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_imitations of Reinforcement Learning Algorithms

On-Policy
e Only use data generated by the current policy.
On-Environment

e Simulated data is useless
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On-Policy Monte Carlo Value Estimation

1. Repeatedly run the evaluation policy.

SO7 A07 RO7 JRIRN SL7 AL7 RL

2. Average the total reward seen each trajectory.

L

1l ()
_E;Z&J

t=0

11 Josiah Hanna



On-Policy Monte Carlo Value Estimation



Off-Policy Value Estimation via Importance
Sampling

Precup, Sutton, and Singh (ICML 2000) 13 Josiah Hanna



Off-Policy Value Estimation via Importance
Sampling

1. Repeatedly run a different behavior policy.

Precup, Sutton, and Singh (ICML 2000) 13 Josiah Hanna



Off-Policy Value Estimation via Importance
Sampling

1. Repeatedly run a different behavior policy.

2. Add up all of the reward received along each trajectory.

Precup, Sutton, and Singh (ICML 2000) 13 Josiah Hanna



Off-Policy Value Estimation via Importance
Sampling

1. Repeatedly run a different behavior policy.

2. Add up all of the reward received along each trajectory.

3. Re-weight the reward total.

Precup, Sutton, and Singh (ICML 2000) 13 Josiah Hanna



Off-Policy Value Estimation via Importance
Sampling

1. Repeatedly run a different behavior policy.
2. Add up all of the reward received along each trajectory.
3. Re-weight the reward total.
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1. Repeatedly run a different behavior policy.

2. Add up all of the reward received along each trajectory.

3. Re-weight the reward total.

m(A:|S;)
/ (0 my(Ae|St) ZRt \
Relative Likelihood Total Reward

4. Average the re-weighted rewards.

Precup, Sutton, and Singh (ICML 2000) 13 Josiah Hanna
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How to choose the behavior policy for importance sampling”
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t=0

Contribution 1: Formulation of behavior policy search problem
and behavior policy gradient algorithm for policy value estimation.

Contribution 2: Initial study of the behavior policy gradient
algorithm combined with policy gradient policy improvement.
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How to weight off-policy data”

How to correct tfor off-policy distribution shift”

7 m(AdSy) -
(117555 < ()

t=0

Contribution 3: Family of regression importance sampling
estimators that improve over ordinary importance sampling.

Contribution 4: Sampling error corrected policy gradient estimator
that improves over Monte Carlo policy gradient estimators.
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Proposal [ime: Importance sampling with an
Unknown pehavior policy

i Importance sampling requires the behavior policy
porobabillities to be known.

m(a|s) m(a|s)
w(als)  mplals)

Baseline approach: maximum likelihood behavior
policy estimation.

i

Credit: Brenna Argall
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Policy Value estimation

Given batch of trajectory data:

D = {(S(%,Az)szj)y?S}ﬂ 27R2) y;l

Given an evaluation policy:

Estimate:

T:SXA—
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Regression Importance Sampling

Maximum likelihood
behavior policy estimate
(empirical policy).
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Related Work

1. Estimated Propensity Scores (Hirano et al. 2003, Li et al. 2015).

2. Learning in contextual bandits (Xie et al. 2019, Narita et al. 2019)

We are the first to show using an estimated behavior policy
improves Importance sampling In multi-step environments.
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2. |t we know the desired action probability we can potentially correct this error.

3. Can correcting sampling error improve other types of reinforcement learning
algorithms??

Contribution 4:
Sampling error corrected policy gradient estimator that improves
over Monte Carlo policy gradient estimators.
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Additional results in dissertation: Asymptotic variance analysis, consistency of RIS,
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Contribution 5: Grounded action transformation algorithm
allowing an RL agent to learn from simulated data.
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Future Directions

1. Hierarchical sim-to-real.
2. Optimal sampling for regression importance sampling.

3. From policy value estimation to policy evaluation.
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Value function learning with RIS and BPG
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Value function learning with RIS and BPG
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Value function learning with RIS and BPG

Vi1 (S) < ve(Sy) + a(Up — ve(Sk))

- (A S)

[], —
Loy (A Sh)

(R¢ + ve(St41))

Collecting data:

What is optimal behavior policy with changing value function?

Welighting data:
How to estimate behavior policy during online learning”?
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How can a reinforcement learning agent leverage off-policy and
simulated data to evaluate and improve upon the expected
performance of a policy?

How should an RL agent

How should an RL agent
weight off-policy data”

collect oft-policy data”
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How can an RL agent use
simulated data”

How can an RL agent combine
simulated and off-policy data”
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