the optimization procedure and pre-
vents the solution from jumping to spurious integrable frame fields
once the Emesh coefficient vanishes. One limitation of this approach
is that it slows down convergence. There is room to improve this
formulation with additional research (an adaptive weighting strat-
egy, sometimes used for physical simulation of dynamics (e.g. An-
drews et. al. [ATK17]), might be a promising direction to explore).

7 Quantitative Evaluation

In this section, we design an experiment to empirically evaluate
the performance of MINT MESH relative to baseline methods for
designing frame fields in volumes for seamless parameterization.

In Section 7.1, we distill several parameterization quality met-
rics from the literature. In Section 7.2 we detail the datasets that we
evaluate on. In Section 7.3 we summarize the baseline methods for
octahedral frame field design that we evaluate against in our study.
In Section 7.4 we point out several observations from our quantita-
tive evaluation.

7.1 Parameterization Quality Metrics

Global Integrability Error We measure how large of a change in
the designed frame field was required to globally integrate it:

Qint = min
g∈O

1
3

3

∑
i=1

∥∇φi − (FFFg)i∥2 , (14)

where φi are the integrated coordinate functions of the parameter-
ization. While the global integrability error does not directly mea-
sure the quality of the parameterization, a large integrability error
generally correlates with CubeCover inserting a large amount of
distortion or a topology change in the parameterization.

As we will see below, enforcing the condition from Eq. 4 as a
constraint consistently translates to a measurable decrease in Qint.

Note that this is the only metric that depends on the designed
frame field FFF ; all subsequent metrics are only properties of the final
volume parameterization φφφ.

Scaled Jacobian The hexahedral meshing research community
has extensively studied how to evaluate parameterizations intended
for meshing applications [GHX∗17]. One common [LB23] metric
is the scaled Jacobian, which measures “skew” of the parameter-
ization, i.e. the failure of the parameterization to have orthogonal
isosurfaces:

Qsjac =
1
|T | ∑T

(
1− |det(Jφφφ)|

∏
3
i=1 ∥∇φi∥

)
. (15)
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Figure 8: A gallery showcasing parametrizations and dual field streamlines generated by MINT MESH on our polyhedral dataset. For each
model, the left column displays the singular structures, while the right column presents the integer grid parametrization (isolines) overlaid
with the dual streamlines of the optimized frame fields.

Anisotropy Complementary to the scaled Jacobian, anisotropy
measures the relative difference between the largest and smallest
coordinate function gradient at each point:

Qaniso =
1
|T | ∑T

M−m
M

, (16)

M =
3

max
i=1

∥∇φi∥, m =
3

min
i=1

∥∇φi∥ (17)

Together these two metrics capture angle distortion of the parame-
terization: Qsjac = Qaniso = 0 if and only if φφφ is conformal.

Determinant Deviation We compare the determinant of the pa-
rameterization Jacobian on each tetrahedron to the determinant av-
eraged over the entire mesh to quantify the global volume distortion
of φφφ:

Qdet =
1
|T | ∑T

∣∣∣∣ |det(Jφφφ)|−A
A

∣∣∣∣ , (18)

A =
1
T ∑

T
|det(Jφφφ)|. (19)

Note that, like all of our quality metrics, Qdet is invariant to constant
global scaling of the parameterization.

Fraction of Inverted Elements We measure failure of a parame-
terization to be locally injective by calculating the fraction of tetra-
hedra with det(Jφφφ) < 0 (after globally reflecting the parameteriza-
tion so that the majority of elements have positive Jacobian deter-
minant).

Combed Smoothness We evaluate the smoothness of the param-
eterization by computing the Dirichlet energy of the parameteriza-
tion gradient:

Qsmooth = ∑
F

A(F)

2

3

∑
i=1

∥∥∥∇φ
1
i −∇φ

2
i

∥∥∥2
, (20)

where the sum is over interior facets F with area A(F), and φ
1 and

φ
2 are the parameterization functions on the two tetrahedra adjacent

to F .

Boundary Alignment For each tetrahedron on the volume bound-
ary, we find the parameterization gradient that is most aligned with
the boundary normal, normalize it, and compare it to the normal:

Qbalign =
1

|Tbdry| ∑
Tbdry

(
1− 3

max
i=1

|∇φi ·nnn|
∥∇φi∥

)
, (21)

where n is the normal to the tetrahedron’s boundary facet. All meth-
ods compared in this experiment in principle design their frame
fields FFF to align to the volume boundary; however, distortion dur-
ing global integration can violate boundary alignment.

7.2 Choice of Datasets

There are several datasets that previous works on symmetric frame
field design evaluate on. In particular, Fang et al. [FHTB23] eval-
uate on a set of models from the AIM@SHAPE dataset, Liu and
Bommes [LB23] evaluate on HexMe, and Palmer et al. [PBS20]
evaluate on a collection of models that are commonly otherwise
used as test models in geometry processing.

Sampling the Encyclopedia of Polyhedra We propose using a
dataset of polyhedra as a benchmark for seamless volumetric pa-
rameterization. Regular convex polyhedra are on the one hand a
canonical class of geometric objects, and on the other pose a sur-
prising level of challenge to state of the art volume parameteriza-
tion methods (e.g. 6 out of 15 of the “nasty” models in the HexMe
dataset [BRK∗22] are convex polyhedra.)

More specifically, we choose as one of our evaluation datasets a
collection of 120 convex polyhedra [Ali18] that includes the uni-
form polyhedra (i.e. the Platonic solids, the Archimedean solids,

© 2025 The Author(s).
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and the first few prisms and antiprisms) and the 92 Johnson
solids, named after Norman Johnson (the non-uniform convex
regular-faced polyhedra whose vertices aren’t transitive). This
set of 120 examples was curated from a much larger digital
repository of polyhedra largely developed by the mathematical
artist George Hart [Har96]. We remesh each polyhedron using
TetWild [HZG∗18], with a target of 3000 verts for each polyhe-
dron (which translates into approximately 10k tets per model).

In our experience, it can be quite challenging to get parameter-
ization algorithms to pass very simple test cases. We advocate for
the use of the 120 polyhedra as a standard parameterization bench-
mark, despite such models not being representative of any immedi-
ate “practical” application, for several reasons:

1. the singular structures of convex polyhedral are easier to reason
about than those of more complex shapes;

2. the dataset is large and contains many examples at each of sev-
eral levels of geometric complexity, so that outlier models are
unlikely to skew aggregate statistics;

3. it is easy to mesh all of the polyhedra at a consistent resolution,
removing one source of variability between models;

4. a parameterization algorithm that performs poorly on convex
polyhedra is unlikely to succeed on CAD models, standard
computer graphics test meshes, organic shapes, or other more
application-driven datasets.

We ran experiments using this dataset on a cluster of Dell Pow-
erEdge M610 servers with a E5530 Xeon (quad-core) @ 2.4GHz
processor. Our reference C++ implementation converged within
a day for all examples. In Figure 8 we document some of the
results of MINT MESH with integer grid parameterization. In
Figures 13, 14 and 15, we perform seamless parameterization on
three polyhedra from this test set, in particular, the bilunabirotunda,
dodecahedron, and square-gyrobicupola and compare against a
number of baseline methods (described below). We plot per-model
average quality metrics in Figure 20, and aggregate the mean and
standard deviation of these metrics in Table 1.

Parameterizing HexMe Industrial We perform a second set of
experiments on the HexMe Industrial dataset. To control the com-
putational cost of the experiment, we remesh each model using
TetWild [HZG∗18], giving it a target of 3k vertices. (In some cases
TetWild was not able to achieve this target, e.g. for i28u, a tire
model with thin walls, TetWild produced a mesh with 60000 ver-
tices.)

In Figure 9 we illustrate the parameterization results of MINT

MESH on a selection of models from this dataset. In Figures 11
and 12, we compare the results with other octahedral baselines, and
document per-model statistics in Figure 5.

7.3 Choice of Baseline Methods

We compare against three different baseline methods for seamless
parameterization via boundary aligned octaheral frame field opti-
mization. These methods generally produce qualitatively similar,
but not identical, results. We document these qualitative differences
in our comparison figures below. To the extent to which it is possi-
ble, we run all the solvers with default parameters. For two of these

implementations, we also benchmark against the method with op-
tional additional features unique to that method turned on. In order
to quantitatively evaluate these methods fairly, we take the opti-
mized frame field from each method, renormalize it to have aver-
age frame determinant 3375, and pass the resulting field into our
implementation of CubeCover [NRP11]. We evaluate the parame-
terization which results. We perform these experiments both with
and without integer grid constraints on the boundary.

METRIC GUIDED [FHTB23] This method first solves for a met-
ric over the volume encoding user-provided constraints like sharp
feature alignment, and then uses this metric to optimize an octa-
hedral frame field. We only evaluate the octahedral frame solver,
without the additional metric customization pre-processing step,
e.g. we use the solver which minimizes the objective specified in
their Equation 18 with the metric set to identity. Among baseline
implementations, we find this implementation produces the best
parameterizations on average with respect to our quality metrics
on the polyhedral dataset.

ARFF [PBS20] This method supports optimizing both octahe-
dral and anisotropic orthogonal (“odeco”) frame fields. We tested
both options, which we label OCTA or ODECO respectively. We
use the mMBO solver, as Palmer et al. reported that it gave the
best practical results in their paper. We find that allowing frames to
rescale (the ODECO option) results in higher quality parameteriza-
tions on average.

Of the methods we tested, ARFF is the only one that discretizes
frame fields on mesh vertices. Our CubeCover implementation op-
erates on tet based fields, and there is no canonical choice for trans-
ferring symmetric frames from verts to tets. For each tetrahedron,
we locally comb the frame fields at its four corners, average corre-
sponding vectors, and assign this average to the tetrahedron. This
approach is simple, but can introduce spurious local artifacts (vis-
ible in the figures) that worsen the method’s benchmark perfor-
mance. (Note though that this resampling step will not alter the
global singular structure of the frame field.) A different approach to
resampling would be to average in the space of spherical harmonic
coefficients and then project the result onto GL(3)/O, which might
remove some of the artifacts visible in our experiments, but it is not
clear that this alternative would give good results in the neighbor-
hood of singularities.

LMFF [LB23] To our knowledge, this method is the state of the
art field-based hexahedral meshing pipeline. The publicly-released
source code supports optimizing for either per-vertex and per-
tetrahedron frame fields. To avoid the resampling post-processing
step mentioned above, we use their tet-based formulation—note
that in their publication they report results for their vertex-based
solver. As a first step in their pipeline, they initialize fields with
an implementation of Ray et al.’s older octahedral frame field opti-
mization method [RSL16], with an additional sharp feature align-
ment constraint. We call this initialization method LMFF RAY and
evaluate it on our benchmark; we find that it produces parameteri-
zations comparable to those produced by METRIC GUIDED.

We also evaluate the fields after applying Liu and Bommes’s lo-
cal meshability optimization step; we call this method LMFF ME-
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Figure 9: A gallery of some of intgrid parametrizations and dual field streamlines from MINT MESH on the HexMe industrial dataset.

SHABLE in our benchmark. In their pipeline, this step performs ad-
ditional remeshing as a pre-process, which we did not disable; we
also did not tune their crease alignment threshold, and as a conse-
quence some artifacts are visible near sharp creases in some of the
LMFF MESHABLE results. We find that this local meshability op-
timization step makes fields significantly less smooth, and on some
examples in the dataset the result is not globally integrable, leading
to highly degenerate results from CubeCover (which explains the
poor average case performance in Table 1). The plots in Figure 20
reflect that in some cases this method does result in parameteri-
zations which are better than those from LMFF RAY alone. We
do not systematically evaluate the additional curl correction step
described in Equation 6 of their paper, but tried several examples
where this step resulted in frames becoming extremely anisotropic.

Many of the post-processing steps proposed by Liu and Bommes
could be applied generically to other field design methods to assem-
ble a hex meshing pipeline. We believe such a benchmark would
be useful for assessing the practical benefits of different field opti-
mization methods on the quality of the final hexahedral mesh, but
would require significant engineering effort that we leave for future
work.

MINT3D, associated with this work We evaluate our refer-
ence implementation both with (MINT MESH) and without (MINT

OCTA) our local integrability constraint.

7.4 Analysis

We performed quantitative evaluations on a dataset of polyhedra
and a dataset of industrial models.

Performance on Polyhedral Dataset We find that our formula-
tion without integrability (MINT OCTA) already outperforms the
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Figure 10: We show the average relative integrability residual and
symmetric integrability residuals on our two test datasets, on a
log-log plot. In purple we show the results on MINT OCTA and
in green the results on MINT MESH. When Eint is enforced as a
constraint via the penalty method, recovered solutions have sig-
nificantly lower mean Eint residual, as well as significantly less
combed integrability Qlocint . We note also that Eq. 3 was chosen
to be quartic, to have the same lowest order scaling behavior as
Eq. 5. This experiment demonstrates that Eint is a meaningful proxy
for Qlocint . It also demonstrates that our numerical approach con-
sistently reduced the Eint residual by several orders of magnitude
in this ablation study.

baseline methods with respect to our parameterization quality met-
rics. We attribute this improved performance to the extra flexibility
to optimize over non-orthogonal and non-unit frame fields directly,
unlike previous published approaches to symmetric frame field de-
sign. Beyond this, we find that our formulation of symmetric inte-
grability consistently produces fields with lower Qint than baseline
methods.
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MINT OCTA

METRIC GUIDED
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Figure 11: The integer grid parameterization over the optimal fields obtained using different methods. In this case, LMFF RAY failed
completely, exhibiting a large integrability error and a noisy parameterization, while the other methods produced reasonable results. Among
them, the proposed method (MINT MESH) achieved the smallest integrability residual with well-structured and compatible isolines.

As discussed above, the reported parameterization quality met-
rics for Palmer et al.’s method [PBS20] are clouded because of
noise introduced by the need to resample frames from vertices onto
tetrahedra. However something which can already be seen from this
evaluation is that the ARFF ODECO method yields improved re-
sults with respect to our mesh quality metrics relative to ARFF
OCTA, at the cost of fields becoming more anisotropic. This im-
provement mirrors the behavior that we see where MINT MESH and
MINT OCTA outperform the other methods on all of the parameter-
ization quality metrics except for Qaniso. These previous methods
do not allow frames to rescale during frame field design and so
give results that are less anisotropic at the cost of the other quality
metrics.

In Figure 10, we evaluate the extent to which our numerical
method successfully enforces local integrability as a constraint.
The results in Figures 13 and 14 show that our method produces
qualitatively different results with and without inclusion of the in-
tegrability constraint. The addition of the integrability constraint
(MINT MESH) makes the singular structures more symmetric and
makes the resulting parameterizations considerably more boundary
aligned; in addition, in the MINT MESH results the field streamlines
are globally better aligned with the parametric grid. In Figure 15,

we see a dramatic difference between the results of MINT MESH

and MINT OCTA, with the latter converging to a somewhat degen-
erate field poorly aligned to the mesh boundary.

To aggregate data over our dataset, we take METRIC GUIDED

as a reference implementation. In Figure 20, we average each pa-
rameterization quality statistic over each mesh, sort the meshes
in increasing difference of this quality metric between METRIC

GUIDED and MINT MESH, and display all of the benchmark meth-
ods with respect to this ordering. We also plot this difference be-
tween methods as an additional line in the plot. This visualization
technique allows one to quickly confirm visually that our method
yields a significant improvement on the displayed quality metrics
both with respect to the median example in the dataset. In Table 1,
we then aggregate the plotted statistics to compute an overall mean
and variance over the entire dataset. This table illustrates that MINT

MESH does in fact outperform baselines in terms of average perfor-
mance on all metrics except for parameterization anisotropy.

Performance on the HexMeI Dataset In general we expect the
implementations of METRIC GUIDED and LMFF RAY to produce
similar results, as they are both minimizing similar objective func-
tions discretized in the same way, though the latter includes a crease

© 2025 The Author(s).
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alignment penalty not present in the former. This is mostly true, but
we do also see a statistically significant difference in the results of
these two methods with respect to our metrics. In Figure 11 we
find that the method of Liu and Bommes [LB23] produces a signif-
icantly worse parameterization, whereas in Figure 12 we find that
the method of Fang et al. [FHTB23] instead produces a parame-
terization with the most distortion. In both examples MINT MESH

outperforms baselines. Revisiting the aggregate results shown in
Figure 5, we note that MINT MESH on average finds frame fields
which are more aligned with the resulting parameterizations after
CubeCover (with integer grid boundary constraints) and that these
parameterizations are on average better than those produced by
baseline methods on this dataset.

8 Conclusion

In this work, we presented a formulation of local integrability of
symmetric frame fields in terms of a symmetric moment repre-
sentation of the frames. We incorporated these constraints into
an “as-octahedral-as-possible” frame field optimization algorithm
and showed that enforcing symmetric integrability as a constraint
during frame field design for seamless and integer-grid boundary-
aligned volume parameterization improves the quality of the result-
ing parameterization compared to baseline methods.

8.1 Future Work

There remains much to be done to further develop the approach of
designing symmetric frame fields subject to an integrability con-
straint.

Exploiting “Hidden Convexity” Our formulation uses frame de-
grees of freedom. This conceptually simplifies the process of deriv-
ing additional objective terms like our “as-octahedral-as-possible”
fairness energy. Some previous works on symmetric frame field de-
sign like that of Palmer et al. [PBS20] take the symmetric tensor
coefficients themselves as the optimization DOFs. We leave care-
ful validation of this promising numerical approach (e.g. recasting
Eq. 11 as a Riemannian optimization problem [AAMT09]) for fu-
ture work, but note that applying such an approach would make the
problem significantly more convex (e.g. Eint from Eq. 5 would be-
come a linear constraint, and Esmooth would be quadratic in these
DOFs), at the cost of needing to enforce an extra (non-linear, but
local) constraint that the DOFs on each tet live in the image of the
lift L.

Studying the Octahedral Limit The frame field design literature
has seen success in applying the idea of the “Ginzburg-Landau”
functional to meshing problems [VO19]. It would be interesting to
explore this idea the context of symmetric frame field design over
the representation for GL(3)/O introduced in this work, along the
lines of what is explored in [SFCBCV19] in 2D. In particular, it
would be interesting to study the fields which result from optimiz-
ing the MINT MESH objective in the limit where the octahedral fair-
ness weight goes to infinity. We note that if integrability is enforced
while taking this limit, solutions actually correspond to a different
PDE, often called the Aviles-Giga functional in the numerical anal-
ysis literature [Koh06]. Performing such an optimization in a stable
way in practice is a non-trivial algorithm design challenge.

Injective GL(3)/O Frame Field Design One notable limitation
of our volumetric parameterization algorithm is that it does not
explicitly guarantee that the parameterization is locally injective.
In the surface parameterization literature this problem is typically
approached by adding a barrier potential to the objective whose
energy diverges when frames degenerate [SKPSH13, SS15]. We
leave more careful exploration of how best to formulate a barrier
potential for this problem to future work, noting also that it may be
fruitful to draw on ideas for barrier potentials used in physics simu-
lation (particularly for things like neo-Hookean elasticity [SGK18]
and collision response [LFS∗20]).

Sharp Feature Alignment A natural consideration which we do
not explicitly include in the MINT MESH model is alignment to
sharp features. One approach to this would be to explicitly con-
strain boundary frames to align to features; another would be to
add additional metric degrees of freedom to the optimization prob-
lem, as advocated for by Fang et al. [FHTB23].

Globally Meshable Frame Field Design In this work, we explic-
itly do not study the problem of robust hexahedral mesh generation.

One necessary meshability condition that we do not consider,
for example, is that meshable frame fields must only have singular
curves of index ± 1

4 , i.e. circulating around a singular curve must
only swap two of the frame field labels and not all three. Singular
curves of index ± 1

3 or ± 1
6 cannot lie along an integer grid line in

the parameter domain.

Nothing about our formulation of local integrability prevents
such forbidden singularities from occurring. We do note that, in
the smooth setting, Esmooth already weakly regularizes away such
singularities. In particular all frame vectors must go to zero in
neighborhoods of integrable index 1

3 singularities, whereas only
two must go to zero in neighborhoods of index 1

4 singularities,
and thus the latter in principle have lower smoothness energy in
local neighborhoods around singular curves. See Figure 17 for an
illustration of the analogous situation in 2D, where the smoothness
energy promotes creation of integrable line field singularities. This
observation does NOT imply that global minimizers of the MINT

MESH cannot admit 1
3 singularities in the smooth setting, merely

that local neighborhoods have higher energy.

Another desiderata identified by Liu and Bommes [LB23] is that
a frame field design energy for parameterization should discourage
the formation of “zipper nodes”. This is not addressed in the present
formulation of MINT MESH.

Fitting Symmetric Frame Fields to Data As we mention in the
introduction, symmetric tensor fields arise naturally in many dis-
parate applications, from topology optimization to brain imaging. It
would be interesting to more carefully consider data from such ap-
plications and develop symmetric frame field design objectives for
processing real world data on tasks other than volume parameteri-
zation. For example, in DTI imaging, it remains an open question
how to best perform “global tractography” [JJB11, PYR∗14], and
enforcing frame orthogonality may not be the best assumption for
obtaining physiologically accurate reconstructions of neural tracts.
Exploring this and other application areas in greater detail would
be an exciting direction for future work.
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A Space of Moments

The map L : R3×3 →M clearly projects to a well-defined function
on R3×3/O, since L(FFFg) = L(FFF) for all g ∈O. In this section, we
prove that this function is injective: that a symmetric frame can be
uniquely recovered from its second, fourth, and sixth moments.

The workhorse of our proof is the following lemma:
Lemma A.1. For any X ,Y,Z ∈ R, every solution (x,y,z) to the
following system of equations:

x3 + y3 + z3 = X3 +Y 3 +Z3 (22)

x2 + y2 + z2 = X2 +Y 2 +Z2 (23)

x+ y+ z = X +Y +Z (24)

is one of the six permutations of (X ,Y,Z).

Proof. Note that by Bézout’s theorem, we should expect that the
six solutions given by the permutations of (X ,Y,Z) account for all
solutions of the system. But we can show this is true by direct com-
putation: note that

2(y3 + z3) = (y+ z)(2y2 −2yz+2z2)

= (y+ z)
[
3(y2 + z2)− (y+ z)2

]
.

This identity, together with Equations (23) and (24), can be used to
eliminate y and z from Equation (22), yielding

3x3 −3(X +Y +Z)x2 +3(XY +XZ +Y Z)x−3XY Z = 0

which factors as

3(x−X)(x−Y )(x−Z) = 0.

Assuming without loss of generality that x = X and eliminating z
from Equation (23) gives (y,z) = (Y,Z) or (Z,Y ).

Now let FFF = { fff 1, fff 2, fff 3} and GGG = {ggg1,ggg2,ggg3} be two frames
with MMMk = Lk(FFF) and NNNk = Lk(GGG) their kth moments. We will
prove that if MMMk = NNNk for k = 2,4,6, then FFF ∼ GGG.

Frame Vectors Are Parallel

We begin with the following observation: if MMM6 = NNN6, then each
vector ggg j is a rescaling of one of the vectors fff i. Suppose, for con-
tradiction, that this isn’t true for some ggga. Then ggga × fff i ̸= 000 for all
non-zero vectors fff i ∈ FFF ; define

fff⊥i =

{
fff i × (ggga × fff i), fff i ̸= 000
ggga, fff i = 000.

Observe that for all i, fff i · fff⊥i = 0; moreover ggga · fff⊥i > 0, since by
hypothesis ggga ̸= 000 and in the first case

ggga · [ fff i × (ggga × fff i)] = ∥ggga × fff i∥
2 > 0

by invariance of triple products under cyclic permutation.

Now if MMM6 = NNN6,

MMM6

(
fff⊥1 , fff⊥1 , fff⊥2 , fff⊥2 , fff⊥3 , fff⊥3

)
= NNN6

(
fff⊥1 , fff⊥1 , fff⊥2 , fff⊥2 , fff⊥3 , fff⊥3

)
3

∑
i=1

3

∏
j=1

(
fff i · fff⊥j

)2
=

3

∑
i=1

3

∏
j=1

(
gggi · fff⊥j

)2
.
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We take the notation in the first line to mean contracting MMM6 and
NNN6 with the 6 given vectors. In the second line, we expand out the
definition of MMM6 and simplify the contraction to a sum of products.
Since every term in the left-hand sum vanishes, and every term in
the right-hand sum is clearly non-negative,

0 =
3

∑
i=1

3

∏
j=1

(
gggi · fff⊥j

)2
≥

3

∏
j=1

(
ggga · fff⊥j

)2
> 0,

a contradiction.

Injectivity of L

We’ve shown that every vector in GGG is a rescaling of a vector in FFF ;
but we still need to prove that the vectors in the two frames are in
one-to-one correspondence with each other with scale factors ±1.

Suppose FFF contains a nonzero vector; otherwise trivially FFF =
GGG = 000. Without loss of generality we may set it to be fff 1. Suppose
further that there are p total vectors in FFF parallel to fff 1; we may set
them to be fff 1, . . . , fff p, with the remainder non-zero vectors fff i>p

with fff 1 · fff⊥i ̸= 0, where

fff⊥i = fff i × ( fff 1 × fff i).

Moreover set without loss of generality ggg1, . . . ,gggq to be the vec-
tors in GGG that are scalar multiples of fff 1; by the above observation
each of the rest must be rescalings of one of the other vectors fff i>p.
For the parallel vectors let fff i = Xi fff 1 and gggi = xi fff 1. Then since
MMMk = NNNk,

MMMk

(
fff⊥p+1, . . . , fff⊥3 , fff 1, . . . , fff 1

)
= NNNk

(
fff⊥p+1, . . . , fff⊥3 , fff 1, . . . , fff 1

)
.

The left-hand side simplifies to

MMMk

(
fff⊥p+1, . . . , fff⊥3 , fff 1, . . . , fff 1

)
=

p

∑
i=1

( fff i · fff 1)
k−(3−p)

3

∏
j=p+1

(
fff i · fff⊥j

)
=(

∥ fff 1∥
2(k+p−3)

3

∏
j=p+1

(
fff 1 · fff⊥j

)) p

∑
i=1

Xk
i

and the right-hand side to

NNNk

(
fff⊥p+1, . . . , fff⊥3 , fff 1, . . . , fff 1

)
=

q

∑
i=1

(gggi · fff 1)
k−(3−p)

3

∏
j=p+1

(
gggi · fff⊥j

)
=(

∥ fff 1∥
2(k+p−3)

3

∏
j=p+1

(
fff 1 · fff⊥j

)) q

∑
i=1

xk
i .

Since these expressions must be equal for k = 2,4,6 the following
system of equations relates the Xi to the x j:

q

∑
i=1

x6
i =

p

∑
i=1

X6
i ,

q

∑
i=1

x4
i =

p

∑
i=1

X4
i ,

q

∑
i=1

x2
i =

p

∑
i=1

X2
i .

Therefore by Lemma A.1 the nonzero x2
i must be in bijection with

the nonzero X2
i , and so every vector parallel to fff 1 in FFF must appear,

possibly with a sign flip, in GGG (and there can be no other non-zero

vectors parallel to fff 1 in GGG). Since the choice of fff 1 was arbitrary,
this argument shows that FFF = GGGg for some g ∈ O.

Necessity of Three Moments

We’ve shown that L2(FFF), L4(FFF), and L6(FFF) are sufficient to
uniquely recover FFF up to octahedral symmetry. But maybe L6(FFF)
isn’t actually necessary, and the lower-order moments suffice? This
turns out to be wishful thinking. Below, we demonstrate a pair of
frames FFF ̸∼ GGG but with L2(FFF) = L2(GGG) and L4(FFF) = L4(GGG):

FFF =

1 0 1

0 1 1

0 0 0

 , GGG =


2√
3

1√
3

1√
3

1√
3

2√
3

−1√
3

0 0 0

 . (25)

B Smoothness Operators for Symmetric Frames

It is not a priori obvious how to define smoothness of frame fields in
GL(3)/O. Equation 25 demonstrates that a reasonable smoothness
energy must take into account all three tensors in L(FFF); there exist
pairs of frames FFF ,GGG which are geometrically far from each other
but with Lk(FFF) = Lk(GGG) for k = 2 and 4.

An ideal smoothness energy density would agree with the
Dirichlet energy of the combed vector fields ccci,

3

∑
i=1

∥∇ccci∥2 ,

on each neighborhood where a unique local combing exists; but it is
not clear that any function of the moment tensors has this property,
or to what extent this condition must be relaxed to be achievable.

Higher Order Bochner Laplacian Analogous to the Dirichlet
energy for vector fields, in the continuous setting, we define our
smoothness energy as:

Ebochner =
3

∑
k=1

∫
Ω

∥∇( f⊗2k)∥2 (26)

whose discretization is given in Eq. 6. We find that this formulation
of smoothness is simple and effective in practice.

One troubling property of this formulation is that it is not scale
equivariant (i.e. the kth order tensors scale with the vector norm to
the kth power), and so minima of this energy may depend on global
rescaling. Possible modifications to address this limitation include:
taking roots of the higher order factors to ensure quadratic scal-
ing, reweighting lower-order terms to match the highest-order scal-
ing, or leveraging the “Kruskal” representation of tensors, where
each rank-1 factor scales with the vector norm rather than its tensor
power, akin to the method used by Palmer et al. [PBS20].

To guide future research on frame field smoothness
formulations, we propose three unit tests (illustrated in
Figure 18 and in the inset figure) where the global min-
imizer of smoothness, subject to boundary alignment of
the frames, is unambiguous. Minimizing any reasonable
definition of frame field smoothness from a large number

© 2025 The Author(s).
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of random initializations should converge to this global minimizer
(and for the first two should ideally produce a solution with zero
residual):

1. a cube; where the obvious global smoothness minimizer is a con-
stant frame field aligned with the cube facets;

2. a parallelopiped, where the smoothness minimizer is also con-
stant and aligned with the boundary facets.

3. a sphere; where the minimizer can be globally combed into a
radial vector field and two constant vector fields (of arbitrary
orientation).

Ebochner was the only approach that we tried that could pass these
tests, but the lack of scale equivariance is a limitation whose reso-
lution we leave for future work.

Beginnings of an Exterior Algebra for Symmetric Frames

Another natural discrete operator that can be defined in a manner
similar to the above smoothness operator is symmetric divergence,
where a symmetric div = 0 penalty can be formulated by setting
eee = F⊥ (the face normal) in equation 5:

Ediv = ∑
F⊥

3

∑
k=1

∥∥L2k
(
FFF
)
−L2k

(
GGG
)∥∥2

F , (27)

where in this case the restriction of the tensors is to the 1D
line spanned by the face normal. We note that this operator may
be of independent interest in certain applications, for instance in
DTI [CBB∗21], and it would be interesting to build a more com-
plete theory of discrete differential operators over symmetric frame
bundles (e.g. by following ideas from work on regular vector bun-
dles [BTGBD24]), but we leave careful development of these ideas
to future work.

C MINT MESH: Algorithmic Notes

Here we provide additional details regarding the implementation of
the numerical algorithm which we evaluate in this paper.

Ensuring Problem Feasibility In our reference implementation,
we subdivide the input mesh at several steps to avoid asking the
solver for a solution which cannot exist. In particular, we subdivide
the mesh to ensure that:

• Every tet is adjacent to at most one boundary element.
• No tet has all of its verticies on the boundary.

Note the second condition can be met by tets which are not ad-
jacent to any boundary elements.

Additionally, after the frame field solve and prior to running cube
cover, we further subdivide the mesh to ensure that no tet contains
more than one singular edge to avoid degeneracies in the parameter
domain.

Choice of Hyperparameters We record the hyperparameters used
in our experiments in Section 5.2. In particular, we set the weights
of the terms of our “as-octa-as-possible” fairness term to be small
relative to the smoothness weight. We find this to be a good choice

for recovering smooth fields with small constraint residual, but if
these weights are set too small we find that frames may begin to
degenerate at convergence.

There is a sense in which there is “no free lunch” when it comes
to designing volumetric frame field objectives, in the sense than
many reasonable seeming desirata are not mutually compatible and
must be relaxed relative to each other in order to ensure problem
feasibility. In particular:

• The lack of flexibility in defining conformal maps in volumes
suggests that we should not expect there to exist smooth, bound-
ary aligned, solutions that are exactly octahedral. For our tet
based discritization, it can be shown that the space of exactly
integrable orthogonal frame fields is not smooth.

• As illustrated in the case of line fields in Fig. 17, the norms of in-
tegrable fields must go to zero in the neighborhood of a singular
curve, and so we should not expect to recover solutions which
have unit norm everywhere.

• The plane constraint on the boundary might not be possible to
satisfy everywhere (see for instance the parameterization show
in the inset in section 5.2).

To summarize, in general, we find that a good starting point for
choosing hyperparameters is to set λsmooth > λorth > λunit ∼ λplane
(where we typically assume WLOG λsmooth = 1), and tuning may
be required if the default settings do not produce acceptable fields.
In Figure 19 we illustrate an example of a model where adjust-
ing parameters can reduce the number of artifacts from degenerate
frames on a low resolution mesh.

Robust Newton Solver The central numerical difficulty that we
have yet to address is that when solving the MINT MESH optimiza-
tion problem the nonlinear nature of the problem may result in an
indefinite Hessian matrix.

This issue arises in many applications in computer graphics, and
there are broadly two popular approaches in the graphics litera-
ture for modifying non-PD Hessians to perform newtons solves.
The first involves projecting the Hessian onto the cone of posi-
tive semi-definite (PSD) matrices block-wise [TSIF05, CLL∗24].
While PSD projection can improve robustness, projected Newton
methods might exhibit poor convergence near the optimum com-
pared to the standard Newton’s method with an unmodified Hes-
sian [LLFf∗23].

The second approach is a form of Hessian modification (H +
reg · I), where a scaled identity matrix (reg · I) is added to the Hes-
sian via a line search (LS) [Noc06, MTG∗11]. The regularization
term reg is dynamically adjusted: increased if the system is found
to be non-PD or if steps yield insufficient progress, and decreased
otherwise. This adaptively interpolates between a full Newton step
(reg → 0) and a gradient descent step (reg → ∞). However, ex-
cessive regularization can significantly slow down progress in the
large reg limit, and may exhibit even worse convergence behavior
than the approach of newton with block-wise PSD projection.

Our solver aims for a balance by employing a hybrid approach
inspired by Longva et. al. [LLFf∗23], tailored to the task of sym-
metric frame field design. In particular, we take the approach of
dynamically switching between using the PSD-projected Hessian
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and a LS-projected, diagonally-regularized, Hessian. Specifically,
we take the following approach for implementing the newton step
of our penalty method:

• Initialize with PSD projection.
• When using the PSD projection, a small fixed diagonal perturba-

tion (pro j_reg · I, e.g., 10−12I) is added for numerical stability
before attempting the linear solve.

• When using the LS approach, the Hessian is regularized by
adding reg · I, where reg starts at a small initial value (10−8)
and is dynamically adjusted throughout the penalty method solve
(e.g. value persists across newton solves).

• Switching Logic: The solver switches strategies based on per-
formance and numerical stability, and persists between newton
steps:

– If the Cholesky factorization fails (matrix not PD): If using
PSD projection, switch to LS mode and increases reg. If al-
ready in LS mode, increase reg. If reg becomes excessively
large (e.g., > 108) in LS mode, check during each step if
PSD projected hessian has smaller L∞ norm w.r.t. unpro-
jected hessian than LS projected hessian. If so switch back
to using PSD proj hessian, otherwise keep increasing reg. If
reg > 1030, exit.

– If the backtracking line search fails to find a step (α = 0), this
indicates the computed direction is not a descent direction,
and the solver toggles between PSD projection and LS mode.

– If progress is slow while using PSD projection (e.g., small
gradient norm (10−3), small relative energy decrease (10−5),
or very small line search step size α < 10−5)), the solver
switches to LS mode, as a heuristic to improve convergence.

• Regularization Adjustment (LS mode): On successful steps in
LS mode, the regularization reg is decreased (e.g., halved), mov-
ing towards a standard Newton step (while reg is larger than a
minimum value, regmin, e.g., 10−16). If the energy stalls dur-
ing convergence checks (e.g. exit newton step due to function
progress being below the threshold), reg is reset to regmin to en-
sure that reg is set as small as possible between newton solves to
improve convergence rate.

This hybrid projection strategy attempts to leverage the robustness
of both methods while aiming for fast convergence, particularly
near the solution where the unmodified Hessian is more likely to be
positive definite and reg can be driven towards its minimum value.
The backtracking line search ensures sufficient decrease according
to the Armijo condition.

Note that this algorithm only uses the PSD projection as an ac-
celeration strategy and ultimately will switch to using LS with a
sufficiently large regularizer if the PSD projection starts converg-
ing slowly. As such this can be thought of as an accelerated version
of the standard approach of adding a diagonal regularizer to make
a hessian PD (e.g. from section 3.4 in [Noc06]). We default to tak-
ing 100 newton steps per inner iteration, but as an optimization, we
only take 25 at the early and late newton solves. On the other hand,
to improve convergence, we employ quite conservative exit criteria
(e.g. L2 norm of gradient < 10−8, function progress during a step
is smaller than 10−14), and only increase the penalty weight by

√
2

between newton solves.
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Singular Lines Isolines v.s. Dual Streamlines Metric Errors

Figure 12: Optimal frame fields on the i20 model from the HexMe
dataset computed using different methods. Left: Singular lines are
shown with isolines to better illustrate the singular structures. Mid-
dle: A visual comparison between parameterized isolines and the
dual streamlines of the optimal fields. Right: Error plots for differ-
ent metrics: top—integrability error (Qint), bottom—scaled Jaco-
bian (Qsjac).
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Figure 13: Results on the bilunabirotunda model using different methods. The black lines indicate the silhouette of the output mesh. Among
all the methods, MINT MESH achieves the best results, exhibiting smaller integrability and scaled Jacobian errors. In contrast, LMFF
LOCAL STEP alters the mesh structure, resulting in a different mesh silhouette. You can see that our methods both find qualitatively different
singular structures relative to baselines, with the MINT MESH solution being more symmetric that MINT OCTA.
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Figure 14: Results on a Dodecahron model. Once again, MINT MESH achieves the best results, exhibiting smaller integrability and scaled
Jacobian errors with qualitatively different singular structures relative to baselines, with the MINT MESH solution being more symmetric
and reflecting the geometry of the input shape more faithfully than MINT OCTA. Unlike MINT MESH, the other methods produce solutions
which concentrate a large amount of integration error need the center of the mesh
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Figure 15: Results on the square-gyrobicupola model using different methods. In this case, although MINT OCTA achieves the lowest
integrability error, its frame fields are significantly misaligned with the boundary, and the solution it finds has numerous degenerate frames
(the red curves in the top figure often appear when frame degenerate). Meanwhile, LMFF LOCAL STEP alters the mesh structure, resulting
in a different and noisier mesh silhouette. MINT MESH produces a parameterization (in the second row) which is considerably more regular
than the alternative approaches.
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Table 1: We compare the quality of parameterizations produced by several octahedral symmetric frame field design baselines on the poly-
hedral dataset. We evaluate the quality of parameterizations with and without an integer grid constraint, e.g. the top row for each method
reports results to solving for a map whose gradient is as close as possible to the field produced by the given method, as in Equation 14,
and the bottom row reports the same but now when we additionally enforce integer constraints on the boundary and at singularities, as is
typically done in hex meshing applications. We highlight the method with the best average performance in each column respect to seamless
and intgrid. Entries record mean of quality metric over the dataset, and numbers in parentheses are the variances. Note that the fraction
of inverted elements is already an aggregate statistic so we don’t report average variance for that. As shown in the table, we achieved best
results over all the other methods except for the anisotropy of non constrained parametrization. We also find that on average enforcing
integrability results in parameterizations that are less smooth, but better along the other quality metrics.

Method Int Err SJac Aniso DetDev Inv elem Smooth BAlign

MINT MESH 0.172 (0.012) 0.082 (0.023) 0.374 (0.022) 0.275 (0.069) 0.012 0.266 (0.049) 0.029 (0.004)

0.318 (0.012) 0.174 (0.047) 0.513 (0.028) 0.434 (0.331) 0.098 0.295 (0.072) 0.013 (0.008)
MINT OCTA 0.224 (0.012) 0.100 (0.026) 0.357 (0.023) 0.282 (0.251) 0.026 0.242 (0.050) 0.050 (0.007)

0.381 (0.013) 0.210 (0.054) 0.551 (0.027) 0.497 (0.805) 0.146 0.268 (0.069) 0.017 (0.010)

METRIC GUIDED 0.243 (0.016) 0.109 (0.032) 0.294 (0.024) 0.305 (0.103) 0.022 0.289 (0.070) 0.043 (0.006)

0.415 (0.015) 0.237 (0.062) 0.574 (0.029) 0.629 (1.068) 0.162 0.300 (0.080) 0.026 (0.014)

LMFF RAY 0.265 (0.016) 0.123 (0.034) 0.320 (0.026) 0.324 (0.108) 0.023 0.295 (0.069) 0.047 (0.008)

0.455 (0.014) 0.253 (0.062) 0.593 (0.031) 0.664 (42.290) 0.171 0.287 (0.069) 0.028 (0.015)

LMFF MESHABLE 2.419 (12067.3) 0.182 (0.052) 0.418 (0.030) 0.933 (121.844) 0.073 23.917 (615456.77) 0.062 (0.015)

3.011 (31139.68) 0.205 (0.052) 0.482 (0.035) 0.990 (89.91) 0.095 26.292 (1318836) 0.024 (0.013)

ARFF OCTA 0.326 (0.029) 0.182 (0.082) 0.299 (0.048) 0.380 (0.098) 0.062 0.373 (0.124) 0.122 (0.029)

0.447 (0.027) 0.299 (0.098) 0.579 (0.049) 0.612 (0.403) 0.153 0.373 (0.115) 0.088 (0.045)

ARFF ODECO 0.268 (0.028) 0.178 (0.080) 0.349 (0.042) 0.376 (0.106) 0.059 0.335 (0.093) 0.105 (0.025)

0.431 (0.022) 0.303 (0.097) 0.561 (0.045) 0.573 (0.389) 0.160 0.336 (0.086) 0.077 (0.042)
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Figure 16: Here we illustrate [L2,L4,L6] of FFF and GGG from Eq. 25
similar to the technique used in the frame field literature, e.g the
counter example described above by taking each point in S2, and
contracting it with the lifted tensors until it returns a scalar, and
rescaling the input vector by that scalar. Unexpectedly for these
two frames L2(FFF) = L2(GGG) and L4(FFF) = L4(GGG) but L6(FFF) ̸= L6(GGG)
plotting the moments as functions over sphere where the color cor-
responds to the scalar value that arises from contracting the given
tensor with the point on the surface of the sphere an approrpiate
number of times.

(a) Line Fields (b) Integrated Phase

2.0

0.0

Figure 17: In the smooth setting, there is no way to assign vector
field on the boundary of a circle, so that this field integrates to a
nonzero multiple of 2π, and extends smoothly to an integrable (over
S1) function on the interior. Somewhat surprisingly, the same is not
true in the case of integrable line fields. Here we show an integrable
line field which conforms to the perscribed circulating boundary
conditions whose gradient norms go to zero in the neighborhoods
of two index + 1

2 singularities (left). If we integrate up over S1, we
get the result (right), plotting phase as color on one of the covers,
and indicating the branch cuts.

Figure 18: We show parameterizations that result from minimizing
only Esmooth on two simple examples from random initialization
with unit normal boundary conditions.

Singular Lines with Seamless Isolines Isolines vs Streamlines Error Density

0 1.0

0 1.0

0 1.0

Default: λorth = 0.1,λunit = 10−5

Both Stronger: λorth = 0.5,λunit = 10−4

More Orthog: λorth = 10,λunit = 10−5

Figure 19: In this figure we probe the sensitivity of MINT MESH

to choice of weights in the objective, on the s08o_cross_cyls_dr
model from the HexMeS dataset. In the (top row), we document re-
sults from our default parameter setting. In the (middle row), we
increase both of the parameters slightly, and see significant im-
provement, but some artifacts remain. In the (bottom row), increase
the orthogonality weight by 100x relative to our default setting.
While these both improve the results on this example, particularly
the latter parameter choice may converge to less smooth solutions
on average on other examples in our test set. Field quality can be
improved dramatically by adjusting the model hyperparameters to
promote mesh orthogonality on this example, and there remains re-
search to be done in exploring robust formulations of symmetric
frame field design objectives.
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Figure 20: Effect of integrablity on parameterization quality. Plots from ablation study on 120 model polyhedral dataset comparing a
number of parameterization quality metrics of the parameterizations which result from frame field design. Top row plots show per model
average of quality measures with respect to seamless parameterization, bottom row is with respect to integer-grid parameterization.
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