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Supervisor: Peter Stone

Learning from interaction with the environment – trying untested actions,

observing successes and failures, and tying effects back to causes – is one of the

first capabilities we think of when considering autonomous agents. Reinforcement

learning (RL) is the area of artificial intelligence research that has the goal of allowing

autonomous agents to learn in this way. Despite much recent success, many modern

reinforcement learning algorithms are still limited by the requirement of large amounts

of experience before useful skills are learned. Two possible approaches to improving

data efficiency are to allow algorithms to make better use of past experience collected

with past behaviors (known as off-policy data) and to allow algorithms to make better
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use of simulated data sources. This dissertation investigates the use of such auxiliary

data by answering the question, “How can a reinforcement learning agent

leverage off-policy and simulated data to evaluate and improve upon the

expected performance of a policy?”

This dissertation first considers how to directly use off-policy data in reinforce-

ment learning through importance sampling. When used in reinforcement learning,

importance sampling is limited by high variance that leads to inaccurate estimates.

This dissertation addresses this limitation in two ways. First, this dissertation

introduces the behavior policy gradient algorithm that adapts the data collection

policy towards a policy that generates data that leads to low variance importance

sampling evaluation of a fixed policy. Second, this dissertation introduces the family

of regression importance sampling estimators which improve the weighting of already

collected off-policy data so as to lower the variance of importance sampling evaluation

of a fixed policy. In addition to evaluation of a fixed policy, we apply the behavior

policy gradient algorithm and regression importance sampling to batch policy gradient

policy improvement. In the case of regression importance sampling, this application

leads to the introduction of the sampling error corrected policy gradient estimator

that improves the data efficiency of batch policy gradient algorithms.

Towards the goal of learning from simulated experience, this dissertation

introduces an algorithm – the grounded action transformation algorithm – that takes

small amounts of real world data and modifies the simulator such that skills learned

in simulation are more likely to carry over to the real world. Key to this approach is

the idea of local simulator modification – the simulator is automatically altered to

better model the real world for actions the data collection policy would take in states

the data collection policy would visit. Local modification necessitates an iterative

approach: the simulator is modified, the policy improved, and then more data is

collected for further modification.

ix



Finally, in addition to examining them each independently, this dissertation

also considers the possibility of combining the use of simulated data with importance

sampled off-policy data. We combine these sources of auxiliary data by control

variate techniques that use simulated data to lower the variance of off-policy policy

value estimation. Combining these sources of auxiliary data allows us to introduce

two algorithms – weighted doubly robust bootstrap and model-based bootstrap – for

the problem of lower-bounding the performance of an untested policy.
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Chapter 1

Introduction

Sequential decision-making tasks are among the most challenging tasks in the field of

artificial intelligence. Examples of sequential decision-making tasks include a robot

picking up and folding laundry, software choosing when to run vents to cool a data

center, and a web marketing system choosing the ads to show a user in order to

maximize the long-term likelihood that the user buys a product. In such tasks, the

decision-making agent must repeatedly choose actions in order to maximize long-term

expected utility. While expert engineers may be able to program robots and software

agents to perform sequential decision-making tasks in constrained environments, the

unstructured nature of the real world requires systems that can learn and generalize

their experience to new situations.

Reinforcement learning (RL) algorithms provide a promising alternative

to hand-coded skills, allowing sequential decision-making agents to acquire skills

autonomously given only a reward function measuring task performance (Sutton and

Barto, 1998). An agent using an RL algorithm attempts to maximize its expected

reward obtained over time by learning an action-selection policy. To find the optimal

policy, an RL algorithm must reason about a combinatorially large number of action

sequences, explore the effects of untested action sequences, and assign credit or blame
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for delayed effects to past actions.

Recently, RL has had many empirical successes, e.g., Levine et al. (2016);

Mnih et al. (2015); Silver et al. (2016); MacAlpine et al. (2015). However, the

majority of these successes have taken place within simulated environments where

the simulation is based on idealized models of the real world. Unfortunately, a

large gap exists between the amount of experience required by some of the most

successful RL algorithms and the reality of collecting that experience on a physical

system. For example, two leading RL methods – DDPG (Lillicrap et al., 2015) and

PPO (Schulman et al., 2017) – require thousands of episodes of experience which

is impractical for many applications. Aside from the time needed to collect this

experience, the real world may be non-stationary so that the environment is changing

while the agent is trying to learn. For instance, a robot’s joints may wear down

while in web-marketing the actions available to the agent may change as new ad

campaigns begin and end. Furthermore, in the real world, unsafe actions may harm

the agent, environment, or even humans.

One reason for the large gap between success in simulation and success in the

real world is that many RL algorithms are limited to using experience collected with

the most recently learned policy. This characteristic is known as being on-policy.

In contrast, off-policy RL exploits data from a different data collection policy –

off-policy data – to evaluate and improve upon the current policy. One of the most

widely applied techniques for the direct use of off-policy data is a statistical technique

called importance sampling. Unfortunately, importance sampling is known to suffer

from high variance which may make it unreliable in practice (Thomas et al., 2015a).

In addition to challenges with using off-policy data, many RL algorithms

are unable to incorporate simulated data. Many problem domains have existing

simulators which could allow an RL agent to supplement real world experience with

synthetic data collected in simulation. However, if an RL agent attempts to learn
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directly from such simulated data, it may learn policies that are over-specialized to

the simulated environment. Unfortunately, it is frequently observed that even small

differences between simulated environments and the real world may cause behaviors

learned in simulation to fail when applied in the real world (Abbeel et al., 2006;

Cutler et al., 2014; Kober et al., 2013).

Creating techniques that allow RL algorithms to exploit off-policy and simu-

lated data could reduce the sample complexity of real world reinforcement learning.

This dissertation investigates how such auxiliary data can be used to increase the

data-efficiency of learning and evaluating policies for sequential decision-making

tasks. We study a specific instance of the RL setting – that of an episodic, fully

observable Markov decision process. Within this setting, this dissertation answers

the question:

How can a reinforcement learning agent leverage off-policy and simulated

data to evaluate and improve upon the expected performance of a policy?

This dissertation answers this question in the following ways:

1. Showing how an RL agent should collect off-policy data for low variance

importance-sampling-based policy value estimation and learning;

2. Showing how an RL agent should weight off-policy data for low variance

importance-sampling-based policy value estimation and learning;

3. Showing how an RL agent can use simulated experience for policy learning;

and

4. Showing how an RL agent can combine off-policy importance-sampled data

and simulated experience for high confidence policy value estimation.

While policy improvement – updating the current policy to a better policy

– is the primary goal of RL, much of the research in this dissertation focuses on
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the sub-problem of policy value estimation. Policy value estimation is the RL sub-

problem with the goal of determining the expected cumulative reward a certain

policy will obtain for an agent. Effective policy value estimation is a necessary step

before policy improvement for many RL algorithms. Thus, our contributions for

utilizing off-policy and simulated data for policy value estimation is expected to also

pay dividends for more data efficient policy improvement. Data efficient policy value

estimation is also critical for real world problems in which human decision makers

(e.g., a manager in industry or a policy maker in government) may require that the

expected value of using a policy be known before allowing the policy to be deployed.

1.1 Importance Sampling

Importance sampling is a technique for re-weighting the observed rewards from

off-policy data to reflect the relative likelihood of observing them under the policy to

be evaluated (the evaluation policy) instead of the policy used to generate the data

(the behavior policy). Figure 1.1 presents an example of how importance sampling

re-weights rewards to estimate the value of an evaluation policy with experience

from a different behavior policy.

While importance sampling is often the method of choice when on-policy

data is unavailable, it has two main limitations. First, importance sampling may be

inaccurate due to high variance when the behavior policy is not carefully selected.

Second, the accuracy of importance sampling depends on actions being observed

at their expected frequency under the behavior policy – something that likely only

happens as the amount of data becomes infinite.

We address the first limitation by adapting the behavior policy towards

a behavior policy that generates data that leads to more accurate policy value

estimation. One problem in policy value estimation is that rare events sometimes

greatly impact estimates of expected value. When the evaluation policy would rarely
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Figure 1.1: An example of importance sampling for policy evaluation in a single
decision task. The agent’s action is to choose a real-valued number between
−3 and 3 and receive a reward according to the thick, green curve. We wish to
evaluate an evaluation policy that selects actions with probability density given by
the dashed, blue curve. However, we only have action samples (red Xs) collected
from a behavior policy with action selection probability density given by the solid,
red curve. Importance sampling re-weights the samples so that their weighting in
a sample average approximates the weighting they would receive if sampled from
the evaluation policy distribution. Intuitively, samples in areas where the blue curve
is higher than the red curve are up-weighted and samples from other areas are
down-weighted.

experience these events, even on-policy value estimation may have high variance

unless the amount of available data is large. Instead, a lower variance estimate can be

obtained by using a behavior policy that experiences such events more often but then

down-weights the associated rewards with importance sampling. In Chapter 3, we

introduce the behavior policy search (BPS) problem: searching for a behavior policy

that leads to lower variance off-policy policy value estimation than on-policy policy
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value estimation. In addition to introducing the BPS problem, this dissertation

develops behavior policy search algorithms that adapt the behavior policy to collect

off-policy data that lowers the variance of importance sampling estimates of policy

performance.

This dissertation also address the second limitation of importance sampling:

that the off-policy data should be observed at its expected frequency under the

behavior policy. When the distribution of observed data (termed the empirical policy)

fails to match the expected distribution of data (the behavior policy), importance

sampling suffers from what we call sampling error. In Chapter 5, we introduce a

family of estimators that correct sampling error by first estimating the empirical

policy and then using it in place of the true behavior policy. This contribution

also makes importance sampling applicable to settings when the behavior policy is

unknown, as our estimators do not require knowledge of the behavior policy.

In addition to considering the problem of policy value estimation, we also

consider how these new algorithms can be applied to policy improvement. Specifically,

we consider the class of batch policy gradient policy improvement algorithms. We

show that improving the behavior policy before data collection or estimating the

empirical policy after data collection can lead to faster policy improvement when

using this class of algorithms (Chapters 4 and 6 respectively).

1.2 Leveraging Simulation

Humans are able to leverage mental models of the physical world to learn new

control tasks without extensive experience with the task. While these mental models

are imperfect, they allow learning and planning to occur without any real world

interaction. Having a model of the world is not unique to humans and animals; in

many real world problems, simulated environments provide a form of prior knowledge

that RL algorithms can exploit to improve data-efficiency. The second part of this
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dissertation considers how real world data can be used to modify simulators such

that skills learned in simulation are more likely to be effective in the real world.

In theory, transferring learning from simulation can make current RL algo-

rithms immediately applicable to tasks such as robot learning in the physical world.

Unfortunately, even small discrepancies between the physics of the real world and

the physics of the simulator can often cause learning in simulation to find policies

that fail in the real world. As an example, consider a robot learning to walk in a

simulator where frictional forces are under-modeled. The robot may learn it can

move its leg joints very quickly to achieve a fast walk. When the same controls are

applied in the real, physical world, the walk may be jerky and the robot may fall

over.

In order to leverage simulation, we use a small amount of real world data to

modify the simulator such that the agent’s actions affect the simulated world state

in a way similar to how they would affect the world state in reality. Key to this

approach is that the simulator does not need to be more realistic globally – it just

needs to model the world dynamics well for actions the current policy would take

in states the current policy would visit. This approach is an instance of grounded

simulation learning (GSL) (Farchy et al., 2013) in which real world data is used to

make simulation more realistic, policy improvement takes place within simulation,

and then the improved policy is used to collect more data for further modification.

Further modification is necessary since, as the policy changes, the agent is likely to

visit new states where the real world is modeled poorly.

In Chapter 7 of this dissertation, we introduce a GSL algorithm that leverages

real world data so that skills learned in simulation have an increased chance of

transferring to the real world. We then evaluate the algorithm on learning tasks for

the Softbank NAO robot. Our experiments show this algorithm allows reinforcement

learning to take place entirely in simulation and also allows improving upon a
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state-of-the-art walking controller for the NAO.

1.3 Simulation and Importance Sampling

So far we have discussed two complementary approaches to the problem of leveraging

off-policy data to enhance the data-efficiency of reinforcement learning: improving

imperfect environment simulators (Section 1.2) and importance sampling for direct

off-policy data use (Section 1.1). We now consider how the approaches can be

combined towards evaluation of policies and reinforcement learning algorithms.

Recent work has demonstrated that model-based policy evaluation (i.e., evaluation

within a simulated environment) can be combined with direct importance sampling

methods to produce more accurate off-policy policy evaluation without introducing

statistical bias (Jiang and Li, 2016; Thomas and Brunskill, 2016a). In Chapter 8 of

this dissertation, we leverage this recent work to determine high confidence bounds

for off-policy policy value estimation.

We apply simulation as a control variate for importance sampling methods

to the problem of high confidence off-policy policy value estimation. The high

confidence off-policy policy value estimation problem is to find a lower bound on the

expected performance of an evaluation policy using off-policy data. The problem is

more challenging than just constructing an accurate off-policy policy value estimator

because a lower bound must take into account the variance of the estimation technique.

Existing methods for this problem that only use importance sampling may provide

loose lower bounds because importance sampling may have high variance no matter

how different the behavior policy is from the evaluation policy. By combining the

hybrid importance sampling and simulation methods introduced by Thomas and

Brunskill (2016a), we obtain tighter lower bounds on the expected performance of

an untested policy.
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1.4 Contributions

In summary, this dissertation makes the following contributions to the reinforcement

learning literature:

1. Formulation of the behavior policy search problem for collecting off-policy

data for low variance importance sampling and an algorithm for this problem

(Chapter 3).

2. A study of behavior policy search applied to batch policy gradient reinforcement

learning (Chapter 4).

3. A family of off-policy policy value estimators that correct for the differences

between the observed and true data distributions of off-policy data (Chapter

5).

4. Use of regression importance sampling (Contribution 3) to enhance the data

efficiency of batch policy gradient reinforcement learning (Chapter 6).

5. A novel GSL algorithm called GAT for grounded action transformation that

allows an RL agent to learn with simulated data (Chapter 7).

6. A simulation-based method for lower bounding the performance of untested

policies with off-policy data (Chapter 8).

7. Hybrid importance sampling and simulation methods for lower bounding the

performance of untested policies with off-policy data (Chapter 8).

Taken together, these contributions advance the capabilities of reinforcement

learning algorithms, open up many new promising directions for research pertaining

to off-policy learning and evaluation, and improve the usefulness of reinforcement

learning in the physical world.
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1.5 Dissertation Overview

This dissertation is laid out as follows. Though the dissertation is written as if it

will be read from beginning to end, it is not strictly necessary to do so. Figure 1.2

specifies how the chapters and appendices of this dissertation depend on one another.

1. In Chapter 2, we give necessary background for this dissertation. We begin

with introducing the specific reinforcement learning setting that we study. We

then define the policy value estimation sub-problem and define foundational

terminology and methods for this problem. Finally, we introduce the policy

improvement sub-problem and introduce the class of batch policy gradient

algorithms.

2. In Chapter 3, we formulate the behavior policy search problem and introduce

the behavior policy gradient algorithm to address this problem. This problem

and solution algorithm are Contribution 1 of this dissertation.

3. In Chapter 4, we apply behavior policy search to improve batch policy gradi-

ent reinforcement learning. The study of behavior policy search and policy

improvement is Contribution 2 of this dissertation.

4. In Chapter 5, we introduce the family of regression importance sampling

estimators that perform importance sampling using an estimated behavior

policy. This family of estimators allows lower variance weighting of off-policy

data for policy value estimation compared to using the true behavior policy

and is Contribution 3 of this dissertation.

5. In Chapter 6, we introduce the sampling error corrected policy gradient estima-

tor that provides lower variance weighting of data for batch policy gradient

learning compared to using a common sample average approach. This estimator

is Contribution 4 of this dissertation.
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6. In Chapter 7, we introduce the grounded action transformation algorithm that

allows a reinforcement learning agent to learn from simulated data. This

algorithm is Contribution 5 of this dissertation.

7. In Chapter 8, we address the high confidence off-policy policy value estimation

problem and introduce the final two contributions of the dissertation. First, we

introduce the model-based bootstrap algorithm (Contribution 6) that estimates

confidence intervals using multiple learned models. Second, we introduce the

weighted doubly robust bootstrap algorithm (Contribution 7) that estimates con-

fidence intervals using the weighted doubly robust estimator (to be introduced

in Chapter 2).

8. In Chapter 9, we survey existing literature that pertains to the contributions

of this dissertation.

9. Finally, in Chapter 10, we summarize the presented contributions and outline

directions for future work.

10. In Appendix A we summarize notation used throughout this dissertation.

11. In Appendix B we define acronyms used throughout this dissertation.

12. In Appendix C we provide full derivations of theoretical results appearing in

Chapter 3.

13. In Appendix D we provide full derivations of theoretical results appearing in

Chapter 5 and 6.

14. In Appendix E we provide full derivations of theoretical results appearing in

Chapter 8.

15. In Appendix F we provide experimental details to complement those included

in Chapters 3, 4, 5, and 8. Full experimental details for Chapters 6 and 7 are
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Figure 1.2: Chapter dependencies in this dissertation. Arrows denote that one
chapter should be read before another. All chapters in a dotted rectangle can be
read independently of one another unless marked otherwise.

included in those chapters.
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Chapter 2

Background

Before presenting the contributions of this dissertation, we first provide necessary

background. In this chapter we formalize the type of reinforcement learning problems

that we study and introduce the reinforcement learning sub-problems of policy value

estimation and policy improvement. We also introduce classes of existing algorithms

that are used throughout this dissertation.

Throughout this dissertation we will follow the convention that sets are

denoted with calligraphic capital letters (e.g., S) and random variables are denoted

with capital letters (e.g., St is the random variable representing the state observed

at time t). Instantiations of random variables (e.g., St = s) and elements of sets

(s ∈ S) are denoted with lower case letters. Functions and scalar constants are also

denoted with lower case letters. Vectors are denoted with bold lower case letters

(e.g., θ). We will make and note exceptions when necessary to match conventional

reinforcement learning notation.
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2.1 Reinforcement Learning Notation

We consider the problem of an autonomous agent attempting to complete tasks in an

unknown environment. This problem setting has been formulated in many different

ways throughout the literature. In this dissertation, we formalize the studied setting

as a fully observable, finite-horizon, episodic Markov decision process (MDP), where

the agent fully knows its current state and interacts with the environment for a

fixed number of time-steps before returning to an initial state and starting again

(Puterman, 2014). Though some algorithms and results may transfer to the partially

observable, infinite-horizon, and non-episodic settings, we limit the scope of our work

in this dissertation to the fully observable, finite-horizon, and episodic setting that

we formalize below.

An MDP is defined as a tuple (S,A, P, r, L, γ, d0) where:

• S is a set of possible world states.

• A is a set of actions available to the agent.

• P : S × A × S → [0, 1] is a transition function giving the probability of

transitioning to a state s′ after choosing action a in state s. P is also known

as the dynamics of the environment. We use a capital P as is standard in the

MDP and RL literature.

• r : S ×A → R is a scalar reward function.

• L is the maximum length of one episode of interacting with the environment.

Note that we use a capital L even though L is a constant.

• γ ∈ [0, 1] is a discount factor that allows us to express a preference for immediate

rewards compared to future rewards. Unless otherwise noted, we use γ = 1.

• d0 is an initial state distribution.
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• s∞ is the terminal state.

The agent’s behavior is determined by its policy. A policy is a probability

mass function over actions, conditioned on the current state: π : S × A → [0, 1].

A policy is deterministic if π(a|s) = 1 for only one a in each s.1 Otherwise it is a

stochastic policy.

The agent interacts with the environment MDP as follows: The agent begins

in initial state S0 ∼ d0. At discrete time-step t the agents takes action At ∼ π(·|St).

The environment responds with Rt := r(St, At) and St+1 ∼ P (·|St, At) according

to the reward function and state transition dynamics. After interacting with the

environment for L steps the agent returns to a new initial state and the process

repeats. If the agent enters the terminal state, s∞, it remains there and receives zero

reward until step L is reached. The agent does not know P , r, or d0.

A trajectory, h, of length L is a state-action-reward history, s0, a0, r0, . . . ,

sL−1, aL−1, rL−1. We define the return of a trajectory to be g(h) =
∑L−1

t=0 γ
trt.

Any policy, π, and transition dynamics, P , induce a distribution over trajec-

tories. We write Pr(H = h|π,M) to denote the probability of observing trajectory

h when following π in M. When it is clear from the context what the MDP is,

we will write Pr(H = h|π) and write H ∼ π to denote a trajectory sampled by

executing π. The expected discounted return of policy π in MDP M is defined as

v(π) := v(π,M) := E[g(H)|H ∼ π].

In addition to discussing entire trajectories and their return, we will also

sometimes refer to trajectory segments and their returns. Given that h is a trajectory,

we will use ht:t′ to denote the partial trajectory, st, at, rt, ..., st′ , at′ , rt′ . If t < 0, ht:t′

denotes the beginning of the trajectory until step t′.

Let the action-value function, qπ : S×A×{0, ..., L−1} → R, be the expected

1We define notation for discrete MDPs, however, unless otherwise noted, all results and discussion
hold for continuous S and A by replacing summations with integrals and probability mass functions
with probability density functions.
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return of following π after taking a particular action in a particular state and time-

step. Formally, qπ(s, a, t) = E[
∑L−1

t′=t Rt′ |St = s,At = a,Ht+1:L−1 ∼ π] and let the

state-value function, vπ : S × {0, ..., L− 1} → R, be the expected value of qπ:

vπ(s, t) = E[qπ(s,A, t)|A ∼ π].

If the time-step when a state-action pair was encountered is ambiguous, we will

write qπ(s, a, ·) to denote the expected sum of discounted rewards remaining in the

episode. Similarly, we will write vπ(s, ·) to denote the same for state-values. From

these definitions, it follows that v(π) = E[vπ(S0, 0)|S0 ∼ d0].

This section formalized the reinforcement learning setting of a learning agent

taking actions in an unknown, episodic environment. The next two sections describe

two sub-problems that the reinforcement learning community studies: policy value

estimation and policy improvement. The first sub-problem is explained in detail in

Section 2.2. The second sub-problem is introduced more briefly in Section 2.3.

2.2 Policy Value Estimation

Given a particular policy, π, and MDP, M, we may want to know how much reward

the agent can expect to receive if it follows π in M. In the reinforcement learning

setting, this question is asking, “what is v(π,M)?”

Specifically, we are given an evaluation policy, πe, for which we would like to

estimate v(πe,M) for some MDP M; for the rest of this section we will suppress

the dependency of v onM. We assume a batch setting where we are given a dataset

of trajectories, D, or are able to run a policy in the environment to collect such a

dataset. A policy value estimator, PE, uses trajectories in D to estimate v(πe). If

πe was used to collect the trajectories in D then PE is an on-policy policy value

16



estimator. Otherwise, it is an off-policy policy value estimator.2

We will assume for all observed trajectories that we know the behavior policy

that was used to sample the trajectory and that this policy is the same for all

trajectories. We formalize this assumption by defining D := {(Hi, πb)}mi=1 where

m is the number of trajectories in D. We will use Sit , A
i
t, and Rit to denote the

random variables representing the state, action, and reward at time-step t in the ith

trajectory.

2.2.1 Objectives for Policy Value Estimation

We now describe two possible objectives for policy value estimation: minimal mean

squared error and high confidence policy value estimation.

2.2.1.1 Minimal Mean Squared Error

The first objective is minimal mean squared error (MSE). Before introducing this

objective, we define pD to be the probability distribution over all possible realizations

of the data D. This distribution will be determined by the MDPM and the behavior

policy, πb, however, we suppress this dependence below:

pD(D = {(hi, πb)}) :=
m∏
i=1

Pr(Hi = hi|πb,M).

We can now define the mean squared error (MSE) of an estimator; minimizing

this quantity is the first policy value estimation objective.

Definition 2.1.

MSE

[
PE

]
:= E

[(
PE(D)− v(πe)

)2 ∣∣∣∣ D ∼ pD].
2The problem of policy value estimation has also been called batch policy evaluation (Liu et al.,

2018) or just policy evaluation (Thomas and Brunskill, 2016a). We use policy value estimation in
this dissertation to avoid confusion with the problem of learning the value function that is widely
studied in the reinforcement learning literature.
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This objective is the objective most commonly considered when the goal is to

produce the most accurate estimator (e.g., Thomas and Brunskill (2016a); Precup

et al. (2000)).

2.2.1.2 High Confidence Policy Value Estimation

An alternative to minimizing MSE, is to lower bound the value of v(πe) so that the

true (unknown) value of v(πe) is above the lower bound with a given probability. We

call this problem the high-confidence policy value estimation problem. Specifically,

given a confidence parameter, δ ∈ [0, 1], high confidence policy value estimation

methods determine a lower bound, vδ(πe), on v(πe) such that vδ(πe) ≤ v(πe) with

probability at least 1− δ. That is, for k different realizations of the observed data,

D, the expected number of times that vδ(πe) is greater than v(πe) is no more than

δk. This objective is desirable in situations where safety is important – we want to

estimate the value of the policy accurately with a bounded risk of over-estimating.

2.2.2 Variance, Bias, and Consistency

When discussing estimators for policy value estimation, we will primarily discuss

three statistical properties: variance, bias, and consistency. The variance of an

estimator describes how much its estimates differ from the expected value of its

estimates.

Definition 2.2.

Var

[
PE

]
:= E

[(
PE(D)−E[PE(D)]

)2 ∣∣∣∣ D ∼ pD]

The bias of an estimator is the difference between the expected value of the

estimator and the true (unknown) value v(πe).
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Definition 2.3.

Bias

[
PE

]
:= E

[
PE(D)

∣∣∣∣ D ∼ pD]− v(πe).

Definition 2.4. An estimator is an unbiased estimator of v(πe) if Bias[PE] = 0.

Bias and variance have the following relationship with MSE:

MSE [PE ] = Var[PE] + Bias[PE]2.

Finally, consistency is concerned with the asymptotic error of an estimator.

A consistent estimator has zero MSE with probability 1 as the number of trajectories

goes to infinity.

Definition 2.5. Let Dm be the random variable representing the trajectory set with

m trajectories. An estimator is a consistent estimator of v(πe) if,

Pr
(

lim
m→∞

PE(Dm) = v(πe)
)

= 1.

Note that estimators can be biased and consistent or unbiased and inconsistent.

The former case arises when the estimator’s bias decreases asymptotically (with

respect to the size of D) to zero. The latter case arises when the estimator’s variance

does not decrease asymptotically to zero.3

2.2.3 Three Classes of Policy Value Estimators

In this subsection, we introduce three common classes of policy value estimators.

This dissertation makes contributions to the understanding and practice of each class

of estimators.
3One common example of an unbiased but inconsistent estimator is the following: let

X1, X2, ..., Xn be n samples from a normal distribution. The estimator that always returns X1 is
an unbiased estimate of the mean of the distribution but it is not a consistent estimator because X1

always has positive variance.
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2.2.3.1 Importance Sampling Estimators

One class of policy value estimators directly uses averages of the observed returns to

estimate v(πe). The most straightforward of such methods is the on-policy Monte

Carlo (MC) estimator. Given a data set, D, of m trajectories sampled from πe, the

Monte Carlo estimate of v(πe) is the average return:

MC(D) :=
1

m

m∑
i=1

L−1∑
t=0

γtRit =
1

m

m∑
i=1

g(Hi).

This estimator is unbiased and consistent given mild assumptions.4 However,

this method can have high variance.

The Monte Carlo estimator can be generalized to the off-policy setting by re-

weighting returns from any behavior policy, πb, such that they are unbiased estimates

of the expected return of the evaluation policy. The off-policy Monte Carlo estimator

is known in the RL literature as the Importance Sampling (IS) estimator. The

re-weighted IS return of a trajectory, H, sampled from behavior policy πb is:

IS(πe, H, πb) := g(H)

L−1∏
t=0

πe(At|St)
πb(At|St)

.

Intuitively, the IS return up-weights returns that were more likely under πe than πb

and down-weights returns that were less likely under πe compared to πb. The IS

estimator is then:

IS(πe,D) :=
1

m

m∑
i=1

IS(πe, Hi, πb).

Note that when πb and πe are the same the IS estimator is identical to the Monte

Carlo estimator.

In RL, importance sampling allows off-policy data to be used as if it were

4If v(πe) exists, the Monte Carlo estimator is consistent by the Khintchine Strong law of large
numbers (Sen and Singer, 1993).
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on-policy. Importance sampling is both unbiased and consistent, however, like the

Monte Carlo estimator, it may suffer from high variance. The variance of IS may in

fact be worse than that of on-policy Monte Carlo because the importance weights

themselves may have high variance.

Many methods have been proposed to lower the variance of IS. We will

discuss two of these throughout this dissertation: weighted importance sampling and

per-decision importance sampling.

Weighted importance sampling normalizes the importance weights so that

they are bounded in [0, 1]. Define the importance weight up to and including time

step t for trajectory i as:

ρit =

t∏
j=0

πe(A
i
j |Sij)

πb(A
i
j |Sij)

.

The weighted importance sampling estimate normalizes the importance weights by

their total sum:

WIS(πe,D) =

m∑
i=1

ρiL−1∑m
j=1 ρ

j
L−1

g(Hi).

Unlike the possibly unbounded variance of IS weights, the variance of WIS weights is

bounded since each weight must be between 0 and 1. The normalization introduces

bias into the estimate, however the bias decreases asymptotically to zero and thus

weighed importance sampling provides consistent estimates (Precup et al., 2000).

Per-decision importance sampling (PDIS) (Precup et al., 2000) makes use of

the fact that rewards are independent of future actions by importance sampling the

individual rewards instead of the full return:

PDIS(πe,D) =
1

m

m∑
i=1

L−1∑
t=0

ρitγ
tRit.

PDIS tends to have lower variance than the basic IS estimator yet remains free of

bias. Like IS and WIS, it is consistent.
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Weighted and per-decision importance sampling can also be combined to

produce the per-decision weighted importance sampling estimator (PDWIS):

PDWIS(πe,D) =

m∑
i=1

L−1∑
t=0

ρit∑m
j=1 ρ

j
t

γtRit.

PDWIS is biased but consistent (Thomas, 2015).

2.2.3.2 Model-based Policy Value Estimation

An alternative to importance sampling is model-based policy value estimation. The

model-based (MB) policy value estimator estimates v(πe) by first using all observed

trajectories to estimate the transition probabilities and reward function of the

underlying MDP. Let M be the MDP under which we want to evaluate πe. A

model is defined as M̂ = (S,A, P̂ , r̂, γ, d̂0) where P̂ , d̂0, and r̂ are estimated from

the (s, a, r, s′) tuples that occur in trajectories in D. Then the MB estimator returns

v(πe) as the expected return of πe when following πe in M̂.

If a model can capture the true MDP’s dynamics or generalize well to unseen

parts of the state-action space then model-based estimates can have much lower

variance than importance sampling estimates. However, models reduce variance at

the cost of adding bias to the estimate. Bias in model-based estimates of v(πe) may

arise from two sources:5

1. When we lack data for a particular (s, a) pair, we must make assumptions

about how to estimate P (·|s, a).

2. If we use function approximation, we must make assumptions about the model

class to which P belongs.

5Model bias may also arise when the agent is acting in a partially-observable Markov decision
process. However, since we restrict ourselves to MDPs in this dissertation, we will not discuss this
form of bias in depth.
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In Chapter 7 we will discuss learning in environment simulators. In this

dissertation, we assume that having access to an environment simulator is formally

equivalent to having access to a model M̂ which approximates the true environment,

M, in its state transition probabilities.

2.2.3.3 Doubly Robust Value Estimation

Our final class of estimator uses possibly biased and inconsistent models to lower

the high variance of importance sampling methods while remaining unbiased and

consistent. Such methods are known as doubly robust (DR) estimators (Thomas and

Brunskill, 2016a; Jiang and Li, 2016; Dud́ık et al., 2011). These methods combine

importance sampling estimation with model-based estimation and are known as

doubly robust because they can produce accurate estimates as long as either the

importance sampling estimate or model-based estimate is accurate.

In the RL setting, the DR estimator replaces the re-weighted return with:

DR(πe, H, πb, q̂
πe , v̂πe) = v̂πe(S0, 0)+

L−1∑
t=0

ρ
(H)
t γt(Rt−q̂πe(St, At, t)+γv̂πe(St+1, t+1))

where q̂πe : S×A×{0, ..., L−1} → R is any estimate of qπe , v̂πe : S×{0, ..., L−1} → R

is the expected value of q̂πe : v̂πe(s, t) = E[q̂πe(s,A, t)|A ∼ πe] and v(SL, L) := 0.

Intuitively, DR is replacing part of the randomness of a PDIS estimate with the

known expected return under the approximate model. The batch DR estimator is

then the mean of the DR return over all trajectories in D:

DR(πe,D, q̂πe , v̂πe) =
1

m

m∑
i=1

DR(πe, Hi, πb, q̂
πe , v̂πe).

To understand how DR can incorporate a model and remain unbiased we

briefly describe control variates which are central to the derivation provided by

Thomas and Brunskill (2016a). If we wish to estimate E[X] for a random variable
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X we can obtain a lower variance estimator by estimating the random variable

Z = X − Y + E[Y ] instead; Y is a second random variable, with known expectation,

termed a control variate. Since E[Z] = E[X]−E[Y ]+E[Y ] = E[X] this new estimator

is unbiased. The variance of Z is Var[Z] = Var[X] + Var[Y ]− 2 Cov[X,Y ]. Provided

2 Cov[X,Y ] > Var[Y ] then the variance of Z is Var[X] + Var[Y ] − 2 Cov[X,Y ] <

Var[X]. DR is able to incorporate a model yet remain free of model bias because

the model value function only serves as a control variate which changes the variance

of the PDIS estimate.

The DR estimator is an off-policy estimator and can be used with data

generated by any policy. When the method is used on-policy, we will refer to the

DR estimator as the advantage-sum estimator (ASE) as it has appeared previously

in the literature under this name (Zinkevich et al., 2006; White and Bowling, 2009;

Veness et al., 2011):

ASE(πe,D, q̂πe , v̂πe) =
1

m

m∑
i=1

(
v̂πe(Si0, 0) +

L−1∑
t=0

γtδit

)

where δit := Rit− q̂πe(Sit , Ait, t) +γv̂πe(Sit+1, t+ 1). To the best of our knowledge, ASE

was developed independently from the DR estimator and takes the name advantage-

sum due to its connection to the advantage function in reinforcement learning, i.e.,

the difference q̂πe(s, a, t)− v̂πe(s, t).

Finally, we can further reduce the variance of the DR estimator by replacing

the weights
ρit
m with

ρit∑m
j=1 ρ

j
t

as done by weighted importance sampling. This estimator

is called the weighted doubly robust (WDR) estimator (Thomas and Brunskill, 2016a)
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and is defined as:

WDR(πe,D, q̂πe , v̂πe) =

m∑
i=1

L−1∑
t=0

ρit∑m
j=1 ρ

j
t

γt
(
Rit − q̂πe(Sit , Ait, t) + γv̂πe(Sit+1, t+ 1)

)
+

1

m

m∑
i=1

v̂πe(Si0, 0).

WDR has lower variance than DR at the cost of bias from the normalized importance

weights. Like DR, WDR is consistent (Thomas and Brunskill, 2016a).

2.3 Policy Improvement

The primary goal of reinforcement learning research is designing algorithms that

address the problem of policy improvement. In this dissertation, we define policy

improvement as the problem of finding the policy, π, that maximizes v(π,M) for a

target environment M.

In this dissertation, we assume that π is parameterized by a vector θ and de-

note the parameterized policy as πθ. Given this representation and policy parameters,

θ, the goal of a step of policy improvement is to find θ′, such that v(πθ′) > v(πθ).

Policy improvement algorithms typically rely on evaluating the effects of taking

different actions and then changing θ so that πθ puts more probability mass on

actions that lead to higher returns.

Many of the same techniques used for policy value estimation can be adapted

for use within policy improvement algorithms. Thus, efficient and effective policy

value estimation can lead to more efficient and effective policy improvement. For this

reason, even though policy improvement is the ultimate goal, we focus on improving

policy value estimation throughout much of this dissertation.

As in policy value estimation, policy updates can be made on-policy or

off-policy depending on how data is collected to compute the update.
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Batch Policy Gradient Reinforcement Learning

One common class of reinforcement learning algorithms is the class of batch policy

gradient methods. Contributions 2 and 4 apply to batch policy gradient learning

and thus we briefly introduce this class of methods here.

Policy gradient methods learn a (locally) optimal policy by updating the

policy parameters along the gradient of v with respect to θ. This gradient can be

analytically derived as:

∂

∂θ
v(πθ) = E

[
L−1∑
t=0

∂

∂θ
log πθ(At|St)

L−1∑
i=t

γiRi

∣∣∣∣∣H ∼ πθ
]
. (2.1)

When the discount factor, γ, equals 1, we can also make use of the following

expression which is proportional to the true gradient:

∂

∂θ
v(πθ) ∝ E

[
qπθ(S,A, ·) ∂

∂θ
log πθ(A|S)

∣∣∣∣S ∼ dπθ , A ∼ πθ] (2.2)

where dπθ(s) is the distribution of states observed when running πθ in M and

qπθ(S,A, ·) is the expected sum of rewards until the end of the episode. Policy

gradient methods multiply gradient estimates by constant step-size parameter and

thus only the right gradient direction is needed to improve πθ. Thus either (2.1) or

(2.2) can be used in batch policy gradient learning.

Since the expectations in 2.1 and 2.2 depend on the unknown environment

and return probabilities (via P , dπθ , or qπθ), the gradient is typically approximated

with sampling. We detail how this estimation is done for (2.2).

Let T = {(Sj , Aj)}mj=1 be a set of m state-action pairs observed while following

πθ in the environment. The Monte Carlo batch policy gradient estimator is defined

as:
∂

∂θ
v(πθ) ≈ gmc(T ) =

1

m

m∑
j=1

q̂πθ(Sj , Aj , ·)
∂

∂θ
log πθ(Aj |Sj) (2.3)
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where q̂πθ(s, a, ·) is an estimate of the discounted sum of rewards remaining in the

episode, qπθ(s, a, ·).6 For sufficiently large m, the Monte Carlo estimator approxi-

mately weights each q̂πθ(s, a, ·) ∂
∂θ log πθ(a|s) by the probability dπθ(s)πθ(a|s) and

gmc(T ) closely approximates ∂
∂θv(πθ). While this estimator is known to have high

variance, the policy gradient and its Monte Carlo approximation form the basis

for many other methods that give strong performance. In particular, batch policy

gradient methods include reinforcement learning algorithms that can obtain high

performance on complex tasks (e.g., Schulman et al. (2017); Wang et al. (2016); Gu

et al. (2017b)). Algorithm 1 shows pseudocode for a generic batch policy gradient

method.

Algorithm 1 Generic Batch Policy Gradient Method
Input: Initial policy parameters, θ0, batch size m, a step-size for each iteration, αi,
and number of iterations n.
Output: Optimized policy parameters θn.
1: for all i = 0 to n do
2: Ti = Sample m steps: (S,A) ∼ πθi

3: gmc ← 1
m

m∑
j=1

q̂πθ (Sj , Aj , ·)
∂

∂θ
log πθi(Aj |Sj)

4: θi+1 = θi + αi · gmc
5: end for
6: Return θn

Batch policy gradient algorithms usually share the general iterative steps:

1. Collect m state-action pairs from the environment by running the current

policy πθi. We will call the set of these state-action pairs Ti.

2. Use Ti to compute q̂πθi(S,A, ·) for all S,A that occur in Ti.

3. Approximate ∂
∂θv(πθi) with (2.3) using Ti and the q̂πθi values.

4. Set θi+1 = θi+αigmc(Ti) where αi is a step-size that may vary across iterations.

6A simple way to obtain q̂π(s, a, ·) is to use the observed sum of discounted rewards following
the occurrence of a in s. This method provides an unbiased estimate of qπ(s, a, ·) and is the method
we use throughout this dissertation.
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The exact implementation of any of these steps can vary from method to method. For

example, Williams (1992) uses q̂πθ(s, a, t) =
∑L−1

t′=t γ
t′rt′ to estimate qπθ while Sutton

et al. (2000a) fit a linear function approximator, q̂w, and use it as the estimate of qπθ .

It is also common to use the advantage function, âπ(s, a, t) = q̂π(s, a, t)− v̂π(s, t), in

place of q̂π(s, a, t) where v̂π(s, t) = E[q̂π(s,A, t)|A ∼ π]. Replacing q̂π with âπ leaves

the gradient unchanged but may reduce variance as v̂π serves as a control variate for

q̂π (Greensmith et al., 2004; Williams, 1992).

2.4 Summary

In this chapter, we have introduced the fully observable, finite-horizon, and episodic

reinforcement learning setting and the common notation that we will use throughout

this dissertation. We have also introduced two reinforcement learning sub-problems:

policy value estimation and policy improvement. In the following chapters we will

introduce the contributions of this dissertation and describe their significance to

addressing these two sub-problems.
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Chapter 3

Collecting Data for Off-policy

Policy Value Estimation

In this chapter, we consider how a reinforcement learning agent should collect data

for off-policy value estimation of a fixed evaluation policy. Specifically, we consider

the off-policy value estimation technique of importance sampling and consider how to

collect data (i.e., choose the behavior policy) for low variance importance sampling

estimates of a policy’s value. We introduce a methodology for learning a behavior

policy that collects data for such low variance estimates.7

Importance sampling (introduced in Section 2.2.3.1) re-weights returns ob-

served while executing the behavior policy, πb, such that they are unbiased estimates

of the performance of the evaluation policy, πe. Presently, importance sampling is

usually used when off-policy data is already available or when executing the evalua-

tion policy is impractical. In these situations – where πb is dictated by circumstance –

importance sampling estimates often have high variance (Thomas et al., 2015a). For

this reason, an implicit assumption in the RL community has generally been that

7This chapter contains work that was done in collaboration with Philip Thomas and Scott
Niekum and previously published at ICML 2017 (Hanna et al., 2017b).
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on-policy policy value estimation is more accurate when it is feasible. Contribution

1 of this thesis is to show how appropriate selection of the behavior policy can lead

to lower variance importance-sampling-based policy value estimates than on-policy

estimates.

In Section 9.1 we will discuss related literature to choosing the behavior

policy for importance sampling in reinforcement learning. Here, we note that the

algorithm we introduce in this chapter is an adaptive importance sampling algorithm

(Rubinstein, 1997; Arouna, 2004). Prior approaches to adaptive importance sampling

in reinforcement learning have considered adapting the MDP transition dynamics

while we consider adapting the behavior policy (Ciosek and Whiteson, 2017; Desai

and Glynn, 2001; Frank et al., 2008).

3.1 Incremental Policy Value Estimation

This section poses the policy value estimation problem in an incremental, episodic

setting. We are given an evaluation policy, πe, for which we would like to estimate

v(πe). We assume πe is parameterized by θe and we have access to θe. At iteration

i, we sample a single trajectory Hi with a policy πθi and add {Hi, πθi} to a set D.

We use Di to denote the set at iteration i. A method that always (i.e., ∀i) chooses

θi = θe is on-policy; otherwise, the method is off-policy. A policy value estimation

method, PE, uses D to estimate v(πe), i.e., PE(πe,D) is a scalar-valued estimate

of v(πe). Our goal is to design a policy value estimation algorithm that produces

estimates with low MSE at the ith iteration:

MSE[PE] = E
[
(PE(πe,D)− v(πe))

2
∣∣∣H0 ∼ πθ0 , ...,Hi ∼ πθi

]
.

We focus on selecting the behavior policy for unbiased estimators of v(πe) and

leave behavior policy selection for biased estimators to future work. For unbiased
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estimators, minimizing variance is equivalent to minimizing MSE.

We use importance sampling for unbiased estimates of v(πe). We first de-

scribe the theoretical potential for variance reduction with an appropriately selected

behavior policy. In general this policy will be unknown. Thus, we introduce a policy

value estimation sub-problem – the behavior policy search problem – solutions to

which will adapt the behavior policy to provide lower mean squared error policy

performance estimates.

3.2 The Optimal Variance Behavior Policy

We first observe that, in MDPs with deterministic P and d0, an appropriately

selected behavior policy can lower the variance of importance sampling to zero. This

observation motivates the idea that off-policy policy value estimation can have lower

variance than on-policy policy value estimation. While this observation has been

made for importance sampling outside of RL (Rubinstein and Kroese, 2016), we

show here that a zero-variance policy is possible for MDPs with deterministic P and

d0 and any evaluation policy, under the assumption that all returns are either all

positive or all negative. These assumptions are only made to illustrate the potential

for variance reduction with an appropriately selected behavior policy. In the following

section we describe how an initial policy can be adapted towards a minimal variance

behavior policy even when the MDP is stochastic and the returns have mixed signs.

Let wπ(H) :=

L−1∏
t=0

π(At|St), i.e., the probability of taking the sequence of

actions observed in trajectory H conditioned on the observed states. Consider a

behavior policy πb
? such that for any trajectory, H:

v(πe) = IS(πe, H, πb
?) = g(H)

wπe(H)

wπb?(H)
.
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Rearranging the terms of this expressions yields:

wπb?(H) = g(H)
wπe(H)

v(πe)
.

Thus, if we can select πb
? such that the probability of observing any H ∼ πb? is g(H)

v(πe)

times the likelihood of observing H ∼ πe then the IS estimate has zero variance with

only a single sampled trajectory; regardless of the value of g(H), the importance

weight under πb
? will scale g(H) exactly to v(πe) and the importance-sampled return

will equal v(πe).

Unfortunately, such a zero variance behavior policy depends on the unknown

value v(πe) as well as the unknown reward function r (via g(H)). Thus, while there

exists an optimal variance behavior policy for IS – which is not πe – in practice we

cannot analytically determine πb
?. Additionally, πb

? may be unrepresentable by any

θ in our policy class.

3.3 The Behavior Policy Search Problem

Since the behavior policy with zero variance cannot be analytically determined (even

when it exists) we instead introduce the behavior policy search (BPS) problem for

finding πb that lowers the MSE of estimates of v(πe). A BPS problem is defined by

the inputs:

1. An evaluation policy πe with policy parameters θe.

2. An off-policy policy value estimation algorithm, OPE(πe, H, πθ), that takes

a trajectory, H ∼ πθ, or, alternatively, a set of trajectories, and returns an

estimate of v(πe).

A BPS solution is a policy, πθb , that generates trajectories, H, such that

OPE(πe, H, πθb) has lower MSE than OPE(πe, H, πe). Algorithms for this prob-
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lem are BPS algorithms.

Recall that we consider an incremental policy value estimation setting where

at each iteration we can select a behavior policy to collect a trajectory and add this

trajectory to a dataset, D. At each iteration, we use all trajectories in D to estimate

v(πe). At the ith iteration, a BPS algorithm selects a behavior policy that will be

used to generate a trajectory, Hi. The policy value estimation algorithm, OPE, then

estimates v(πe) using all trajectories in D. Naturally, the selection of the behavior

policy depends on how a policy value estimation algorithm estimates v(πe).

In a BPS problem, the ith iteration proceeds as follows. First, given all of

the past behavior policies, {πθj}
i−1
j=0, and the resulting trajectories, {Hj}i−1

j=0, the

BPS algorithm must select θi. The policy πθi is run for one episode to generate

the trajectory Hi. Then the BPS algorithm uses OPE to estimate v(πe) given the

available data, D := {(Hj , πθj )}ij=0.

One natural question is: if we are given a limit on the number of trajectories

that can be sampled, is it better to “spend” some of our limited trajectories on BPS

instead of using on-policy estimates? The answer to this question depends on how we

define “better.” In terms of sample efficiency, adapting the behavior policy will provide

a more accurate estimate. Since each OPE(πe, Hi, πθi) is an unbiased estimator

of v(πe), we can use all sampled trajectories to compute OPE(πe,D). Provided

for all iterations, the variance of OPE with πθi is less than that of OPE with πe

(i.e., on-policy policy value estimation) then a BPS algorithm will be guaranteed to

achieve lower MSE than an on-policy policy value estimation, showing that it is, in

fact, worthwhile to do so. This claim is supported by our empirical study.

On the other hand, adapting the behavior policy increases the computational

complexity of estimating v(πe). The exact increase will depend on the behavior

policy search algorithm used, however, it seems unlikely that a behavior policy search

algorithm will match the simplicity and computational efficiency of simply running
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the evaluation policy. Since this dissertation focuses on data efficiency, we focus on

sample efficiency. However, practitioners must decide which is more important for a

particular application.

3.4 Behavior Policy Gradient Theorem

We now introduce the main algorithmic component of Contribution 1: an analytic

expression for the gradient of the mean squared error of the importance sampling

estimator and a stochastic gradient descent algorithm that adapts πθ to minimize

the MSE between the importance sampling estimate and v(πe). Our algorithm –

behavior policy gradient (BPG) – begins with on-policy estimates and adapts the

behavior policy with gradient descent on the MSE with respect to θ. The gradient

of the MSE with respect to the policy parameters is given by the following theorem:

Theorem 3.1. Behavior Policy Gradient Theorem

∂

∂θ
MSE

[
IS(πe, H, πθ)

]
= E

[
− IS(πe, H, πθ)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof. See Appendix C.1 for full proof.

The proof of Theorem 3.1 relies on the fact that the MSE of an estimator

is the sum of its variance and the square of its bias. Since importance sampling is

unbiased, its MSE is equal to its variance. Thus, the gradient of the MSE given by

Theorem 3.1 is also the gradient of the variance which can be estimated without

knowledge of v(πe). Full details of this derivation are included in Appendix C.1.

BPG uses stochastic gradient descent in place of exact gradient descent:

replacing the expectation in Theorem 3.1 with an unbiased estimate of the true

gradient. In theory, the single trajectory Hi is sufficient for an unbiased estimate

of this gradient. In our experiments, we sample a batch, Bi, of k trajectories with
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πθi to lower the variance of the gradient estimate at iteration i. In the BPS setting,

sampling a batch of trajectories is equivalent to holding θ fixed for k iterations and

then updating θ with the k most recent trajectories used to compute the gradient

estimate.

Full details of BPG are given in Algorithm 2. At iteration i, BPG samples a

batch, Bi, of k trajectories with πθi and adds {(Hi+j , πθi)
k
j=1} to data set Di (Lines

4-5). Then BPG updates θi with an empirical estimate of Theorem 3.1 (Line 6).

After n iterations, the BPG estimate of v(πe) is:

IS(πe,Dn) =
1

n · k
∑

{H,πθ}∈Dn

IS(πe, H, πθ).

Algorithm 2 Behavior Policy Gradient
Input: Evaluation policy parameters, θe, batch size k, a step-size for each iteration,
αi, and number of iterations n.
Output: Final behavior policy parameters θn and the IS estimate of v(πe) using all
sampled trajectories.
1: θ0 ← θe
2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi

5: Di+1 = Di ∪ Bi

6: θi+1 = θi + αi
k

k∑
j=1

IS(πe, hj , πθ)2
L−1∑
t=0

∂

∂θ
log πθi(a

j
t |s

j
t)

7: end for
8: Return θn, IS(πe,Dn)

Given that the gradient descent step-size parameters are consistent with stan-

dard gradient descent convergence conditions, BPG will converge to a behavior policy

that locally minimizes the variance.8 At best, BPG converges to the globally optimal

behavior policy within the parameterization of πe. Since the parameterization of πe

8Gradient descent converges when the step-size at iteration i, αi, is chosen such that

∞∑
i=0

αi =∞

and

∞∑
i=0

α2
i <∞ (Bertsekas and Tsitsiklis, 2000).
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determines the class of representable distributions it is possible that the theoretically

optimal variance behavior policy is unrepresentable under this parameterization.

Nevertheless, a suboptimal behavior policy still yields lower variance estimates of

v(πe), provided it decreases variance compared to on-policy returns.

Though IS is an unbiased estimator, the estimate returned by Algorithm 2

is not necessarily unbiased since trajectories are non-i.i.d. Nevertheless, we show in

Appendix C.3 that the estimate returned by Algorithm 2 is unbiased.

3.4.1 Control Variate Extension

In cases where an approximate model of the environment is available, we can further

lower variance by adapting the behavior policy of the doubly robust estimator (Jiang

and Li, 2016; Thomas and Brunskill, 2016a). The Doubly Robust (DR) estimator

computes the average difference between the observed importance-sampled rewards

and the predicted expected reward under a model of the environment’s transition

and reward function. Provided the expected reward predictions are correlated with

the true rewards, DR has lower variance than using the importance-sampled rewards

alone (See Section 2.2.3.3 for full details of the DR estimator).

We show here that we can adapt the behavior policy to lower the mean

squared error of DR estimates. We denote this new method DR-BPG for doubly

robust behavior policy gradient.

Let wπ,t(H) =
∏t
i=0 π(At|St) and v̂πe and q̂πe be the state and action value

functions of πe in the approximate model. Recall from Section 2.2.3.3 that the DR

estimator for a single trajectory is:

DR(πe, H, πθ, q̂
πe , v̂πe) := v̂(S0, 0) +

L−1∑
t=0

wπe,t
wπθ ,t

(Rt − q̂πe(St, At, t) + v̂πe(St+1, t+ 1)).

We can reduce the mean squared error of DR with gradient descent using
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unbiased estimates of the gradient given by the following corollary to Theorem 3.1

Corollary 3.1.

∂

∂θ
MSE [DR(πe, H, πθ, q̂

πe , v̂πe)] = E[(DR(πe, H,θ, q̂
πe , v̂πe)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)(

L−1∑
t=0

γtδt
wπe,t

wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))]

where δt = Rt − q̂πe(St, At, t) + v̂πe(St+1, t + 1) and the expectation is taken over

H ∼ πθ.

Proof. See Appendix C.1.3 for the full proof.

The first term of ∂
∂θMSE is analogous to the gradient of the importance-

sampling estimate with IS(πe, H,θ) replaced by DR(πe, H,θ, q̂
πe , v̂πe). The second

term accounts for the covariance of the DR terms.

We can obtain the MSE gradient for PDIS as the special case of Corollary

3.1 where q̂πe and v̂πe are equal to zero for all (s, a) pairs. We provide the expression

for this gradient in Appendix C.1.4.

In practice, DR has been noted to perform best when all trajectories are used

to estimate the model and then also used to estimate v(πe) (Thomas and Brunskill,

2016a). However, for DR-BPG, updating the model as πθ is learned will change

the the surface of the MSE objective we seek to minimize and thus DR-BPG will

only converge once the model stops changing. Computing the model from the same

data used in the DR estimate also violates assumptions made for the theoretical

analysis of DR (Thomas and Brunskill, 2016a). In our experiments, we consider

both a changing and a fixed model.

3.4.2 Connection to REINFORCE

BPG is closely related to existing work in batch policy gradient RL (c.f., Sutton et al.
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(2000a)) and we draw connections between one such method and BPG to illustrate

how BPG changes the distribution of trajectories. The REINFORCE algorithm

(Williams, 1992) attempts to maximize v(πθ) through gradient ascent on v(πθ) using

unbiased estimates of the gradient of v(πθ):

∂

∂θ
v(πθ) = E

[
g(H)

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Intuitively, REINFORCE increases the probability of all actions taken during H as

a function of g(H). This update increases the probability of actions that lead to

high return trajectories. BPG can be interpreted as REINFORCE where the return

of a trajectory is the square of its importance-sampled return. Thus BPG increases

the probability of all actions taken along H as a function of IS(πe, H,θ)2. The

magnitude of IS(πe, H,θ)2 depends on two qualities of H:

1. The magnitude of g(H)2.

2. The relative likelihood of H under πe compared to πθ (i.e.,
∏L−1
t=0

πe(At|St)
πθ(At|St)).

These two qualities demonstrate a balance in how BPG changes trajectory

probabilities. Increasing the probability of a trajectory under πθ will decrease

IS(πe, H,θ)2 and so BPG increases the probability of a trajectory when g(H)2

is large enough to offset the decrease in IS(πe, H,θ)2 caused by decreasing the

importance weight.

3.5 Empirical Study

This section presents an empirical study of variance reduction through behavior

policy search. Our experiments are principally designed to answer the question,

“Can behavior policy search with BPG reduce policy value estimation MSE compared
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to on-policy estimates in both tabular and continuous domains?” We address this

question by evaluating BPG in three domains.

3.5.1 Empirical Set-up

We briefly describe our experimental domains here; full details are provided in

Appendix F.1.

The first domain is a 4x4 Grid World with a terminal state with reward 10 at

(3, 3), a state with reward −10 at (1, 1), a state with reward 1 at (1, 3), and all other

states having reward −1. Policies are represented with a state-dependent soft-max

distribution over actions. In this domain we can study BPG without concern of

whether or not an improved behavior policy is representable in our class of function

approximator.

We obtain two evaluation policies by applying the REINFORCE algorithm

(Williams, 1992) to the task, starting from a policy that selects actions uniformly at

random. We then select one evaluation policy, π1, from the early stages of learning –

an improved policy but still far from having converged – and one after learning that

has almost converged, π2. We run our main experiments once with πe := π1 and a

second time with πe := π2.

Our second and third tasks are the continuous control Cart Pole Swing Up

and Acrobot tasks implemented within RLLAB (Duan et al., 2016). These domains

require that BPG optimize the behavior policy within a given class of function

approximator. In both domains, the evaluation policy is a neural network that maps

the state to the mean of a Gaussian distribution. The specific evaluation policies are

obtained by partially optimizing randomly initialized policies using the trust-region

policy optimization algorithm (Schulman et al., 2015a).

In all domains we run multiple trials where each trial consists of a fixed number

of iterations. At each iteration, each algorithm collects a batch of trajectories and

39



computes a new estimate of v(πe). All algorithms have access to the same number

of trajectories at the same iteration across trials.

3.5.2 Empirical Results

We now present our empirical results.

3.5.2.1 Grid World

Figure 3.1 compares BPG to the on-policy Monte Carlo estimator for both Grid

World policies, π1 and π2. At each iteration, each method collects 100 additional

trajectories. BPG uses a step-size, α, of 5× 10−6. Our main point of comparison is

the mean squared error (MSE) of both estimates at iteration i over 100 trials. For

π1, BPG significantly reduces the MSE of on-policy estimates (Figure 3.1a). For π2,

BPG also reduces MSE, however, it is only a marginal improvement.

At the end of each trial we used the final behavior policy to collect 100 more

trajectories and estimate v(πe). In comparison to a Monte Carlo estimate with 100

trajectories from π1, MSE is 85.48% lower with this improved behavior policy. For

π2, the MSE is 31.02% lower. This result demonstrates that BPG can find behavior

policies that substantially lower MSE.

To understand the disparity in performance when πe changes, we plot the

distribution of returns under each πe (Figures 3.2b and 3.2c). These plots show the

variance of the returns sampled by π1 is much higher; π1 sometimes samples returns

with twice the magnitude of any sampled by π2. To quantify the decrease in variance

for BPG, we also measure and plot the variance of IS(πe, H, πθi) for each of π1 and

π2 (Figure 3.2a). The high initial variance when πe is π1 means there is much more

room for BPG to improve the behavior policy.
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(a) Results with πe := π1 (b) Results with πe := π2

Figure 3.1: Grid World experiments when πe is a partially optimized policy, π1,
(3.1a) and a converged policy, π2, (3.1b). Results are averaged over 100 trials of 1000
iterations with a shaded region representing a 95% confidence interval. The y-axis
shows the mean squared error and the x-axis shows the iteration number. Axes are
log-scaled. In both instances, BPG lowers MSE more than on-policy Monte Carlo
returns (statistically significant, p < 0.05).

3.5.2.2 Step-Size Sensitivity

BPG requires setting a step-size parameter for the stochastic gradient descent update.

We evaluated BPG under different settings of this parameter to determine robustness

to how the step-size is set. Figure 3.3 shows variance reduction for the tested settings.

This figure show that BPG can be robust to different settings of the step-size, however,

for particularly large step-sizes, the algorithm may diverge.

3.5.2.3 Continuous Control

Figure 3.4 shows reduction of MSE on the Cart Pole Swing Up and Acrobot domains.

Each method collects 500 trajectories at each iteration and BPG uses a step-size

of 5× 10−5. Again we see that BPG reduces MSE faster than Monte Carlo value

estimation. In contrast to the discrete Grid World experiment, this experiment

demonstrates the applicability of BPG to the continuous control setting. While

41



(a) Variance Reduction

(b) Histogram of π1 Returns (c) Histogram of π2 Returns

Figure 3.2: Comparison of variance reduction between π1 and π2 in Grid World
domain. Figure 3.2a shows variance on the y-axis and iteration number on the x-axis.
These axes are log-scaled. Results are plotted for Monte Carlo value estimation with
π1 and π2 and for BPG evaluations of π1 and π2. Results are averaged over 100
trials of 1000 iterations. Figures 3.2b and 3.2c give the distribution of returns under
the two different πe.
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Figure 3.3: Step-size Sensitivity: this figure shows the effect of varying the step-size
parameter for representative settings (BPG diverged for step-size values higher than
the ones shown). The y-axis is the variance of the importance sampling estimator
and the x-axis is the iteration number. Unlike other figures in this chapter, axes are
not log-scaled. We ran BPG for 250 iterations per step-size setting and averaged
results over 5 trials.

BPG significantly outperforms Monte Carlo value estimation in Cart Pole Swing Up,

the gap is much smaller in Acrobot. This result also demonstrates that BPG (and

behavior policy search) can lower the variance of policy value estimation when the

policy must generalize across different states.

3.5.3 Control Variate Extension Results

In this section, we evaluate the combination of model-based control variates with the

behavior policy gradient algorithm. Specifically, we compare doubly robust BPG
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(a) Cart Pole Swing Up MSE (b) Acrobot MSE

Figure 3.4: Mean squared error reduction on the Cart Pole Swing Up and Acrobot
domains. The y-axis gives MSE and the x-axis is the iteration number. Axes are
log-scaled. We adapt the behavior policy for 200 iterations and average results over
100 trials. Error bars are for 95% confidence intervals.

(DR-BPG) with the Advantage-Sum Estimator (introduced in Section 2.2.3.3 and

referred to as ASE) that uses θi = θe for all i.

In these experiments we use a 10x10 stochastic Grid World where the added

stochasticity and increased size increase the difficulty of building an accurate model

from data. The layout of this Grid World is identical to the deterministic Grid World

except the terminal state is at (9, 9) and the +1 reward state is at (1, 9). When the

agent moves, it moves in its intended direction with probability 0.9, otherwise it goes

left or right with equal probability. Noise in the environment increases the difficulty

of building an accurate model from trajectories.

Since these methods require a model we construct this model in one of two

ways. The first method uses all trajectories in D to build the model and then uses the

same set to estimate v(πe) with ASE or DR. The second method uses trajectories

from the first 10 iterations to build the model and then fixes the model for the

remaining iterations. For DR-BPG, behavior policy search starts at iteration 10

under this second condition. We call the first method “Update” and the second
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(a) Control Variate MSE (b) Rare Event Improvement

Figure 3.5: 3.5a: Comparison of DR-BPG and ASE (on-policy DR) on a larger
stochastic Grid World. For the fixed model methods, the significant drop in MSE at
iteration 10 is due to the introduction of the model control variate. For clarity we
do not show error bars. The mean difference between the final estimate of DR-BPG
and ASE with the fixed model averaged over 300 trials is statistically significant
(p < 0.05); the difference between the same methods with a constantly improving
model is not. 3.5b: Varying the probability of a high rewarding terminal action
in the Grid World domain. Each point on the horizontal axis is the probability of
taking this action. The vertical axis gives the mean relative decrease in variance
after adapting θ for 500 iterations. Denoting the initial variance as Vi and the final
variance as Vf , the relative decrease is computed as

Vi−Vf
Vi

. Results are averaged over
100 trials. A 95% confidence interval region is shaded around the mean but is small.

method “Fixed.” The update method invalidates the theoretical guarantees of these

methods but learns a more accurate model. In both instances, we estimate P (s, a, s′)

as the proportion of times that the agent transitions to state s′ after taking action a

in state s. Similarly, we estimate r(s, a) as the mean reward received after taking

action a in state s.

Figure 3.5 demonstrates that combining BPG with a model-based control

variate (DR-BPG) can lead to further reduction of MSE compared to the control

variate alone (ASE). Specifically, with the fixed model, DR-BPG outperformed all

other methods. DR-BPG using the update method for building the model performed
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competitively with ASE although its MSE was not statistically significantly lower.

We also evaluate the final learned behavior policy of the fixed model variant of

DR-BPG. For a batch size of 100 trajectories, the DR estimator with this behavior

policy improves upon the ASE estimator with the same model by 56.9%.

For DR-BPG, estimating the model with all data still allowed steady progress

towards lower variance. This result is interesting since a changing model changes the

surface of our variance objective and thus gradient descent on the variance has no

theoretical guarantees of convergence. Though we do not include an experimental

study, we observed that setting the step-size, α, for DR-BPG was more challenging

for either model type. Thus while we have shown BPG can be combined with control

variates, more work is needed to produce a robust method.

3.5.4 Rareness of Event Study

Our final experiment aims to understand how the gap between on- and off-policy

variance is affected by the probability of rare events. The intuition for why behavior

policy search can lower the variance of on-policy estimates is that a well selected

behavior policy can cause rare and high magnitude events to occur. We test this

intuition by varying the probability of a rare, high magnitude event and observing how

this change affects the performance gap between on- and off-policy value estimates.

For this experiment, we use a variant of the deterministic Grid World where taking

the UP action in the initial state (the upper left corner) causes a transition to

the terminal state with a reward of +50. We use π1 from our earlier Grid World

experiments but we vary the probability, p, of choosing UP when in the initial state

so that with probability p the agent will receive a large reward and end the trajectory.

We use a constant step-size of 10−5 for all values of p and run BPG for 500 iterations.

We plot the relative decrease of the variance as a function of p over 100 trials for each

value of p. We use relative variance to normalize across problem instances. Note
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that under this measure, even when p is close to 1, the relative variance is not equal

to zero because as p approaches 1 the initial variance also goes to zero.

This experiment illustrates that as the initial variance increases, the amount

of improvement BPG can achieve increases. As p becomes closer to 1, the initial

variance becomes closer to zero and BPG barely improves over the variance of Monte

Carlo (in terms of absolute variance there is no improvement). When πe rarely takes

the high rewarding UP action (p close to 0), BPG improves policy value estimation

by increasing the probability of this action. This experiment supports our intuition

for why off-policy data collection can be preferable to on-policy data collection.

3.6 Summary

This chapter has described Contribution 1 of this dissertation. In this chapter we

introduced the behavior policy search problem in order to improve estimation of

v(πe) for a fixed evaluation policy πe. We presented an algorithm – behavior policy

gradient – for this problem which adapts the behavior policy with stochastic gradient

descent on the variance of the importance-sampling estimator. Finally, we presented

empirical results which demonstrate that BPG lowers the mean squared error of

estimates of v(πe) compared to on-policy estimates in three RL tasks.

We also extended BPG to the doubly robust estimator and showed that we

can further improve the accuracy of policy value estimation by combining behavior

policy search with control variate variance reduction. In the future, the ideas behind

BPG could be combined with additional off-policy estimators to further lower the

variance of policy value estimation. Finally, we presented an experiment showing

that the rareness of high magnitude return trajectories plays a role in how much

improvement BPG provides. In the next chapter, we show that BPG can also be

used to lower the variance of policy gradient estimates for the problem of policy

improvement in reinforcement learning.
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Chapter 4

Collecting Data for Off-Policy

Policy Improvement

In the previous chapter we showed that a properly selected behavior policy led to

significant improvements in policy value estimation. In this chapter, we show that

a properly selected behavior policy can lower the variance of batch policy gradient

policy improvement.

This chapter contributes an initial study of combining behavior policy search

with policy improvement. Specifically, we consider optimizing a behavior policy with

a behavior policy search algorithm to lower the variance of batch policy gradient

estimates. We then use this policy to collect trajectories for an importance-sampled

policy gradient estimate. Empirical results show promise for increasing the effective-

ness of batch policy gradient RL in this way. We also introduce an algorithm that

simultaneously optimizes the behavior policy to minimize variance while optimizing

a target policy to maximize the expected return. Empirical results show this method

can lead to faster policy improvement though it does so less reliably than an on-policy

learning method. Finally we discuss how adapting the behavior policy to provide

lower variance batch policy gradient estimates relates to the traditional notion of
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exploration in RL. This initial study constitutes Contribution 2 of this dissertation.9

The contribution in this chapter pertains to how an RL agent should collect

data for low variance policy gradient estimates. We survey literature related to this

question in Section 9.1. The question of how to collect data for low variance policy

gradient estimates also relates to the question of how an RL agent should collect

data to explore its environment and find an optimal policy. We do not address

the exploration question. We discuss in Section 4.5.1 that the objective of variance

reduction may be at odds with the objective of exploration.

4.1 Importance Sampled Batch Policy Gradient

In this section we introduce an off-policy version of the policy gradient expression

from Section 2.3. This expression allows us to turn on-policy batch policy gradient

methods into off-policy batch policy gradient methods.

In Section 2.3, we provided two expressions for the policy gradient. Here, we

recall the gradient expressed in terms of an expectation over trajectories:

∂

∂θ
v(πθ) = E

[
g(H)

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
. (4.1)

The simplest method that uses estimates of (4.1) to update the policy is the

REINFORCE algorithm Williams (1992). We refer to this algorithm as on-policy

REINFORCE when the gradient estimate uses trajectories collected with the current

policy πθ to estimate the gradient at θ.

As written in (4.1), the gradient must be estimated with trajectories sampled

from πθ. We can use importance sampling to generalize (4.1) to be estimated with

9This chapter contains work that was previously published at the 2018 AAAI Spring Symposium
on Data Efficient Reinforcement Learning (Hanna and Stone, 2018). It also contains unpublished
work done in collaboration with Xiang Gu.
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trajectories from any policy.

∂

∂θ
v(πθ) = E

[
IS(πθ, H, πb)

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πb
]
. (4.2)

We refer to the batch policy gradient algorithm that uses estimates of (4.2) as

off-policy REINFORCE.

The benefit of expressing the policy gradient in this form is that we can

estimate (4.2) with trajectories from any policy. The downside is that off-policy

estimates with importance sampling may have high variance if πb is not chosen

carefully. For this reason, most batch policy gradient methods in the literature are

on-policy (Schulman et al., 2017; Gu et al., 2017a).

4.2 Batch Policy Gradient Estimation with an Im-

proved Behavior Policy

The choice of πb partially determines the variance of estimates of (4.2). As in the

previous chapter, we expect that a properly selected behavior policy will decrease

estimation variance. Behavior policy search gives us a method for properly selecting

the behavior policy.

The simplest instantiation of this idea requires first learning a behavior policy

that generates data for low variance importance sampling estimates and then using

it to estimate the off-policy policy gradient which will be used to update a target

policy. Specifically, we first run BPG as described in the previous chapter. We then

use the resulting behavior policy to collect data to estimate the importance sampled

policy gradient and update the target policy.

The main limitation of this approach is that we require data to learn the

behavior policy before we collect data for policy improvement. Thus even if we

lower variance, it is unclear there is a data reduction benefit to this exact approach.
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Instead of producing a data efficient algorithm, we focus here on the question of

whether or not an optimized behavior policy can be used for more accurate gradient

estimation.

The other drawback is that the optimized behavior policy is just for the initial

target policy. The optimal behavior policy depends on the target policy. Thus, as

the target policy changes, the optimal behavior policy should change as well.

4.3 Parallel Policy Search: Towards a Full Algorithm

In the preceding section, we discussed how a properly chosen behavior policy could

lower the variance of policy gradient estimation. However, as the target policy

changes during learning, the behavior policy should also change to remain a behavior

policy that gives low variance gradient estimates for the current target policy. In

this section, we propose a method for incorporating behavior policy search into a

full batch policy gradient algorithm.

The proposed algorithm alternates between updating the target policy to

maximize expected return and updating the behavior policy to minimize the variance

of evaluating the target policy. We call this algorithm parallel policy search (PPS) and

provide pseudo-code in Algorithm 3. Parallel policy search initializes the behavior

policy to be identical to the target policy (Line 1). It then repeatedly, samples

trajectories with the behavior policy (Line 3), updates the target policy with an

unbiased estimate of the off-policy policy gradient (Line 4), and then updates the

behavior policy with an unbiased estimate of the behavior policy gradient (Line 5).

4.4 Empirical Study

In this section we conduct experiments to see whether a properly selected behavior

policy for off-policy batch policy gradient updates leads to more efficient policy
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Algorithm 3 Parallel Policy Search

input Initial policy parameters θ; Step-size α and β.
output A learned target policy parameter θ such that πθ ≈ π?θ

1: Initialize θb ← θ
2: loop
3: Sample m trajectories from behavior policy: H ∼ πθb

4: θ ← θ + α ∗ 1

m

m∑
j=1

IS(πθ, Hj , πθb)

L−1∑
t=0

∂

∂θ
log πθ(Ajt |S

j
t )

5: θb ← θb + β ∗ 1

m

m∑
j=1

IS(πθ, Hj , πθb)
2
L−1∑
t=0

∂

∂θ
log πθb(A

j
t |S

j
t )

6: end loop

improvement than on-policy batch policy gradient estimates. We design experiments

to answer the questions:

1. Does a behavior policy selected with BPG lead to more accurate estimation of

the policy gradient direction compared to on-policy estimates?

2. Can a behavior policy selected with BPG for the initial target policy improve

learning speed across multiple policy gradient updates before it must be re-

optimized for the current target policy?

3. Can off-policy PPS learn faster than an on-policy batch policy gradient method?

4.4.1 Empirical Set-up

We answer the above questions with experiments using the Cart Pole domain

implented in the OpenAI gym (Brockman et al., 2016). Both the behavior policy

and target policy are represented as a softmax distribution over actions where the

logits come from a linear combination of state variables. The initial behavior policy

is trained with BPG to minimize the variance of an importance sampling evaluation

of the initial target policy.
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4.4.1.1 Policy Improvement Step Quality

Our first experiment compares the quality of the update direction computed with

an off-policy REINFORCE method to the quality of the update direction computed

with on-policy REINFORCE. In order to make this comparison, we sample a batch

of trajectories with the initial policy and another batch with πb. We estimate the

on-policy REINFORCE gradient, the off-policy REINFORCE gradient estimated

with a behavior policy trained with BPG to evaluate the initial policy, and the

off-policy REINFORCE gradient estimated with a randomly initialized behavior

policy. We aim to identify which approach yields a gradient pointing in the direction

of highest performance improvement.

Since performance improvement is a function of both gradient direction and

gradient magnitude, we select the optimal step-size, α, for each gradient estimate.

Specifically, after estimating the gradient g, we perform a line-search over α to find

the value that maximizes v(πθ′) where θ′ = θ +αg. We begin with an initial α value

of 1× 10−4, evaluate v(πθ′), then double α, and repeat the process until v(πθ′) stops

increasing. The goal of this procedure is to avoid conflating the ability to estimate

gradient direction with the magnitude of the estimated gradient step.10 Results are

shown in Table 4.1.

4.4.1.2 Multi-step Policy Improvement

Our second experiment investigates if a behavior policy trained to evaluate the

initial policy can be used to estimate the policy gradient at other policies. For this

experiment, we collect a single set of 100 trajectories with the behavior policy and

adapt the target policy with off-policy REINFORCE for 10 iterations. We compare

to on-policy REINFORCE. Results are shown in Figure 4.1.

10An alternative procedure could be to normalize each gradient estimate and use the same step-size
for the comparison.
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4.4.1.3 Parallel Policy Search

Our final experiment compares the learning speed of parallel policy search (PPS)

and an on-policy batch policy gradient algorithm. We implement PPS within the

OpenAI Baselines (Dhariwal et al., 2017) implementation of trust-region policy

optimization (TRPO) (Schulman et al., 2015a). TRPO is an on-policy batch policy

gradient method that, at each iteration, adapts the step-size, α, to take as large a

step as possible subject to a constraint on the KL-divergence between the action

distribution of successive policies. In our implementation of parallel policy search,

we use the TRPO step-size selection mechanism for both behavior and target policy

updates. Full details of this approach are given in Appendix F.2.

We compare PPS to TRPO on a variant of the Cart Pole problem where we

only allow episodes to last for up to 25 time-steps. This modification simplifies the

problem by reducing the number of πθ(a|s)
πθb (a|s) factors in the full-trajectory importance

weight. Results are shown in Figure 4.2.

4.4.2 Empirical Results

We now present the results of these experiments.

4.4.2.1 Policy Improvement Step Quality

Method Average Return (std.)

Random πb 54.92 (8.27)
On-policy 55.081 (1.31)

Optimized πb 68.656 (15.7)

Table 4.1: Comparison of one-step improvement in average return when estimating
the policy gradient with off-policy and on-policy REINFORCE. For each behavior
policy we sample 200 trajectories and estimate the policy gradient direction with
(4.2). We then perform a line search along the gradient to find the step-size that
maximally increases the average return of the target policy. Results are averaged
over 50 independent runs.
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Table 4.1 shows that the average gradient direction computed with off-policy

REINFORCE leads to a much larger increase in expected return. However, we also

note that the variance of the performance improvement is also higher. While in

most cases expected performance increases above the increase obtained by on-policy

REINFORCE or random policy off-policy REINFORCE, the fact that the variance

of the improvement has increased may suggest that lowering the variance of policy

value estimates does not necessarily lead to a lower variance batch policy gradient

estimate.

4.4.2.2 Multi-step Policy Improvement

Figure 4.1: Comparison of multi-step improvement in average return when estimating
the policy gradient with off-policy and on-policy REINFORCE.

Figure 4.1 demonstrates that an improved πb for importance sampling evalua-

tion can lead to faster learning compared to on-policy REINFORCE – even without

re-sampling new trajectories. However, the improvement is concentrated in the first

few iterations of policy improvement before the target policy has changed significantly.

This observation motivates the need for behavior policy adaptation as the target

policy changes.
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4.4.2.3 Parallel Policy Search

Figure 4.2a shows PPS learning faster than TRPO in the early iterations. However,

in later iterations the mean performance of PPS drops below that of TRPO. A

closer look at the individual algorithm runs, reveals that PPS can be unstable; it

sometimes learns quickly and other times fails to improve v(πe) at all. On the other

hand, TRPO learns slower but more stably across trials.

4.5 Challenges for an Efficient Algorithm

The empirical results in the preceding section demonstrate potential for parallel policy

search but also demonstrates more work is needed to improve upon state-of-the-art

on-policy algorithms. We now describe two challenges that must be overcome to

scale up parallel policy search. We leave addressing these challenges for future work

and discuss them further in Chapter 10.

4.5.1 Variance Reduction vs. Exploration

One of the central challenges of reinforcement learning is the trade-off between

exploration and exploitation. In standard policy gradient RL, we optimize a stochastic

policy where sampling in the action space provides exploration (Sutton and Barto,

1998). Parallel policy search now replaces the exploration done by the target policy

with exploration done by a policy optimized to have lower variance. Though the

optimized stochastic behavior policy will still provide exploration, it is optimized to

reduce variance – not try out new actions.

The main risk of simultaneous variance reduction and exploration is premature

convergence to a sub-optimal policy. Consider that the initial policy likely puts

very low probability on sequences of actions that lead to high return. Since these

sequences will likely go unobserved in early iterations, the behavior policy search will
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(a) Mean Performance

(b) PPS Individuals

(c) TRPO Individuals

Figure 4.2: Parallel policy search (PPS) compared to trust-region policy optimization
(TRPO) on a modified version of the Cart Pole problem. Each method is run 25
times for 350 iterations each. Figure 4.2a plots the mean performance for each
algorithm with a 95% confidence interval. Figure 4.2b plots each of the 25 PPS trials
separately. Figure 4.2c plots each of the 25 TRPO trials separately.
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be unaware of them. Adapting the behavior policy may result in taking probability

mass from these unobserved high return sequences and giving it to lower return but

observed sequences. The result is that the behavior policy may stop exploring some

potentially good actions and the target policy will never receive data to learn about

how to act in other parts of the state space. Premature convergence of the behavior

and target policy may be part of the reason that some trials of PPS converge to

poor solutions (Figure 4.2b).

4.5.2 Synchronizing Target and Behavior Policy Updates

The other main challenge is that parallel policy search involves optimizing two

policies at the same time. It is known to be difficult to tune the step-size for

policy gradient methods. Parallel policy search now requires tuning two step-size

parameters. Further complicating the problem is that the steps must be synchronized

so that the behavior policy tracks the current target policy. Too small or too large

behavior policy updates may result in a behavior policy that fails to lower variance

for the target policy at a specific iteration. The challenge of synchronizing policy

updates may also be part of why PPS sometimes fails to learn the optimal policy in

our experiments.

4.6 Summary

We have presented preliminary steps towards a batch policy gradient algorithm

that uses off-policy data for more efficient updates. We have described how the

behavior policy search algorithm introduced in Chapter 3 could be adapted to the

policy improvement setting. We then presented experiments showing that a carefully

selected behavior policy can improve the step direction of the REINFORCE method

and that this same behavior policy can be used for multiple updates before it performs

worse than an on-policy update. These results indicate that research into how to
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adapt the behavior policy as the policy being learned changes has the potential to

further improve the data efficiency of batch policy gradient reinforcement learning.

We also introduced an algorithm – parallel policy search – that simultaneously adapts

the behavior policy to lower variance while optimizing the target policy to increase

expected return. Experiments showed PPS has promise for increasing the learning

speed of batch policy gradient RL but also showed more work is needed for a robust

algorithm. These experiments are an initial study of using a behavior policy search

algorithm for more efficient policy improvement and constitute Contribution 2 of

this dissertation.
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Chapter 5

Weighting Data for Off-policy

Policy Value Estimation

In this chapter, we consider how an RL agent should weight already-sampled data for

off-policy policy value estimation with a fixed evaluation policy. Specifically, we first

note that the off-policy policy value estimation technique of importance sampling

may suffer from what we term sampling error – actions are observed in a proportion

different than their true probability under the behavior policy. This sampling error

degrades the data efficiency of off-policy policy value estimation. We then introduce

a family of estimators that corrects for such sampling error to produce more accurate

off-policy policy value estimation.11 In contrast to Chapter 3 where we asked how

to collect data for accurate policy value estimation, in this chapter, we ask how to

weight already-sampled data for the most accurate policy value estimate. This new

family of estimators is Contribution 3 of this dissertation.

The estimators we introduce in this chapter are importance sampling estima-

tors that first estimate the policy that generated the data and then use this estimated

11This chapter contains work that was done in collaboration with Scott Niekum and previously
published at ICML 2019 (Hanna et al., 2019).
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policy as the behavior policy in an importance sampling estimate. Such methods are

typically motivated by settings where the behavior policy, πb is unknown and thus

importance sampling could not be applied. In such settings it may be natural to

assume that importance sampling will perform worse because it is using an estimate

in place of the “correct” behavior policy probability. In this chapter we show that

using the estimate improves the MSE of the importance sampling estimator. Even

when πb is known, our new methods provide more accurate policy value estimates

than the importance sampling techniques described in Chapter 2. Furthermore,

though this dissertation focuses on off-policy data, our new methods lead to more

accurate policy value estimation in the on-policy setting as well.

Estimating the behavior policy has been studied before in contextual bandits

(Narita et al., 2019; Xie et al., 2018) and contextless bandits (Li et al., 2015). We

provide a more in depth survey of past work in Section 9.2. For now, we note that

our work is the first introduction of such a method in the finite-horizon, episodic

MDP setting.

Throughout this chapter we will refer to the importance sampling estimator

(as introduced in Section 2.2.3.1) as the ordinary importance sampling (OIS) estimator

and the ratio πe(a|s)
πb(a|s) as the ordinary importance sampling weight. This change in

terminology will allow us to distinguish between importance sampling using the true

behavior policy and our new family of estimators – regression importance sampling

estimators – that use importance sampling with an estimated behavior policy.

5.1 Limitations of Ordinary Importance Sampling

The ordinary importance sampling estimator may have high variance when the

behavior policy is not chosen to minimize variance (as done in Chapter 3). A number

of importance sampling variants have been proposed to address the high variance

problem, however, all such variants use the OIS weight. The common reliance on
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OIS weights suggests an implicit assumption by the RL community that OIS weights

are the correct way to address the data distribution shift problem found when

using off-policy data. While much research has gone into lowering the variance of

importance sampling for off-policy reinforcement learning, one aspect of estimation

that is rarely questioned is whether the ordinary importance weight is the correct

way to re-weight off-policy data. Hence, when an application requires estimating an

unknown πb in order to compute importance weights, the application is implicitly

assumed to only be approximating the desired weights.

However, OIS weights themselves are sub-optimal in at least one respect:

the weight of each trajectory in the OIS estimate is inaccurate unless we happen

to observe each trajectory according to its true probability. When the empirical

Figure 5.1: Sampling error in a discrete environment with three possible trajectories.
Trajectories are sampled i.i.d. with the given probabilities and are observed in the
given proportion. An OIS policy value estimate will place too much weight on
Trajectory A and Trajectory C and too little weight on Trajectory B.

frequency of any trajectory is unequal to its expected frequency under πb, the OIS

estimator puts either too much or too little weight on the trajectory. We refer to error

due to some trajectories being either over- or under-represented in D as sampling

error. Figure 5.1 demonstrates the phenomenon of sampling error in a discrete MDP.

Sampling error may be unavoidable when we desire an unbiased estimate of v(πe).
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However, correcting for it by properly weighting trajectories will, in principle, give

us a lower mean squared error estimate.

The problem of sampling error is related to a Bayesian objection to Monte

Carlo integration techniques: OIS ignores information about how close trajectories

in D are to one another (O’Hagan, 1987; Ghahramani and Rasmussen, 2003). This

objection is easiest to understand in deterministic and discrete environments though it

also holds for stochastic and continuous environments. In a deterministic environment,

additional samples of any trajectory, h, provide no new information about v(πe) since

only a single sample of h is required to know how to weight g(h) in the estimate.

However, the more times a particular trajectory appears, the more weight it receives

in an OIS estimate even though the correct weighting of g(h), Pr(h|πe), is known

since πe is known. In stochastic environments, it is reasonable to give more weight

to recurring trajectories since the recurrence provides additional information about

the unknown state-transition probabilities. However, ordinary importance sampling

also relies on sampling to approximate the known policy probabilities.

Finally, we note that the problem of sampling error applies to any variant

of importance sampling using OIS weights, e.g., weighted importance sampling

(Precup et al., 2000), per-decision importance sampling (Precup et al., 2000), the

doubly robust estimator (Jiang and Li, 2016; Thomas and Brunskill, 2016a), and the

MAGIC estimator (Thomas and Brunskill, 2016a). Sampling error is also a problem

for on-policy Monte Carlo policy value estimation since the on-policy Monte Carlo

estimator is a special case of the OIS estimator when the behavior policy is the same

as the evaluation policy.

5.2 Regression Importance Sampling

In this section we introduce Contribution 3 of this dissertation: a family of estimators

called regression importance sampling (RIS) estimators that correct for sampling
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error in D by importance sampling with an estimated behavior policy. The motivation

for this approach is that, though D was sampled with πb, the trajectories in D may

appear as if they had been generated by a different policy, πD. For example, if πb

would choose between two actions with equal probability in a particular state, the

data might show that one action was selected more often than the other in that state.

Thus instead of using OIS to correct from πb to πe, we introduce RIS estimators that

corrects from πD to πe.

We assume that, in addition to D, we are given a policy class – a set of

policies – Πn where each π ∈ Πn is a distribution over actions conditioned on the

immediate preceding state and the last n states and actions preceding that state:

π : Sn+1×An → [0, 1]. The RIS(n) estimator first estimates the maximum likelihood

behavior policy in Πn given D:

πD
(n) := argmax

π∈Πn

m∑
i=1

L−1∑
t=0

log π(Ait|H i
t−n:t). (5.1)

We discuss the reasoning why estimating action probabilities conditioned on history

is interesting in Section 5.2.1 and study the choice of the n parameter in Section

5.5.2.2. The RIS(n) estimate is then the importance sampling estimate with πD
(n)

replacing πb.

RIS(n)(πe,D) :=
1

m

m∑
i=1

g(Hi)

L−1∏
t=0

πe(A
i
t|Sit)

πD(n)(Ait|H i
t−n:t)

Analogously to OIS, we refer to πe(At|St)
πD(n)(St|Ht−n:t)

as the RIS(n) weight for action

At, state St, and trajectory segment Ht−n:t. Note that the RIS(n) weights are

always well-defined since πD
(n) never places zero probability mass on any action that

occurred in D.

We have introduced RIS as a family of estimators where different RIS methods
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estimate the behavior policy conditioned on different history lengths. Among these

estimators, our primary method of study is RIS(0). For larger n, RIS(n) may be less

reliable for small sample sizes as the πD
(n) estimate will be highly peaked (it will be

1 for most observed actions.) We verify this claim empirically below. However, as

we discuss in Section 5.5.2.2, larger n may produce asymptotically better sampling

error corrections and thus asymptotically better estimates.

5.2.1 Correcting Sampling Error in Discrete Action Spaces

We now present an example illustrating how RIS corrects for sampling error in

sampled off-policy data. We make several limiting assumptions in this section with

the intention to build intuition. These assumptions are not made for our theoretical

and empirical analysis.

Consider an MDP with deterministic P and d0 and finite |S| and |A|. Let H

be the (finite) set of possible trajectories under πb and suppose that our observed

data, D, contains at least one of each h ∈ H. With finite S and A, the maximum

likelihood behavior policy can be computed with count-based estimates. We define

c(hi:j) as the number of times that trajectory segment hi:j appears during any

trajectory in D. Similarly, we define c(hi:j , a) as the number of times that action

a is observed following trajectory segment hi:j during any trajectory in D. RIS(n)

estimates the behavior policy as:

πD(a|hi−n:i) :=
c(hi−n:i, a)

c(hi−n:i)
.

Observe that both OIS and all variants of RIS can be written in one of two

forms:
1

m

m∑
i=1

wπe(Hi)

wπ(Hi)
g(Hi)︸ ︷︷ ︸

(i)

=
∑
h∈H

c(h)

m

wπe(h)

wπ(h)
g(h)︸ ︷︷ ︸

(ii)
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where wπ(h) =
∏L−1
t=0 π(at|st) and for OIS, π := πb and for RIS(n), π := πD

(n) as

defined in Equation (5.1).

If we had sampled trajectories using πD
(L−1) instead of πb, in our determin-

istic environment, the probability of each trajectory, h, would be Pr(H = h|H ∼

πD
(L−1)) = c(h)

m . Thus Form (ii) can be written as:

E

[
wπe(H)

wπ(H)
g(H)

∣∣∣∣H ∼ πD(L−1)

]
.

To emphasize what we have shown so far: OIS and RIS are both sample-

average estimators whose estimates can be written as exact expectations. However,

this exact expectation is under the distribution that trajectories were observed and

not the distribution of trajectories under πb.

Consider choosing wπ := w
(L−1)
πD as RIS(L− 1) does. This choice results in

(ii) being exactly equal to v(πe)
12 On the other hand, choosing wπ := wπb will not

return v(πe) unless we happen to observe each trajectory at its expected frequency

(i.e., πD
(L−1) = πb).

Choosing wπ to be wπD(n) for n < L− 1 also does not result in v(πe) being

returned in this example. This observation is surprising because even though we know

that the true Pr(H = h|πb) =
∏L−1
t=0 πb(at|st), it does not follow that the estimated

probability of a trajectory is equal to the product of the estimated Markovian action

probabilities, i.e., that c(h)
m =

∏L−1
t=0 πD

(0)(at|st). With a finite number of samples, the

data may have higher likelihood under a non-Markovian behavior policy – possibly

even a policy that conditions on all past states and actions. Thus, to fully correct

for sampling error, we must importance sample with an estimated non-Markovian

behavior policy. However, wπD(n) with n < L − 1 still provides a better sampling

error correction than wπb since any πD
(n) will reflect the statistics of D while πb does

12This statement follows from the importance sampling identity: E[Pr(H|πe)
Pr(H|π) g(h)|H ∼ π] =

E[g(H)|H ∼ πe] = v(πe) and the fact that we have assumed a deterministic environment.
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not. This statement is supported by our empirical results comparing RIS(0) to OIS

and a theoretical result we present in the following section that states that RIS(n)

has lower asymptotic variance than OIS for all n.

Before concluding this section, we discuss two limitations of the presented

example – these limitations are not present in our theoretical or empirical results.

First, the example lacks stochasticity in the rewards and transitions. In stochastic

environments, sampling error arises from sampling states, actions, and rewards while

in deterministic environments, sampling error only arises from sampling actions.

Neither RIS nor OIS can correct for state and reward sampling error since such a

correction requires knowledge of what the true state and reward frequencies are and

these quantities are typically unknown in the MDP policy value estimation setting.

Second, we assumed that D contains at least one of each trajectory possible

under πb. If a trajectory is absent from D then RIS(L − 1) has non-zero bias.

Theoretical analysis of this bias for both RIS(L− 1) and other RIS variants is an

open question for future analysis.

5.2.2 Correcting Sampling Error in Continuous Action Spaces

In the previous subsection, we presented an example showing how RIS corrects

for sampling error in D in deterministic and finite MDPs. Most of this discussion

assumed that the state and action spaces of the MDP were finite. Here, we discuss

sampling error in continuous action spaces. The primary purpose of this discussion

is intuition and we limit discussion to a setting that can be easily visualized. We

consider a deterministic MDP with scalar, real-valued actions, reward R : A → R,

and L = 1.

We assume the support of πb and πe is bounded and for simplicity assume the
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support to be [0, 1]. Policy value estimation is equivalent to estimating the integral:

v(πe) =

∫ 1

0
r(a)πe(a)da (5.2)

and the ordinary importance sampling estimate of this quantity with m samples

from πb is:

OIS(πe,D) =
1

m

m∑
i=1

πe(Ai)

πb(Ai)
r(Ai). (5.3)

Even though the OIS estimate is a sum over a finite number of samples, we

show it is exactly equal to an integral over a particular piece-wise function. We

assume (w.l.o.g) that the Ai’s are in non-decreasing order, (A0 <= Ai <= Am).

Imagine that we place the r(Ai) values uniformly across the interval [0, 1] so that

they divide the range [0, 1] into m equal bins. In other words, we maintain the

relative ordering of the action samples but ignore the spatial relationship between

samples. We now define piece-wise constant function r̄OIS where r̄OIS(a) = r(Ai) if a

is in the ith bin. The ordinary importance sampling estimate is exactly equal to the

integral
∫ 1

0 r̄OIS(a)da.

It would be reasonable to assume that r̄OIS(a) is approximating r(a)πe(a)

since the ordinary importance sampling estimate (5.3) is approximating (5.2), i.e.,

lim
m→∞

r̄OIS(a) = r(a)πe(a). In reality, r̄OIS approaches a stretched version of r where

areas with high density under πe are stretched and areas with low density are

contracted. We call this stretched version of r, r̄?. The integral of
∫ 1

0 r̄
?(a)da is

v(πe).

Figure 5.2a gives a visualization of an example r̄? using on-policy Monte

Carlo sampling from an example πe and linear r. In contrast to the true r̄?, the OIS

approximation to r̄, r̄OIS stretches ranges of r according to the number of samples

in that range: ranges with many samples are stretched and ranges without many

samples are contracted. As the sample size grows, any range of r will be stretched
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(a) Policy and Reward (b) 10 Sample Approximation
(c) 200 Sample Approxima-
tion

Figure 5.2: Policy values estimation in a continuous armed bandit task. Figure
5.2a shows a reward function, r, and the pdf of a policy, π, with support on the
range [0, 1]. With probability 0.25, π selects an action less than 0.5 with uniform
probability; otherwise π selects an action greater than 0.5. The reward is equal to
the action chosen. All figures show r̄?: a version of r that is stretched according to
the density of π; since the range [0.5, 1] has probability 0.75, r on this interval is
stretched over [0.25, 1]. Figure 5.2b and 5.2c show r̄? and the piece-wise r̄OIS and
r̄RIS approximations to r̄? after 10 and 200 samples respectively.

in proportion to the probability of getting a sample in that range. For example, if

the probability of drawing a sample from [a, b] is 0.5 then r̄? stretches r on [a, b] to

cover half the range [0, 1]. Figure 5.2 visualizes r̄OIS the OIS approximation to r̄?

for sample sizes of 10 and 200.

In this analysis, sampling error corresponds to over-stretching or under-

stretching r in any given range. The limitation of ordinary importance sampling can

then be expressed as follows: given πe, we know the correct amount of stretching for

any range and yet OIS ignores this information and stretches based on the empirical

proportion of samples in a particular range. On the other hand, RIS first divides by

the empirical pdf (approximately undoing the stretching from sampling) and then

multiplies by the true pdf to stretch r a more accurate amount. Figure 5.2 also

visualizes the r̄RIS approximation to r̄? for sample sizes of 10 and 200. In this figure,

we can see that r̄RIS is a closer approximation to r̄? than r̄OIS for both sample sizes.

In both instances, the mean squared error of the RIS estimate is less than that of

the OIS estimate.
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Since r may be unknown until sampled, we will still have non-zero MSE.

However the basic OIS estimate has error due to both sampling error and unknown

r values. RIS has error only due to the unknown r values for actions that remain

unsampled.

5.3 Theoretical Analysis

In this section we summarize new theoretical results (full proofs appear in the

appendices) as well as a connection to prior work from the multi-armed bandit

literature:

Proposition 5.1. ∀n, assuming the estimate of πD
(n) is consistent, RIS(n) is a

consistent estimator of v(πe): RIS(n)(πe,D)
a.s.−−→ v(πe).

Proof. See Appendix D.1 for a full proof.

Corollary 5.1. Let Πn
θ be a class of twice differentiable policies,

πθ(·|st−n, at−n, . . . , st). If ∃θ̃ such that πθ̃ ∈ Πn
θ and πθ̃ = πb then

VarA(RIS(n)(πe,D)) ≤ VarA(OIS(πe,D, πb))

where VarA denotes the asymptotic variance.

Proof. This result is a corollary to Theorem 1 of Henmi et al. (2007) for general

Monte Carlo integration (see Appendix D.2 for a full proof).

We highlight that the derivation of the result by Henmi et al. (2007) includes

some o(n) and op(1) terms that may be large for small sample sizes; the lower

variance is asymptotic and we leave analysis of the finite-sample variance of RIS to

future work.

RIS is related to the REG estimator studied by Li et al. (2015). For finite

MDPs, Li et al. (2015) introduced the regression (REG) estimator and show it
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has asymptotic lower minimax MSE than OIS provided the estimator has full

knowledge of the environment’s transition probabilities. With this knowledge REG

can correct for sampling error in both the actions and state transitions. RIS(L-1) is

an approximation to REG that only corrects for sampling error in the actions. The

derivation of the connection between REG and RIS(L− 1) is given in Appendix D.3.

Finally, we also note that prior theoretical analysis of importance sampling

with an estimated behavior policy has made the assumption that πD is estimated

with different data than the data used for the policy value estimate (Dud́ık et al.,

2011; Farajtabar et al., 2018). This assumption simplifies the theoretical analysis

but makes it inapplicable to regression importance sampling as RIS estimates πD

with D.

5.4 RIS with Function Approximation

The example in Section 5.2.1 presented RIS with count-based estimation of πD. In

many practical settings, count-based estimation of πD is intractable and we must

rely on function approximation. For example, in our final experiments we learn πD

as a Gaussian distribution over actions with the mean given by a neural network.

Two practical concerns arise when using function approximation for RIS: avoiding

over-fitting and selecting the class of function approximator.

RIS uses all of the available data to both estimate πD and compute the

off-policy estimate of v(πe). Unfortunately, the RIS estimate may suffer from high

variance if the function approximator is too expressive and πD is over-fit to our

data. Additionally, if the policy class of πb is unknown, it may be unclear what is

the right function approximation representation for πD. A practical solution is to

use a validation set – distinct from D – to select an appropriate policy class and

appropriate regularization criteria for RIS. This solution is a small departure from

the previous definition of RIS as selecting πD to maximize the log likelihood on D.
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Rather, we select πD to maximize the log likelihood on D while avoiding over-fitting.

This approach represents a trade-off between robust empirical performance and a

potentially stronger sample correction by further maximizing log likelihood on the

data used for computing the RIS estimate.

5.5 Empirical Study

We now present an empirical study of the RIS estimator across several policy value

estimation tasks. Our experiments are designed to answer the following questions:

1. What is the empirical effect of replacing OIS weights with RIS weights in

sequential decision making tasks?

2. How important is using D to both estimate the behavior policy and compute

the importance sampling estimate?

3. How does the choice of n affect the MSE of RIS(n)?

With non-linear function approximation, our results suggest that the common

supervised learning approach of model selection using hold-out validation loss may

be sub-optimal for the regression importance sampling estimator. Thus, we also

investigate the question:

4. Does minimizing hold-out validation loss set yield the minimal MSE regression

importance sampling estimator when estimating πD with gradient descent and

neural network function approximation?

5.5.1 Empirical Set-up

We run policy value estimation experiments in several domains. We provide a short

description of each domain here; a complete description and additional experimental

details are given in Appendix F.3.
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• Grid World: This domain is a 4× 4 Grid World used in prior off-policy value

estimation research (Thomas, 2015; Thomas and Brunskill, 2016a). RIS uses

count-based estimation of πb. This domain allows us to study RIS separately

from questions of function approximation.

• Single Path: See Figure 5.3 for a description. This domain is small enough

to make implementations of RIS(L− 1) and the REG method from Li et al.

(2015) tractable. All RIS methods use count-based estimation of πb.

• Linear Dynamical System: This domain is a point-mass agent moving

towards a goal in a two dimensional world by setting x and y acceleration.

Policies are linear in a second order polynomial transform of the state features.

We estimate πD with ordinary least squares.

• Simulated Robotics: We also use two continuous control tasks from the

OpenAI gym: Hopper and HalfCheetah.13 In each task, we use neural network

policies with 2 layers of 64 tanh hidden units each for πe and πb.

In all domains we run repeated trials of each experiment. Except for the

Simulated Robotics domains, a trial consists of evaluating the squared error of

different estimators over an increasing data set. The average squared error over

multiple trials is an unbiased estimate of the mean squared error of each method. In

the Simulated Robotics domain, a trial consists of collecting a single batch of 400

trajectories and evaluating the squared error of different estimators on this batch.

5.5.2 Empirical Results

We now present our empirical results. Except where specified otherwise, RIS refers

to RIS(0).

13For these tasks we use the Roboschool versions: https://github.com/openai/roboschool
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Figure 5.3: The Single Path MDP. This environment has 5 states, 2 actions, and
L = 5. The agent begins in state 0 and both actions either take the agent from state
n to state n+ 1 or cause the agent to remain in state n. Not shown: If the agent
takes action a1 it remains in its current state with probability 0.5.

5.5.2.1 Finite MDP Policy Value Estimation

Our first experiment compares several importance sampling variants implemented

with both RIS weights and OIS weights in the Grid World domain. Specifically,

we use the basic IS estimator, the weighted IS estimator (Precup et al., 2000), per-

decision IS, the doubly robust (Jiang and Li, 2016), and the weighted doubly robust

estimator (Thomas and Brunskill, 2016a).

Figure 5.4a shows the MSE of the evaluated methods averaged over 100 trials.

The results show that, for this domain, using RIS weights lowers MSE for all tested

IS variants relative to OIS weights.

We also evaluate alternative data sources for estimating πD in order to

establish the importance of using D to both estimate πD and compute the value

estimate. Specifically, we consider:

1. Independent Estimate: In addition to D, this method has access to an

additional set, Dtrain. The behavior policy is estimated with Dtrain and the

policy value estimate is computed with D. Since state-action pairs in D may

be absent from Dtrain we use Laplace smoothing to ensure that the importance

weights never have a zero in the denominator.

2. Extra-data Estimate: This baseline is the same as Independent Estimate

except it uses both Dtrain and D to estimate πb. Only D is used to compute

the policy value estimate.
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Figure 5.4b shows that these alternative data sources for estimating πb decrease

accuracy compared to RIS and OIS. Independent Estimate has high MSE when

the sample size is small but its MSE approaches that of OIS as the sample size

grows. We understand this result as showing that this baseline cannot correct for

sampling error in the off-policy data since the behavior policy estimate is unrelated

to the data used in computing the value estimate. Extra-data Estimate initially

has high MSE but its MSE decreases faster than that of OIS. Since this baseline

estimates πb with data that includes D, it can partially correct for sampling error –

though the extra data harms its ability to do so. Only estimating πD with D and D

alone lowers MSE over OIS for all sample sizes.

We also repeat these experiments for the on-policy setting and present results

in Figure 5.4c and Figure 5.4d. We observe similar trends as in the off-policy

experiments suggesting that RIS can lower variance in Monte Carlo sampling methods

even when OIS weights are otherwise unnecessary.

5.5.2.2 RIS(n)

In the Grid World domain it is difficult to observe the performance of RIS(n) for

various n because of the long horizon: smaller n perform similarly and larger n

scale poorly with L. To see the effects of different n more clearly, we use the Single

Path domain. Figure 5.5 gives the mean squared error for OIS, RIS, and the REG

estimator of Li et al. (2015) that has full access to the environment’s transition

probabilities. For RIS, we use n = 0, 3, 4 and each method is run for 200 trials.

Figure 5.5 shows that higher values of n and REG tend to give inaccurate

estimates when the sample size is small. However, as data increases, these methods

give increasingly accurate value estimates. In particular, REG and RIS(4) produce

estimates with MSE more than 20 orders of magnitude below that of RIS(3) (Figure

5.5 is cut off at the bottom for clarity of the rest of the results). REG eventually

75



(a) Grid World (b) Grid World Alt.

(c) Grid World On-Policy (d) Grid World On-Policy Alt.

Figure 5.4: Grid World policy value estimation results. In all subfigures, the x-axis
is the number of trajectories collected and the y-axis is mean squared error. Axes
are log-scaled. The shaded region represents a 95% confidence interval. (a) Grid
World Off-policy Value Estimation: The main point of comparison is the RIS variant
of each method to the OIS variant of each method. (b) Grid World πD Estimation
Alternatives: This plot compares RIS and OIS to two methods that replace the true
behavior policy with estimates from data sources other than D. Subfigures (c) and
(d) repeat experiments (a) and (b) with the behavior policy from (c) and (d) as the
evaluation policy.
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Figure 5.5: Off-policy value estimation in the Single Path MDP for various n. The
x-axis is the number of trajectories in D and the y-axis is MSE. Both axes are
log-scaled. The curves for REG and RIS(4) have been cut-off to more clearly show
all methods. These methods converge to an MSE value of approximately 1× 10−31

passes the performance of RIS(4) since its knowledge of the transition probabilities

allows it to eliminate sampling error in both the actions and the environment. In

the low-to-medium data regime, only RIS(0) outperforms OIS. However, as data

increases, the MSE of all RIS methods and REG decreases faster than that of OIS.

The similar performance of RIS(L− 1) and REG supports the connection between

these methods that we discussed in Section 5.2.

5.5.2.3 RIS with Linear Function Approximation

Our next set of experiments consider continuous state and action spaces in the Linear

Dynamical System domain. RIS represents πD as a Gaussian policy with mean given

as a linear function of the state features. Similar to in Grid World, we compare

three variants of IS, each implemented with RIS and OIS weights: the ordinary IS

estimator, weighted IS (WIS), and per-decison IS (PDIS). Each method is averaged

over 200 trials and results are shown in Figure 5.6a.

We see that RIS weights lower the MSE of both IS and PDIS, while both
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(a) LDS (b) LDS Alt. Weights

Figure 5.6: Linear dynamical system results. Figure 5.6a shows the mean squared
error (MSE) for three IS variants with and without RIS weights. Figure 5.6b shows
the MSE for different methods of estimating the behavior policy compared to RIS
and OIS. Axes and scaling are the same as in Figure 5.4a.

WIS variants have similar MSE. This result suggests that the MSE improvement

from using RIS weights depends, at least partially, on the variant of IS being used.

Similar to Grid World, we also consider estimating πD with either an indepen-

dent data-set or with extra data and see a similar ordering of methods. Independent

Estimate gives high variance estimates for small sample sizes but then approaches

OIS as the sample size grows. Extra-Data Estimate corrects for some sampling

error and has lower MSE than OIS. RIS lowers MSE compared to all baselines.

5.5.2.4 RIS with Neural Networks

Our remaining experiments use the Hopper and HalfCheetah domains. RIS represents

πD as a neural network that maps the state to the mean of a Gaussian distribution

over actions. The standard deviation of the Gaussian is given by state-independent

parameters. In these experiments, we sample a single batch of 400 trajectories per

trial and compare the MSE of RIS and OIS on this batch.
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(a) Hopper (b) HalfCheetah

Figure 5.7: Figures 5.7a and 5.7b compare different neural network architectures
(specified as #-layers-#-units) for regression importance sampling on the Hopper and
HalfCheetah domain. The darker, blue bars give the MSE for each architecture and
OIS. Lighter, red bars give the negative log likelihood of a hold-out data set. Our
main point of comparison is the MSE of the architecture with the lowest hold-out
negative log likelihood (given by the darker pair of bars) compared to the MSE of
OIS.

Figure 5.7 compares the MSE of RIS for different neural network architectures.

Our main point of comparison is RIS using the architecture that achieves the lowest

validation error during training (the darker bars in Figure 5.7). Under this comparison,

the MSE of RIS with a two-hidden-layer network is lower than that of OIS in both

Hopper and HalfCheetah, though, in HalfCheetah, the difference is statistically

insignificant. We also observe that the policy class with the best validation error

does not always give the lowest MSE (e.g., in Hopper, the two hidden layer network

gives the lowest validation loss but the network with a single layer of hidden units

has ≈ 25% less MSE than the two hidden layer network). This last observation

motivates our final experiment.
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5.5.2.5 RIS Model Selection

Our final experiment aims to better understand how hold-out validation error relates

to the MSE of the RIS estimator when using gradient descent to estimate neural

network approximations of πD. This experiment duplicates our previous experiment,

except every 25 steps of gradient descent we stop optimizing πD and compute the

RIS estimate with the current πD and its MSE. We also compute the training and

hold-out validation negative log-likelihood. Plotting these values gives a picture of

how the MSE of RIS changes as our estimate of πD changes. Figure 5.8 shows these

plots for the Hopper and HalfCheetah domains.

We see that the policy with minimal MSE and the policy that minimizes

validation loss are misaligned. If training is stopped when the validation loss is

minimized, the MSE of RIS is lower than that of OIS (the intersection of the RIS

curve and the vertical dashed line in Figure 5.8. However, the πD that minimizes

the validation loss curve is not identical to the πD that minimizes MSE.

To understand this result, we also plot the mean RIS estimate throughout

behavior policy learning (bottom of Figure 5.8). We can see that at the beginning of

training, RIS tends to over-estimate v(πe) because the probabilities given by πD to

the observed data will be small (and thus the RIS weights are large). As the likelihood

of D under πD increases (negative log likelihood decreases), the RIS weights become

smaller and the estimates tend to under-estimate v(πe). The implication of these

observations, for RIS, is that during behavior policy estimation the RIS estimate will

likely have zero MSE at some point. Thus, there may be an early stopping criterion

– besides minimal validation loss – that would lead to lower MSE with RIS, however,

to date we have not found one. Note that OIS also tends to under-estimate policy

value in MDPs as has been previously analyzed by Doroudi et al. (2017).
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(a) Hopper (b) HalfCheetah

Figure 5.8: Mean squared error and estimate of the importance sampling estimator
during training of πD. The x-axis is the number of gradient descent steps. The top
plot shows the training and validation loss curves. The y-axis of the top plot is
the average negative log-likelihood. The y-axis of the middle plot is mean squared
error (MSE). The y-axis of the bottom plot is the value of the estimate. MSE is
minimized close to, but slightly before, the point where the validation and training
loss curves indicate that overfitting is beginning. This point corresponds to where
the RIS estimate transitions from over-estimating to under-estimating the policy
value.

5.6 Summary

This chapter has described Contribution 3 of this dissertation: a family of importance

sampling methods for policy value estimation, called regression importance sampling

methods, that apply importance sampling after first estimating the behavior policy

that generated the data. Notably, RIS estimates the behavior policy from the same

set of data that is also used for the IS estimate. Computing the behavior policy

estimate and IS estimate from the same set of data allows RIS to correct for the

sampling error inherent to importance sampling with the true behavior policy. We

showed that these methods have lower asymptotic variance than ordinary importance

sampling and are consistent. We evaluated RIS across several policy value estimation
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tasks and show that it lowers MSE compared to ordinary importance sampling –

that uses the true behavior policy – in several off-policy policy value estimation

tasks. Finally, we showed that, as the sample size grows, it can be beneficial to

ignore knowledge that the true behavior policy is Markovian even if that knowledge

is available.

This chapter introduced regression importance sampling for lower variance

weighting when correcting for distribution shift in off-policy data for policy value

estimation. In the next chapter we will show how the same technique can be used for

more accurate policy improvement with batch policy gradient reinforcement learning.
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Chapter 6

Weighting Data for Policy

Improvement

The previous chapter showed how proper weighting of a reinforcement learning agent’s

experienced data can result in more accurate off-policy policy value estimation. In

particular, by correcting for sampling error, we are able to lower the variance of

importance sampling policy value estimation with less off-policy data. In this chapter,

we translate our contribution to policy value estimation into the policy improvement

setting by introducing an algorithm that reduces sampling error for batch policy

gradient algorithms.14

We consider batch policy gradient reinforcement learning, as introduced in

Section 2.3. Batch policy gradient algorithm implementations commonly rely on

Monte Carlo sampling to approximate the policy gradient. Such methods may suffer

from sampling error when only allowed access to a finite amount of environment

experience. In this chapter, we introduce a method that corrects sampling error in

batch policy gradient learning in the same way that regression importance sampling

14This chapter contains work that was previously published at AAMAS 2019 (Hanna and Stone,
2019).
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(Chapter 5) corrects sampling error in off-policy policy value estimation. The so-

called sampling error corrected policy gradient algorithm leads to reinforcement

learning agents that can obtain higher expected reward with less data compared

to agents learning with a batch Monte Carlo policy gradient algorithm. This new

method is Contribution 4 of this dissertation.

Though corrections for sampling error have appeared in the policy gradient

literature before (Sutton et al., 2000b; Asadi et al., 2017; Ciosek and Whiteson,

2018), these approaches require learning the action-value function, qπ. One of the

main reasons that practitioners may prefer policy gradient algorithms to value-

based RL methods such as Q-learning (Watkins, 1989) or actor-critic algorithms

(Sutton, 1984) is that the policy may be a simpler function to approximate than the

action-value function (Sutton and Barto, 1998). Contribution 4 of this dissertation

provides a way to correct sampling error in batch policy gradient learning that

does not necessarily require an explicit action-value function. In Section 9.2.2 we

discuss related approaches to correcting or eliminating sampling error, however these

approaches require an approximation of the action-value function in addition to the

policy.

6.1 Sampling Error in Batch Policy Gradient Learning

The batch Monte Carlo policy gradient estimator introduced in Section 2.3, gmc, is

a common approach to estimating the gradient in policy gradient learning. In this

section, we discuss approximation error in gmc and present the view that – for a

fixed dataset – gmc is the gradient estimated under the wrong distribution of states

and actions. This view echos the arguments put forward in Chapter 5 that ordinary

importance sampling is flawed for finite amounts of data. Here, we present these

arguments in the batch policy gradient reinforcement learning setting.
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Recall from Section 2.3 the expression proportional to the policy gradient:

∂

∂θ
v(πθ) ∝ E

[
qπθ(S,A, ·) ∂

∂θ
log πθ(A|S)

∣∣∣∣S ∼ dπθ , A ∼ πθ] (6.1)

where dπθ is the distribution of states observed when running πθ in M. Let T =

{(Sj , Aj)}mj=1 be a set of m observed state-action pairs that occurred while following

the current policy, πθ, in the MDP of interest. Let q̂πθ(s, a, ·) be an estimate of

qπθ(s, a, ·) that can be obtained from either function approximation or simply from

the sum of rewards following the occurrence of (s, a).15 Given an instance of T , the

batch Monte Carlo policy gradient estimator is defined as:

gmc(T ) :=
1

m

m∑
j=1

q̂πθ(Sj , Aj)
∂

∂θ
log πθ(Aj |Sj). (6.2)

We first note that, for a finite number of sampled states and actions, gmc will

likely have error unless T happens to contain each pair (s, a) at its long-run expected

frequency, dπθ(s)π(a|s), and q̂πθ(s, a, ·) = qπθ(s, a, ·) for all s, a. In this section we

discuss error in gradient estimation due to sampling in dπθ and π and ignore error

due to differences between q̂πθ(s, a, ·) and qπθ(s, a, ·).

Let dT (s) be the proportion of times that s occurs in T and πT (a|s) be the

proportion of times that action a occurred in state s in T . Formally, let m(s) be the

number of times that we observe state s in Ti and let m(s, a) be the number of times

that we observe action a in state s. We define dT (s) = m(s)
m and πT (a|s) = m(s,a)

m(s) .

Let q̃π(s, a) be the mean value of q̂π(s, a, ·) in T Finally, we define the function

q̄π : S × A → R as the mean value of q̂π(s, a, ·) in T . If (s, a) is missing from T

then q̄π(s, a) := 0. Given these definitions, the batch Monte Carlo policy gradient

15We use the latter in our empirical studies.
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estimator can be re-written as:

gmc(T ) =
1

m

m∑
j=1

q̂πθ(sj , aj , ·)
∂

∂θ
log πθ(aj |sj)

=
1

m

∑
s∈S

∑
a∈A

m(s, a)q̄πθ(s, a)
∂

∂θ
log πθ(a|s)

=
∑
s∈S

dT (s)
∑
a∈A

πT (a|s)q̄πθ(s, a)
∂

∂θ
log πθ(a|s)

= E

[
q̄πθ(S,A)

∂

∂θ
log πθ(A|S)

∣∣∣∣S ∼ dT , A ∼ πT ] .
Notably, the sample average in (6.2) has been replaced with an exact expectation over

actions as in (6.1). However, the expectation is taken over the action distribution

πT and not πθ. This expression suggests that sampling error in the Monte Carlo

approximation can be viewed as evaluating the gradient under the wrong distribution.

Figure 6.1 expresses how sampling error relates to weighting each a ∈ A in a Monte

Carlo gradient estimate for a fixed state.

This section has argued that for a fixed set of data, the batch Monte Carlo

policy gradient estimator will be equal to an exact expectation taken over the

wrong distribution of states and actions. The correct state distribution is unknown.

However, we do know the correct action distribution (πθ) and thus can correct

the inaccurate weighting. In the next section we introduce an algorithm that uses

importance sampling to apply this correction.

Before concluding this section, we note that gmc is an unbiased estimator of

∂
∂θv(πθ). That is, if we were to repeatedly sample batches of data and estimate the

gradient, the gradient estimates would be correct in expectation. However, once

a single batch of data has been collected, we might ask, “can we correct for the

sampling inaccuracy observed in this fixed sample?”
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0.1

0.3

0.4

0.2

Action πθ πT gmc weight gsec weight
Up 0.1 0.15 0.15 0.1

Right 0.3 0.35 0.35 0.3
Down 0.4 0.3 0.3 0.4
Left 0.2 0.2 0.2 0.2

Figure 6.1: Sampling error in a fixed state s of a Grid World environment. Each
action a is sampled with probability πθ(a|s) and is observed in the proportion given by
πT (a|s). Monte Carlo weighting gives each return qπθ(a|s) the weight πT (a|s) while
our new sampling error corrected weighting gives each return qπθ(a|s) the weight

πT (a|s) πθ(a|s)
πT (a|s) = πθ(a|s). Thus SEC weights each advantage by the correct amount

while the Monte Carlo estimator will have error unless the empirical proportion of
sampled actions, πT , is equal to the expected proportion, πθ for all actions.

6.2 The Sampling Error Corrected Policy Gradient Es-

timator

The previous section presented the view that sampling error in Monte Carlo ap-

proximations can be viewed as covariate shift – we are interested in an expectation

under dπθ and πθ but instead we have an expectation under dT and πT . Viewing the

sampling error as covariate shift suggests a simple solution: use importance sampling

to correct for the distribution shift.

In this setting, we will treat the empirical distribution of actions conditioned

on state, πT as the behavior policy πb and then use importance sampling to correct

for the shift between the empirical and desired distribution. We call this approach

the sampling error corrected (SEC) policy gradient estimator.
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In practice, using the true πT may introduce high bias into gradient estimates,

particularly in continuous state and action spaces. This bias arises because using πT

can be shown to be equivalent to assuming that q̂πθ(s, a) is zero for all unobserved

actions.16 Instead, let πφ be a parametric estimate of the policy that generated our

data.17 The SEC estimator estimates φ so that πφ is the maximum likelihood policy

that generated our data:

φ = argmax
φ

m∑
j=1

log πφ(Aj |Sj). (6.3)

Importantly, SEC estimates φ with the same m samples that will be used to estimate

the policy gradient. If φ is estimated with a different set of samples then πφ will

contain no information for correcting sampling error – our experiments confirm this

observation. For most RL benchmarks, (6.3) can be formulated as a supervised

learning problem.

Given πφ, SEC re-weights each q̂πθ(si, ai, ·) ∂
∂θ log πθ(ai|si) by the ratio of the

true likelihood πθ to the estimated empirical likelihood πφ:

gsec(Ti) =
1

m

m∑
j=1

πθ(Aj |Sj)
πφ(Aj |Sj)

q̂πθ(Sj , Aj , ·)
∂

∂θ
log πθ(Aj |Sj). (6.4)

Intuitively, when an action is sampled more often than its expected proportion, gsec

down-weights the gradient estimate following that action. Similarly, when an action

is sampled less often than its expected proportion, gsec up-weights the gradient

estimate following that action. As we will discuss in the next section, if πφ is close

to πT then this sampling correction can eliminate variance in the action selection.

Full details of this approach are given in Algorithm 4.

Importance sampling in reinforcement learning is typically applied for off-

16This assumption can be seen in the definition of q̄ in Section 6.1.
17We assume in this dissertation that we use a parametric policy estimate and leave non-parametric

estimates to future work.

88



Algorithm 4 Sampling Error Corrected Policy Gradient
Input: Initial policy parameters, θ0, batch size m, a step-size for each iteration, αi,
and number of iterations n.
Output: Optimized policy parameters θn.
1: for all i = 0 to n do
2: Sample m steps (S,A) ∼ πθi

3: φi ← argmax
φ

m∑
j=1

log πφ(aj |sj)

4: gsec ← 1
m

m∑
j=1

πθ(aj |sj)
πφ(aj |sj)

q̂πθ (sj , aj , ·)
∂

∂θ
log πθi(aj |sj)

5: θi+1 = θi + αi · gsec
6: end for
7: Return θn

policy learning, i.e., learning with data that has been generated by a policy that is

different from the current policy. Despite this connection to off-policy learning, we

remain in the on-policy setting: data is collected with the current policy, used to

update the current policy, and then discarded. In the off-policy setting, importance

sampling corrects from the distribution that actions were sampled from to the

distribution of actions under the current policy. SEC uses importance sampling to

correct from the distribution that actions were observed at to the distribution of

actions under the current policy.

The SEC estimator is related to the use of importance sampling for off-policy

reinforcement learning where the behavior policy must be estimated before it can be

used to form the importance weights. In practice, behavior policy estimation can

be challenging when the distribution class of the true behavior policy is unknown

(Raghu et al., 2018). Fortunately, in the policy gradient setting, we have complete

access to the behavior policy and can specify the model class of πφ to be the same as

πθ. We can even simplify the πφ model class by estimating a policy that conditions

on intermediate representations of πθ. For example if πθ is a convolutional neural

network, we can use all but the last layer of πθ as a feature extractor and then

model πφ as a linear function of these features. We evaluate this technique in our
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experiments.

6.3 Theoretical Analysis

In this section we analyze the variance of gsec compared to that of gmc. We make a

few assumptions that simplify the analysis:

1. The action space is discrete and if a state is observed then all actions have also

been observed in that state.

2. The return estimate q̂πθ is computed independently of T . This assumption

implies q̄πθ(s, a) (as defined in Section 6.1) is a constant with respect to a fixed

(s, a) in T .

3. For all observed states, our estimated policy πφ is equal to πT , i.e., if action a

occurs k times in state s and s occurs n times in T then πφ(a|s) = k
n .

We briefly discuss the implications of these assumptions at the end of this section

and evaluate SEC without these assumptions in Section 6.4.

Let S be the random variable representing the states in T and A be the

random variable representing the actions in T . We will use T = {S,A} to make

explicit that T depends on both the randomness in the set of sampled states and

sampled actions. We can now give the central theoretical claim of this chapter.

Proposition 6.1. Let VarS,A (g) denote the variance of estimator g with respect

to random variables S and A. For the Monte Carlo estimator, gmc, and the SEC

estimator, gsec:

VarS,A (gsec({S,A})) ≤ VarS,A (gmc({S,A}))

Proof. We provide a proof sketch in this section. The full proof is provided in

Appendix D.
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We first note that both gsec and gmc can be written as:

g({S,A}) =
∑
s∈S

dT (s)
∑
a∈A

πT (a|s)w(s, a)q̄πθ(s, a)
∂

∂θ
log πθ(a|s) (6.5)

where w(s, a) = πθ(a|s)
πT (a|s) for gsec and w(s, a) = 1 for gmc.

Using the law of total variance, the variance of (6.5) can be decomposed as:

VarS,A (g({S,A})) = ES [VarA (g({S,A}|S))]︸ ︷︷ ︸
ΣA

+ VarS (EA [g({S,A})|S])︸ ︷︷ ︸
ΣS

.

The first term, ΣA, is the expected variance due to stochasticity in the action

selection.

Claim 6.1. VarA (gsec({S,A}|S)) = 0.

Proof. See Appendix D. Intuitively, this claim follows from the fact that using

w(s, a) = πθ(a|s)
πT (a|s) results in all randomness due to A canceling out.

From Claim 6.1, ΣA will be zero since ES[0] = 0. However, this term will

be positive for gmc since the Monte Carlo estimator does not have zero variance in

general.18

The second term, ΣS, is the variance due to only visiting a limited number of

states before estimating the gradient.

Claim 6.2. EA [gsec({S,A})|S] = EA [gmc({S,A})|S].

Proof. See Appendix D. Under Assumption (1) and (3) the expectation over πT (i.e.,∑
a∈A πT (a|s)) in (6.5) is converted to an exact expectation over πθ (

∑
a∈A πθ(a|s))

and gmc is an unbiased estimator of this exact expectation.

18The Monte Carlo estimator has zero variance with respect to action sampling only when q̂πθ (s, a)
is equal for all actions in any state.
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From Claim 6.2, it follows that ΣS will be the same for both gmc and gsec.

Since ΣS is identical for both terms and ΣA is zero for gsec, the variance of gsec can

be no more than that of gmc.

Our claim that the variance of gsec is at most that of gmc has been shown

under a limiting set of assumptions. The assumption that all actions have been

observed in all sampled states and that we can estimate πT exactly limits the analysis

to discrete state and action domains. Analyzing the estimators’ variances under

relaxed assumptions is an interesting direction for future work.

Finally, we note that in typical policy gradient implementations the assump-

tion that q̂πθ is computed independently of T is typically violated. In this case, the

variance decomposition will have a third term that is due to variance in the return

estimates:

Στ = ES,A [Var (g({S,A}|S,A))].

This term may not necessarily be less for either estimator and we leave its analysis

to future work. We also discuss in Section 10.2 how the SEC estimator could be

modified to lower the variance of the return estimates.

6.4 Empirical Study

In this section we present an empirical evaluation of the sampling error corrected

policy gradient estimator. While the analysis in the previous section was based on

limiting assumptions, we now evaluate whether gsec can lead to faster learning in

practice, even when these assumptions are violated. Specifically, we study gsec in

both discrete and continuous state spaces, in discrete and continuous action spaces,

and when the return estimates are not independent of the gradient estimate. Our

main empirical question is, “Does replacing q̂π(s, a, ·) with π(a|s)
πφ(a|s) q̂

π(s, a, ·) lead to

faster learning within a batch policy gradient method?”
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6.4.1 Empirical Set-up

We first describe four reinforcement learning tasks and the motivation for evaluating

SEC in these domains. Figure 6.2 displays images of these domains.

(a) Grid World (b) Mountain Car (c) LDS (d) Cart Pole

Figure 6.2: Illustrations of the domains used in our experiments. LDS is short for
Linear Dynamical System.

6.4.1.1 Grid World

Our first domain is a 4× 4 Grid World and we use REINFORCE (Williams, 1992)

as the underlying batch policy gradient algorithm. The agent begins in grid cell

(0, 0) and trajectories terminate when it reaches (3, 3). The agent receives a reward

of 100 at termination, −10 at (1, 1) and −1 otherwise. The agent’s policy is a

state-dependent softmax distribution over actions:

πθ(a|s) =
eθs,a∑

a′∈A e
θs,a′

.

With this representation, the policy does not generalize across states or actions.

The SEC estimator estimates the policy by counting how many times each

action is taken in each state. This domain closely matches the assumptions made in

our theoretical analysis. Specifically, the state and action spaces are discrete and

πφ is exactly equal to πT . While we do not explicitly enforce the assumption that

all actions are observed in all states, the small size of the state and action space

(|S| = 16 and |A| = 4) makes it likely that this assumption holds.
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In our implementation of REINFORCE we normalize the gradient estimates

by dividing by their magnitudes and use a step-size of 1. The gradient for both

methods is estimated with a batch size of 10 trajectories.

6.4.1.2 Tabular Mountain Car

Our second domain is a discretized version of the classic Mountain Car domain, where

an agent attempts to move an under-powered car up a steep hill by accelerating to

the left or right or sitting still. The original task has a state of the car’s position (a

continuous scalar in the range [−1.2, 0.6]) and velocity (a continuous scalar in the

range [−0.07, 0.07]). Position is discretized into 6 bins and velocity into 8 bins for

a total of 4292 discrete states. We use REINFORCE as the batch policy gradient

algorithm. The agent’s policy is a state-dependent softmax distribution over the

three discrete actions as is used in the Grid World domain.

The SEC estimator estimates the policy by counting how many times each

action is taken in each state. This domain has a large number of discrete states and

it is unlikely that all actions are observed in all observed states. In this setting, gsec

will have higher bias. This domain matches our theoretical setting in that states and

actions are discrete and πφ is exactly equal to πT .

As in Grid World we normalize the gradient estimates by dividing by their

magnitudes and use a step-size of 1. We run each method with batch sizes of 100,

200, 600, and 800 trajectories.

6.4.1.3 Linear Dynamical System

Our third domain is a two-dimensional linear dynamical system with additive

Gaussian noise. The reward is the agent’s distance to the origin and trajectories

last for 20 time-steps. In this domain the learning agent uses a linear Gaussian

policy to select continuous valued accelerations in the x and y direction. We use
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the OpenAI Baselines (Dhariwal et al., 2017) implementation of trust-region policy

optimization (TRPO) as the underlying batch policy gradient algorithm (Schulman

et al., 2015b). We set the generalized advantage estimation parameters (γ, λ) both

to 1. Unless noted otherwise, we use the default OpenAI Baselines default values for

all other hyperparameters. We estimate πφ with ordinary least squares and estimate

a state-independent variance parameter. In this domain, none of our theoretical

assumptions hold. We include it to evaluate gsec with simple function approximation.

We estimate the TRPO surrogate objective and constraint with 1000 steps per batch

and set the KL-Divergence constraint, ε = 0.01.

6.4.1.4 Cart Pole

Our final domain is the Cart Pole domain from OpenAI Gym (Brockman et al.,

2016) and we again use TRPO. We estimate the TRPO surrogate objective and

constraint with 200 steps per batch and set the KL-Divergence constraint, ε = 0.001.

The policy representation is a two layer neural network with 32 hidden units in each

layer. The output of the network is the parameters of a softmax distribution over

the two actions. We consider two parameterizations of πφ:

1. πφ is a neural network with the same architecture as πθ. We estimate πφ with

batch gradient descent. This method is labeled SEC Neural Network.

2. πφ is a linear policy that receives the activations of the last hidden layer of πθ

as input. The dual πφ and πθ architecture is shown in Figure 6.3. We estimate

the weights of πφ with gradient descent. This method is labeled SEC Linear.

Again, this domain violates all assumptions made in our theoretical analysis. We

include this domain to study gsec with more complex function approximation. This

setting allows us to study gsec with neural network policies but is simple enough to

avoid extensive tuning of hyper-parameters.
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Figure 6.3: A simplified version of the neural network architecture used in Cart
Pole. The true architecture has 32 hidden units in each layer. The current policy πθ
is given by a neural network that outputs the action probabilities as a function of
state (black nodes). The estimated policy, πφ, is a linear policy that takes as input
the activations of the final hidden layer of πθ. Only the weights on the red, dashed
connections are changed when estimating πφ.

6.4.2 Empirical Results

We now present our empirical results.

6.4.2.1 Main Results

Results for the Linear Dynamical System (LDS), and Cart Pole environment are

given in Figure 6.4. In all three domains, we see that the SEC methods lead to

learning speed-up compared to the Monte Carlo based approaches. In the LDS and

Mountain Car environments, SEC outperforms Monte Carlo in time to convergence

to optimal. In Cart Pole, both variants of SEC learn faster initially, however, Monte

Carlo catches up to the neural network version of SEC. This result demonstrates

that we can leverage intermediate representations of πθ (in this case, the activations

of the final hidden layer) to learn πφ with a simpler model class. In fact, results

suggest that fitting a simpler model improves performance. We hypothesize that

simpler models require less hyper-parameter re-tuning throughout learning and so

we get a more accurate estimate of πT which leads to a more accurate sampling error
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(a) LDS (b) Cart Pole

Figure 6.4: Learning results for the Linear Dynamical System (LDS) and Cart Pole
domains. The x-axis is the number of timesteps and the y-axis is the average return
of a policy. We run 25 trials of each method using different random seeds. The
shaded region represents a 95% confidence interval. In both domains we see that all
variants of sampling error corrected policy gradient outperforms the batch Monte
Carlo policy gradient in either time to optimal convergence or final performance.

correction.

6.4.2.2 Mountain Car Batch Size

We also compare SEC to Monte Carlo in the Mountain Car domain. We run

our experiments four times with a different batch size in each experiment. Each

experiment consists of 25 trials for each algorithm.

Figure 6.5 shows results for each of the different tested batch sizes. For

each batch size, we can see that SEC improves upon the Monte Carlo approach.

The relative improvement does change across batches. With the largest batch size,

improvement is marginal as πφ will approach π and so SEC and Monte Carlo will

return the same gradient. For the smallest batch size, improvement is again marginal

– though the small batch size means Monte Carlo has higher variance, it also means

that SEC may have higher bias as some actions will be unobserved in visited states.
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Intermediate batch sizes have the widest gap between the two methods – the batch

size is small enough that Monte Carlo has high variance but that SEC has less bias.

(a) Batch Size = 100 (b) Batch Size = 200

(c) Batch Size = 600 (d) Batch Size = 800

Figure 6.5: Learning results for the Mountain Car domain with different batch sizes.
The x-axis is the number of iterations (i.e., the number of times the policy has been
updated). The y-axis is average return. We run 25 trials of each method using
different random seeds. The shaded region represents a 95% confidence interval. For
all batch sizes we see that the sampling error corrected policy gradient outperforms
the batch Monte Carlo policy gradient in either time to optimal convergence or final
performance after 1000 iterations.
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6.4.2.3 Grid World Ablations

Figure 6.6 shows several results in the Grid World domain. First, Figure 6.6a

shows that SEC leads to faster convergence compared to Monte Carlo. This domain

most closely matches our theoretical assumptions where we showed SEC has lower

variance than Monte Carlo gradient estimates. The lower variance translates into

faster learning.

We also use the Grid World domain to perform a quantitative evaluation of

sampling error. As a measure of sampling error we use the Earth Mover’s distance

between the current policy πθ and the empirical frequency of actions, πT . Intuitively,

for any state, s, the Earth Mover’s distance measures how much probability mass

must be moved to transform πT (·|s) into πθ(·|s).19 Figure 6.6b shows that sampling

error increases and then decreases during learning. Peak sampling error is aligned

with where the learning curve gap between the two methods is greatest. Note that

sampling error naturally decreases as learning converges because the policy becomes

more deterministic. Figure 6.6c shows that the entropy of the current policy goes

to zero, i.e., becomes more deterministic. A more deterministic policy will have

less sampling error and so we expect to see less advantage from SEC as learning

progresses.

Finally, we also verify the importance of using the same data to both estimate

πφ and estimate the policy gradient. Figure 6.6d introduces two alternatives to SEC:

• INDEPENDENT: Estimates πφ with a separate set of m samples and then

uses this estimate to estimate Ti

• RANDOM: Instead of computing importance weights, we randomly sample

weights from a normal distribution and use them in place of the learned SEC

weights.

19We choose the Earth Mover’s distance (also known as the Wasserstein distance) as opposed to
the more commonly used KL-divergence since πT and πθ may not share support. That is, there
may be an action, a, where πT (a|s) is 0 and πθ(a|s) > 0.
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(a) Avg. Return (b) Sampling Error (c) Entropy (d) Alternatives

Figure 6.6: Sampling error corrected policy gradient in the Grid World Domain.
Figure 6.6a shows the average return for SEC and MC. Figure 6.6b shows earth
mover’s distance between the current policy and estimated policy at each iteration.
Figure 6.6c shows policy entropy at each iteration. Figure 6.6d shows two alternative
weight corrections. Results are averaged over 25 trials and confidence bars are for a
95% confidence interval.

Figure 6.6a shows that INDEPENDENT hurts performance compared to Monte Carlo.

RANDOM performs marginally worse than Monte Carlo. This result demonstrates

the need to use the same set of data to estimate πφ and the gradient.

6.5 Summary

In this chapter we introduced Contribution 4 of this dissertation: the sampling error

corrected policy gradient estimator (SEC). SEC corrects the empirical weighting

of the observed samples to be closer to their true probability of occurring when

executing the current policy πθi. This weighting contrasts with the commonly-used

batch Monte Carlo policy gradient estimator that weights each sample by its empirical

frequency. Theoretical results show that under a limiting set of conditions SEC has

lower variance than the Monte Carlo estimator. We also presented an empirical

study of SEC and found that it can increase the learning speed of REINFORCE and

trust-region policy optimization even when these theoretical conditions fail to hold.

This chapter concludes our contributions that improve how reinforcement

learning agents sample and weight experience for policy value estimation and policy
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improvement. In the following chapter, we turn to the use of simulated experience for

reinforcement learning. We will then return to using off-policy data in the Chapter

8 where we will combine off-policy data with simulated experience for more efficient

estimation of confidence intervals for policy value estimation.
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Chapter 7

Learning with Simulated Data

So far in this dissertation, we have described ways to use off-policy data to improve

the data efficiency of policy value estimation and policy improvement. In this chapter

we turn our attention to simulated data and how it can be used in a reinforcement

learning task. In Chapter 8 we will discuss a contribution towards using simulated

and off-policy data together.

Simulation is a valuable tool for reinforcement learning for robotics research

as execution of a robotic skill in simulation is comparatively easier than real world

execution. However, the value of simulation learning may be limited by the inherent

inaccuracy of simulators in modeling the dynamics of the physical world (Kober et al.,

2013). As a result, learning that takes place in a simulator is unlikely to improve real

world performance. In this chapter, we will focus on applying reinforcement learning

in robotics though we are in fact interested in any setting where an inaccurate

simulator of the target MDP is available a priori. In the literature, the problem of

learning in simulation in a way that improves real world performance is known as

the sim-to-real or sim2real problem. In Section 9.3 we discuss related work in this

area and how our contribution fits into this literature.

In this chapter, we present Contribution 5 of this dissertation: an algorithm
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that allows an autonomous agent to learn in a simulated environment and the

resulting policy to improve performance in the real world.20 This novel algorithm

is demonstrated on three robot tasks on a simulated or physical bipedal humanoid

robot.

7.1 Learning in a Simulator

In this chapter, we operate in the policy improvement setting introduced in Chapter

2. We are interested in learning a policy, π, for an MDP, M, such that v(π,M) is

maximized. We wish to minimize the number of actions that must be taken in M

before a good policy is learned.

Recall from Chapter 2 that a simulator or model for M is an MDP, Msim,

that has the same state-space and action-space as M but a different state-transition

function (Psim instead of P ).21 In this chapter we make the assumption that the

reward function, r, is user-defined and thus is identical forM andMsim. However, the

different dynamics distribution means that for any policy, π, v(π,M) 6= v(π,Msim)

since π induces a different trajectory distribution in M than in Msim. Thus, for any

π′ with v(π′,Msim) > v(π,Msim), it does not follow that v(π′,M) > v(π,M) – in

fact v(π′,M) could be much worse than v(π,M). In practice and in the literature,

learning in simulation often fails to improve expected performance (Farchy et al.,

2013; Christiano et al., 2016; Rusu et al., 2016b; Tobin et al., 2017).

20This chapter contains work that was previously published at AAAI 2017 (Hanna and Stone,
2017).

21A closely related body of work considers how learning can take place in simulation when the
observations the agent receives are different from the real world (e.g., rendered images vs. natural
images). We discuss this work in our related work section but consider this problem orthogonal to
the problem of differing dynamics.
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Connection to Previous Chapters

At first, discussing learning with simulated data may appear to be a significant

departure from Chapters 3 to 6 that focused on using off-policy data. In fact, the

off-policy learning problem and the sim-to-real learning problem are related through

the problem of distribution shift. Consider that in on-policy learning, trajectories

are generated from:

Pr(H|π,M) := d0(S0)π(A0|S0)P (S1|S0, A0) · · ·P (SL−1|SL−2, AL−2)π(AL−1|SL−1).

In off-policy learning, the action probabilities change to those of a different behavior

policy and so the distribution of trajectories becomes:

Pr(H|πb,M) := d0(S0)πb(A0|S0)P (S1|S0, A0) · · ·P (SL−1|SL−2, AL−2)πb(AL−1|SL−1).

In sim-to-real learning, the environment probabilities change and so the distribution

of trajectories becomes:

Pr(H|π,Msim) := d0(S0)π(A0|S0)Psim(S1|S0, A0) · · ·Psim(SL−1|SL−2, AL−2)π(AL−1|SL−1).

In both problems we must deal with a shifting data distribution – only the cause of

the distribution shift changes.

Though we are still dealing with a distribution shift in our data, the impor-

tance sampling techniques introduced in Chapters 3 to 6 are inapplicable to the

sim-to-real problem because P is typically unknown. Thus we cannot compute the

numerator for a transition-probability-based importance weight P (s′|s,a)
Psim(s′|s,a) .

7.2 Grounded Simulation Learning

In this section we introduce the grounded simulation learning (GSL) framework

as presented by Farchy et al. (2013). Contribution 5 is an instantiation of this
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framework. GSL allows reinforcement learning in simulation to succeed by using

trajectories from M to first modify Msim such that the modified Msim is a higher

fidelity model ofM. The process of making the simulator more like the real world is

referred to as grounding.

The GSL framework assumes the following:

1. There is an imperfect simulator MDP, Msim, that models the MDP envi-

ronment of interest, M. Furthermore, Msim must be modifiable. In this

dissertation, we formalize modifiable as meaning that the simulator has param-

eterized transition probabilities Pφ(·|s, a) := Psim(·|s, a;φ) where the vector φ

can be changed to produce, in effect, a different simulator.

2. There is a policy improvement algorithm, optimize, that searches for π which

increase v(π,Msim). The optimize routine returns a set of candidate policies,

Π to evaluate in M.

We formalize the notion of grounding as minimizing a similarity metric

between the trajectory distribution of the real world and simulation. Let d(p, q) be a

measure of similarity between probabilities p and q. Given a dataset of trajectories,

Dreal := {Hi}mi=1, sampled from some policy in M, simulator grounding of Msim

amounts to finding φ? such that:

φ? = argmin
φ

∑
h∈Dreal

d (Pr(h|π),Prsim(h|π;φ)) (7.1)

where Pr(h|π) is the probability of observing trajectory h in the real world and

Prsim(h|π;φ) is the probability of h in the simulator with dynamics parameterized

by φ. For instance, if d(p(h), q(h)) := − log q(h) then φ? minimizes the negative

log-likelihood or equivalently the Kullback-Leibler divergence between Pr(·|π,M)

and Prsim(·|π, φ?).

Assuming we can solve (7.1), the GSL framework is as follows:
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1. Execute an initial policy, π0, in the real world to collect a data set of trajectories,

Dreal = {Hj}mj=1.

2. Solve (7.1) to find φ? that makes Pr(H|π0,Msim) closer to Pr(H|π0,M) for

all H ∈ Dreal.

3. Use optimize to find a set of candidate policies Π that improve v(·,Msim) in

the modified simulation.

4. Evaluate each proposed πc ∈ Π in M and return the policy:

π1 := argmax
πc∈Π

v(πc,M).

GSL can be applied iteratively with π1 being used to collect more trajectories

to ground the simulator again before learning π2. The re-grounding step is necessary

since changes to π result in changes to the distribution of states that the agent

observes. When the distribution changes, a simulator that has been modified with

data from the state distribution of π0 may be a poor model under the state distribution

of π1. The entire GSL framework is illustrated in Figure 7.1.

7.3 The Grounded Action Transformation Algorithm

We now introduce Contribution 5 of this dissertation – a novel GSL algorithm

called the grounded action transformation (GAT) algorithm. GAT improves the

grounding step (Step 2) of the GSL framework. The main idea behind GAT is

to augment the simulator with a differentiable action transformation function, g,

which transforms the agent’s simulated action into an action which – when taken in

simulation – produces the same transition that would have occurred in the physical

system. The function, g, is represented with a parameterized function approximator

whose parameters serve as φ for the augmented simulator.
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Figure 7.1: Diagram of the grounded simulation learning framework.

Before presenting this chapter’s contribution, we first refine the state-space

definition from Chapter 2 to facilitate the presentation. We will assume that the

agent’s state is a vector in Rk and action is a vector in Rl for some k, l ∈ N+. Let x

be a subset of the components of state s and let X be the set of all possible values

for x. We refer to x as the state variables of interest.

Our instantiation of GAT learns two functions: f which predicts the effects of

actions in M and f−1
sim, which predicts the action needed in simulation to reproduce

the desired effects. The function f : S ×A → X is a forward model that predicts the

effect on the state variables of interest given an action chosen in a particular state

in M. The function f−1
sim : S × X → A is an inverse model that predicts the action

that causes a particular effect on the state variables of interest given the current

state in simulation. The overall transformation function g : S ×A → A is specified

as g(s,a) := f−1
sim(s, f(s,a)). When the agent is in state st in the simulator and

takes action at, the augmented simulator replaces at with g(st,at) and the simulator

returns st+1 where xt+1 is closer in value to what would be observed in M had at

107



been taken there.

The advantage of GAT is that learning f and f−1
sim is a supervised learning

problem which can be solved with a variety of techniques. Figure 7.2 illustrates the

augmented simulator. Pseudocode for the full GAT algorithm is given in Algorithm

5.

The main motivation for modifying the agent’s simulated action is that it

allows us to treat the simulator as a blackbox. While physics-based simulators

typically have a large number of parameters determining the physics of the simulated

environment (e.g., friction coefficients, gravitational values) these parameters are not

necessarily amenable to numerical optimization of (7.1). In other words, it may be

computationally intensive to determine how to change a physical parameter to make

the simulator produce trajectories closer to the ones we observe in the real world.

Action modification allows us to transform simulator modification into a supervised

learning problem.

Figure 7.2: The augmented simulator which can be grounded to the real world with
supervised learning.

The result of this form of simulator modification is not necessarily a globally

more accurate simulator for the real world. Our only goal is that the simulator is

more realistic for trajectories sampled with the grounding policy. If we can achieve

this goal, then we can locally improve the policy without any additional real world

data. A simulator that is more accurate globally may provide a better starting point

for GAT, however, if we can focus on simulator modification local to the grounding

108



Algorithm 5 Grounded Action Transformation (GAT). Input: An initial pol-
icy, π0, the environment, M, a simulator, Msim, smoothing parameter α, and a
policy improvement method, optimize. The function rolloutN(Env, π, n) executes
n trajectories with π in the provided environment, Env, and returns the observed
state transition data. The functions trainForwardModel and trainInverseModel

estimate models of the forward and inverse dynamics respectively given a dataset of
trajectories.

1: i← 0
2: repeat
3: Dreal ← RolloutN(M, πi, n)
4: Dsim ← RolloutN(Msim, πi, n)
5: f ← trainForwardModel(Dreal)
6: f−1

sim ← trainInverseModel(Dsim)
7: g(s, a)← f−1

sim(s, f(s, a))
8: Π← optimize(Msim, πi, g)
9: i← i+ 1

10: πi ← argmaxπ∈Π v(π)
11: until v(πi) < v(πi−1)
12:

13: Return argmaxi v(πi)

policy we can still obtain policy improvement in low fidelity simulators.

We also note that GAT minimizes the error between the immediate state

transitions ofMsim and those ofM. Another possible objective would be to observe

the difference between trajectories in M and Msim and ground the simulator to

minimize the total error over a trajectory. Such an objective could lead to an action

modification function g that accepts short-term error if it reduces the error over the

entire trajectory. Here we will accept minimizing one-step error as a good proxy

for minimizing our ultimate objective which is that the current policy π produces

similar trajectories in both M and Msim.
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7.4 Empirical Study

We now present an empirical study of applying GAT for reinforcement learning with

simulated data.

7.4.1 Empirical Set-up

We evaluate GAT on several different robot learning tasks on the NAO robot. We

describe these tasks here.

7.4.1.1 General NAO Task Description

All empirical tasks in this chapter use either a simulated or physical Softbank NAO

robot.22 The NAO is a humanoid robot with 25 degrees of freedom (See Figure 7.3a).

Though the NAO has 25 degrees of freedom, we restrict ourselves to observing and

controlling 15 of them (we ignore joints that are less important for our experimental

tasks – joints in the head, hands, and elbows). We will refer to the degrees of freedom

as the joints of the robot. Figure 7.4 shows a diagram of the NAO and its different

joints.

We define the state variables of interest to be the angles of the robot’s joints.

In addition to angular position, the robot’s state consists of joint angular velocities

and other task-dependent variables. The robot’s actions are desired joint angular

positions which are implemented at a lower software level using PID control.

Since the output of g may not be smooth from timestep to timestep, we use

a smoothing parameter, α, to ensure stable motions. The action transformation

function (Algorithm 5, line 7) is then defined as:

g(s,a) := αf−1
sim(s, f(s,a)) + (1− α)a.

22https://www.ald.softbankrobotics.com/en
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(a) A Softbank NAO Robot (b) NAO in Gazebo (c) NAO in SimSpark

Figure 7.3: The three robotic environments used in this chapter. The Softbank NAO
is our target physical robot. The NAO is simulated in the Gazebo and SimSpark
simulators. Gazebo is a higher fidelity simulator which we also use as a surrogate for
the real world in an empirical comparison of grounded action transformation (GAT)
to baseline methods.

Figure 7.4: Diagram of the Softbank NAO robot with joints (degrees of freedom)
labeled. Each joint has a sensor that reads the current angular position of the
joint and can be controlled by providing a desired angular position for the joint. In
this work, we ignore the HeadYaw, HeadPitch, left and right ElbowRoll, left and
right ElbowYaw, left and right WristYaw, and left and right Hand joints. There
is also no need to control the right HipYawPitch joint as, in reality, this degree of
freedom is controlled by the movement of the left HipYawPitch Joint. This image
was downloaded from: http://doc.aldebaran.com/2-8/family/nao_technical/
lola/actuator_sensor_names.html
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In our experiments, we set α as high as possible subject to the walk remaining stable.

In all tasks our implementation of GAT uses a history of the joint positions

and desired joint positions as an estimate of the NAO’s state to input into the

forward and inverse models. Instead of directly predicting xt+1, the forward model,

f , is trained to predict the change in xt after taking at. The inverse model f−1
sim takes

the current xt and a desired change in xt and outputs the action needed to cause

this change. Since both the state variables of interest and actions have angle units,

we train both f and −1
sim to output the sine and cosine of each output angle. From

these values we can recover the predicted output with the arctan function.

We consider two simulators in this work: the Simspark23 Soccer Simulator

used in the annual RoboCup 3D Simulated Soccer competition and the Gazebo

simulator from the Open Source Robotics Foundation.24 SimSpark enables fast

simulation but is a lower fidelity model of the real world. Gazebo enables high fidelity

simulation with an additional computational cost. The NAO model in both of these

simulations is shown in Figure 7.3a.

Across all tasks we learn the policy using the covariance matrix adaptation

evolutionary strategies (CMA-ES) algorithm (Hansen et al., 2003). CMA-ES is a

stochastic search algorithm that iteratively updates a distribution over candidate

policies. At each iteration, CMA-ES samples a set of policy parameter values from

a Gaussian distribution. It then uses the evaluation of each candidate policy in

simulation to update the sampling distribution for the next iteration. CMA-ES

has been found to be very effective at optimizing robot skills in simulation (Urieli

et al., 2011). In all experiments we sample 150 candidate policies at each iteration

as we were only able to submit up to 150 parallel policy evaluations at a time on the

University of Texas Computer Science distributed computing cluster.

23http://simspark.sourceforge.net
24http://gazebosim.org
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7.4.1.2 Arm Control

Our first task requires the NAO to learn to raise its arms from its sides to a goal

position, p? which is defined to be halfway to horizontal (lift 45 degrees). We call

this task the “Arm Control” task.

In this task, the robot’s policy only controls the two shoulder joints responsible

for raising and lowering the arms. The angular position of these joints are the state

variables of interest, x. The policy is a linear mapping from xt and xt+1 to the

action at:

π(xt,xt−1) = w · (xt,xt−1) + b

where w and b are learnable parameters. The agent receives at time t a reward:

r(xt) =
1

|xt − p?|22

and the episode terminates after 200 steps or when either of the robot’s arms raise

higher than 45 degrees. The optimal policy is to move as close as possible to 45

degrees without lifting higher.

We apply GAT for sim-to-sim transfer from Simspark (Msim) to Gazebo (M

– effectively treating Gazebo as the real world). In Simspark, the shoulder joints are

more responsive to commands and thus the robot learns it must take weaker actions

to prevent overshooting the target. In Gazebo, the same policy fails to get the arms

close to the target.

We represent f and f−1
sim with linear functions. To train f we collect 50

trajectories in M and train f−1
sim with 50 trajectories from Msim. For CMA-ES, we

optimize the policy for 50 iterations.

113



7.4.1.3 Linear Walk Policy Optimization

Our second task is walking forward with a linear control policy. The state variables

of interest are 10 joints in the robot’s legs (ignoring the left HipYawPitch joint) and

the 4 joints controlling its shoulders. The actions are desired angular positions for

all 15 of these joints.

The policy inputs are the gyroscope that measures forward-backward angular

velocity, y, and the gyroscope that measures side-to-side angular velocity, x. We also

provide as input an open-loop sine wave. The sine wave encodes prior knowledge

that a successful walking policy will repeat actions periodically. The final form of

the policy is:

π(〈x, y, sin(c · t)〉) = w · 〈x, y, sin(c · t)〉+ b

where c is a learnable scalar that controls the walking step frequency. The policy

outputs only commands for the left side of the robot’s body and the commands for

the right side are obtained by reflecting these commands around a learned value.

That is, for each joint, j, on the left side of the robot’s body we learn a parameter ψj

and obtain the action for the right side of the robot’s body by reflecting the policy’s

output for j across ψj . This representation is equivalent to expressing the policy for

the right side of the robot’s body as:

πr(〈x, y, sin(c · t)〉) = ψ − (w · 〈x, y, sin(c · t)〉+ b− ψ).

In our experiments, instead of optimizing a separate ψ vector, we clamp ψ to be

equal to b.

We define the reward as a function of entire trajectories instead of s, a pairs.

Let ∆(h) be the robot’s forward change in position during trajectory h and let I(h)
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take value 1 if the robot falls during trajectory h and 0 otherwise. In simulation:

g(h) := ∆(h)− 25 · I(h)

where the penalty of −25 encourages policies that cause the robot to walk more

stably. On the physical robot we only measure forward distance traveled; if the robot

falls we count the distance traveled as zero:

g(h) := ∆(h) · (1− I(h)).

We apply GAT for sim-to-real transfer from Simspark to the physical NAO.

We learn f and f−1
sim with linear regression. To train f we collect 10 trajectories

in M and train f−1
sim with 50 trajectories from Msim. We chose 10 trajectories for

M because after 10 the robot’s motors may begin to heat up which changes the

dynamics of the joints.

7.4.1.4 Sim-to-Real Walk Engine Policy Optimization

Finally, we evaluate GAT on the task of bipedal robot walking with a state-of-the-art

walk controller for the NAO robot. The initial policy is the open source University of

New South Wales (UNSW) walk engine developed for RoboCup Standard Platform

League (SPL) competitions (Ashar et al., 2015; Hall et al., 2016). This walk controller

has been used by at least one team in the 2014, 2015, 2016, 2017, 2018, 2019 RoboCup

Standard Platform League (SPL) championship games in which teams of five NAOs

compete in soccer matches. To the best of our knowledge, it is the fastest open

source walk available for the NAO. The UNSW walk engine has 15 parameters that

determine features of the walk (see Table 7.1 for a full list of these parameters). The

values of the parameters from the open source release constitute the parameterization

of the initial policy π0. Hengst (2014) describes the UNSW walk controller in more
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Parameter Name Parameter Value

Center of Mass Offset 0.01
Base Walk Period 0.23
Walk Hip Height 0.23

Max Forward 0.3
Max Left Step 0.2

Max Turn 0.87
Max Forward Change 0.15

Max Left Change 0.2
Max Turn Change 0.8

Base Leg Lift 0.012
Arm Swing 6.0

Pendulum Height 300.0
Forward Extra Foot Height 0.01

Left Extra Foot Height 0.02
Start Lift Divisor 3.5

Table 7.1: The initial parameter values found in the open source release of the UNSW
walk engine. Some of these values were explicit parameters in the open source release;
others were hard-coded constants that we chose to allow CMA-ES to modify during
policy optimization.

detail.

For this task, v(π,M) is the average forward walk velocity while executing

π. On the physical robot, a trajectory terminates once the robot has walked four

meters (≈ 20.5s with the initial policy) or falls. In simulation a trajectory terminates

after a fixed time interval (7.5 seconds in SimSpark and 10 seconds in Gazebo) or

when the robot falls. For policy improvement in simulation, we apply CMA-ES for

10 iterations with 150 candidate policies evaluated in each iteration.

We implement GAT with two two-hidden-layer neural networks – one for f

and one for f−1
sim. Each function is a neural network with 200 hidden units in the first

layer and 180 hidden units in the second. The network architectures were selected

based on error measured on a held-out data set.

The data set D consists of 15 trajectories collected with π0 on the physical

NAO. To ensure the robot’s motors stayed cool, we waited five minutes after
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collecting every five trajectories. For each iteration of GAT, we run 10 iterations of

the CMA-ES algorithm. For each iteration of CMA-ES we select argmax v(π,Msim)

and evaluate it on the physical robot. If the robot falls in any trajectory the policy

is considered unstable.

7.4.1.5 Sim-to-Sim Walk Engine Policy Optimization

We also present a sim-to-sim evaluation of GAT using Gazebo as a surrogate for

the real world. Unless stated otherwise, all experimental details are the same as

those used in the sim-to-real evaluation. As baselines, we evaluate the effectiveness

of GAT compared to learning with no grounding and grounding Msim by adding

Gaussian noise to the robot’s actions. Adding an “envelope” of noise has been used

before to minimize simulation bias by preventing the policy improvement algorithm

from overfitting to the simulator’s dynamics (Jakobi et al., 1995). We refer to this

baseline as NOISE-ENVELOPE. We hypothesize that GAT is modifying simulation

in a more effective way then just forcing learning to be robust to perturbation and

will thus obtain a higher level of performance.

For GAT we collect 50 trajectories of robot experience to train f and 50

trajectories of simulated experience to train f−1
sim. For each method, we run 10

iterations of the CMA-ES algorithm. In each iteration, 150 candidate policies are

sampled and each is evaluated in simulation with 20 trajectories. Overall, the

CMA-ES optimization requires 30,000 simulated trajectories for each trial. This

process is repeated 10 times for each method.

7.4.2 Empirical Results

We now present our main empirical results.
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Figure 7.5: Mean performance of best policies found on the Arm Control task. We
run 10 trials using GAT and 10 trials directly transferring from Msim to M (“No
Modification”). The y-axis gives the average distance to the target position during a
trajectory (lower is better). Error bars are for a 95% confidence interval.

7.4.2.1 Arm Control Results

On the Arm Control task we evaluate whether GAT allows learning better policies

in simulation than learning without simulator modification. We refer to the latter

method as “No Modification.” For each method, we run 10 trials. On each trial

we run 50 iterations of CMA-ES. For each iteration we take the best performing

candidate policy and evaluate it in M. Our main point of comparison is which

method finds a policy that allows the robot to move its arms closer to the target

position (higher v(π,M)).

Figure 7.5 shows the mean performance of v(π′,M) for π′ learned in simulation

either with GAT or with “No Modification.” Results show that GAT is able to

overcome the reality gap and results in policies that reduce error in arm position.

We also visualize the effect of the action modification function, g, in the

simulator. Figure 7.6 shows how the robot’s LeftShoulderPitch joint moves in M,
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Figure 7.6: Visualization of the robot’s LeftShoulderPitch joint position in M,
Msim, and Msim after applying GAT. The x-axis is time in frames (50 frames per
second). The y-axis has units of angles which is the unit for both the plotted actions
and states. Trajectories were generated in each environment with a policy that
sets a constant desired position of −15 degrees (“Action”). “Real State” shows the
LeftShoulderPitch position inM, “No Grounding State” shows position inMsim, and
“Grounded State” shows position in the grounded Msim. “Grounded Action” shows
the action that the GAT action modification function takes in place of “Action.”

Msim, and the grounded Msim when a constant joint command of −15 degrees is

applied. In Msim the position of the LeftShoulderPitch responds immediately to the

command while in M the position changes much more slowly. After applying GAT,

the position changes much slower in simulation as the action modification function

reduces the magnitude of the desired change.
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7.4.2.2 Linear Policy Walking Results

In the Linear Policy Walking task we measure performance based on how far forward

the robot walks. The initial policy fails to move the robot forward at all – though it

is executing a walking controller, its feet never break the friction of the carpet and

so it remains at the starting position. We run five trials of learning with simulator

modification and five trials without. On average learning in simulation with GAT

resulted in the robot moving 4.95 cm forward while without simulator modification

the robot only moved 1.3 cm on average.

Across the five trials without modification, two trials fail to find any im-

provement. The remaining three only find improvement in the first iteration of

CMA-ES – before CMA-ES has been able to begin exploiting inaccuracies in the

simulation. In contrast, all trials with simulator modification find improving policies

and improvement comes in later learning iterations (on average iteration 3 is the

best).

We also plot example trajectories to see how the modified and unmodified

simulations compare to reality. Instead of plotting all state and action variables, we

only plot the state variable representing the robot’s right AnklePitch joint and the

action that specifies a desired position for this joint. This joint was chosen because

the main failure of policies learned without simulator modification is that the robot’s

feet never break the friction of the carpet. Learning to properly move the ankles

may be important for a policy to succeed in the real world.

Figure 7.7a shows the prediction of joint position for the learned forward

model, f , as well as the joint position in the real world and simulation. The “Predicted

State” curve is generated by using f as a simulator of how the joint position changes

in response to the actions.25 Figure 7.7a shows that in the real world the right

AnklePitch joint oscillates around the desired angular position as given by the robot’s

25Note that f would not suffice for policy improvement as it only models how the joint positions
change and not the effect of these changes on walk velocity.
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action. The forward model f predicts this oscillation while the simulator models the

joint position as static.

Figure 7.7b shows the actual real world and simulated trajectories, both for

the modified and unmodified simulators. Though the modified simulator still fails

to capture all of the real world oscillation, it does so more than no modification.

Learning in a simulator that more accurately models this motion leads to policies

that are able to lift the robot’s legs enough to walk.

(a) Predicted trajectory (b) Actual trajectory

Figure 7.7: Visualization of the robot’s right AnklePitch joint during the Linear
Policy Walking task. Both sub-figures show the position trajectory for M (denoted
“Real State”) and Msim (“No Grounding State”). They also both show the action
though it is covered by the “No Grounding State” curve. Figure 7.7a shows the GAT
forward model’s prediction of position given the same action sequence. Figure 7.7b
shows the actual position when acting in the modified simulation.

7.4.2.3 Simulator to Physical NAO Results

Table 7.2 gives the physical world walk velocity of policies learned in simulation

with GAT. The physical robot walks at a velocity of 19.52 cm/s with π0. Two

iterations of GAT with SimSpark increased the walk velocity of the NAO to 27.97
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Method Velocity (cm/s) % Improve

π0 19.52 0.0
GAT SimSpark π1 26.27 34.58
GAT SimSpark π2 27.97 43.27
GAT Gazebo π1 26.89 37.76

Table 7.2: This table gives the maximum learned velocity and percent improvement
for each method starting from π0 (top row).

cm/s – an improvement of 43.27% compared to π0.26 GAT with SimSpark and GAT

with Gazebo both improved walk velocity by over 30%.

Policy improvement with CMA-ES required 30,000 trajectories per iteration

to find the 10 policies that were evaluated on the robot. In contrast the total number

of trajectories executed on the physical robot is 65 (15 trajectories in D and 5

evaluations per πc ∈ Π). This result demonstrates GAT can use sample-intensive

simulation learning to optimize real world skills with a low number of trajectories on

the physical robot.

Farchy et al. (2013) demonstrated the benefits of re-grounding and further

optimizing π. We reground with 15 trajectories collected with the best policy found

by GAT with SimSpark and optimize for a further 10 iterations of CMA-ES in

simulation. The second iteration results in a walk, θ2, which averages 27.97 cm/s

for a total improvement of 43.27% over θ0.

Overall, improving the UNSW walk by over 40% shows that GAT can learn

walk policies that outperform the fastest known stable walk for the NAO robot.

7.4.2.4 SimSpark to Gazebo Results:

Table 7.3 gives the average improvement in stable walk policies for each method

and the number of trials in which a method failed to produce a stable improve-

ment. Results show that GAT maximizes policy improvement in v while minimizing

26A video of the learned walk policies is available at https://www.cs.utexas.edu/users/

AustinVilla/?p=research/real_and_sim_walk_learning.
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Method % Improve Failures Best Iteration

No Ground 11.094 7 1.33
NOISE-ENVELOPE 18.93 5 6.6

GAT 22.48 1 2.67

Table 7.3: This table compares the grounded action transformation algorithm (GAT)
with baseline approaches for transferring learning between SimSpark and Gazebo.
The first column displays the average maximum improvement found by each method
after the first policy update made by CMA-ES. The second column is the number
of times a method failed to find a stable walk. The third column gives the average
iteration of CMA-ES when the best policy was found. No Ground refers to learning
done in the unmodified simulator.

failure to transfer when transferring from a low-fidelity to high-fidelity simulator.

NOISE-ENVELOPE improves upon no grounding in both improvement and num-

ber of iterations without improvement. Adding noise to the simulator encourages

CMA-ES to propose robust policies which are more likely to be stable. However,

GAT further improves over NOISE-ENVELOPE – demonstrating that action trans-

formations are grounding the simulator in a more effective way than injecting noise.

Table 7.3 also shows that on average GAT finds an improved policy within the

first few policy updates after grounding. When learning with no grounding finds an

improvement it is also usually in an early iteration of CMA-ES. The grounding done

by GAT is inherently local to the trajectory distribution of πθ0 . Thus as πθ changes,

the action transformation function fails to produce a more realistic simulator. As

policy improvement progresses, the best policies in each CMA-ES iteration begin to

over-fit to the dynamics of Msim. Without grounding over-fitting happens almost

immediately. Noise modification methods can mitigate over-fitting by emphasizing

robust policies although it is also limited in finding as strong of an improvement as

GAT.
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7.5 Summary

In this chapter, we have introduced an algorithm which allows a robot to learn a

policy in a simulated environment and the resulting policy transfer to the physical

robot. This algorithm, called the grounded action transformation algorithm, makes

a contribution towards allowing reinforcement learning agents to leverage simulated

data that is typically unusable in reinforcement learning. Giving agents the ability

to learn skills in simulation with only small amounts of real world experience, greatly

enhances the data efficiency of RL agents. This algorithm constitutes Contribution

5 of this dissertation.

We empirically evaluated GAT on three robot learning tasks using the NAO

robot. In all cases, GAT leads to higher task performance compared to no grounding.

We also compared GAT to a simulator randomization baseline and found that using

real world data to modify the simulation was more effective than simply adding

noise to the simulation. Finally, we applied GAT to optimizing the parameters of an

existing walk controller and learned the fastest stable walk that we know of for the

NAO robot.

Reinforcement learning algorithms struggle when the distribution of trajecto-

ries differs from that under the current policy and the environment of interest. In this

Chapter, we introduced an algorithm for the setting when distribution of trajectories

changes because the environment of interest is replaced with a simulator. This work

complements the approaches of earlier chapters that dealt with distribution shift

when the current policy is replaced with a different behavior policy. In the next

chapter, we introduce algorithms that combine using both simulated and off-policy

data. These algorithms constitute the final contributions of this dissertation.
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Chapter 8

Combining Off-policy Data with

Simulated Data

So far in this dissertation our discussion of policy value estimation has focused on

minimal MSE estimates. In this chapter we will turn to a second objective for policy

value estimation: computing confidence intervals for policy value estimates. We refer

to this problem as the high confidence off-policy policy value estimation problem.

Existing methods for this problem are based on importance sampling methods and

tend to require large amounts of data to produce tight confidence intervals. In this

chapter, we show how a combination of simulated and off-policy data can tighten

confidence intervals for policy value estimation.

This chapter makes two contributions to using simulated data for computing

confidence intervals for policy value estimation. First, we introduce a method for

computing confidence intervals from the model-based estimator. The model-based

estimator (introduced in Chapter 2) is a straightforward way to use simulated data

to compute policy value estimates. However, how best to obtain confidence intervals

for these estimates is still an open question. To address this question, we introduce a

method that combines the model-based estimator with a statistical technique known
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as bootstrapping. This new method, that we call MB-BOOTSTRAP, allows us to

produce confidence intervals with the model-based estimator. MB-BOOTSTRAP is

Contribution 6 of this dissertation and the first contribution of this chapter.

Unfortunately, model-based evaluation may be both biased and inconsistent,

resulting in confidence intervals that are never sufficiently tight or fail to include

v(πe). To avoid this problem, we turn to the doubly robust and weighted doubly

robust estimators described in Chapter 2. These estimators allow us to use simulated

data alongside importance-sampled off-policy data while remaining unbiased (in

the case of doubly robust) and consistent (for both doubly robust and weighted

doubly robust). In this chapter we combine these methods with bootstrap confidence

intervals to address the high confidence off-policy value estimation problem. The

resulting method, which we call WDR-BOOTSTRAP, is Contribution 7 of this

dissertation.27

The algorithmic contributions of this chapter build on a previous approach of

combining off-policy value estimators with statistical bootstrapping (Thomas et al.,

2015b). The model-based estimator and weighted doubly robust estimator also come

from earlier work in the literature. It is the combination of these lower variance

off-policy value estimators with statistical bootstrapping that forms the contributions

of this chapter. We discuss other alternative approaches to producing confidence

intervals for off-policy policy value estimation in Section 9.4.

8.1 Confidence Intervals for Off-policy Value Estima-

tion

Before introducing the contributions of this chapter, we first recall the general high

confidence policy value estimation problem and discuss why it is challenging in

27This chapter contains work that was done in collaboration with Scott Niekum and previously
published at AAMAS 2017 (Hanna et al., 2017a).
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the off-policy setting. Throughout this chapter, we will focus on the problem of

computing a lower bound on a policy value estimate. However, the methods we

introduce are equally applicable for computing upper bounds or two-sided confidence

intervals.

Recall from Chapter 2, that in the high confidence policy value estimation

problem, we are given a set of m trajectories, D = {(Hi, πb)}mi=1, where Hi ∼ πb. We

are also given an evaluation policy, πe and a confidence level, δ ∈ [0, 1]. Our objective

is to determine a confidence lower bound, vδ(πe), on v(πe) such that vδ(πe) ≤ v(πe)

with probability at least 1 − δ. The probabilistic lower bound means that if the

lower bound was computed m times with m different realizations of D, the expected

number of times that vδ(πe) > v(πe) is mδ. Ideally, vδ is tight or at least as close to

v(πe) as possible while not exceeding the allowable δ error rate.

If πb is distinct from πe, the problem becomes the high confidence off-policy

value estimation problem. Existing methods for this problem are based on the

importance sampling estimator. Unfortunately, the high variance of importance

sampling leads to these methods providing loose lower bounds (Thomas et al., 2015a).

While Contributions 1 and 3 could potentially improve these methods, we focus here

on how a combination of simulated and off-policy data leads to novel methods to

address this problem.

8.2 Off-Policy Bootstrapped Lower Bounds

If we had access to the cumulative distribution function (CDF) of our policy value

estimates, it would be straightforward to determine a lower bound: simply return

the δ-percentile value of the distribution. Since we lack access to the CDF, we will

instead estimate the distribution of our policy value estimates and use the estimated

distribution to compute a confidence interval. We accomplish this objective with

bootstrapping. Bootstrapping is a technique for estimating the distribution of a
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statistic of interest (Efron, 1987). In this setting, our statistic of interest is an

off-policy value estimate of v(πe).

We give pseudocode for a bootstrap lower bound method in Algorithm 6.

We define Off-PolicyEstimate to be any method that takes a data set, D :=

{(Hi, πb)}mi=1 and a policy, πe, and returns a policy value estimate, v̂(πe), (i.e., an

off-policy estimator). The output of Off-PolicyEstimate is a statistic of D and we

aim to estimate the distribution of Off-PolicyEstimate.

Bootstrapping estimates the distribution of Off-PolicyEstimate by creating

b new sets of trajectories by sampling with replacement from the dataset D (Algorithm

6, Lines 1-2). We term these new trajectory sets bootstrap datasets. For each bootstrap

dataset, we can use Off-PolicyEstimate to determine an estimate, v̂, of v(πe) (Line

3). Since each bootstrap will contain different proportions of the original trajectories,

this procedure produces a distribution over the value of v̂. From this distribution

we can estimate a 1 − δ lower bound by taking the δ-percentile estimate (Line 6)

after the v̂s are sorted (Line 5). As the dataset, D, grows, the distribution of v̂j

becomes a closer approximation of the distribution of Off-PolicyEstimate and our

confidence intervals become more accurate.

Algorithm 6 is a general algorithm for off-policy bootstrap confidence intervals.

We are not the first to consider the use of bootstrap confidence intervals for off-policy

policy value estimation: Thomas et al. (2015b) use a variant of bootstrapping with

importance sampling as Off-PolicyEstimate. Our contribution is to use learned

models of the environment’s transition function to produce tighter confidence intervals

than these methods.

While bootstrapping has strong guarantees as m→∞, bootstrap confidence

intervals lack finite sample guarantees. Using bootstrapping requires the assumption

that the bootstrap distribution is representative of the distribution of the statistic of

interest which may be false for a finite sample. Therefore, we characterize bootstrap
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methods for producing confidence intervals as “approximate high-confidence” due

to this possibly false assumption.28 In contrast to lower bounds from concentration

inequalities, bootstrapped lower bounds can be thought of as approximating the

allowable δ error rate instead of upper bounding it. However, bootstrapping is

considered safe enough for high risk medical predictions and in practice has a well-

established record of producing accurate confidence intervals (Chambless et al.,

2003).

Algorithm 6 Bootstrap Confidence Interval
Input is an evaluation policy πe, a data set of trajectories, D, a confidence level,
δ ∈ [0, 1], and the required number of bootstrap estimates, b.
input πe, D, πb, δ, b

output 1− δ confidence lower bound on v(πe).

1: for all i ∈ [1, b] do

2: D̃i ← {(Hi
1, πb), . . . , (H

i
n, πb)} where Hi

j ∼ U(D) // where U(D) is a uniform distribution

over trajectory-policy pairs in D.

3: v̂i ← Off-PolicyEstimate(πe, D̃i,πb)
4: end for

5: sort({v̂i|i ∈ [1, b]}) // Sort ascending

6: l← bδbc
7: Return v̂l

8.2.1 Model-based Bootstrap

Our first approach to using simulated data for policy value confidence intervals is

to directly use the model-based estimator as Off-PolicyEstimate in Algorithm 6.

That is, for each bootstrap data set, we build a model, M̂, of the environment MDP,

M. We then estimate v(πe,M̂). If the size of S and A are small enough, v(πe,M̂)

can be computed exactly with value iteration. Otherwise, v(πe,M̂) can be estimated

by simulating trajectories with πe in M̂. We call this method MB-BOOTSTRAP

for model-based bootstrap and provide pseudocode in Algorithm 7.

28Thomas et al. (2015a) refer to such confidence intervals as “semi-safe.”
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Algorithm 7 MB-BOOTSTRAP Confidence Interval
Input is an evaluation policy πe, a data set of trajectories, D, a confidence level,
δ ∈ [0, 1], and the required number of bootstrap estimates, b. BuildModel is a
function that uses trajectories to construct a model of the underlying MDP.
input πe, D, πb, δ, b

output 1− δ confidence lower bound on v(πe).

1: for all i ∈ [1, b] do

2: D̃i ← {(Hi
1, πb), . . . , (H

i
n, πb)} where Hi

j ∼ U(D) // U(D) is a uniform distribution over

trajectory-policy pairs in D.

3: M̂ ← BuildModel(D̃)

4: v̂i ← v(πe,M̂)

5: end for

6: sort({v̂i|i ∈ [1, b]}) // Sort ascending

7: l← bδbc
8: Return v̂l

The main drawback to using MB-BOOTSTRAP is that the model-based

estimator may be both biased and inconsistent. Thus even as the amount of available

data grows, confidence intervals from MB-BOOSTRAP may remain too loose or,

worse, have a higher error-rate than the specified δ level. However, when accurate

models can be built, the low variance of the model-based estimator may lead to

tighter confidence intervals than could be produced with other methods. In Section

8.3 we derive an upper bound on the difference between v(πe,M) and v(πe,M̂)

that provides insight into settings where model bias may be high (and bounds from

MB-BOOTSTRAP less trustworthy). In the following subsection we introduce our

second contribution, WDR-BOOTSTRAP, that allows us to use simulated data

while remaining free of model bias.

8.2.2 Weighted Doubly Robust Bootstrap

To bypass the lack of consistency of the model-based estimator, we now turn to

the WDR estimator. We introduce a second algorithm that uses WDR as Off-

PolicyEstimate in Algorithm 6. We call this new algorithm WDR-BOOTSTRAP
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for weighted doubly robust bootstrap and provide pseudocode for it in Algorithm 8.

This algorithm is Contribution 7 of this dissertation.

Algorithm 8 WDR-BOOTSTRAP Confidence Interval
Input is an evaluation policy πe, a data set of trajectories, D, a confidence level,
δ ∈ [0, 1], and the required number of bootstrap estimates, b. BuildModel is a
function that uses trajectories to construct a model of the underlying MDP.
input πe, D, πb, δ, b

output 1− δ confidence lower bound on v(πe).

1: M̂ ← BuildModel(D)

2: q̂πe , v̂πe ← value functions of πe in M̂.

3: for all i ∈ [1, b] do

4: D̃i ← {(Hi
1, πb), . . . , (H

i
n, πb)} where Hi

j ∼ U(D) // where U(D) is a uniform distribution

over trajectory-policy pairs in D.

5: v̂i ←WDR(πe, D̃i,M̂, q̂πe , v̂πe)

6: end for

7: sort({v̂i|i ∈ [1, b]}) // Sort ascending

8: l← bδbc
9: Return v̂l

In most ways, Algorithm 8 is similar to Algorithm 7. Aside from changing

Off-PolicyEstimate, the other notable difference is that WDR-BOOTSTRAP only

constructs a single model of the environment. We estimate the value functions q̂πe

and v̂πe with the single model and then evaluate WDR with these value functions

on the bootstrap datasets.

We could consider using the unweighted DR estimator as an alternative to

WDR for combining off-policy and simulated data. We use WDR instead of DR

because WDR typically has lower variance than DR and so can produce tighter

confidence intervals. Though WDR is biased, it remains consistent and can thus

leverage an inaccurate model to still produce tight and reliable confidence intervals.
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8.3 Theoretical Analysis: When is Model Error High?

In this chapter, we are introducing two novel methods for determining confidence

intervals for off-policy policy value estimation. The strength of WDR-BOOTSTRAP

compared to MB-BOOTSTRAP is that it can still produce consistent confidence

intervals even with an inaccurate model. However, it is an open question as to how to

identify settings where model error is likely to be high and WDR-BOOTSTRAP is a

more appropriate choice than MB-BOOTSTRAP. Towards answering this question,

we now present a theoretical upper bound on the difference between v(πe,M̂) for a

fixed model and v(πe,M).

Theorem 8.1 bounds the error of v(πe,M̂) produced by a fixed model, M̂,

as a function of the training error achieved when building M̂. This bound provides

insight into the settings in which MB-BOOTSTRAP is likely to be unsuccessful.

To prove this bound, we require the additional assumption that the reward

function for M is known and bounded in [0, rmax]. We also will make use of the

notation PM and d0,M to refer to the transition probabilities and initial state

probabilities for MDP M.

Theorem 8.1. For MDP M, any policies πe and πb, and an approximate model,

M̂, estimated with i.i.d. trajectories, H ∼ Pr(·|M, πb), the error in the model-based

estimate of v(πe,M) with M̂, v(πe,M̂), is upper bounded by:

∣∣∣v(πe,M̂)− v(πe,M)
∣∣∣ ≤ 2

√
2L · rmax

√√√√E

[
ρ

(H)
L−1 log

Pr(H|πe,M)

Pr(H|πe,M̂)

∣∣∣∣∣H ∼ πb
]

where ρ
(H)
L−1 is the importance weight of trajectory H at step L.

Proof. See Appendix E.1 for the full proof.

The expectation in Theorem 8.1 is an importance-sampled Kullback-Leibler

(KL) divergence. This expectation is thus a measure of similarity between the
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distribution of trajectories in the real MDP versus the model with more weight

placed on trajectories that are more likely under πe than the behavior policy.

This result tells us that the error in a model-based estimate depends on how

different the distribution of trajectories under the model is from the distribution

of trajectories seen when executing π in the true MDP. Since most model building

techniques (e.g., supervised learning algorithms, tabular methods) build the model

from (st, at, st+1) transitions even if the transitions come from sampled trajectories

(i.e., non-i.i.d. transitions), we express Theorem 8.1 in terms of transitions:

Corollary 8.1. For MDP, M, any policies πe and πb and an approximate model,

M̂, with transition probabilities, PM̂, estimated with trajectories H ∼ πb, the bias of

the approximate model’s estimate of v(πe,M), v(πe,M̂), is upper bounded by:

|v(πe,M̂)− v(πe,M)| ≤ 2
√

2L · rmax

√√√√ε0 +
L−1∑
t=1

E
[
ρ

(H)
t ε(St, At)

∣∣∣St, At ∼ dtπb,M]

where dtπb,M is the distribution of states and actions observed at time t

when executing πb in the true MDP, ε0 := DKL(d0,M||d0,M̂), and ε(s, a) =

DKL(PM(·|s, a)||PM̂(·|s, a))).

Proof. See Appendix E.1.3 for the proof of Corollary 8.1.

Since P is unknown it is impossible to compute the DKL terms in Corollary

8.1. However, DKL can be approximated with two common supervised learning loss

functions: negative log likelihood and cross-entropy. We can express Corollary 8.1 in

terms of either negative log-likelihood (a regression loss function for continuous MDPs)

or cross-entropy (a classification loss function for discrete MDPs) and minimize the

bound with observed (st, at, st+1) transitions. In the case of discrete state-spaces

this approximation upper bounds DKL. In continuous state-spaces the approximation

is correct within the average differential entropy of P which is a problem-specific
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constant. Theorem 8.1 can be extended to finite sample bounds using Hoeffding’s

inequality:

Corollary 8.2. For MDPM, any policies πe and πb and an approximate model, M̂,

with transition probabilities, PM̂, estimated with (s, a) transitions from trajectories

H ∼ πb, and after observing m trajectories then with probability α, the error of the

approximate model’s estimate of v(πe,M), v(πe,M̂), is upper bounded by:

∣∣∣v(πe,M̂)− v(πe,M)
∣∣∣ ≤ 2L · rmax·√√√√√2ρ̄L−1

√
ln( 1

α)

2m
− 1

m

m∑
j=1

ρjL−1

(
log d

0,M̂(sj1) +
L−1∑
t=1

logPM̂(sjt+1|s
j
t , a

j
t )

)

where ρ̄L−1 is an upper bound on the importance ratio, i.e., for all h, ρ
(h)
L−1 < ρ̄L−1.

Proof. See Appendix E.2 for the proof of Corollary 8.2.

Corollary 8.1 allows us to estimate the upper bound proposed in Theorem

8.1 while Corollary 8.2 allows us to upper bound our estimate of the upper bound.

Given that we can estimate Corollary 8.1, we could estimate the bound and subtract

it from the model-based estimate. This adjustment would prevent the model-based

estimate from overestimating v(πe) which would in turn make sure the lower bound

of MB-BOOTSTRAP did not overshoot v(πe). However in practice the dependence

on the maximum reward makes the bound too loose to subtract off from the lower

bound found by MB-BOOTSTRAP. Instead, we observe it characterizes settings

where the MB estimator may exhibit high bias. Specifically, a MB estimate of v(πe)

will have low error when we build a model which obtains low training error under

the negative log-likelihood or cross-entropy loss functions where the error due to

each (st, at, st+1) is importance-sampled to correct for the difference in distribution.

This result holds regardless of whether or not the true transition dynamics are

134



Figure 8.1: Cliff World domain in which an agent (A) must move between or around
cliffs to reach a goal (G).

representable by the model class. It is interesting to note that the largest importance

weight upper bounds the variance of IS when returns are bounded. Here it upper

bounds the error of MB when returns are bounded.

8.4 Empirical Analysis

We now present empirical evaluation of MB-BOOTSTRAP, WDR-BOOTSTRAP,

and other bootstrapping off-policy methods across two policy value estimation tasks.

8.4.1 Experimental Set-up

Before presenting our empirical results, we briefly introduce the experimental set-up

for each domain. Remaining details are included in Appendix F.4.

The first experimental domain is the discretized version of the Mountain Car

task that we also used in Chapter 6. States are discretized horizontal position and

velocity (for a total of 4292 states) and the agent may choose to accelerate left, right,

or neither. We build tabular models which cannot generalize from the (s, a) pairs

we observe in D. We compute the model action value function, q̂πe , and state value

function, v̂πe with value-iteration for WDR. We use Monte Carlo rollouts to estimate

v(πe,M̂) with MB.

Our second domain is a continuous two-dimensional Cliff World (depicted in
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Figure 8.1) where a point mass agent navigates a series of cliffs to reach a goal state,

g. Domain dynamics are linear with additive Gaussian noise.

We build models in two ways: linear regression (converges to the true transition

probabilities as m→∞) and regression over nonlinear polynomial basis functions.29

The first model class choice represents the ideal case and the second is the case

when the true dynamics are outside the learnable model class. Our results refer to

WDR-BOOTSTRAPLR and WDR-BOOTSTRAPPR as the WDR estimator using

linear regression and polynomial regression models respectively. Similarly, we evaluate

MB-BOOTSTRAPLR and MB-BOOTSTRAPPR. These dynamics mean that the

bootstrap models of WDR-BOOTSTRAP LR and MB-BOOTSTRAPLR will quickly

converge to a correct model as the amount of data increases since they build models

with linear regression. On the other hand, these dynamics mean that the models

of WDR-BOOTSTRAPPR and MB-BOOTSTRAPPR will quickly converge to an

incorrect model since they use regression over nonlinear polynomial basis functions.

In each domain, we estimate a 95% confidence lower bound (δ = 0.05) with

our proposed methods and the importance sampling bootstrap methods from Thomas

et al. (2015b).30 To the best of our knowledge, these IS methods are the current

state-of-the-art for approximate high confidence off-policy policy value estimation.

We use b = 2000 bootstrap estimates, v̂i and compute the true value of v(πe) with

1,000,000 Monte Carlo roll-outs of πe in each domain.

For each domain we computed the lower bound for m trajectories with m

varying logarithmically. For each m we sample a set of m trajectories with the

behavior policy and compute the lower bound with each method on that set of

trajectories.

29For each state feature, x, we include features 1, x2, x3 but not x.
30The importance sampling methods from Thomas et al. use a variant of bootstrapping known as

bias-corrected and accelerated bootstrapping (BCa) which adjusts the distribution of the bootstrap
statistic. This method is more complex than the simpler bootstrap variant we use and is suitable
when the data distribution may be heavy-tailed, as is the case for importance sampling estimators.
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We run 400 trials for Mountain Car and 100 for Cliff World. The large

number of trials is required for the empirical error rate calculations. When plotting

the average lower bound across methods, we only average valid lower bounds (i.e.,

v̂δ(πe) ≤ v(πe)) because invalid lower bounds raise the average which can make a

method appear to produce a tighter average lower bound when it fact it has a higher

error rate.

8.4.2 Experimental Results

Figure 8.2 displays the average empirical 95% confidence lower bound found by each

method in each domain. The ideal result is a lower bound, vδ(πe), that is as large as

possible subject to vδ(πe) < v(πe). Given that any statistically consistent method

will achieve the ideal result as m → ∞, our main point of comparison is which

method gets closest the fastest. As a general trend we note that MB-BOOTSTRAP

and WDR-BOOTSTRAP get closer to this ideal result with less data than all other

methods. Figure 8.3 displays the empirical error rate for MB-BOOTSTRAP and

WDR-BOOTSTRAP and shows that they approximate the allowable 5% error in

each domain.

8.4.2.1 Mountain Car

In Mountain Car(Figure 8.2a), both WDR-BOOTSTRAP and MB-BOOTSTRAP

outperform purely all IS methods (IS, WIS, PDIS, and PDWIS) in reaching the ideal

result. We also note that both methods produce approximately the same average

lower bound. The modeling assumption that lack of data for some (s, a) results in

a transition to s is a form of negative model bias which lowers the performance of

MB-BOOTSTRAP. Therefore, even though MB will eventually converge to v(πe)

it does so no slower than WDR which can produce good estimates even when the

model is inaccurate. This negative bias also leads to one importance sampling variant
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(a) Mountain Car (b) Cliff World

Figure 8.2: The average empirical lower bound for the Mountain Car and Cliff
World domains. Each plot displays the 95% lower bound on v(πe) computed
by each method with varying amounts of trajectories. The ideal lower bound
is just below the line labelled v(πe). Results demonstrate that the proposed model-
based bootstrapping (MB-BOOTSTRAP) and weighted doubly robust bootstrapping
(WDR-BOOTSTRAP) find a tighter lower bound with less data than previous im-
portance sampling bootstrapping methods. For clarity, we omit IS, WIS and PDIS
in Cliff World as they were outperformed by PDWIS. Error bars are for a 95%
two-sided confidence interval.

(PDWIS) producing a tighter bound for small data sets although it is overtaken by

MB-BOOTSTRAP and WDR-BOOTSTRAP as the amount of data increases.

Figure 8.3a shows that the MB-BOOTSTRAP and WDR-BOOTSTRAP

error rate is much lower than the required error rate yet Figure 8.2a shows the

lower bound is no looser. Since MB-BOOTSTRAP and WDR-BOOTSTRAP are

low variance estimators, the average bound can be tight with a low error rate. It

is also notable that since bootstrapping only approximates the 5% allowable error

rate all methods can do worse than 5% when data is extremely sparse (only two

trajectories).
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8.4.2.2 Cliff World

In Cliff World (Figure 8.2b), we first note that MB-BOOTSTRAPPR quickly con-

verges to a suboptimal lower bound. In practice an incorrect model may lead

to a bound that is too high (positive bias) or too loose (negative bias). Here,

MB-BOOTSTRAPPR exhibits negative asymptotic bias and we converge to a bound

that is too loose. MB-BOOTSTRAPLR with the correct model converges to a tight

lower bound.

WDR-BOOTSTRAP is free of this asymptotic bias since it only uses the

model as a control variate. Our theoretical results suggest MB error is high when

evaluating πe since the polynomial basis function models have high training error

when errors are importance-sampled to correct for the off-policy model estimation.

If we compute the bound in Section 8.3 and subtract the value off from the bound

estimated by MB-BOOTSTRAPPR then the lower bound estimate will be unaffected

by bias. Unfortunately, our theoretical bound (and other model-error bounds in

earlier work) depends on the largest possible return, L · rmax and thus ensuring

the model-based estimate lower-bounds v(πe) in this straightforward way reduces

data-efficiency gains when bias may in fact be much lower.

The second notable trend is that WDR is also negatively impacted by the

incorrect model. In Figure 8.2b we see that WDR-BOOTSTRAPLR (correct model)

starts at a tight bound and increases from there. WDR-BOOTSTRAPPR with an

incorrect model performs worse than PDWIS until larger m. Using an incorrect

model with WDR decreases the variance of the PDWIS term less than the correct

model would but we still expect less variance and a tighter lower bound than PDWIS

by itself. One possibility is that error in the estimate of the model value functions

coupled with the inaccurate model increases the variance of WDR.

We note WDR is particularly susceptible to error in continuous action set-

tings. Recall that WDR requires a state value function, v̂πe , such that vπe(s, t) =
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(a) Mountain Car (b) Cliff World

Figure 8.3: Empirical error rate for the Mountain Car and Cliff World domains.
The lower bound is computed k times for each method (k = 400 for Mountain Car,
k = 100 for Cliff World) and we count how many times the lower bound is above the
true v(πe). All methods correctly approximate the allowable 5% error rate for a 95%
confidence lower bound.

∑
a πe(a|s)q̂πe(s, a, t). In continuous action settings the summation is replaced with

an integral which may be analytically intractable unless q̂πe has a particular form.31

In Cliff World, we did not have a q̂πe of one of these forms and we used Monte Carlo

integration to approximate the integral. However, this approximation potentially

introduced additional error into the estimates.

8.5 Summary

This chapter has introduced two novel bootstrapping method for approximate high

confidence off-policy policy value estimation that combines both model-based simu-

lation and direct use of off-policy data with importance sampling. We have shown

on two empirical settings that these approaches lead to tighter confidence intervals

for policy value estimation than existing methods that only use off-policy data with

31See Ciosek and Whiteson (2018) for a partial list of such forms.
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importance sampling.

The first of these contributions, MB-BOOTSTRAP, uses the (likely) biased

and statistically inconsistent model-based estimator. When model error is low, we

can expect tight confidence intervals with this method. To better understand settings

where model error may be high, we introduce a bound of the difference between

v(πe,M) and v(πe,M̂) for a fixed model, M̂. This bound characterizes settings

where model error may be high and alternative confidence interval methods should

be used. MB-BOOTSTRAP is Contribution 6 of this dissertation.

The second of this chapter’s contributions, WDR-BOOTSTRAP, overcomes

potential inconsistency that could arise from using a model. This method uses the

WDR estimator which produces consistent estimates even when model error is high.

Thus we can use simulated data without introducing model bias. The downside of

WDR-BOOTSTRAP is the IS component of WDR increases variance which may re-

sult in looser confidence intervals even when model error is low. WDR-BOOTSTRAP

is Contribution 7 of this dissertation.

These contributions complete the contributions of this dissertation.
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Chapter 9

Related Work

The contributions of this dissertation build upon the contributions of many people.

In this chapter we discuss these earlier works and how our contributions relate

to them. Section 9.1 surveys work related to adaptive importance sampling for

variance reduction in reinforcement learning. Section 9.2 surveys work related to

regression importance sampling and reducing sampling error in reinforcement learning.

Section 9.3 surveys work on leveraging simulation for reinforcement learning. Section

9.4 surveys work related to high confidence off-policy policy value estimation and

(statistical) bootstrapping for RL. Finally, Section 9.5 discusses the problem of

value-function learning that is related to policy value estimation.

9.1 Sampling Off-Policy Data

This section covers work related to behavior policy search and adaptive importance

sampling for policy value estimation and policy improvement.
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9.1.1 Adaptive Importance Sampling in Reinforcement Learning

Behavior policy search and BPG are closely related to existing work on adaptive

importance-sampling. While adaptive importance-sampling has been studied in the

Monte Carlo simulation literature, we focus here on adaptive importance-sampling

for MDPs and Markov Reward Processes (i.e., Markov chains with rewards at each

state). Existing work on adaptive IS in RL has considered changing the transition

probabilities to lower the variance of policy evaluation (Desai and Glynn, 2001; Frank

et al., 2008) or lower the variance of batch policy gradient estimates (Ciosek and

Whiteson, 2017). Since the transition probabilities are typically uncontrollable in

RL, adapting the behavior policy is a more general approach to adaptive IS in RL.

The cross-entropy method (CEM) is a general method for adaptive importance-

sampling and could, in principle, be applied to reinforcement learning (Rubinstein,

1997). CEM attempts to minimize the Kullback-Leibler divergence between the

current sampling distribution and the optimal sampling distribution. As discussed

in Section 3.2, this optimal behavior policy only exists under a set of restrictive

conditions. When the required conditions are met, a gradient-based version of CEM

performs a similar behavior policy update as BPG (See Appendix C.2 for a proof).

However, when the required conditions are not met, adapting the behavior policy by

minimizing variance, as BPG does, is still applicable.

Aside from adaptive importance sampling, other methods exist for lowering

the variance of on-policy estimates. Control variates (Zinkevich et al., 2006; White

and Bowling, 2009), common random numbers, and antithetic variates (Veness et al.,

2011) are other variance reduction techniques that have been applied to policy value

estimation. These techniques require a model of the environment and do not appear

to be applicable to the general RL policy value estimation problem. One place where

these technique are applicable is Monte Carlo Tree Search (MCTS) where a simulator

for the environment is typically available. We note that BPG could potentially be
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applied to lower the variance of value estimates in MCTS.

9.1.2 Policy Improvement with Adaptive Importance Sampling

Chapter 4 examined how behavior policy search can be used to increase the data

efficiency of batch policy gradient reinforcement learning. Previously, Bouchard

et al. (2016) adapted the behavior policy to lower the variance of batch policy

gradient estimates. Ciosek and Whiteson (2017) adapted the environment transition

probabilities and correct with importance sampling in a way that lowers the variance

of batch policy gradient estimates. Both these methods minimize the trace of the

covariance matrix of the importance-sampled policy gradient. In contrast, we used the

behavior policy gradient algorithm to lower the variance of the importance-sampled

return.

9.2 Weighting Off-Policy Data

In this section, we survey work related to importance sampling with an estimated

behavior policy. We also discuss work related to the problem of eliminating sampling

error in reinforcement learning.

9.2.1 Importance Sampling with an Estimated Behavior Policy

The regression importance sampling estimator introduced in Chapter 5 replaces the

true behavior policy with its empirical estimate. Earlier work has studied many

different variants of this approach. We divide earlier work into methods that show

estimating the behavior policy leads to more accurate estimates than using the true

behavior policy and methods that seemingly show that estimating the behavior policy

leads to less accurate estimates. For the former, we will discuss how the contribution

of Chapter 5 is different than these earlier works. For the latter, we will discuss how

research showing that estimating the behavior policy leads to less accurate estimates
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does not contradict our findings that regression importance sampling has lower MSE

than that of ordinary importance sampling.

9.2.1.1 Estimating the Behavior Policy is Better

A number of research works have shown that using the empirical behavior policy

improves importance sampling relative to using the true behavior policy. To the best

of our knowledge, all such work has been done in the multi-armed bandit, contextual

bandit, or causal inference communities. One can directly extend these methods to

MDPs by estimating the empirical distribution of trajectories instead of the empirical

distribution of actions. Unfortunately, such a method is impractical as it requires

knowing the probability of a trajectory under πe which requires knowing the state

transition probabilities. In Appendix D.3 we show that our RIS(L− 1) estimator

can be viewed as an approximation of such a method. Under this view, the more

straightforward RIS(0) estimator is a greater departure from methods that have

appeared previously in the literature.

Our work took inspiration from Li et al. (2015) who prove, for contextless

bandits, that using the empirical behavior policy has lower minimax mean squared

error than using the true behavior policy. They corroborate these theoretical

findings with experiments showing that the mean squared error of the so-called REG

estimator decreases faster than that of OIS. The main distinction between this work

and Chapter 5 is that we are interested in policy value estimation for full MDPs

where actions affect both reward and the next state. Our theoretical results are only

concerned with the asymptotic sample size while Li et al. (2015) provide results for

finite sample sizes.

For contextual bandits, Narita et al. (2019) prove that importance sampling

with the empirical policy minimizes asymptotic variance among all asymptotically

normal estimators (including ordinary importance sampling). They also provide a
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large-scale study of policy value estimation with the empirical behavior policy on an

ad-placement task. Xie et al. (2018) provide similar results and prove a reduction in

finite-sample mean squared error when using the empirical behavior policy. Again,

our work differs from these two works in that we are concerned with full MDPs.

It has long been known in the causal inference literature that the empirical

behavior policy outperforms using the true behavior policy. In this literature,

the behavior policy action probabilities are known as propensities and importance

sampling is known as inverse propensity scoring (Austin, 2011). Rosenbaum (1987)

first introduced this approach using parametric propensity estimates. In later work,

Hirano et al. (2003) studied this approach using non-parametric propensity score

estimates. The causal inference problems studied can be viewed as a restricted class

of contextual bandit problems. Under that view, our work differs from these earlier

studies in that we are concerned with full MDPs.

Importance sampling is commonly defined as a way to use samples from a

proposal distribution to estimate an expectation under a target distribution. Henmi

et al. (2007) proved that importance sampling with a maximum likelihood parametric

estimate of the proposal distribution had lower asymptotic variance than using the

true proposal distribution. Our asymptotic variance analysis of regression importance

sampling is a corollary to this theoretical result. Delyon and Portier (2016) proved

the benefit of using a non-parametric estimate of the proposal distribution.

Other works have explored directly estimating the importance weights instead

of first estimating the proposal distribution (i.e., behavior policy) to compute the

importance weights (Oates et al., 2017; Liu and Lee, 2017). These “blackbox”

importance sampling approaches show superior convergence rates compared to

ordinary importance sampling. These methods have also, to the best of our knowledge,

not been studied in Markov decision processes or for sequential data.

Finally, a few works have used the estimated behavior policy to smooth
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importance weights when the data has been generated by a set of behavior policies

with limited support. Gruslys et al. (2017) use an empirical estimate of the behavior

policy for an off-policy actor-critic algorithm. Levine and Koltun (2013) combine

a set of local policies learned with LQR into a global policy and then use this

global policy as the behavior policy to importance sample data for a batch policy

gradient algorithm. Strehl et al. (2010) estimate the behavior policy when the data

was generated by a set of deterministic behavior policies. Our work differs from

all of these approaches in that we use the empirical behavior policy in order to

reduce sampling error while these works use the empirical behavior policy to smooth

importance weights.

9.2.1.2 Estimating the Behavior Policy is Worse

In the literature, it is not always the case that using an estimated behavior policy

improves importance sampling. Here, we discuss this work and why it does not

contradict our findings that estimating a behavior policy can improve importance

sampling.

In contextual bandit problems, Dud́ık et al. (2011) present theoretical results

showing that an estimated behavior policy may increase the variance of importance

sampling while also introducing bias. Farajtabar et al. (2018) prove similar results for

full MDPs. However, in these works the behavior policy is estimated with a separate

set of data than the set used for computing the off-policy value estimate. Because

the behavior policy is estimated with a separate set of data it has no power to correct

sampling error in the data used for the off-policy value estimate. In fact, these

theoretical findings are in line with our experiments showing that it is important to

use the same set of data both to estimate the behavior policy and to compute the

regression importance sampling estimate (see Figures 5.4b, 5.4d, 5.6b in Chapter 5).

Raghu et al. (2018) report that larger differences between the true behavior
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policy and estimated behavior policy lead to more error in the off-policy value

estimate. However, they measure off-policy value estimation error with respect to

the true behavior policy weighted importance sampling estimate and so it is not

surprising that as the policies become more different the error increases.

Finally, we note that in settings where the behavior policy is unknown, or is

a complex function of the state, more work is needed with regards to how to select

the right policy class for regression importance sampling or what it means to avoid

over-fitting when estimating the behavior policy. While these questions are open, it

is possible that more research may show the empirical behavior policy is worse than

the true behavior policy even when using regression importance sampling.

9.2.2 Exact Expectation Methods

In Chapter 5 and 6 we have used importance sampling with an estimated behavior

policy to correct sampling error in reinforcement learning. Here, we discuss alternative

approaches that avoid sampling error altogether.

The SARSA algorithm (Rummery and Niranjan, 1994) uses (S,A,R, S′, A′)

tuples to learn an estimate of qπe with the update:

qπe(S,A, t)← qπe(S,A, t) + α(R+ qπe(S′, A′, t+ 1)− qπe(S,A, t)).

This update requires two sampled actions. Sampling error due to double sampling in

the action-space can be reduced with the expected SARSA update (Van Seijen et al.,

2009):

qπe(S,A, t)← qπe(S,A, t) + α(R+
∑
a∈A

πe(a|S′)qπe(S′, a, t+ 1)− qπe(S,A, t)).

Expected SARSA requires either a small discrete action-space or for πe and qπe

to have forms that allow analytic integration. Regression importance sampling is
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applicable when these conditions fail to hold.

Expected SARSA can be extended to a multi-step algorithm with the tree-

backup algorithm (Precup et al., 2000; Sutton and Barto, 1998). More recent work

has shown that the amount of sampling as opposed to exact expectations can be done

on a per-state basis using the Q(σ) algorithm (Asis et al., 2018). Other tree-backup-

like algorithms have been proposed and hold the promise to eliminate sampling

error in off-policy data (Yang et al., 2018; Shi et al., 2019). Like expected SARSA,

these algorithms require the ability to compute the sum of πe(a|s)qπe(s, a, t) over all

a ∈ A.

In policy gradient reinforcement learning, Sutton et al. (2000b) introduced

the all-actions policy gradient algorithm that avoids sampling in the action-space

by analytically computing the expectation of qπθ(s, a) ∂
∂θ log πθ(a|s). This approach

has been further developed as the expected policy gradient algorithm (Ciosek and

Whiteson, 2018; Fellows et al., 2018), the mean actor-critic algorithm (Asadi et al.,

2017), and the MC-256 algorithm (Petit et al., 2019). With a good approximation of

qπ, these algorithms learn faster than a batch Monte Carlo policy gradient estimator.

However, requiring a good approximation of qπ undercuts one of the primary reasons

for using policy gradient RL: it may be easier to represent a good policy than to

represent the correct action-value function (Sutton and Barto, 1998). The sampling

error corrected policy gradient estimator provides an alternative method for reducing

sampling error when qπ is difficult to learn. We also note that estimating π (as

the sampling error corrected policy gradient estimator does) may be easier than

estimating qπ since the right function approximator class for π is known while, in

general, it is unknown for qπ.
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9.3 Learning with Simulated Data

The challenge of transferring learned policies from simulation to reality has received

much research attention of late. This section surveys this recent work as well as

older research in simulation-transfer methods. We note that our work also relates to

model-based reinforcement learning. However, much of model-based reinforcement

learning focuses on learning a simulator for the target task MDP (often from scratch)

while we focus on settings where an inaccurate simulator is available a priori.

We divide the sim-to-real literature into four categories: simulator modifica-

tion, simulator randomization or simulator ensembles, simulators as prior knowledge,

and sim-to-real perception learning.

9.3.1 Simulator Modification

We classify sim-to-real works that attempt to use real world experience to change

the simulator as simulator modification approaches. This category of work is the

category most similar to Chapter 7 and the grounded action transformation (GAT)

algorithm.

Abbeel et al. (2006) use real-world experience to modify an inaccurate model

of a deterministic MDP. The real-world experience is used to modify Psim so that

the policy gradient in simulation is the same as the policy gradient in the real world.

Cutler et al. (2014) use lower fidelity simulators to narrow the action search space

for faster learning in higher fidelity simulators or the real world. This work also

uses experience in higher fidelity simulators to make lower fidelity simulators more

realistic. Both these methods assume random access modification – the ability to

arbitrarily modify the simulated dynamics of any state-action pair. This assumption

is restrictive in that it may be false for many simulators especially for real-valued

states and actions.

Other work has used real world data to modify simulator parameters (e.g.,
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coefficients of friction) (Zhu et al., 2018) or combined simulation with Gaussian

processes to model where real world data has not been observed (Lee et al., 2017).

Such approaches may extrapolate better to new parts of the state-space, however,

they may fail if no setting of the physics parameters can capture the complexity

of the real world. Golemo et al. (2018) train recurrent neural network to predict

differences between simulation and reality. Then, following actions in simulation, the

resulting next state is corrected to be closer to what it would be in the real world.

This approach requires the ability to directly set the state of the simulator which is

a requirement we avoid with GAT.

Manual parameter tuning is another form of simulator modification that can

be done prior to applying reinforcement learning. Lowrey et al. (2018) carefully

identify simulation parameters before applying policy gradient reinforcement learning

to learn to push an object to target positions. Tan et al. (2018) perform similar

system identification (including disassembling the robot and making measurements

of each part) and adding action latency modeling before using deep reinforcement

learning to learn quadrapedal walking. In contrast to these approaches, the GAT

algorithm takes a data-driven approach to modifying the simulator without the need

for expert system identification.

Finally, while most approaches to simulator modification involve correcting

the simulator dynamics, other approaches attempt to directly correct v(π,Msim).

Assuming v(π,M) = v(π,Msim) + ε(π), Iocchi et al. (2007) attempt to learn ε(π)

for any π. Then policy search can be done directly on v(π,Msim) + ε(π) without

needing to evaluate v(π,M). Rodriguez et al. (2019) introduce a similar approach

except they take into account uncertainty in extrapolating the estimate of ε(π) and

use Bayesian optimization for policy learning. Like our work in Chapter 7, both

of these works apply their techniques to bipedal locomotion. Koos et al. (2010)

use multi-objective optimization to find policies that trade off between optimizing
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v(π,Msim) and a measure of how likely π is to transfer to the real world.

9.3.2 Robustness through Simulator Variance

Another class of sim-to-real approaches is methods that attempt to cross the reality

gap by learning robust policies that can work in different variants of the simulated

environment. The key idea is that if a learned policy can work in different simulations

then it is more likely to be able to perform well in the real world. The simplest

instantiation of this idea is to inject noise into the robot’s actions or sensors (Jakobi

et al., 1995; Miglino et al., 1996) or to randomize the simulator parameters (Peng

et al., 2017; Molchanov et al., 2019; OpenAI et al., 2018). Unlike data driven

approaches (such as GAT), such domain randomization approaches learn policies

that are robust enough to cross the reality gap but may give up some ability to

exploit the target real world environment.

A number of works have attempted to combine domain randomization and

real world data to adapt the simulator. Chebotar et al. (2019) randomize simulation

parameters and use real world data to update the distribution over simulation

parameters while simulatenously learning robotic manipulation tasks. A similar

approach is taken by Ramos et al. (2019). Muratore et al. (2018) attempt to

use real world data to predict transferrability of policies learned in a randomized

simulation. Mozifian et al. (2019) attempt to maintain a wide distribution over

simulator parameters while ensuring the distribution is narrow enough to allow

reinforcement learning to exploit instances that are most similar to the real world.

Domain randomization is used to learn policies that are robust enough to

transfer to the real world. An alternative approach that does not involve randomness

is to learn policies that perform well under an ensemble of different simulators

(Boeing and Bräunl, 2012; Rajeswaran et al., 2017; Lowrey et al., 2018). Pinto et al.

(2017b) simultaneously learn an adversary that can perturb the learning agent’s
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actions while it learns in simulation. The learner must learn a policy that is robust

to disturbances and then will perform better when transferred to the real world.

9.3.3 Simulator as Prior Knowledge

Another approach to sim-to-real learning is to use experience in simulation to

reduce learning time on the physical robot. Cully et al. (2015) use a simulator to

estimate fitness values for low-dimensional robot behaviors which gives the robot

prior knowledge of how to adapt its behavior if it becomes damaged during real world

operation. Cutler and How (2015) use experience in simulation to estimate a prior for

a Gaussian process model to be used with the PILCO (Deisenroth and Rasmussen,

2011) learning algorithm. Rusu et al. (2016a; 2016b) introduce progressive neural

network policies which are initially trained in simulation before a final period of

learning in the true environment. Christiano et al. (2016) turn simulation policies

into real world policies by transforming policy actions so that they produce the same

effect that they did in simulation. Marco et al. (2017) use simulation to reduce the

number of policy evaluations needed for Bayesian optimization of task performance.

In principle, GAT could be used with any of these approaches to correct the simulator

dynamics which would lead to a more accurate prior.

9.3.4 Reality Gap in the Observation Space

Finally, while we focus on the reality gap due to differences in simulated and real

world dynamics, much recent work has focused on transfer from simulation to reality

when the policy maps images to actions. In this setting, even if P and Psim are

identical, policies may fail when transferred to the real world due to the differences

between real and rendered images. Domain randomization is a popular technique

for handling this problem. Unlike the dynamics randomization techniques discussed

above, in this setting domain randomization means randomizing features of the

153



simulator’s rendered images (Sadeghi and Levine, 2017; Tobin et al., 2017, 2018;

Pinto et al., 2017a). This approach is useful in that it forces deep reinforcement

learning algorithms to learn representations that focus on higher level properties of

a task and not low-level details of image appearance.

Computer vision domain adaptation methods can also be used to overcome

the problem of differing observation spaces (Fang et al., 2018; Tzeng et al., 2016;

Bousmalis et al., 2018; James et al., 2019). A final approach is to learn perception

and control separately so that the real world perception system is only trained with

real world images (Zhang et al., 2016; Devin et al., 2017).

9.4 Combining Simulation and Importance Sampling

Chapter 8 introduced two algorithms for approximate high confidence off-policy policy

value estimation method that uses a control variate and statistical bootstrapping.

This section surveys work related to high confidence off-policy policy value estimation

and statistical bootstrapping.

9.4.1 High Confidence Off-Policy Policy Value Estimation

Concentration inequalities have been used with importance-sampled returns for lower

bounds on off-policy estimates (Thomas et al., 2015a). The concentration inequality

approach is notable in that it produces a true probabilistic bound on the policy

performance. A similar method was proposed by Bottou et al. (2013) who clip

importance weights to lower the variance of the importance sampling estimator.

Unfortunately, these approaches require prohibitive amounts of data and were shown

to be far less data-efficient than bootstrapping with importance sampling (Thomas

et al., 2015b; Thomas, 2015).

Jiang and Li (2016) evaluated the doubly robust estimator for safe-policy

improvement. They compute confidence intervals with a method similar to the
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Student’s t-test confidence interval shown to be less data-efficient than bootstrapping

(Thomas et al., 2015b). Methods using t-test confidence intervals are, like statistical

bootstrapping, only “semi-safe” because they make a possibly false assumption that

off-policy corrected returns are normally distributed. Cohen et al. (2018) also use

t-test confidence intervals for safe policy improvement.

Chow et al. (2015) and Ghavamzadeh et al. (2016) use ideas from robust opti-

mization to derive model-based lower bounds on v(πe). These bound are computable

only if the error in each transition can be bounded and is inapplicable for estimating

bias in continuous state-spaces. Model-based PAC MDP methods can be used to

synthesize policies which are approximately optimal with high probability (Fu and

Topcu, 2014). These methods are only applicable to discrete MDPs and require

large amounts of data. In contrast, MB-BOOTSTRAP and WDR-BOOTSTRAP

are applicable to continuous or discrete MDPs.

Outside of policy value estimation, Brown and Niekum (2018) introduce a high

confidence method for inverse reinforcement learning. In the inverse reinforcement

learning setting, the agent attempts to infer the reward function with respect to

which an expert demonstrator was acting optimally. Letting π̂? be the policy that is

optimal with respect to the estimated reward r̂ and πd be the expert demonstrator’s

policy, Brown and Niekum (2018) introduce an algorithm that ensures v(π̂?) is within

ε of v(πd).

9.4.2 Bootstrapping in Reinforcement Learning

Other previous work has used statistical bootstrapping to handle uncertainty in

RL. One of the primary reasons to represent uncertainty with bootstrapping is

for exploration. The TEXPLORE algorithm learns multiple decision tree models

from subsets of experience to represent uncertainty in model predictions (Hester

and Stone, 2010). Osband et al. (2016) use bootstrap datasets to train multiple
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heads for a deep Q-Network Q-value estimator. Each head gives a different Q-value

estimate which serves as a measure of uncertainty used to guide exploration. In this

dissertation we use bootstrapping for high confidence off-policy value estimation

instead of exploration.

White and White (2010) use time-series bootstrapping to place confidence

intervals on value-function estimation during policy learning. Thomas and Brunskill

(2016a) introduce an estimate of the model-based estimator’s bias using a combination

of WDR and bootstrapping. Chua et al. (2018) build different models from bootstrap

data sets to represent uncertainty in the environment’s transition probabilities. While

these methods are related through the combination of bootstrapping and RL, they do

not address the problem of confidence intervals for off-policy policy value estimation

that we address in Chapter 8.

9.5 Policy Evaluation vs. Policy Value Estimation

Chapters 3 and 5 addressed the policy value estimation problem. The policy value

estimation problem is closely related to the problem of policy evaluation and so we

discuss the related policy evaluation literature here.

In the policy evaluation problem, we are given an evaluation policy πe and

tasked with estimating the value function vπe(s, t) := E[
∑L

j=tRj |St = s,Aj ∼ πe]

for all states s (Sutton and Barto, 1998). Denoting the estimated value function as

v̂πe , we seek to minimize the mean squared value error of this estimate:

∑
s∈S

µ(s)(v̂πe(s, ·)− vπe(s, ·))2,

where µ(s) ≥ 0,
∑

s∈S µ(s) = 1 is a measure of how much we care about the error in

state s (Sutton and Barto, 1998). In contrast, in the policy value estimation problem,
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we estimate a scalar estimate, v̂, and desire low squared error for this estimate:

(v̂ − v(πe))
2.

where the true value of the policy, v(π), is equal to the expectation of the true value

function vπe(S, 0) under the initial state distribution d0.

As in policy value estimation, we require data from some policy in order

to estimate vπe . When the data comes from πe, the problem is on-policy policy

evaluation. When the data comes from a different policy, the problem is off-policy

policy evaluation. Importance sampling is a widely used technique for correcting

off-policy data in policy evaluation (Precup et al., 2000; Munos et al., 2016). In

Chapter 10, we will discuss extending our policy value estimation work on importance

sampling to the policy evaluation setting.

Policy evaluation introduces other challenges not present in the policy value

estimation problem. First, the need to estimate vπe(s, t) for a possibly infinite

number of states necessitates function approximation to represent vπe . Second, value

function learning admits the possibility of using intermediate estimates of vπe(s, t)

for updating the value of other states, a process known as bootstrapping in the RL

community. Function approximation, bootstrapping, and off-policy learning are a

deadly triad that, in combination, can produce unstable and inconsistent estimates

of vπe(Baird, 1995; Sutton and Barto, 1998). Much work has been done on finding

stable value function estimators that can leverage all three of these techniques (e.g.,

Baird (1995); Sutton et al. (2016); Mahmood et al. (2017)). To the best of our

knowledge, neither improving the behavior policy or estimating the behavior policy

has been studied for policy evaluation. In Chapter 10, we discuss these combinations

as interesting directions for future work.
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9.6 Summary

This chapter has surveyed work related to the topics of this dissertation with the

intent of placing our contributions within the existing literature. While much more

could be said about work that has been done in off-policy reinforcement learning

and the use of simulation in robotics, we focused on work related to the algorithms

introduced in this dissertation.
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Chapter 10

Conclusion and Future Work

Solutions to many real world problems involve taking sequences of actions to achieve

long-term goals. The reinforcement learning problem is an effective way to model such

settings where an intelligent agent interacts with a task. Furthermore, reinforcement

learning algorithms have led to stronger empirical performance than hand-designed

controllers, policies from classical control, or policies learned with supervised learning.

Unfortunately, many algorithms capable of learning strong policies require large

amounts of domain experience. As long as this fact remains true, it will be difficult

for such reinforcement learning algorithms to be widely applied.

Part of this data-inefficiency problem is that reinforcement learning algorithms

are sensitive to the distribution of data they observe during learning. Experience is

best when it comes from the current policy and is generated in the environment of

interest. Experience from off-policy or simulated data is generally harder for an RL

agent to use. Allowing RL agents to learn from off-policy or simulated data would

make learning more efficient. Towards this goal, this dissertation makes several

contributions towards answering the following question for finite-horizon, episodic

reinforcement learning problems:
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How can a reinforcement learning agent leverage off-policy and simulated

data to evaluate and improve upon the expected performance of a policy?

Towards our big question, we first asked the smaller question of how should an

RL agent collect off-policy data for low variance importance sampling? In Chapter

3, we focused on the problem of policy value improvement and asked how to collect

off-policy data so that importance sampling policy value estimation has low variance.

We introduced the behavior policy search problem and an algorithm that addresses

this problem for the reinforcement learning sub-problem of policy value estimation.

Furthermore, in Chapter 4, we demonstrated the utility of behavior policy search for

policy improvement.

We next asked the question of how should an RL agent weight experience it

has collected from another policy (i.e., off-policy data) to correct for distribution

shift in the action selection? Again, we focused on the off-policy technique of

importance sampling and showed that the common ordinary importance sampling

weights are sub-optimal (Chapter 5). These weights require using the true data

collecting behavior policy probabilities πb(a|s). We showed that replacing the true

behavior policy probabilities with their empirical estimate results in more accurate

off-policy policy value estimation. We also showed, in Chapter 6, that a similar

approach leads to more accurate policy improvement.

In addition to off-policy learning, this dissertation also considered how an

RL agent can use simulated data when a domain simulator is available a priori

(Chapter 7). Though the underlying problem of distribution shift is the same, for

simulated data, importance sampling cannot be used because the transition function

is unknown. Instead, we introduced an algorithm that allows a small amount of real

world data to be used to first correct the simulator before reinforcement learning is

done in simulation. We demonstrated the utility of this algorithm on three robot

learning tasks – including a walking experiment that leads to the fastest walking

controller we know of on the NAO robot.
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Finally, we combined the use of off-policy and simulated data to produce more

data efficient algorithms for the problem of high confidence policy value estimation

(Chapter 8). In this problem the goal is to produce a tight estimated confidence

interval on the value of an untested policy. Importance-sampling-based techniques

for this problem lead to confidence intervals that are too loose. We showed how

learned simulators can be used for this problem and also how learned simulators

can be combined with off-policy data to retain theoretical advantages of importance-

sampling-based confidence interval methods. We introduced two algorithms for the

approximate high confidence policy value estimation problem and demonstrated

empirically that they provide tighter confidence bounds than existing techniques

that only use off-policy data.

10.1 Contributions

This dissertation makes the following contributions to the reinforcement learning

literature.

1. In Chapter 3, we introduced the behavior policy search problem for finding a

behavior policy that produces data for low variance importance sampling policy

value estimation. We also introduced the behavior policy gradient algorithm

as one solution to this problem and provided an empirical study of behavior

policy search with the behavior policy gradient algorithm.

2. In Chapter 4, we studied the application of behavior policy search to policy

improvement. We demonstrated empirically the potential for using an improved

behavior policy for more efficient off-policy learning. Finally, we identified

directions for further study of simultaneous behavior and target policy learning.

3. In Chapter 5, we introduced a family of regression importance sampling

estimators that replace the true behavior policy used in importance sampling
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with the empirical estimate of the behavior policy. We proved that all members

of this family have asymptotically lower or equal variance than using the true

behavior policy and we demonstrated empirically that regression importance

sampling improves off-policy policy value estimation compared to ordinary

importance sampling.

4. In Chapter 6, we introduced the sampling error corrected (SEC) policy gradient

estimator for batch policy gradient reinforcement learning. Under a set of

limiting assumptions we proved that SEC has variance less than or equal to

that of the batch Monte Carlo policy gradient estimator. We also conducted

an empirical study of learning with SEC and showed faster convergence to the

optimum policy when using SEC as opposed to the batch Monte Carlo policy

gradient estimator.

5. In Chapter 7, we introduced the grounded action transformation (GAT) al-

gorithm that uses small amounts of real world data to modify a simulated

environment so that the simulated environment can be used for reinforcement

learning. We applied GAT to three robot learning tasks and showed it allowed

skills learned entirely in simulation to transfer to the physical robot. We

also used GAT to optimize the parameters of a state-of-the-art robot walking

controller which led to the fastest stable walking controller for the NAO robot.

6. In Chapter 8, we introduced the model-based bootstrap (MB-BOOTSTRAP)

algorithm for approximate high confidence policy value estimation. We derived

an upper bound on the error in model-based estimates of a policy’s value. We

demonstrated empirically that MB-BOOTSTRAP produces tighter confidence

interval estimates than importance-sampling-based methods.

7. Also in Chapter 8, we introduced the weighted doubly robust bootstrap

(WDR-BOOTSTRAP) algorithm for approximate high confidence policy value
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estimation. We demonstrated empirically that WDR-BOOTSTRAP produces

tighter confidence interval estimates than importance-sampling-based methods

while retaining provable consistency.

10.2 Future Work

The work of this dissertation has answered many smaller questions towards answering

the thesis question of how a reinforcement learning agent can leverage off-policy and

simulated data for more efficient policy value estimation and policy improvement. It

has also raised many new questions for future research. In this section, we discuss

these questions.

As an overarching direction for future work, we note that the contributions

made in this dissertation have been made in a particular setting of the reinforcement

learning problem. In particular, new algorithms, theoretical results, and empirical

studies made the assumption that tasks are modeled as episodic, finite-horizon,

fully observable Markov decision processes. Extending algorithms and results to

the continuing, infinite-horizon, and partially observable settings is an important

direction for future work. We also note that our contributions pertaining to policy

gradient RL (Contributions 2 and 4) studied batch policy gradient RL. Extending

results to the non-batch setting is another important direction for future work.

10.2.1 Sampling Off-Policy Data

Chapters 3 and 4 discussed how a learning agent should collect data for more efficient

policy value estimation and policy improvement. The focus of these chapters was on

using importance sampling to lower the variance of off-policy policy value estimation.

Here we discuss connections to regression importance sampling (Chapter 5), consider

extensions to value function learning, further discuss using behavior policy search for

policy improvement, and provide some remaining theoretical questions concerning
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behavior policy search.

10.2.1.1 Exploration for Policy Evaluation

Chapter 3 introduced the behavior policy gradient algorithm that provides low

variance importance sampling estimates. This algorithm assumes the true behavior

policy action probabilities are used in the importance sampling estimate. Chapter

5 introduced regression importance sampling (RIS) and showed that an estimate

of the behavior policy yields a stronger importance sampling method compared to

using the true behavior policy. This observation raises the question of “how should

we perform behavior policy search for a RIS estimate of v(πe)?”

The bandit setting is illustrative for showing that a good behavior policy

for ordinary importance sampling may be sub-optimal for regression importance

sampling. Consider a k-armed bandit with deterministic rewards on each arm. After

all k arms have been observed, the RIS estimate will have both zero bias and zero

variance.32 Thus the optimal behavior policy for RIS should increase the probability

of unobserved actions; it is a non-stationary policy that depends on all of the past

actions.

In contrast, as shown in Chapter 3, the optimal behavior policy for ordinary

importance sampling is to take actions in proportion to πe(a)r(a). Thus behavior

policy search may yield a behavior policy that is sub-optimal for the RIS estimator.

Bandit problems are a useful way to show that the best choice of behavior

policy depends on whether we will use ordinary importance sampling or regression

importance sampling. However, our ultimate goal is full MDPs and future work

should consider how to extend behavior policy search to RIS in both bandits and

MDPs.

32This statement follows from having deterministic rewards and the observation of Li et al. (2015)
that importance sampling with an estimated behavior policy is equivalent to an analytic expectation
over the estimated reward function.
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10.2.1.2 Behavior Policy Search for Value Function Learning

This dissertation has focused on the goal of estimating v(πe) which is the expected

return of a policy under the initial state distribution. This problem is closely related

to the more general problem of learning the value function of a policy, vπe : S → R,

that gives, for any state, the expected sum of rewards from that state (Sutton and

Barto, 1998). A natural question is whether or not ideas from behavior policy search

lead to more efficient value function learning.

Recall that vπe(s) is the expected cumulative reward obtained when following

policy πe from state s. Our goal is to estimate vπe with minimal MSE over all

states. Specifically, given an estimated value-function, v̂πe , and the true (unknown

in practice) value-function, vπe , we wish to minimize:

∑
s∈S

µ(s) (v̂πe(s)− vπe(s))2

where µ(s) is a state-dependent weighting that captures how much we care about

getting the value estimate right in state s. Value function learning methods typically

compute a target, Ut, and update v̂πe(St) towards this target. For convergence to

vπe , the target should be an estimate of vπe(St).

A straightforward approach to compute Ut is to use the Monte Carlo return

following St:

Ut =
L∏
j=t

πe(Aj |Sj)
πb(Aj |Sj)

(Rt +Rt+1 + ...+RL).

With the right choice of behavior policy, we can use importance sampling to lower

the variance of this evaluation.

While straightforward, the Monte Carlo approach ignores the fact that esti-

mates of the value of one state can be used when estimating the value of another

state. Instead of full Monte Carlo returns, n-step returns allow us to make use of
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the intermediate value function estimates:

Ut = Rt +Rt+1 + ...+Rn−1 + vπe(St+n).

The n-step return is a Monte Carlo return that is truncated after n steps with the

remaining rewards replaced with the estimated value of the state at step n. As with

the full return, we can use importance sampling to create an off-policy n-step return:

Ut =

t+n∏
j=t

πe(Aj |Sj)
πb(Aj |Sj)

(Rt +Rt+1 + ...+Rn−1 + vπe(St+n)) .

The variance of this estimate is dependent on the choice of πb.

In principle, the variance of the n-step return can be lowered with behavior

policy search in the same way that we used behavior policy search to lower the

variance of the Monte Carlo return. The main challenge is that the variance of the

n-step return will also change as the value function improves. For instance, assume

the value function is initialized to zero for all states. Then the value function term

in the n-step return contributes nothing to the variance of the n-step return and

behavior policy search would just lower the variance of the n reward terms. However,

after updating the value function, the variance of the n-step return will also depend

on the magnitude of the value function at the nth state along the partial trajectory.

For this new value function, it may be that a different behavior policy is needed

to achieve the most variance reduction. The changing value function means that

behavior policy search must track a moving target – adapting the behavior policy to

lower the variance of the n-step whose variance is also changing as the value function

changes.
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10.2.1.3 Behavior Policy Search for Policy Improvement

Chapter 4 discussed combining behavior policy search with policy improvement when

using batch policy gradient reinforcement learning. Though an algorithm – parallel

policy search – was proposed, it remains to be seen if it is an improvement over

common on-policy batch policy gradient methods.

The most important question is how to resolve the tension between the need

to explore and the need to reduce variance. The former involves trying new actions

while the latter involves increasing the probability of already tried actions that led

to high magnitude returns. Decreasing variance with behavior policy search should

allow faster learning but there is a risk of sub-optimal convergence if the behavior

policy stops trying optimal actions. Determining how to balance gains from variance

reduction with exploration of optimal actions is an important step to realizing a

robust parallel policy search algorithm.

Simultaneously learning the behavior and target policy requires synchronizing

the policy update rates so that the behavior policy remains a lower variance behavior

policy than the target policy. In general, tuning two dependent policy search

procedures will be a difficult process and lead to a less robust method. Identifying

ways to synchronize the policy learning rates or set trust-regions on the policy

updates are two possible directions for improving this process and improving the

robustness of parallel policy search.

10.2.2 Weighting Off-Policy Data

Chapters 5 and 6 showed how already collected data should be weighted by a learning

agent for policy value estimation and policy improvement. The discussion focused

on correcting sampling error by importance sampling with an estimated behavior

policy. In this subsection, we discuss extensions to this work.

167



10.2.2.1 Correcting Sampling Error in Other Ways

Both regression importance sampling and the sampling error corrected policy gradient

estimator use importance sampling to correct sampling error in the observed actions.

In reinforcement learning, sampling error is also due to sampling in the initial state

distribution and environment dynamics. We term such sampling error environment

sampling error. Correcting this error would, in principle, lead to a more efficient use

of data. However, the true probabilities of initial states and next states are unknown

and thus it is unclear what the correct weighting should be.

A naive approach to correct environment sampling error would be to estimate

these probabilities with a separate data set and then use the estimate as the true value

for a sampling error correction. However, this approach would likely be unsuccessful

as the error in estimating the transition probabilities might be as high as the sampling

error.

A more promising approach might be to focus on correcting sampling error in

the initial state distribution. In the episodic RL setting, the initial state distribution

is typically fixed and we obtain a new sample from the distribution every time a

new trajectory begins. In contrast, new samples from P (·|s, a) are only encountered

when the agent reaches state s and takes action a.

Batch policy gradient algorithms are one class of RL methods where estimating

the initial state distribution to correct sampling error could be useful. Batch policy

gradient methods typically sample a set of new trajectories at each iteration, use it to

estimate the gradient for updating the policy, and then discard the trajectories before

the next iteration. Instead of discarding all data, we can use data from iterations 1

to i to estimate the initial state distribution, d0. We could then use the estimated d0

as the true initial state distribution to correct initial state sampling error in iteration

i+ 1. This approach makes use of data that would otherwise be discarded. Empirical

and theoretical study of this approach is an interesting direction for future work.

168



10.2.2.2 Regression Importance Sampling for High Confidence Policy

Value Estimation

Chapter 5 showed that regression importance sampling leads to lower mean squared

error policy value estimation. It remains to be seen if RIS also leads to tighter

confidence intervals for high confidence policy value estimation. One way to tackle

this problem would be to simply use RIS with the general bootstrap procedure we

introduced in Chapter 8. Given that RIS has been empirically shown to have lower

variance than OIS, we could expect such a method to produce tighter confidence

intervals.

A more challenging direction for future work would be to obtain true confidence

intervals with an estimated behavior policy. While the data efficiency of bootstrapping

is desirable, it only provides approximate confidence bounds. In order to determine

exact confidence intervals for RIS, we would need to develop concentration inequalities

for RIS in the same way that one can use Hoeffding’s inequality to establish confidence

intervals for OIS. One possible direction is to explore use of the Dvoretzky-Kiefer-

Wolfowitz inequality which bounds how far the empirical distribution of samples is

from the true distribution (Dvoretzky et al., 1956). Regardless of the exact approach,

exact confidence bounds for importance sampling with an estimated behavior policy

would be of great value to providing provable guarantees of safety in real world

settings.

10.2.2.3 Regression importance sampling for value function learning

Correcting sampling error with RIS could also lead to more efficient value function

learning. The value function learning problem raises two new questions. First, we

are now learning a value for all states and not just the expected value under the

initial state distribution. Does RIS provide the same data efficiency benefits for

value function learning as it does for policy value estimation given a fixed batch of
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data? Empirical and theoretical work should validate if RIS provides lower variance

learning targets for value function updates.

The second question pertains to learning a value function under online learning

as opposed to the batch setting. In the online setting, the learning agent processes

one (S,A, S′, R) tuple at a time, using the information in this transition to compute

a target for updating the value function estimate. If applying RIS in this setting,

the main question is whether we estimate the behavior policy with only the single

tuple or use all data observed up to the current time. The former is closer to our

recommendation of using only the evaluation data to compute the estimate, but

risks introducing too much bias. The latter is farther from this recommendation

but may allow correcting sampling error in the online stochastic approximation of

vπe . Studying these approaches empirically and theoretically is one direction for

extending RIS to value function learning.

10.2.2.4 Open Theoretical Questions

In Chapter 5 we proved RIS has asymptocially at most the variance of OIS. Further

theoretical analysis should examine the finite-sample bias, variance, and mean squared

error of RIS compared to OIS. A starting point for this work could be the results of

Li et al. (2015) who provide bounds on these finite-sample quantities in the bandit

setting. Extending these results to MDPs would give us a deeper understanding

of when RIS is lower MSE estimator compared to OIS. The empirical results in

Chapter 5 provide strong evidence that RIS is always preferable to OIS. However,

theoretical analysis would strengthen this claim.

The theoretical analysis in Chapter 5 did not distinguish different RIS methods

according to how much history they conditioned on (the estimator parameter n).

Theoretical analysis of the finite-sample bias-variance trade-off and asymptotic

variance for different RIS methods would deepen our understanding of how to choose
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n. Empirical results on the Singlepath domain (Chapter 5, Figure 5.5) suggest that

small n have lower small-sample MSE while large n have asymptotically lower MSE.

Verifying this finding formally is an interesting direction for future work.

10.2.3 Learning with Simulated Data

Chapter 7 introduced an algorithm, grounded action transformation (GAT), that

allows a reinforcement learning agent to learn with simulated data.

10.2.3.1 Sim-to-real in Non-Robotics Domains

In Chapter 7, we evaluated GAT on a physical NAO robot. GAT is not specific to

the NAO and could be applied on other robotics tasks or even non-robotics tasks

where a simulator is available a priori. The latter is of particular interest as the

sim-to-real problem has been studied to a much lesser extent in non-robotics domains.

GAT is most applicable in tasks where the dynamics have a basis in physics and

actions have a direct effect on some state variables. In such settings, it is reasonable

to assume that an effective action grounding function can be learned. It may be

less applicable where the dynamics are derived from other factors such as human

behavior. Identifying ways to automatically determine when GAT is applicable is an

interesting direction for future work.

10.2.3.2 Sim-to-real in extremely low fidelity simulations

We have formulated sim-to-real as two MDPs that only differ in the transition

probabilities. Another interesting problem is to consider transfer when the MDPs

differ in the state and action spaces yet have some shared structure as to allow

learning in one MDP to benefit learning in the other. Of particular interest are

environment pairs where one MDP can be thought of as a low fidelity abstraction of

the other. For example, consider the two robot soccer domains depicted in Figure
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10.1. One domain is a simulation of soccer played between circles while the other

domain fully simulates the dynamics of humanoid robots. In such domains, high

level strategy policies may be able to transfer from low to high fidelity while motion

control policies for the high fidelity simulator have no analog in the low fidelity one.

Determining what can transfer directly, what can transfer with simulator grounding,

and what simply must be learned in the high fidelity model is an interesting direction

for future work.

(a) RoboCup 2D Simulator

(b) RoboCup 3D Simulator

Figure 10.1: Screenshots from the RoboCup 2D and RoboCup 3D simulators.33 Both
simulated robot soccer tasks involve high-level coordination of robot teammates
against adversaries, however, they differ in the low-level state and action spaces.

It is reasonable to believe that some elements of a policy can be learned in

the low-fidelity model and transferred without modification to the target task. For

instance, team strategy for the RoboCup 3D simulation could be learned in the

RoboCup 2D simulation as teammate and opponent positions are the most relevant

information for team coordination and these aspects of the task are modeled in both

simulations. However, even in the shared high-level state and action space, direct

transfer may fail if the learned strategy requires low level skills that are unrealizable

in the target task. For instance, in the RoboCup 2D simulation competition, team
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strategies typically involve many short, accurate passes. However, in the RoboCup

3D simulaton competition, the inaccuracy of passing causes teams to use strategies

that rely on passing less. In this case, the low level 3D skills prevent high level

strategy from transferring. In such cases, grounding the low-fidelity simulator is a

promising direction for allowing skills to transfer.

If the available simulator is too low-fidelity, some aspects of behavior will

simply have to be learned in the target task. For example, the robots in the

RoboCup 3D simulation cannot learn bipedal walk control policies in the RoboCup

2D simulation. Even in such cases, there remains a use for the simulator as a means

to shape the learning process in the target task. For instance, learning in the target

task could be done to both maximize reward and to match the high-level outcomes

in the low-fidelity simulator. This joint task would have a more dense reward signal

and might be easier to learn.

10.2.4 Combining Off-Policy and Simulated Data

In Chapter 8, we introduced the WDR-BOOTSTRAP method that leverages the

doubly robust estimator to combine off-policy and simulated data. Doubly robust

estimators have great promise for lowering the variance of importance-sampled off-

policy data with simulated data. We discuss here opportunities to improve these

estimators, in particular, with an eye towards robotics applications.

10.2.4.1 Continuous Actions and Doubly Robust Estimators

Doubly robust estimators (DR and WDR) require a state-value estimate, v̂πe(s),

for all s that occur in the observed D and an action-value estimate, q̂πe(s, a) for all

(s, a) that occur in D. Furthermore, v̂πe(s) must equal EA∼πe [q̂πe(s,A)] to avoid

introducing model bias into the estimate. This condition is easily met when A is

33https://ssim.robocup.org/
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a finite set as v̂πe(s) can analytically be computed from q̂πe . However, when A is

infinite it may be intractable to exactly compute the expectation.

To the best of our knowledge, our Cliff World experiment in Chapter 8 is

the only study that used a doubly robust estimator with continuous action spaces.

In this experiment, we used a Monte Carlo approximation of v̂πe . This approach

only provides an approximation and was also computationally demanding. Results

in this experiment suggested that the error introduced from this approximation may

have impacted the quality of the WDR estimator. An interesting direction for future

work is to determine how best to handle continuous actions or how to account for

this error when using doubly robust estimators.

A promising possibility is to study forms of q̂πe that make an analytic evalu-

ation of EA∼πe [q̂πe(s,A)] tractable. A number of special forms of q̂πe and πe exist

where analytic evaluation becomes tractable (Ciosek and Whiteson, 2018). Even if

q̂πe is an arbitrary function, provided it is differentiable, it may be possible to use a

Taylor expansion approximation to obtain a form that can be integrated over (Gu

et al., 2017a). The drawback of this direction is that we give up some representation

power in q̂πe in exchange for being able to tractably integrate over it.

Another interesting direction is to study how error in the estimate of v̂πe

impacts the accuracy of doubly robust estimators. In some cases it may be acceptable

to have some error in v̂πe if q̂πe is a more accurate estimate of the true action-value

function, qπe . Both theoretical and empirical study of these cases is an interesting

direction for future work.

10.2.4.2 Combining Existing Simulations with Doubly Robust Estima-

tors

Our work with doubly robust estimators used simulators (i.e., models) learned

directly from data. An alternative approach is to leverage existing simulations as
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the model for DR or WDR. This approach has the benefit of incorporating domain

knowledge encoded in the simulation. A natural extension to using a simulator for

doubly robust estimators would be to first improve the simulation using the grounded

action transformation algorithm.

10.3 Concluding Remarks

This dissertation has developed techniques that allow reinforcement learning agents

to learn and evaluate policies using off-policy and simulated data. The ability to

leverage these forms of auxiliary data is an important step towards more data efficient

reinforcement learning and more data efficient evaluation of learned skills. Towards

the goal of leveraging these data sources, this dissertation has enhanced both the

theory and practice of reinforcement learning and opened up many new directions

for research in off-policy and sim-to-real reinforcement learning.
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Appendix A

Notation Summary

This appendix summarizes notation used in this dissertation. In general, we use the

notation that capital letters denote random variables, lower case letters represent

elements of sets, and calligraphic capital letters denote sets. Vectors are written in

bold lowercase letters.

• S is a set of possible world states. Elements of S are typically denoted s.

• A is a set of actions available to the agent. Elements of A are typically denoted

a.

• P : S × A × S → [0, 1] is a transition function giving the probability of

transitioning to a state s′ after choosing action a in state s. P is also known

as the dynamics of the environment.

• r : S ×A → R is a reward function.

• L is the maximum length of one episode of interacting with the environment.

• γ ∈ [0, 1] is a discount factor that allows us to express a preference for immediate

rewards compared to future rewards.
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• d0 is an initial state distribution.

• s∞ is the terminal state.

• A trajectory h is a sequence of states, actions, and rewards of length L:

s0, a0, r0, . . . sL−1, aL−1, rL−1.

• hi:j is the trajectory segment: si, ai, ri, . . . , sj , aj , rj .

• g(h) is the return of h. The return of h is the discounted sum of rewards

received during h:
∑L−1

t=0 γ
trt.

• Pr(·|π) is the distribution of trajectories when taking actions according to

π. We sometimes write H ∼ π in place of H ∼ Pr(·|π) to denote sampling a

trajectory from the trajectory distribution induced by π.

• π : S ×A → [0, 1] is a policy.

• v(π,M) is the expected return of policy π in MDP M, v(π,M) :=

E [g(H)|H ∼ π].

• vπ(s, t) is the expected return from following policy π from state s at step t.

• qπ(s, a, t) is the expected return from following policy π after taking action a

in state s at step t.

• D is a set of m trajectories generated by the behavior policy πb: D :=

{(Hi, πb)}mi=1.

• pD is the distribution over different realizations of D.

• vδ(π) is a 1− δ confidence interval lower bound on v(π).

• πθ is a policy parameterized by vector θ.
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• ρ(h)
t :=

t∏
i=0

π(ai|si)
πb(ai|si)

is the importance weight ratio up to and including time-

step t for trajectory h.

• MSE(·) denotes the mean squared error of its argument with respect to v(πe).

We assume that the random variable under which the MSE is computed is

clear from the context.

• Var(·) denotes the variance of its argument. We assume that the random

variable under which the variance is computed is clear from the context.

• Bias(·) denotes the bias of its argument. We assume that the random variable

under which the bias is computed is clear from the context.
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Appendix B

Acronym Summary

This section contains a list of acronyms used throughout this dissertation, listed by

the chapter in which they are first introduced.

Chapter 2

• MDP: Markov decision process.

• MSE: Mean squared error.

• PE: Policy evaluate, a general policy value estimator.

• MC: The Monte Carlo estimator.

• IS: The importance sampling estimator.

• WIS: The weighted importance sampling estimator.

• PDIS: The per-decision importance sampling estimator.

• PDWIS: The per-decision weighted importance sampling estimator.

• MB: The model-based estimator.
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• DR: The doubly robust estimator.

• ASE: The advantage-sum estimator.

• WDR: The weighted doubly robust estimator.

Chapter 3

• OPE: Off-policy evaluate, a general off-policy policy value estimator.

• BPG: The behavior policy gradient algorithm.

• DR-BPG: The doubly robust behavior policy gradient algorithm.

• CEM: The cross-entropy method.

Chapter 4

• PPS: The parallel policy search algorithm.

• TRPO: The trust-region policy optimization algorithm.

Chapter 5

• OIS: The ordinary importance sampling estimator.

• RIS: The regression importance sampling estimator.

• REG: The regression estimator.

• LDS: The linear dynamical system domain.

Chapter 6

• SEC: The sampling error corrected policy gradient estimator.
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Chapter 7

• GSL: The grounded simulation learning framework.

• GAT: The grounded action transformation algorithm.

• CMA-ES: The covariance matrix adaptation evolutionary strategy algorithm.

• UNSW: The University of New South Wales.

• SPL: The Standard Platform League of RoboCup.

Chapter 8

• MB-BOOTSTRAP: The model-based bootstrap algorithm.

• WDR-BOOTSTRAP: The weighted doubly robust bootstrap algorithm.

• KL: Kullback-Leibler.

Chapter 9

• PAC: Probably approximately correct.

• MSVE: Mean squared value error.
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Appendix C

Collecting Off-Policy Data:

Derivations and Proofs

This appendix includes the derivations of all theoretical results referenced in Chapter

3. We also derive a connection between the behavior policy gradient algorithm

and an existing adaptive importance sampling method known as the cross-entropy

method (Rubinstein, 1999). Finally, we provide a proof that BPG provides unbiased

estimates of v(πe).

C.1 Behavior Policy Gradient Theorem

In this section, we derive the gradient of the variance of importance sampling with

respect to the behavior policy parameters. We first derive an analytic expression

for the gradient of the variance of an arbitrary, unbiased off-policy policy evaluation

estimator, OPE(πe, H, πθ). From our general derivation we derive the gradient of

the variance of the ordinary importance sampling estimator and then extend to the

doubly robust and per-decision estimators.
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C.1.1 MSE Gradient for an Unbiased Off-Policy Policy Evaluation

Method

Lemma C.1 gives the gradient of the mean squared error (MSE) for any unbiased

off-policy policy evaluation method.

Lemma C.1.

∂

∂θ
MSE

[
OPE(πe, H, πθ)

]
= E

[
OPE(πe, H, πθ)2(

L−1∑
t=0

∂

∂θ
log πθ(At|St))+

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ]

Proof. We begin by decomposing Pr(H = h|π) into two components – one that

depends on π and the other that does not. Let

wπ(h) :=

L−1∏
t=0

π(at|st),

and

p(h) := Pr(h|π)/wπ(h),

for any π such that h is in the support of π (any such π will result in the same value

of p(h)). These two definitions mean that Pr(H = h|π) = p(h)wπ(h).

The MSE of the OPE estimator is given by:

MSE[OPE(πe, H, πθ)] = Var[OPE(πe, H, πθ)]+

(E[OPE(πe, H, πθ)]− v(πe))
2︸ ︷︷ ︸

bias2

. (C.1)

Since the OPE estimator is unbiased, i.e., E[OPE(πe, H, πθ)] = v(πe), the second
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term is zero and so:

MSE(OPE(πe, H, πθ)) = Var[OPE(πe, H, πθ)] (C.2)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]−
E[OPE(πe, H, πθ)|H ∼ πθ]2 (C.3)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2 (C.4)

To obtain the MSE gradient, we differentiate MSE[OPE(πe, H, πθ)] with

respect to θ:

∂

∂θ
MSE[OPE(πe, H, πθ)] =

∂

∂θ

(
E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2
)

(C.5)

=
∂

∂θ
E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ] (C.6)

=
∂

∂θ

∑
h

Pr(h|πθ) OPE(πe, h, πθ)2 (C.7)

=
∑
h

Pr(h|θ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2 ∂

∂θ
Pr(h|θ) (C.8)

=
∑
h

Pr(h|θ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2p(h)
∂

∂θ
wπθ(h) (C.9)

Consider the last factor of the last term in more detail:

∂

∂θ
wπθ(h) =

∂

∂θ

L−1∏
t=0

πθ(at|st) (C.10)

(a)
=

(
L−1∏
t=0

πθ(at|st)

)(
L−1∑
t=0

∂
∂θπθ(at|st)
πθ(at|st)

)
(C.11)

=wπθ(h)
L−1∑
t=0

∂

∂θ
log (πθ(at|st)) , (C.12)
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where (a) comes from the multi-factor product rule. Continuing from (C.9) we have

that:

∂

∂θ
MSE(OPE(πe, H, πθ)) = E

[
OPE(πe, H, πθ)2

L−1∑
t=0

∂

∂θ
log (πθ(At|St)) +

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ].

C.1.2 Behavior Policy Gradient Theorem

We now use Lemma C.1 to prove the Behavior Policy Gradient Theorem which is

the main theoretical contribution of Chapter 3.

Theorem 3.1. Behavior Policy Gradient Theorem

∂

∂θ
MSE[IS(πe, H, πθ)] = E

[
− IS(πe, H, πθ)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof. We first derive ∂
∂θ IS(πe, H, πθ)2. Theorem 3.1 then follows directly from

using ∂
∂θ IS(πe, H, πθ)2 as ∂

∂θ OPE(πe, H, πθ)2 in Lemma C.1.

IS(πe, H, πθ)2 =

(
wπe
wπθ

g(H)

)2

∂

∂θ
IS(πe, H, πθ)2 =

∂

∂θ

(
wπe(H)

wπθ(H)
g(H)

)2

= 2 · g(H)
wπe(H)

wπθ(H)

∂

∂θ

(
g(H)

wπe(H)

wπθ(H)

)
(a)
= −2 · g(H)

wπe(H)

wπθ(H)

(
g(H)

wπe(H)

wπθ(H)

) L−1∑
t=0

∂

∂θ
log πθ(At|St)

= −2 IS(πe, H, πθ)2
L−1∑
t=0

∂

∂θ
log πθ(At|St)

185



where (a) comes from the multi-factor product rule and the likelihood-ratio

trick (i.e.,
∂
∂θ
πθ(A|S)

πθ(A|S) = log(πθ(A|S))

Substituting this expression into Lemma C.1 completes the proof of Theorem

3.1:

∂

∂θ
MSE[IS(πe, H, πθ)] = E

[
− IS(πe, H, πθ)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

C.1.3 MSE Gradient for the Doubly Robust Estimator

We also present an extension of the IS MSE gradient to the doubly robust (DR)

estimator. Recall that for a single trajectory, H, DR is given as:

DR(πe, H, πθ, q̂
πe , v̂πe) := v̂πe(S0, 0) +

L−1∑
t=0

γt
wπe,t
wπθ ,t

δt

where v̂πe is an approximation of the state-value function of πe, q̂
πe is an ap-

proximation of the action-value function of πe, wπ,t :=
∏t
j=0 π(Aj |Sj), and δt :=

Rt − q̂πe(St, At, t) + γtv̂πe(St+1, t+ 1)

The gradient of the mean squared error of the DR estimator is given by the

following corollary to the Behavior Policy Gradient Theorem:

Corollary 3.1.

∂

∂θ
MSE [DR(πe, H, πθ, q̂

πe , v̂πe)] = E[(DR(πe, H, πθ, q̂
πe , v̂πe)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)(

L−1∑
t=0

γtδt
wπe,t

wπθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))|H ∼ πθ]

where δt = Rt − q̂πe(St, At, t) + γtv̂πe(St+1, t+ 1).
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Proof. As with Theorem 3.1, we first derive ∂
∂θ DR(πe, H, πθ, q̂

πe , v̂πe)2. Corollary 3.1

then follows directly from using ∂
∂θ DR(πe, H, πθ, q̂

πe , v̂πe)2 as ∂
∂θ OPE(πe, H, πθ)2 in

Lemma C.1.

Let δt := Rt − q̂πe(St, At, t) + v̂πe(St+1, t+ 1).

DR(πe, H, πθ, q̂
πe , v̂πe)2 =

(
v̂πe(S0, 0) +

L−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)2

∂

∂θ
DR(πe, H, πθ, q̂

πe , v̂πe)2 =
∂

∂θ

(
v̂πe(S0, 0) +

L−1∑
t=0

γt
wπe,t

wπθ,t
δt

)2

=2 DR(πe, H, πθ, q̂
πe , v̂πe)

∂

∂θ

(
v̂πe(S0, 0) +

L−1∑
t=0

γt
wπe,t

wπθ,t
δt

)

=− 2 DR(πe, H, πθ, q̂
πe , v̂πe)(

L−1∑
t=0

γt
wπe,t

wπθ,t
δt

t∑
i=0

∂

∂θ
log πθ(Ai|Si))

Thus the DR(πe, H, πθ, q̂
πe , v̂πe) gradient is:

∂

∂θ
MSE [DR(πe, H, πθ, q̂

πe , v̂πe)] = E[DR(πe, H, πθ, q̂
πe , v̂πe)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)(

L−1∑
t=0

γtδt
wπe,t

wπθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))|H ∼ πθ]

The expression for the DR behavior policy gradient is more complex than the

expression for the IS behavior policy gradient. Lowering the variance of DR involves

accounting for the covariance of the sum of terms. Intuitively, accounting for the

covariance increases the complexity of the expression for the gradient.
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C.1.4 MSE Gradient for the Per-Decision Importance Sampling

Estimator

We also note that the gradient of the mean squared error of per-decision importance

sampling can be obtained as the special case of Corollary 3.1 where v̂πe and q̂πe are

zero for all states and actions:

Corollary C.1.

∂

∂θ
MSE [PDIS(πe, H, πθ)] = E[PDIS(πe, H, πθ)2

L−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 PDIS(πe, H, πθ)(
L−1∑
t=0

γtRt
wπe,t
wπθ ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))|H ∼ πθ]

Proof. Let v̂πe(s, t) := 0 for all states and time-steps and let q̂πe(s, a, t) := 0 for all

(s, a, t) and the proof follows from Corollary C.1.3.

We have not implemented this gradient as a component of behavior pol-

icy search but include the derivation since PDIS is a popular unbiased off-policy

estimator.

C.2 The Behavior Policy Gradient Algorithm and the

Cross-Entropy Method

In this section we derive a connection between the behavior policy gradient algorithm

and the cross-entropy method (Rubinstein, 1999). The cross-entropy method is an

existing approach to adaptive importance sampling. We show under a set of limiting

assumptions that the behavior policy update rule used by the cross-entropy method

is similar to that of behavior policy gradient.

The cross-entropy method (CEM) is an estimation technique for adapting the

sampling distribution (i.e., the behavior policy) to obtain lower variance importance
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sampling estimates. CEM adapts θ to minimize the Kullback-Leibler divergence

(DKL) between the theoretically optimal sampling distribution, π?b , and the current

sampling distribution parameterized by θ. For some families of distributions this

update can be computed analytically. Unfortunately in the sequential decision

making setting an analytic update is impossible. Instead we derive a gradient based

approach to minimizing DKL which elicits a connection between CEM and BPG.

First, note that for πb
? to exist, we require the condition that ∀h, g(h)

is positive and that P and r are deterministic. This statement does not imply

importance sampling cannot be used to lower the variance of off-policy estimates; it

just means that πb
?, as derived in Section 3.2, will not exist unless all returns are

positive.

The gradient of the KL-divergence between the distribution of trajectories

under the optimal behavior policy, Pr(·|πb?), and the distribution of trajectories

under πθ, Pr(·|πθ) is:

∂

∂θ
DKL(Pr(·|πb?)||Pr(·|πθ)) ∝ E

[
− IS(πe, H, πθ)

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof. First consider the KL-divergence between the optimal behavior policy and
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the current behavior policy πθ.

DKL(Pr(·|πb?)||Pr(·|πθ))

= E

[
log

Pr(H|π?)
Pr(H|πθ)

∣∣∣∣H ∼ πb?]
= E

[
log

wπb?(H)

wθ(H)

∣∣∣∣H ∼ πb?]
= E

[
logwπe(H)− logwπθ(H) + log g(H)− log v(πe)

∣∣∣∣ H ∼ πb?]
=
∑
h

Pr(h|πe)
g(h)

v(πe)
[logwπe(H)− logwπθ(H) + log g(H)− log v(πe)]

=
1

v(πe)
E [g(H)[logwπe(H)− logwπθ(H)− log g(H)− log v(πe)]|H ∼ πe]

Differentiating with respect to θ, we obtain:

∂

∂θ
DKL(Pr(·|πb?)||Pr(·|πθ))

∝ E

[
−g(H)

∂

∂θ
logwπθ(H)

∣∣∣∣H ∼ πe] (C.13)

= E

[
−g(H)

L∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πe
]

(C.14)

= E

[
−IS(πe, H, πθ)

L∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

(C.15)

Equation (C.15) is almost the same as the behavior policy gradient except

the importance-sampled return is not squared. Recall from Section 3.4.2 that the

interpretation of the behavior policy gradient update is to increase the probability

of large magnitude returns. We can interpret the update given by Equation (C.15)

as telling us to increase the probability of large, positive returns. Since the existence
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of πb
? depends on all returns being positive, both Equation (C.15) and the behavior

policy gradient have the same interpretation.

The difference between Equation (C.15) and the behavior policy gradient

theorem is that the importance-sampled return is not squared in Equation (C.15).

Thus, the gradient update with (C.15) does not increase the probability of high

magnitude trajectories to the same extent that BPG does. A practical consequence

of this derivation is that estimates of (C.15) may have lower variance than estimates

of the behavior policy gradient. Thus, it may be easier to use (C.15) in practice,

provided the assumptions needed for πb
? to exist hold.

C.3 Behavior Policy Gradient and Unbiasedness

In this section, we prove that the estimate of BPG is an unbiased estimate of v(πe).

If only trajectories from a single πθi were used then clearly IS(πθ, H, πθi) is an

unbiased estimate of v(πe). The difficulty is that the BPG’s estimate at iteration

n depends on all πθi for i = 1 . . . n and each πθi is not independent of the others.

Nevertheless, we prove here that BPG produces an unbiased estimate of v(πe) at

each iteration.

The BPG estimate at iteration n is 1
n

∑n
i=1 IS(πe, Hi, πθi). To make the

dependence of θi on θi−1 explicit, we will write θi := f(Hi−1,θi−1) where Hi−1 ∼

πθi−1
and f is the BPG policy update.

Proposition C.1. BPG is an unbiased estimator of v(πe).

Proof. To show unbiasedness, we must show that:

E

[
1

n

n∑
i=1

IS(πe, Hi, πθi)

∣∣∣∣∣θ0 = θe

]
= v(πe)

where the expectation is taken over the trajectories Hi.
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E

[
1

n

n∑
i=1

IS(πe, Hi, πθi)

∣∣∣∣ θ0 = θe

]
=
∑
h0

Pr(h0|θ0)
∑
h1

Pr(h1|f(h0,θ0)) · · ·

· · ·
∑
hn

Pr(hn|f(hn−1,θn−1))
1

n

n∑
i=1

IS(πe, Hi, πθi)

=
1

n

n∑
i=1

∑
h0

Pr(h0|θ0)
∑
h1

Pr(h1|f(h0,θ0)) · · ·

· · ·
∑
hn

Pr(hn|f(hn−1,θn−1)) IS(πe, Hi, πθi)

=
1

n

n∑
i=1

∑
h0

Pr(h0|θ0)
∑
h1

Pr(h1|f(h0,θ0)) · · ·

· · ·
∑
hi

Pr(hi|f(hi−1,θi−1)) IS(πe, Hi, πθi) · · ·

· · ·
∑
hi+1

Pr(hi+1|f(hi,θi))
∑
hn

Pr(hn|f(hn−1,θn−1))

︸ ︷︷ ︸
1

=
1

n

n∑
i=1

∑
h0

Pr(h0|θ0)
∑
h1

Pr(h1|f(h0,θ0)) · · ·

· · ·
∑
hi

Pr(hi|f(hi−1,θi−1)) IS(πe, Hi, πθi)︸ ︷︷ ︸
v(πe)

=
1

n
v(πe)

n∑
i=1

∑
h0

Pr(h0|θ0)
∑
h1

Pr(h1|f(h0)) · · ·︸ ︷︷ ︸
1

=
1

n
v(πe)n

=v(πe)
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Notice that, even though BPG’s off-policy estimates are unbiased, they

are not statistically independent. This means that concentration inequalities, like

Hoeffding’s inequality, cannot be applied directly. We conjecture that the conditional

independence properties of BPG (specifically that Hi is independent of Hi−1 given

θi), are sufficient for Hoeffding’s inequality to be applicable.
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Appendix D

Weighting Off-Policy Data:

Derivations and Proofs

This appendix includes the derivations of all theoretical results referenced in Chapter

5 and Chapter 6. Specifically, we show that regression importance sampling (RIS) is

a consistent estimator of v(πe), RIS has lower asymptotic variance than OIS, and

the SEC policy gradient estimator has lower variance than the Monte Carlo policy

gradient estimator. We also derive a connection between RIS and the REG estimator

of Li et al. (2015).

D.1 Regression Importance Sampling is Consistent

In this section we show that the regression importance sampling (RIS) estimator is

a consistent estimator of v(πe) under two assumptions. The main intuition for this

proof is that RIS is performing policy search on an estimate of the log-likelihood,

L̂(π|D), as a surrogate objective for the true log-likelihood, L(π). Since πb has

generated our data, πb is the optimal solution to this policy search. As long as, for

all π, L̂(π|D) is a consistent estimator of L(π) then selecting πD = argmax
π

L̂(π|D)
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will converge probabilistically to πb and the RIS estimator will be the same as the

OIS estimator which is a consistent estimator of v(πe). If the set of policies we

search over, Π, is countable then this argument is almost enough to show RIS to be

consistent. The difficulty (as we explain below) arises when Π is not countable.

Our proof takes inspiration from Thomas and Brunskill who show that their

magical policy search algorithm converges to the optimal policy by maximizing a

surrogate estimate of policy value (2016b). They show that performing policy search

on a policy value estimate, v̂(π), will almost surely return the policy that maximizes

v(π) if v̂(π) is a consistent estimator of v(π). The proof is almost identical; the

notable difference is substituting the log-likelihood, L(π), and a consistent estimator

of the log-likelihood, L̂(π|D), in place of v(π) and v̂(π).

D.1.1 Definitions and Assumptions

Let Hn be the set of all possible state-action trajectory segments with n states and

n− 1 actions:

Hn = Sn ×An−1.

We will denote elements of Hn as hn and random variables that take values from

Hn as Hn. Let dπb,Hn : Hn → [0, 1] be the distribution over elements of Hn

induced by running πb. In Chapter 2, we defined πb to be a function mapping

state-action pairs to probabilities. Here, we define πb : Hn ×A → [0, 1], i.e., a policy

that conditions the distribution over actions on the preceding length n trajectory

segment. These definitions are equivalent provided for any hn,i = (si, ai, ...si+n−1)

and hn,j = (sj , aj , ...sj+n−1), if si+n−1 = sj+n−1 then ∀a πb(a|hn,i) = πb(a|hn,j).

Let (Ω,F , µ) be a probability space and Dm : Ω→ D be a random variable.

Dm(ω) is a sample of m trajectories with ω ∈ Ω. Let dπb be the distribution of states

195



under πb. Define the expected log-likelihood:

L(π) = E[log π(A|hn)|hn ∼ dπb,Hn , A ∼ πb]

and its sample estimate from samples in Dm(ω):

L̂(π|Dm(ω)) =
1

mL

∑
h∈Dm(ω)

L−1∑
t=0

log π(aht |ht−n,t).

Note that:

πb = argmax
π∈Π

L(π)

πD
(n) = argmax

π∈Π
L̂(π|Dm(ω)).

Define the KL-divergence (DKL) between πb and πD after segment hn as:

δKL(hn) = DKL(πb(·|hn), πD(·|hn)).

Assuming for all hn and a the variance of log π(a|hn) is bounded, L̂(π|Dm(ω))

is a consistent estimator of L(π). We make this assumption explicit:

Assumption D.1. (Consistent Estimation of Log likelihood). For all π ∈ Π,

L̂(π|Dm(ω))
a.s.−−→ L(π).

This assumption will hold when the support of πb is a subset of the support

of π for all π ∈ Π, i.e., no π ∈ Π places zero probability measure on an action that

πb might take. We can ensure this assumption is satisfied by only considering π ∈ Π

that place non-zero probability on any action that πb has taken.

We also make an additional assumption about the piece-wise continuity of

the log-likelihood, L, and the estimate of the log-likelihood, L̂. First we present two

necessary definitions as given by Thomas and Brunskill (2016b):
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Definition D.1. (Piecewise Lipschitz continuity). We say that a function f : M →

R on a metric space (M,d) is piecewise Lipschitz continuous with respect to Lipschitz

constant K and with respect to a countable partition, {M1,M2, ...} if f is Lipschitz

continuous with Lipschitz constant K on all metric spaces in {(Mi, di)}∞i=1.

Definition D.2. (δ-covering). If (M,d) is a metric space, a set X ⊂ M is a

δ-covering of (M,d) if and only if maxy∈M minx∈X d(x, y) ≤ δ.

Assumption D.2. (Piecewise Lipschitz objectives). Our policy class, Π, is equipped

with a metric, dΠ, such that for all Dm(ω) there exist countable partition of Π,

ΠL := {ΠL1 ,ΠL2 , ...} and ΠL̂ := {ΠL̂1 ,ΠL̂2 , ...}, where L and L̂(·|Dm(ω)) are piecewise

Lipschitz continuous with respect to ΠL and ΠL̂ with Lipschitz constants K and K̂

respectively. Furthermore, for all i ∈ N>0 and all δ > 0 there exist countable δ-covers

of ΠLi and ΠL̂i .

As pointed out by Thomas and Brunskill, this assumption holds for the most

commonly considered policy classes but is also general enough to hold for other

settings (see Thomas and Brunskill (2016b) for further discussion of Assumptions

D.1 and D.2 and the related definitions).

D.1.2 Consistency Proof

Before proving Proposition 5.1 from Chapter 5, we prove a Lemma necessary for the

final proof.

Lemma D.1. If Assumptions D.1 and D.2 hold then E[δKL(hn)|hn ∼ dπb,Hn ]
a.s.−−→ 0.

Proof. Define ∆(π, ω) = |L̂(π|Dm(ω)) − L(π)|. From Assumption D.1 and one

definition of almost sure convergence, for all π ∈ Π and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∆(π, ω) < ε}
)

= 1. (D.1)
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Thomas and Brunskill point out that because Π may not be countable, (D.1)

may not hold at the same time for all π ∈ Π. More precisely, it does not immediately

follow that for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε}
)

= 1. (D.2)

Let C(δ) denote the union of all of the policies in the δ-covers of the countable

partitions of Π assumed to exist by Assumption 2. Since the partitions are countable

and the δ-covers for each region are assumed to be countable, we have that C(δ)

is countable for all δ. Thus, for all π ∈ C(δ), (D.1) holds simulatenously. More

precisely, for all δ > 0 and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ C(δ),∆(π, ω) < ε}
)

= 1. (D.3)

Consider a π 6∈ C(δ). By the definition of a δ-cover and Assumption D.2, we

have that ∃π′ ∈ ΠLi , d(π, π′) ≤ δ. Since Assumption D.2 requires L to be Lipschitz

continuous on ΠLi , we have that |L(π) − L(π′)| ≤ Kδ. Similarly |L̂(π|Dm(ω)) −

L̂(π′|Dm(ω))| ≤ K̂δ. So, |L̂(π|Dm(ω)) − L(π)| ≤ |L̂(π|Dm(ω)) − L(π′)| + Kδ ≤

|L̂(π′|Dm(ω))− L(π′)|+ (K̂ +K)δ. Then it follows that for all δ > 0:

(∀π ∈ C(δ),∆(π, ω) ≤ ε)→
(
∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ

)
.

Substituting this into (D.3) we have that for all δ > 0 and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ}
)

= 1.

The next part of the proof massages (D.3) into a statement of the same form
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as (D.2). Consider the choice of δ := ε/(K + K̂). Define ε′ = 2ε. Then for all ε′ > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε′}
)

= 1. (D.4)

Since ∀π ∈ Π,∆(π, ω) < ε′, we obtain:

∆(πb, ω) < ε′ (D.5)

∆(πD, ω) < ε′ (D.6)

and then applying the definition of ∆:

L(πD)
(a)

≤L(πb) (D.7)

(b)
<L̂(πb|Dm(ω)) + ε′ (D.8)

(c)

≤L̂(πD|Dm(ω)) + ε′ (D.9)

(d)

≤L(πD) + 2ε′ (D.10)

where (a) comes from the fact that πb maximizes L, (b) comes from (D.5),

(c) comes from the fact that πD maximizes L̂(·|Dm(ω)), and (d) comes from (D.6).

Considering (D.7) and (D.10), it follows that |L(πD) − L(πb)| < 2ε′. Thus, (D.4)

implies that:

∀ε′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < 2ε′}
)

= 1.

Using ε′′ := 2ε′ we obtain:

∀ε′′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < ε′′}
)

= 1
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From the definition of the KL-Divergence,

L(πD)− L(πb) = E[δKL(hn)|hn ∼ dπb,Hn ]

and we obtain that:

∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : | −E[δKL(hn)|hn ∼ dπb,Hn ]| < ε}
)

= 1

And finally, since the KL-Divergence is non-negative:

∀ε > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : E[δKL(hn)|hn ∼ dπb,Hn ]| < ε}
)

= 1,

which, by the definition of almost sure convergence, means that

E[δKL(hn)|hn ∼ dπb,Hn ]
a.s.−−→ 0.

Proposition 5.1. If Assumptions D.1 and D.2 hold, then ∀n, RIS(n) is a consistent

estimator of v(πe): RIS(n)(πe,D)
a.s.−−→ v(πe).

Proof. Lemma D.1 shows that as the amount of data increases, the behavior policy

estimated by RIS will almost surely converge to the true behavior policy:

πD
(n) a.s.−−→ πb.

Almost sure convergence to the true behavior policy means that RIS almost surely

converges to the OIS estimate. Consider the difference, RIS(n)(πe,D)−OIS(πe,D).

Since πD
(n) a.s.−−→ πb, we have that:

RIS(n)(πe,D)−OIS(πe,D)
a.s.−−→ 0.
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Thus, with probability 1, RIS(n) and OIS converge to the same value. Since OIS

is a consistent estimator of v(πe), then with probability 1 we have that OIS(πe,D)

converges to v(πe). Thus RIS(n)(πe,D)
a.s.−−→ v(πe).

D.2 Asymptotic Variance of Regression Importance

Sampling

In this section we prove that, ∀n, RIS(n) has asymptotic variance at most that of

OIS. We give this result as a corollary to Theorem 1 of Henmi et al. (2007) that

holds for general Monte Carlo integration. Note that while we define distributions

as probability mass functions, this result can be applied to continuous-valued state

and action spaces by replacing probability mass functions with density functions.

Corollary 5.1. Let Πn
θ be a class of twice differentiable policies,

πθ(·|st−n, at−n, . . . , st). If ∃θ̃ such that πθ̃ ∈ Πn
θ and πθ̃ = πb then

VarA(RIS(n)(πe,D)) ≤ VarA(OIS(πe,D, πb))

where VarA denotes the asymptotic variance.

Corollary 5.1 states that the asymptotic variance of RIS(n) must be at least

as low as that of OIS.

We first present Theorem 1 from Henmi et al. (2007) and adopt their notation

for its presentation. Consider estimating v = Ep [f(x)] for probability mass function p

and real-valued function f . Given parameterized and twice differentiable probability

mass function q(·|θ̃), we define the ordinary importance sampling estimator of v as

ṽ = 1
m

∑m
i=1

p(xi)

q(xi,θ̃)
f(xi). Similarly, define v̂ = 1

m

∑m
i=1

p(xi)

q(xi,θ̂)
f(xi) where θ̂ is the

maximum likelihood estimate of θ̃ given samples from q(·|θ̃). The following theorem

relates the asymptotic variance of v̂ to that of ṽ.
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Theorem D.1.

VarA(v̂) ≤ VarA(ṽ)

where VarA denotes the asymptotic variance.

Proof. See Theorem 1 of Henmi et al. (2007).

Theorem D.1 shows that the maximum likelihood estimated parameters of

the sampling distribution yield an asymptotically lower variance estimate than

using the true parameters, θ̃. To specialize this theorem to our setting, we show

that the maximum likelihood behavior policy parameters are also the maximum

likelihood parameters for the trajectory distribution of the behavior policy. First

specify the class of sampling distribution: Pr(h;θ) = p(h)wπθ(h) where p(h) =

d0(s0)
∏L−1
t=1 P (st|st−1, at−1) and wπθ(h) =

∏L−1
t=0 πθ(at|st−n, at−n, . . . , st). We now

present the following lemma:

Lemma D.2.

argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st)

= argmax
θ

∑
h∈D

log Pr(h;θ)
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Proof.

argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st)

= argmax
θ

∑
h∈D

L−1∑
t=0

log πθ(at|st−n, at−n, . . . , st)

+ log d(s0) +
L−1∑
t=1

logP (st|st−1, at−1)︸ ︷︷ ︸
const w.r.t. θ

= argmax
θ

∑
h∈D

logwπθ(h) + log p(h)

θ = argmax
θ

∑
h∈D

log Pr(h;θ)

Finally, we combine Lemma D.2 with Theorem D.1 to prove Corollary 5.1:

Corollary 5.1. Let Πn
θ be a class of policies, πθ(·|st−n, at−n, . . . , st) that are twice

differentiable with respect to θ. If ∃θ ∈ Πn
θ such that πθ = πb, then

VarA(RIS(n)(πe,D)) ≤ VarA(OIS(πe,D))

where VarA denotes the asymptotic variance.

Proof. Define f(h) = g(h), p(h) = Pr(h|πe) and q(h|θ) = Pr(h|πθ). Lemma D.2

implies that:

θ̂ = argmax
θ∈Πθ

∑
h∈D

L−1∑
t=0

log πθ(at|st)

is the maximum likelihood estimate of θ̃ (where πθ̃ = πb and Pr(h|θ̃) is the probability

of h under πb) and then Corollary 5.1 follows directly from Theorem D.1.

Note that for RIS(n) with n > 0, the condition that πθ̃ ∈ Πn can hold even if
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the distribution of At ∼ πθ̃ (i.e., At ∼ πb) is only conditioned on st. This condition

holds when ∃πθ ∈ Πn such that ∀st−n, at−n, . . . at−1:

πθ̃(at|st) = πθ(at|st−n, at−n, . . . , st),

i.e., the action probabilities only vary with respect to st.

D.3 Connection between RIS and REG

In this section we show that RIS(L− 1) is an approximation of the REG estimator

studied by Li et al. (2015). This connection is notable because Li et al. showed REG is

asymptotically minimax optimal, however, in MDPs, REG requires knowledge of the

environment’s state transition probabilities and initial state distribution probabilities

while RIS(L− 1) does not (2015). For this discussion, we recall the definition of the

probability of a trajectory for a given MDP and policy:

Pr(h|π) = d0(s0)π(a0|s0)P (s1|s0, a0) · · ·P (sL−1|sL−2, aL−2)π(aL−1|sL−1).

We also define H to be the set of all state-action trajectories possible under πb of

length L: s0, a0, ...sL−1, aL−1.

Li et al. introduce the regression estimator (REG) for multi-armed bandit

problems (2015). This method estimates the mean reward for each action as r̂(a,D)

and then computes the REG estimate as:

REG(πe,D) =
∑
a∈A

πe(a)r̂(a,D).

This estimator is identical to RIS(0) in multi-armed bandit problems (Li et al., 2015).

The extension of REG to finite-horizon MDPs estimates the mean return for each
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trajectory as ĝ(h,D) and then computes the estimate:

REG(πe,D) =
∑
h∈H

Pr(h|πe)ĝ(h,D).

Since this estimate uses Pr(h|πe) it requires knowledge of the initial state distribution,

d0, and transition probabilities, P .

We now elucidate a relationship between RIS(L− 1) and REG even though

they are different estimators. Let c(h) denote the number of times that trajectory

h appears in D. Similar to the bandit case, we can rewrite REG as an importance

sampling method:

REG(πe,D) =
∑
h∈H

Pr(h|πe)ĝ(h,D) (D.11)

=
1

m

∑
h∈H

c(h)
Pr(h|πe)
c(h)/m

ĝ(h,D) (D.12)

=
1

m

m∑
i=1

Pr(hi|πe)
c(hi)/m

g(hi) (D.13)

The denominator in (D.13) can be re-written as a telescoping product to

obtain an estimator that is similar to RIS(L− 1):

REG(πe,D) =
1

m

m∑
i=1

Pr(hi|πe)
c(hi)/m

g(hi)

=
1

m

m∑
i=1

Pr(hi|πe)
c(s0)
m

c(s0,a0)
c(s0)

· · · c(hi)
c(hi/aL−1)

g(hi)

=
1

m

m∑
i=1

d0(s0)πe(a0|s0)P (s1|s0, a0) · · ·
d̂(s0)πD(a0|s0)P̂ (s1|s0, a0) · · ·

· · ·P (sL−1|sL−2, aL−2)πe(aL−1|sL−1)

· · · P̂ (sL−1|h0:L−1)πD(aL−1|hi:j)
g(hi).

This expression differs from RIS(L− 1) in two ways:

1. The numerator includes the initial state distribution and transition probabilities
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of the environment.

2. The denominator includes count-based estimates of the initial state distribution

and transition probabilities of the environment where the transition probabilities

are conditioned on all past states and actions.

If we assume that the empirical estimates of the environment probabilities in the

denominator are equal to the true environment probabilities then these factors cancel

and we obtain the RIS(L − 1) estimate. This assumption will almost always be

false except in deterministic environments. However, showing that RIS(L − 1) is

approximating REG suggests that RIS(L−1) may have similar theoretical properties

to those derived for REG by Li et al. (2015). Our SinglePath experiment (See

Figure 5.3 in Chapter 5) supports this conjecture: RIS(L − 1) has high bias in

the low to medium sample size but have asymptotically lower MSE compared to

other methods. REG has even higher bias in the low to medium sample size range

but has asymptotically lower MSE compared to RIS(L − 1). RIS with smaller n

appear to decrease the initial bias but have larger MSE as the sample size grows.

The asymptotic benefit of RIS for all n is also corroborated by Corollary 5.1 in

Appendix D.2 though Corollary 5.1 does not tell us anything about how different

RIS methods compare. The asymptotic benefit of REG compared to RIS methods

can be understood as REG correcting for sampling error in both the action selection

and state transitions.

D.4 Sampling Error Corrected Policy Gradient Estima-

tor Variance

In this section we prove Proposition 6.1 from Chapter 6. That is, we show – under

a specific set of assumptions – that the sampling error corrected policy gradient

estimator has lower variance than the Monte Carlo policy gradient estimator.
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Before we present the proof, we recall the assumptions made in Section 6.3:

1. The action space is discrete and if a state is observed then all actions have also

been observed in that state.

2. The return estimates q̂πθ for any (s, a, ·) is a fixed constant that is independent

of T .

3. For all observed states, our estimated policy πφ is equal to πT , i.e., if action a

occurs k times in state s and s occurs n times in T then πφ(a|s) = k
n .

See Section 6.3 for discussion of these assumptions and Section 6.4 for experimental

results with relaxed assumptions.

Recall that T is a set of state-action pairs collected by running the current

policy πθ. Let S be the random variable representing the states observed in T and let

A be the random variable representing the actions observed in T . We will sometimes

write {S,A} in place of T to make the composition of T explicit. Let VarX (g) denote

the variance of estimator g with respect to random variable X. Let VarX (g|Y) denote

the variance of estimator g with respect to random variable X given a fixed value for

Y.

Under our assumptions, we make two claims about the SEC gradient estimate,

gsec:

Claim 6.1. VarA (gsec({S,A}|S)) = 0.

Proof. Recall from Chapter 6, that we can write either gmc or gsec as:

g({S,A}) =
∑
s∈S

dT (s)
∑
a∈A

πT (a|s)w(s, a)q̄(s, a)
∂

∂θ
log πθ(a|s). (D.14)

In Claim 6.1, the sampled states are fixed and variance only arises from πT and

w(s, a) which vary for different realizations of A. When we choose w(s, a) = πθ(a|s)
πT (a|s)
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(as SEC does) the πT (a|s) factors cancel in D.14. Since πT is the only part of gsec

that depends on the random variable A, using w(s, a) eliminates variance due to

action selection in the estimator. This proves Claim 6.1.

Claim 6.2. EA [gsec({S,A})|S] = EA [gmc(S,A)|S].

Proof. Claim 6.2 also follows from the same logic as Claim 6.1. The cancellation

of the πT (a|s) factors converts the inner summation over actions into an exact

expectation under πθ. Since gmc is an unbiased estimator, the inner summation over

actions must be equal to the exact expectation under πθ in expectation. Thus the

expectation of both estimators conditioned on S is:

EA [g({S,A})|S] =
∑
s∈S

dT (s)
∑
a∈A

πθ(a|s)w(s, a)q̄(s, a)
∂

∂θ
log πθ(a|s). (D.15)

This proves Claim 6.2.

We can now prove Proposition 6.1.

Proposition 6.1. Let S be the random variable representing the states observed in

T and let A be the random variable representing the actions observed in T . Let

VarS,A (g) denote the variance of estimator g with respect to random variables S and

A. For the Monte Carlo estimator, gmc, and the SEC estimator, gsec:

VarS,A (gsec({S,A})) ≤ VarS,A (gmc({S,A}))

Proof. Again, recall that both gsec and gmc can be written as:

g({S,A}) =
∑
s∈S

dT (s)
∑
a∈A

πT (a|s)w(s, a)q̄πθ(s, a)
∂

∂θ
log πθ(a|s) (D.16)
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where w(s, a) = πθ(a|s)
πT (a|s) for gsec and w(s, a) = 1 for gmc. Using the law of total

variance, the variance of (D.16) can be decomposed as:

VarS,A (g({S,A})) = ES [VarA (g({S,A}|S))]︸ ︷︷ ︸
ΣA

+ VarS (EA [g({S,A})|S])︸ ︷︷ ︸
ΣS

The first term, ΣA, is the variance due to stochasticity in the action selection. From

Claim 6.1, we know that for gsec this term is at most that for gmc. The second term,

ΣS, is the variance due to only visiting a limited number of states before estimating

the gradient. We know this term is equal for both gsec and gmc. Thus the variance

of gsec is at most that of gmc.
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Appendix E

Model-based Error: Derivations

and Proofs

This appendix proves the bounds on error in a model-based estimate of v(πe) from

Chapter 8.

E.1 Error Bound in Terms of Trajectories

In this section we make the additional assumption that the true MDP reward function

is known and bounded in [0, rmax]. This assumption is only used for these theoretical

results.

This section will reference the MDP of interest, M, and a model of that

MDP, M̂. The model is an identical MDP to M except for the transition function

and initial state distribution. To make this difference explicit we will use PM and

d0,M to refer to these probabilities for M and we will use PM̂ and d
0,M̂ to refer to

these probabilities for M̂.

210



E.1.1 On-Policy Model Error Bound

Lemma E.1. For any policy π, let Pr(·|π,M) be the distribution of trajectories

generated by π and Pr(·|π,M̂) be the distribution of trajectories generated by π in

an approximate model, M̂. The error of the estimate, v(π,M̂), under M̂ is upper

bounded by:

∣∣∣v(π,M)− v(π,M̂)
∣∣∣ ≤ 2

√
2L · rmax

√
DKL(Pr(·|π,M)||Pr(·|π,M̂))

where DKL(Pr(·|π,M)||Pr(·|π,M̂)) is the Kullback-Leibler (KL) divergence between

probability distributions Pr(·|π,M) and Pr(·|π,M̂).

Proof.

∣∣∣v(π,M)− v(π,M̂)
∣∣∣ =

∣∣∣∣∣∑
h

Pr(h|π,M)g(h)−
∑
h

Pr(h|π,M̂)g(h)

∣∣∣∣∣
From Jensen’s inequality and the fact that g(h) ≥ 0:

∣∣∣v(π,M)− v(π,M̂)
∣∣∣ ≤∑

h

∣∣∣Pr(h|π,M)− Pr(h|π,M̂)
∣∣∣ g(h).

After replacing g(h) with the maximum possible return, gmax := L ·rmax, and factoring

it out of the summation, we can use the definition of the total variation distance

between two probability distributions (DTV(p||q) = 1
2

∑
x

|p(x)− q(x)|) to obtain:

∣∣∣v(π,M)− v(π,M̂)
∣∣∣ ≤ 2DTV(Pr(·|π,M)||Pr(·|π,M̂)) · gmax.

The definition of gmax and Pinsker’s inequality (DTV(p||q) ≤
√

2DKL(p||q)) completes

the proof.
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E.1.2 Off-Policy Model Error Bound

We now use Lemma E.1 to prove the main theoretical result from Chapter 8.

Theorem 8.1. For MDP M, any policies πe and πb, and an approximate model,

M̂, estimated with i.i.d. trajectories, H ∼ Pr(·|πb,M), the error in the model-based

estimate of v(πe,M) with M̂, v(πe,M̂), is upper bounded by:

∣∣∣v(πe,M̂)− v(πe,M)
∣∣∣ ≤ 2

√
2L · rmax

√√√√E

[
ρ

(H)
L−1 log

Pr(H|πe,M)

Pr(H|πe,M̂)

∣∣∣∣∣H ∼ πb
]

where ρ
(H)
L−1 is the importance weight of trajectory H at step L.

Proof. Theorem 8.1 follows from Lemma E.1 with the importance-sampling iden-

tity (i.e., importance-sampling the expectation in Lemma E.1 so that it is an

expectation with H ∼ πb). The transition probabilities cancel in the importance

weight, Pr(H|πe,mdp)
Pr(H|πb,mdp) , leaving us with the importance weight ρ

(H)
L−1 and completing the

proof.

E.1.3 Bounding Theorem 8.1 in terms of a Supervised Loss Func-

tion

We now express Theorem 8.1 in terms of an expectation over transitions that occur

along sampled trajectories.

Corollary 8.1. For MDP, M, any policies πe and πb and an approximate model,

M̂, with transition probabilities, PM̂, estimated with trajectories H ∼ πb, the bias of

the approximate model’s estimate of v(πe,M), v(πe,M̂), is upper bounded by:

|v(πe,M̂)− v(πe,M)| ≤ 2
√

2L · rmax

√√√√ε0 +

L−1∑
t=1

E
[
ρ
(H)
t ε(St, At)

∣∣∣St, At ∼ dtπb,M

]

where dtπb,M is the distribution of states and actions observed at time t
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when executing πb in the true MDP, ε0 := DKL(d0,M||d0,M̂), and ε(s, a) =

DKL(PM(·|s, a)||PM̂(·|s, a))).

Corollary 8.1 follows from Theorem 8.1 by equating the expectation to an

expectation in terms of (St, At, St+1) samples:

Proof.

E

[
ρHL log

Pr(H|πe,M)

Pr(H|πe,M̂)

∣∣∣∣∣H ∼ πb
]

=
∑
h

Pr(h|πb,M)ρ
(H)
L−1 log

Pr(h|πe,M)

Pr(h|πe,M̂)

=
∑
s0

∑
a0

· · ·
∑
sL−1

∑
aL−1

d0,M(s0)πb(a0|s0) · · · PM(sL−1|sL−2, aL−2)·

πb(aL−1|sL−1)ρ
(H)
L−1 log

d0,M(s0) · · · PM(sL−1|sL−2, aL−2)

d
0,M̂(s0) · · · PM̂(sL−1|sL−2, aL−2)

Using the logarithm property that log(ab) = log(a) + log(b) and rearranging the

summations allows us to marginalize out the probabilities that do not appear in the

logarithm.

=
∑
s0

d0,M(s0) log
d0,M(s0)

d
0,M̂(s0)

+
L−1∑
t=1

∑
s0

d0,M(s0) · · ·

∑
st

ρHL PM(st|st−1, at−1) log
PM(st|st−1, at−1)

PM̂(st|st−1, at−1)
(E.1)

Define the probability of observing s and a at time t+ 1 when following πb in MDP

M as:

dt+1
πb,M(s, a) :=

∑
st,at

dtπb,M(st, at)PM(s|st, at)πb(a|s)

where d1
πb,M(s, a) := d0,M(s)πb(a|s). Using this definition, we can simplify Equation
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E.1:

= DKL(d0,M||d0,M̂)+

L−1∑
t=1

E
[
ρ

(H)
L−1DKL(PM(·|St, At)||PM̂(·|St, At))

∣∣∣St, At ∼ dtπb,M]

We relate DKL to two common supervised learning loss functions so that we

can express Corollary 8.1 with training error over (st, at, st+1) samples. DKL(P ||Q) =

H[P,Q]−H[P ] where H[P ] is the entropy of P and H[P,Q] is the cross-entropy of P

with respect to Q. For distributions of discrete random variables, H[P,Q]−H[P ] ≤

H[P,Q] since entropy is always positive. This fact allows us to upper bound DKL

with the cross-entropy loss function. The cross-entropy loss function is equivalent to

the expected negative log likelihood loss function:

H[PM(·|s, a), PM̂(·|s, a)] = ES′∼PM(·|s,a)[− logPM̂(S′|s, a)].

Thus building a maximum likelihood model corresponds to minimizing this model

error bound. For continuous domains where the transition function is a probability

density function, entropy can be negative so the negative log-likelihood or cross-

entropy loss functions will not always upper bound model error. In this case, our

bound approximates the true error bound to within a constant.

E.2 Finite-sample Error Bound

Theorem 8.1 can be expressed as a finite-sample bound by applying Hoeffding’s

inequality to bound an estimate of the expectation for a finite number of observed

trajectories.
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Corollary 8.2. For MDPM, any policies πe and πb and an approximate model, M̂,

with transition probabilities, PM̂, estimated with (s, a) transitions from trajectories

H ∼ πb, and after observing m trajectories then with probability α, the error of the

approximate model’s estimate of v(πe,M), v(πe,M̂), is upper bounded by:

∣∣∣v(πe,M̂)− v(πe,M)
∣∣∣ ≤ 2L · rmax·√√√√√2ρ̄L−1

√
ln( 1

α)

2m
− 1

m

m∑
j=1

ρjL−1

(
log d

0,M̂(sj1) +
L−1∑
t=1

logPM̂(sjt+1|s
j
t , a

j
t )

)

where ρ̄L−1 is an upper bound on the importance ratio, i.e., for all h, ρ
(h)
L−1 < ρ̄L−1.

Proof. Corollary 8.2 follows from applying Hoeffding’s Inequality to Theorem 8.1

and then expanding DKL(Pr(·|πb,M)||Pr(·|πb,M̂)) to be in terms of samples as done

in the derivation of Corollary 8.1. We then drop logarithm terms which contain

the unknown d0,M and PM probabilities. Dropping these terms is equivalent to

expressing Corollary 8.2 in terms of the cross-entropy or negative log-likelihood loss

functions.
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Appendix F

Additional Empirical Details

This appendix contains additional details of experiments described in Chapters 3, 4,

5, and 8. All other chapters that include experiments contain a full description of

those experiments.

F.1 Chapter 3: Behavior Policy Search

This appendix contains experimental details in addition to the details contained in

Chapter 3.

F.1.1 Grid World

This domain is a 4x4 Grid World with a terminal state with reward 10 at (3, 3), a

state with reward −10 at (1, 1), a state with reward 1 at (1, 3), and all other states

having reward −1. The action set contains the four cardinal directions and actions

move the agent in its intended direction (except when moving into a wall which

produces no movement). The agent begins in (0, 0), γ = 1, and L = 100. All policies

use softmax action selection with temperature 1 where the probability of taking an
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action a in a state s is given by:

π(a|s) =
eθsa∑
a′ e

θsa′
.

We obtain two evaluation policies by applying REINFORCE to this task, starting

from a policy that selects actions uniformly at random. We then select one evaluation

policy from the early stages of learning – an improved policy but still far from

converged –, π1, and one after learning has converged, π2. We run our set of

experiments once with πe := π1 and a second time with πe := π2. The ground truth

value of v(πe) is computed with finite-horizon dynamic programming for both πe.

F.1.2 Continuous Control

We evaluate BPG on two continuous control tasks: Cart Pole Swing Up and Acrobot.

Both tasks are implemented within RLLAB (Duan et al., 2016). The single task

modification we make is that in Cart Pole Swing Up, when a trajectory terminates

due to moving out of bounds we give a penalty of −1000. This modification increases

the variance of πe. We use γ = 1 and L = 50. Policies are represented as conditional

Gaussians with mean determined by a neural network with two hidden layers of 32

tanh units each and a state-independent diagonal covariance matrix. In Cart Pole

Swing Up, πe was learned with 10 iterations of the TRPO algorithm (Schulman

et al., 2015a) applied to a randomly initialized policy. In Acrobot, πe was learned

with 60 iterations. The ground truth value of v(πe) in both domains is computed

with 1,000,000 Monte Carlo roll-outs.
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F.1.3 Domain Independent Details

In all experiments we subtract a constant control variate (or baseline) in the gradient

estimate from Theorem 3.1. The baseline, bi is an estimate of:

E
[
− IS(πe, H, πθi−1

)2
∣∣H ∼ πθi−1

]
and our new gradient is an estimate of:

E

[
(− IS(πe, H, πθ)2 − bi)

L−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Adding or subtracting a constant does not change the gradient in expectation since

bi ·E
[∑L−1

t=0
∂
∂θ log πθ(At|St)

]
= 0. However, the baseline variant of BPG has lower

variance behavior policy gradient estimates so that the estimated gradient is closer

in direction to the true behavior policy gradient.

We use batch sizes of 100 trajectories per iteration for Grid World experiments

and size 500 for the continuous control tasks. The step-size parameter was determined

by a sweep over [10−2, 10−6].

F.2 Chapter 4: Parallel Policy Search

Trust-region policy optimization (TRPO) is an on-policy policy gradient algorithm

that optimizes the target policy parameters, θ, according with the constrained

optimization problem:

maximize
θ′

1

m

m∑
j=1

πθ′(aj |sj)
πθ(aj |sj)

q̂πθ(sj , aj , ·)

subject to
1

m

m∑
j=1

DKL(πθ(·|sj), πθ ′(·|sj)) < ε

(F.1)
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where q̂πθ(s, a, ·) is an estimate of qπe(s, a, ·), DKL is the KL-divergence and ε is a

constant hyperparameter. In our implementation we use the sum of rewards following

taking action a in state s as our estimate of q̂πθ(s, a, ·).

The TRPO optimization problem uses m on-policy state-action pairs. We

can make the algorithm off-policy by replacing q̂πe with an off-policy estimate of the

return. Let ρj be the importance weight for the entire trajectory in which sj and aj

occurred, i.e., the product of importance ratios from step 0 to step L− 1. We replace

q̂πθ(sj , aj , ·) with ρj q̂
πθ(sj , aj , ·) to obtain the off-policy variant of TRPO.34 Parallel

policy search uses this off-policy variant of TRPO to update the target policy.

Finally, parallel policy search uses a similar optimization problem to update

the behavior policy. Let g(hj) be the return of the trajectory that contains (sj , aj).

Our implementation of parallel policy search updates the behavior policy with the

constrained optimization problem:

maximize
θ′

1

m

m∑
j=1

πθ′(aj |sj)
πθ(aj |sj)

(ρjg(hj))
2

subject to
1

m

m∑
j=1

DKL(πθ(·|sj), πθ ′(·|sj)) < εb

(F.2)

where εb is a constant hyperparameter.

F.3 Chapter 5: Regression Importance Sampling

In this section we provide additional details for the experiments described in Chapter

5.

34We use the importance weight for the entire trajectory to correct for the change in the state
distribution up to step t as well as the return distribution following step t where t is the time when
(sj , aj) was observed.
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s0 s1 ... s5

a0

a1

a0

a1

a0

a1

Figure F.1: The SinglePath MDP referenced in Section 4 of the main text. Not
shown: If the agent takes action a1 it remains in its current state with probability
0.5.

F.3.1 SinglePath

This environment is shown in Figure F.1 with horizon L = 5. In each state, πb

selects action, a0, with probability p = 0.6 and πe selects action, a0, with probability

1− p = 0.4. Action a0 causes a deterministic transition to the next state. Action

a1 causes a transition to the next state with probability 0.5, otherwise, the agent

remains in its current state. The agent receives a reward of 1 for action a0 and

0 otherwise. RIS uses count-based estimation of πb and REG uses count-based

estimation of trajectories. REG is also given the environment’s state transition

function, P .

F.3.2 Grid World

We use the same Grid World domain described in Section F.1.1. The off-policy set

of experiments uses a behavior policy, πb, that can reach the high reward terminal

state and an evaluation policy, πe, that is the same policy with lower entropy action

selection. The on-policy set of experiments uses the same behavior policy as both

behavior and evaluation policy. RIS estimates the behavior policy with the empirical

frequency of actions in each state. This domain allows us to study RIS separately

from questions of function approximation.
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F.3.3 Linear Dynamical System

This domain is a point-mass agent moving towards a goal in a two dimensional

world by setting x and y acceleration. The agent acts for L = 20 time-steps under

linear-gaussian dynamics and receives a reward that is proportional to its distance

from the goal. We use second order polynomial basis functions so that policies are

non-linear in the state features but we can still estimate πD efficiently with ordinary

least squares. We obtain a basic policy by optimizing the parameters of a policy

for 10 iterations of the Cross-Entropy optimization method (Rubinstein and Kroese,

2013). The basic policy maps the state to the mean of a Gaussian distribution over

actions. The evaluation policy uses a standard deviation of 0.5 and the true πb uses

a standard deviation of 0.6.

F.3.4 Continuous Control

We also use two continuous control tasks from the OpenAI gym: Hopper and

HalfCheetah35 In each task, we use neural network policies with 2 layers of 64 hidden

units each for πe and πb. Each policy maps the state to the mean of a Gaussian

distribution with state-independent standard deviation. We obtain πe and πb by

running the OpenAI Baselines (Dhariwal et al., 2017) version of proximal policy

optimization (PPO) (Schulman et al., 2017) and then selecting two policies along

the learning curve. For both environments, we use the policy after 30 updates for

πe and after 20 updates for πb. These policies use tanh activations on their hidden

units since these are the default in the OpenAI Baselines PPO implementation,

RIS estimates the behavior policy with gradient descent on the negative

log-likelihood of the neural network. In all our experiments we use a learning rate of

1× 10−3. The multi-layer behavior policies learned by RIS have either 0, 1, 2, or 3

hidden layers with 64 hidden units with relu activations.

35For these tasks we use the Roboschool versions: https://github.com/openai/roboschool
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F.4 Chapter 8: Combining Simulated with Off-Policy

Data

In this section we provide additional details for the experiments described in Chapter

8.

F.4.1 Mountain Car

The first domain is a discretized version of the Mountain Car task from the RL

literature (Sutton and Barto, 1998). In this domain an agent attempts to drive an

underpowered car up a hill. States are discretized horizontal position and velocity

and the agent may choose to accelerate left, right, or neither. At each time-step the

reward is −1 except for in a terminal state (the top of the hill) when it is 0.

As in previous work on importance sampling, we shorten the horizon of the

problem by holding action at constant for 4 updates of the environment state (Jiang

and Li, 2016; Thomas, 2015). This modification changes the problem horizon to

L = 100 and is done to reduce the variance of importance-sampling.

Policy πb chooses actions uniformly at random and πe is a sub-optimal policy

that solves the task in approximately 35 steps. We use Monte Carlo rollouts to

estimate v(πe,M̂) for the model-based estimator.

In this domain we build tabular models which cannot generalize from observed

(s, a) pairs. As done by Jiang and Li (2016), we assume that a lack of data for a

(s, a) pair causes a deterministic transition to s. We compute the model action value

function, q̂πe , and state value function, v̂πe with value-iteration for WDR.

F.4.2 Cliff World

Our second domain is a continuous two-dimensional Cliff World (depicted in Figure

F.2) where a point mass agent navigates a series of cliffs to reach a goal, g. An
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Figure F.2: Cliff World domain in which an agent (A) must move between or around
cliffs to reach a goal (G).

agent’s state is a four dimensional vector of horizontal and vertical position and

velocity. Actions are acceleration values in the horizontal and vertical directions.

The reward is negative and proportional to the agent’s distance to the goal and

magnitude of the actions taken, r(s,a) = ||s− g||1 + ||a||1. If the agent falls off a

cliff it receives a large negative penalty. Domain dynamics are linear with additive

Gaussian noise.

To create πb and πe, we first hand code a deterministic policy, πd. Then the

agent samples πe(·|s) by sampling from N (·|πd(s),Σ) with Σ = 0.52I. The behavior

policy is the same except Σ = I.

We build models in two ways: linear regression (converges to true model as

m→∞) and regression over nonlinear polynomial basis functions.36 The first model

class choice represents the ideal case and the second is the case when the true dynam-

ics are outside the learnable model class. Our results refer to MB-BOOTSTRAPLR

and MB-BOOTSTRAPPR as the MB estimator using linear regression and polyno-

mial regression respectively. Similarly, we evaluate WDR-BOOTSTRAPLR and

WDR-BOOTSTRAPPR. These dynamics mean that the bootstrap models of

MB-BOOTSTRAPLR and WDR-BOOTSTRAPLR will quickly converge to a correct

36For each state feature, x, we include features 1, x2, x3 but not x.
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model as the amount of data increases since they build models with linear regression.

On the other hand, these dynamics mean that the models of MB-BOOTSTRAPPR

and WDR-BOOTSTRAPPR will quickly converge to an incorrect model since they

use regression over nonlinear polynomial basis functions.
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