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Abstract

The Proton Pack is a portable visuo-haptic surface in-
teraction recording device that will be used to collect a
vast multimodal dataset, intended for robots to use as
part of an approach to understanding the world around
them. In order to collect a useful dataset, we want to
pick a suitable interaction duration for each surface, not-
ing the tradeoff between data collection resources and
completeness of data. One approach frames the data
collection process as an online learning problem, build-
ing an incremental surface model and using that model
to decide when there is enough data. Here we exam-
ine how to do such online surface modeling for the ini-
tial problem of learning a kinetic friction model. With
a long dataset consisting of force, vibration, and speed
recorded by a human operator moving a tooling ball
end-effector across a flat vinyl surface, we find a good
stopping point at 55.4 s.

Introduction
As robots venture out of the lab and begin to interact with
humans in unstructured environments, the robots need to un-
derstand the physical properties of the objects around them.
We focus on identifying properties of flat surfaces from vi-
sual inspection, which has applications for robots selecting a
gait when walking on varied surfaces, choosing a grasp on an
unfamiliar object, and more. In order to build algorithms that
can learn the correspondence between visual appearance and
these haptic properties, we have designed and built an instru-
ment that we will use to record a large dataset of multimodal
data from surface interactions. Learning from this database
will identify visual patterns that correspond to haptic proper-
ties, while generalizing over purely visual differences such
as color and illumination, allowing robots to better under-
stand their surroundings and “feel with their eyes.”

Haptic Surface Perception
Our instrument takes inspiration in mission, design and
processing strategies from previous texture sensing sys-
tems in our lab and in the literature, most directly from
the Haptic Camera (Culbertson et al. 2013), a pen-shaped
device that includes a force/torque sensor, accelerometers
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Figure 1: Left: Proton Pack in use. Right: End-effector.

and magnetic tracking. Another similar pen-shaped device
is the WHaT (Pai and Rizun 2003), featuring accelerome-
ters and wireless connectivity but no motion tracking (al-
though external visual tracking was added later (Andrews
and Lang 2007)). Also notable are Battaglia et al.’s Thimble-
Sense (Battaglia et al. 2014) that mounts force/torque sen-
sors on robot or human fingers and Xu et al.’s experiments
with a SynTouch BioTac mounted on a Shadow Dextrous
Hand (Xu, Loeb, and Fishel 2013).

Desiring a portable, multimodal sensing system that can
handle a wider range of contact forces while surveying more
surfaces in and out of the lab, we introduced the Proton Pack
last year (Burka et al. 2016a; 2016b) and have been making
modifications since then (Burka et al. 2017) in preparation
for collection of a large dataset.

The Proton Pack
The Proton is a sensing system in two parts: a handheld
rig that contains multimodal sensors and an interchangeable
end-effector, plus a backpack enclosing a battery and com-
puter. This system can be used for untethered data collec-
tion, away from power and wi-fi – the backpack broadcasts
its own network, and any device with a web browser, such
as a smartphone or tablet, can control the system.

Fig. 1 shows an operator holding the Proton Pack with
a passive end-effector that terminates in a steel tooling
ball, which can be interchanged with similarly-shaped end-
effectors that hold an OptoForce force sensor or a SynTouch
BioTac. Other haptic sensors that are available regardless of



end-effector are an ATI Mini40 six-axis force/torque sensor,
a MEMS microphone, an inertial measurement unit (IMU),
and dual two-axis high-bandwidth accelerometers mounted
directly on each end-effector. At the top of the handheld rig
are mounted two cameras: a high-resolution mvBlueFOX3
RGB camera and a Structure depth sensor. A frame of sta-
tionary AprilTags (Olson 2011) is placed next to the surface
to act as fiducial markers for motion tracking.

We chose to have a human operator, rather than a robot,
hold the sensing rig for several reasons. First, and most im-
portantly, it avoids contamination of our recorded surface
vibration data with actuator vibrations that would be inher-
ent in any robotic system. Consumers of our dataset who
compare against robot-gathered data will need to account
for their own actuator noise, but the reduction of noise in
the dataset itself will simplify such comparisons. Second,
though a robot’s motions would be more precise and re-
peatable, by using a human operator we can take advan-
tage of already-learned human intuition as to which motions
will be most informative when exploring a new surface, and
we avoid having to create and tune a motion controller for
robotic contact interaction with unknown surfaces. Third, a
human-operated system is more portable and flexible than
a robotic one, facilitating extensive data capture inside and
outside the lab.

Friction Modeling
Data collected by the Proton can be used to extract various
visual and mechanical surface properties. In this preliminary
work we focus on friction, a basic mechanical property that
has been the subject of much modeling effort.

Armstrong-Hélouvry, Dupont and De Wit survey a wide
range of friction models (Armstrong-Hélouvry, Dupont, and
Canudas De Wit 1994). Their review culminates in a com-
bined seven-parameter model, including Coulomb friction,
viscous friction, the Stribeck effect, rising static friction,
frictional memory, and presliding displacement.

Bilinear model In this work we use a simple model for
friction, including Coulomb friction and viscous friction, but
neglecting second-order effects for simplicity. The model is
given by the following equation:

~Ft(t) = −
(
α||~Fn(t)||+ β||~vt(t)||

) ~vt(t)

||~vt(t)||
(1)

The time-varying friction force ~Ft acts in opposition to
the tangential velocity ~vt, with a magnitude linearly related
to that of the normal force ~Fn and the magnitude of the tan-
gential velocity, where α and β are coefficients fit from ex-
perimental data.

Online Learning
Machine learning typically runs over a complete dataset with
few constraints on efficiency or processing power required,
since the goal is only to learn a model that represents the data
well. Typically the model itself is designed to run quickly,
but the training process is not (e.g., evaluating vs. training a

neural network). However, substantial literature exists in on-
line learning, where a model is updated continuously, often
in real time, while the full dataset is not known.

A key question is at what point the learned model can be
considered done, and the learning process can stop incor-
porating new data. One answer is a technique called Stabi-
lizing Predictions (Bloodgood and Vijay-Shanker 2009). In
that work, which considers the problem of word sense dis-
ambiguation (a discrete classification task), a small unsuper-
vised test set is reserved from the input data, and learning
is considered done when the (unchecked) predictions on the
test set have stabilized. In this work, we adapt this technique
to a continuous-time domain, fitting a first-order model to
data and inspecting the stability of the model coefficients,
which completely determine the model’s predictions on un-
seen data.

Methods
We collected 120 seconds of data while rubbing the steel
tooling ball end-effector on a vinyl surface at varying speeds
and normal forces. Modalities recorded were force data
at 3000 Hz and pose measurements at 15 Hz. Using the
processes detailed in our earlier publications (Burka et al.
2016a; 2016b; 2017), we rotated the force measurements
into the world frame (relative to the fiducial markers), com-
pensated for contributions from the force of gravity, and de-
composed the force and velocity measurements into their
respective tangential and normal components, yielding tan-
gential force opposing the direction of motion Ft(t), nor-
mal force Fn(t), and end-effector tip speed vt(t). These data
streams were smoothed using a low-pass filter with a cutoff
frequency of 15 Hz, then segmented into 100 ms windows
(300 samples each). To avoid attempting to fit a kinetic fric-
tion model to data reflecting the effect of static friction, win-
dows with an average tip speed of less than 25 mm/s were
not considered.

We would like to find the point at which the data encom-
passes a representative sample of interactions with the vinyl
surface, which is a good stopping point for data collection.
To analyze progress toward this ideal during the vinyl inter-
action, we simulated an observation by adding each window
in turn to running sets of input data (normal force and tip
speed) and output data (tangential force). At each iteration a
least-squares fit was used to find the best coefficients of the
bilinear model for the friction process (see (1)) based on all
data observed up to that point. This model was then used to
predict the tangential force in the next window.

In theory, the prediction error should decrease to near zero
as the model increases in accuracy. However, random noise
disrupts the data and makes the simple bilinear model inac-
curate on short time scales. Therefore, instead of tracking
the incremental prediction error, we looked at the variation
of the model coefficients α and β at each window k. This ap-
proach mimics the Stabilizing Predictions method reviewed
above (Bloodgood and Vijay-Shanker 2009), which tracks
the stability of unsupervised predictions on a test set.

To find a suitable stopping point, we calculated the rela-
tive differences between each successive pair of model co-
efficients to get ∆α and ∆β (see (2) and (3)) and smoothed
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Figure 2: Inputs and outputs of the friction model. Top:
normal and tangential components of contact force. Bot-
tom: Tangential speed of the end-effector. The friction model
takes normal force and tangential speed as inputs and pre-
dicts tangential force.
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Figure 3: Coefficients of each incremental friction model
(see (1)). Top: α, the normal force coefficient. Bottom: β,
the tangential speed coefficient. Vertical lines mark the cho-
sen stopping point.

these differences using a moving average filter (window size
10), resulting in ∆αs and ∆βs. We set the stopping point
to the first iteration at which the average of ∆αs(k) and
∆βs(k) drops below a tunable threshold of 0.001.

∆α(k) =
|α(k)− α(k − 1)|

α(k − 1)
(2)

∆β(k) =
|β(k)− β(k − 1)|

β(k − 1)
(3)

Results and Discussion
Fig. 2 shows the recorded contact force and speed, which
formed the inputs and output to the online learning pro-
cess. The coefficients of each incremental model are shown

0 100 200 300 400 500 600 700

In
cr

em
en

ta
l E

rro
r (

N
)

0

2

4

6

8

10

12

14

Iteration number
0 100 200 300 400 500 600 700

O
ve

ra
ll 

Er
ro

r (
N

)

0

0.5

1

1.5

2

2.5

3

Figure 4: Model error during the online learning process.
Top: Incremental performance of each model on the next
unseen time window. Bottom: Overall performance of each
model on the entire dataset. Vertical lines mark the chosen
stopping point.
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Figure 5: Model comparison. The ground truth tangential
force is plotted along with the prediction error for a model
trained on data up to the chosen stopping point (root-mean-
square error = 1.67 N), and one trained on the entire dataset
(root-mean-square error = 1.61 N).

in Fig. 3. We measured the root mean square (RMS) error
of the tangential force predictions F̂t(t) against the ground
truth Ft(t), both for a single window w starting at time tw0 ,
and for the entire dataset of N samples:

einc(w) =

√√√√ 1
300

300∑
i=1

∣∣∣F̂t

(
tw0 + i

3000

)
− Ft

(
tw0 + i

3000

)∣∣∣
(4)

etot =

√√√√ 1

N

N∑
i=1

∣∣∣F̂t

(
i

3000

)
− Ft

(
i

3000

)∣∣∣ (5)



The two error metrics are plotted in Fig. 4. The incre-
mental prediction error (top) represents the performance of
each model on the next time window that was not used in its
training, while the overall error (bottom) shows each model
evaluated against the entire dataset. Application of the co-
efficient stabilization criterion, as described in the previous
section, implies a stopping point after 257 windows, or 55.4
seconds of data. As can be seen in Fig. 5, the predictions
generated by the model at the stopping point are nearly in-
distinguishable from those generated by the final model. Our
idea is that this algorithm could run during data collection
and alert the operator when enough data has been gathered.

Strangely, the overall error shown in Fig. 4 (bottom)
trends downward but does not drop significantly during the
learning process. This lack of reduction may imply that the
data is too noisy for our simple model of friction to account
for all effects, or that the choice of 100 ms windows focuses
too narrowly, so that the evaluation of model predictions on
a single window reflects random noise rather than model ac-
curacy. However, the overall error, which tests the predic-
tions of each incremental model over the entire 120 second
dataset (thereby including data that the model was not given
for learning), does stabilize at about 1.5 N RMS after initial
fluctuations. The point at which the overall error stabilizes is
close to the point at which the model coefficients stabilize.
This correlation implies that coefficient stabilization can be
used as a heuristic, indicating that the overall error (which
cannot be evaluated in an online setting) is stabilizing as
well.

There is clearly a danger, when using a threshold, of
stopping too early (perhaps the incremental prediction er-
ror drops very low after a particularly uneventful stretch of
time), stopping too late (because the chosen threshold is too
conservative), or getting stuck in a local minimum, where
the learned model is good enough for the data collected so
far but misses possible generalization. Indeed, Fig. 3 clearly
shows that the best fit value of the tangential speed coeffi-
cient changed significantly after the stopping point (though
the predictions in Fig. 5 appear largely unaffected). More
surfaces should be evaluated in order to fine-tune the stabi-
lization criterion.

Although the chosen stopping point reflects stabilization
of the model coefficients, it is also informative to analyze the
comprehensiveness of the distribution of normal forces and
speeds. Figs. 6 and 7 show visualizations of the distribution
of normal forces and tangential speeds, respectively, after 24
seconds, 60 seconds, and the full 120 seconds. Clearly, the
distribution at 60 seconds is of the same shape as the final
distribution, mainly different in overall magnitude, but the
distribution at 24 seconds has noticeable regions of missing
data. If it is possible to guide the data collection process in
order to achieve such a distribution earlier in time, we expect
the model coefficients to stabilize sooner as well. Future di-
rections may include hinting the human operator so as to
encourage a uniform distribution of applied normal forces
and tangential speeds.
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Figure 6: Histograms of the distribution of normal force at
three points during dataset collection.
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Figure 7: Histograms of the distribution of tangential speed
at three points during dataset collection.

Conclusions and Future Work

In a case study with a vinyl surface, we have shown that
metrics based on incremental model building are feasible
for automatically determining the stopping point for data
collection. This analysis is preliminary, as we have exam-
ined only a single surface (vinyl rubber) and a single sur-
face property (kinetic friction). We must try the method on
other surfaces to see whether it scales, and we must deter-
mine suitable values for the window length and coefficient
stabilization threshold.

Going forward, we will use the method presented here to
inform the parameters of our large dataset collection pro-
gram. We may decide to collect a varying amount of data per
surface, or we might collect pilot data on a representative
set of surfaces and use incremental models to find a com-
mon data size for all surfaces. Other options include using
the normal force and tangential speed distributions, either in
an online setting to help the human operator collect good
data or in post-processing to select representative regions of
a long recording.



References
Andrews, S., and Lang, J. 2007. Interactive scanning of
haptic textures and surface compliance. In Proc. IEEE Inter-
national Conference on 3-D Digital Imaging and Modeling,
99–106.
Armstrong-Hélouvry, B.; Dupont, P.; and Canudas De Wit,
C. 1994. A survey of models, analysis tools and compen-
sations methods for the control of machines with friction.
Automatica 30(7):1083–1138.
Battaglia, E.; Grioli, G.; Catalano, M. G.; Santello, M.; and
Bicchi, A. 2014. ThimbleSense: an individual-digit wear-
able tactile sensor for experimental grasp studies. In Proc.
IEEE International Conference on Robotics and Automa-
tion, 2728–2735.
Bloodgood, M., and Vijay-Shanker, K. 2009. A method for
stopping active learning based on stabilizing predictions and
the need for user-adjustable stopping. In Proc. 13th Confer-
ence on Computational Natural Language Learning, 39–47.
Burka, A.; Hu, S.; Helgeson, S.; Krishnan, S.; Gao, Y.; Hen-
dricks, L. A.; Darrell, T.; and Kuchenbecker, K. J. 2016a.
Design and implementation of a visuo-haptic data acquisi-
tion system for robotic learning of surface properties. In
Proc. IEEE Haptics Symposium.
Burka, A.; Hu, S.; Helgeson, S.; Krishnan, S.; Gao, Y.; Hen-
dricks, L. A.; Darrell, T.; and Kuchenbecker, K. J. 2016b.
Proton: A visuo-haptic data acquisition system for robotic
learning of surface properties. In Proc. IEEE International
Conference on Multisensor Fusion and Integration.
Burka, A.; Rajvanshi, A.; Allen, S.; and Kuchenbecker, K. J.
2017. Proton 2: Increasing the sensitivity and portability of
a visuo-haptic surface interaction recorder. In IEEE Inter-
national Conference on Robotics and Automation. Under
review.
Culbertson, H.; Unwin, J.; Goodman, B. E.; and Kuchen-
becker, K. J. 2013. Generating haptic texture models
from unconstrained tool-surface interactions. In Proc. IEEE
World Haptics Conference, 295–300.
Olson, E. 2011. AprilTag: A robust and flexible visual
fiducial system. In Proc. IEEE International Conference on
Robotics and Automation, 3400–3407.
Pai, D. K., and Rizun, P. 2003. The WHaT: a wireless hap-
tic texture sensor. In Proc. IEEE Symposium on Haptic In-
terfaces for Virtual Environment and Teleoperator Systems,
3–9.
Xu, D.; Loeb, G. E.; and Fishel, J. A. 2013. Tactile iden-
tification of objects using Bayesian exploration. In Proc.
IEEE International Conference on Robotics and Automa-
tion, 3056–3061.


