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Abstract

In robotics, observations and actions are rarely certain, mak-
ing it difficult to plan and take actions to reach goal states.
Belief-space planners are often used to overcome the uncer-
tainty and partial observability, but make it difficult to define
generic tasks. In recent work, we presented a planner and task
representation framework capable of alleviating these prob-
lems. This paper is a summary of our past work on belief-
space planning and task representations.

Introduction
Robotics tasks involve planning to reach a goal state. In par-
tially observable environments and in the presence of uncer-
tainty, the task requires accumulating certainty of the goal
state. Planning needs to be done over the probability distri-
bution of the state space. Belief-space planners deal directly
with the uncertainty by using a Bayes filter to update be-
lief of the state space. Rolling out just a few actions results
in a large number of probabilistic future states. Belief-space
planners with fixed horizons are able to plan for this prob-
lem, but planning time is still an issue due to exponential
state expansion. Applying belief-space planners to robotics
is challenging because there is a lack of a unifying frame-
work for representing tasks that are usable by belief-space
planners.

The belief-space planner in this work belongs to a class
of information theoretic planners that uses information gain
to reduce uncertainty and trim unnecessary rollouts. We ad-
dress the task representation problem by partitioning the set
of states, and the task is defined as condensing the belief on a
desired subset. This task framework automatically balances
taking actions to reduce uncertainty and making progress to
complete the task. We demonstrate that the same framework
is capable of handling several task types such as finding, ma-
nipulating, and arranging objects required for a copy task
based on visual perception and observation of transition dy-
namics.

Related Work
Due to partial observability and uncertainty, it is often nec-
essary to have multiple viewpoints or interactions with an
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object to recognize it. Deinzer et al. use reinforcement learn-
ing to learn a policy to select viewpoints for recognition
(Deinzer et al. 2009). Eidenberger and Scharinger formulate
an approximate solution as a partially observable Markov
decision process (POMDP). They demonstrated that this ap-
proach generates next viewpoint actions that successfully
recognize multiple objects in a cluttered scene (Eidenberger
and Scharinger 2010).

A necessary component of a belief-space planner is a
means of propagating belief distributions through candidate
actions using a forward model. For example, Hogman et al.
use the action-effect relation to categorize and classify ob-
jects (Hogman et al. 2015). Sen introduces affordance-based
object models called aspect transition graphs (ATGs) that
combine bag-of-features feature matching with a graph to
model action effects (Sen and Grupen 2014). Ruiken et al.
extend the ATGs by adding geometric information and cost
estimates to improve forward modeling capabilities (Ruiken
et al. 2016b).

Often the robotics community works on when
to switch between tasks rather than how to
solve different active perception tasks using a
single planner (Wawerla and Vaughan 2009;
Capi 2007). Some methods have been proposed to
solve multiple tasks with a single planner, but are not
active recognition algorithms, and therefore, they do not
interact with the environment to reduce the uncertainty
(Grabner, Grabner, and Bischof 2005), (Lai et al. 2011).

We combine active perception with the ability to switch
between tasks (Ruiken et al. 2016a).

Technical Approach
In this section we describe the three main components of
our architecture: object models, the Active Belief Planner
(ABP), and the task framework.

Object Model
A Dynamic Bayes Net (DBN) is used as a recursive, hierar-
chical inference engine in which objects o generate abstract
states x that then generate observations of aspects z. Each
unique set of features of an object that can be seen from a
single viewpoint, together with its geometric constellation,
form an aspect z. Features in our system have a type and
Cartesian attribute. Pairwise distances between features are



used with Hough voting (Ballard 1981) to determine which
aspects are present.

Each object o is modeled by a multi-graph called an as-
pect transition graph (ATG). Graph nodes in the ATG are
called aspect nodes, and edges are transitions between as-
pect nodes. An aspect node is associated with an aspect and
represents the abstract state x of the robot with respect to an
object. Each transition has an associated, parametrized ac-
tion with cost estimates. An edge defines a forward model
p(xt+1|xt, at) as the probability of transitioning from one
aspect node to another for a given action. For example if
a box has identical front and back sides, there is an aspect
node for each front and back of the object where both nodes
expect to see the same aspect.

Using aspect nodes of an ATG as an abstract state x
greatly reduces the state space of the problem. The ATG
also contains all relevant (known) actions to interact with
the object. Therefore, out of all possible action parameter-
izations, only useful ones provided by the ATG need to be
considered. Additionally, the ATG provides forward and ob-
servation models for belief update and planning.

Active Belief Planner (ABP)
The purpose of the planner is to select actions that provide
the most information by rolling out possible future states.
The forward models from all ATGs are used to propagate
belief over multiple actions. To handle multiple objects, fea-
tures are clustered into spatial hypotheses hk based on the
compatibility of their spatial distributions with known object
models. The planner can then probabilistically reason over
one object hypothesis at a time. The number of hypotheses
is expected to be roughly the number of objects in the scene.
For each of the k hypotheses, given a belief at time t over
aspect nodes bel(xkt ) and the executed action at, the belief
is updated by

bel(xkt+1) =
∑
xk
t

p(xkt+1|xkt , at)bel(xkt ),

where bel denotes that the posterior is due solely to action
at. The planner then performs an observation update based
on the expected observations provided by the ATG, yielding
the posterior belief with η as a normalizer:

bel(xkt+1) = η p(zkt+1|xkt+1) bel(x
k
t+1).

From this posterior belief, the planner evaluates all candi-
date actions and predicts the most informative next action.
After this action is executed, new observations are matched
to aspect nodes to calculate p(zkt+1|xkt+1) based on the geo-
metric constellation of features and observation covariances.

The algorithm has a complexity ofO(|K||A||X|2), where
K is the set of independent hypotheses, A is the set of eli-
gible actions for each hypothesis, and X is the set of as-
pect nodes. The time required to expand all belief nodes
is dependent on the distribution of belief and quickly de-
creases when the belief condenses on fewer aspect nodes.
The search depth of the algorithm is variable and is auto-
matically increased as belief condenses, and forward plan-
ning becomes less expensive. For more detailed information

on the algorithm, we refer the reader to (Ruiken et al. 2016b;
2016a).

Task Framework
The ABP can plan over any level of the hierarchical DBN
(objects, aspect nodes, or features). Assuming a “complete”
ATG for all objects in the model space, any task that can be
performed using actions comprising the edges in the ATG
can be specified by defining a partition C over aspect nodes
of the ATG. This partition aggregates belief on the aspect
nodes into targeted subsets for the task. Most tasks result in
a partition with two subsets: all aspect nodes that do and that
do not satisfy the task specifications. For other tasks, the as-
pect nodes may be split into n different subsets to, for exam-
ple, recognize an object within a model space of n objects.

The belief over the partition C can be calculated by sum-
ming the belief over aspect nodes contained in each subset c:

bel(c) =
∑
x∈c

bel(x).

Standard information-based metrics can be applied in a
belief-space planner to choose the next best action. The
choice of the metric changes the behavior of the robot. For
example, minimizing the entropy,

H(ct) = −
∑
ct

bel(ct) log (bel(ct)),

causes the belief-space planner to pick actions that effi-
ciently condense belief into the subset c that best represents
the history of observations. If the model space contains the
correct object, this corresponds to a recognition task. Alter-
natively, a target distribution T (c) can be specified over all
c. In this case, minimizing the Kullback-Leibler (KL) diver-
gence between T (c) and the current belief bel(ct),

DKL(T (c)||bel(ct)) =
∑
ct

T (c) log

(
T (c)

bel(ct)

)
,

results in actions that steer the robot toward the target
state(s) while automatically balancing information gather-
ing actions and actions towards the task goal. Tasks defined
this way are most general and can include recognition at the
object and aspect node levels.

Task Types
In this section, we define four basic task types commonly
found in robotics. These are only samples of possible tasks
that can be represented in this framework; tasks are only lim-
ited by the expressiveness of the known ATG model. Each
type can be differentiated by the way the task partition de-
fines the task for the planner. A graphical example of task
partitions for the four task types is shown in Figure 1.

In a recognition task, the robot is presented with one or
more object(s) of unknown identity. The robot has ATG
models for n different objects and has to identify the proba-
bility that the data supports each of the known ATG models.
The robot can use any action present in all of the ATGs to in-
vestigate and manipulate the object(s). The aspect nodes are



Figure 1: Simplified DBNs for three objects (top) are illustrated with task partitions for sample task types (bottom). Different
subsets of the task partition are shown with different outlines.

partitioned into n subsets based on which object they belong
to.

A localization task establishes the pose with respect to
features of one or more object(s) encoded in the aspect
nodes. The robot is presented with a single sensor view
of either known or unknown identity. For each hypothesis,
the robot has access to |X| aspect nodes for all n ATG
models and has to identify which known aspect node xi,
0 ≤ i < |X|, corresponds to the constellation of features
detected in this single view. The partition for localizations
has a subset for each aspect node.

We define the find task as follows: the robot is presented
with one or more object(s) of either known or unknown iden-
tity and has access to n known ATG models. The robot in-
teracts with the object(s) until it is certain that at least one
object satisfies the task specifications. The partition for the
example in Figure 1 has two subsets, one for aspect nodes
belonging to objects with a 3 on top and another for ones
that do not.

The orient task is a find task with the added specification
of the configuration that the object should have with respect
to the robot. Only matching aspect nodes x are considered
as task success (as opposed to all aspect nodes of objects
with at least one matching aspect node). The partition for
the example in Figure 1 forms two subsets, one for aspect
nodes with a 3 on top and another for ones that do not.

Experiments and Results
In order to demonstrate the capabilities of this belief-space
planning framework, we use a model set specifically de-
signed to stress planners. Objects in this set are ARcubes,
which are rigid cubes with a single ARtag centered on each
of the six faces. ARtags can be easily identified and local-
ized and are used as a proxy for more general purpose vi-
sual processing (Kato and Billinghurst 1999). Only their id
and position are used. A large number of possible visually
similar cubes and the natural sparseness of visual features
leads to a large degree of ambiguity, Additionally, each vi-

sually unique cube can have up to six eccentrically weighted
counterparts, which are visually identical and can only be
differentiated through the transition dynamics of manual ac-
tions. The partial observable nature of the ARcubes together
with the high ambiguity require long sequences of actions
to recognize objects or manipulate them. More realistic ob-
jects are often easier to differentiate from even a single view.
By using ARcube objects, we can generate a domain that is
difficult for the planner instead of the perception.

The ATGs for the ARcube objects include transitions for
FLIP, LIFT, PUSH, and ORBIT actions with the uBot-6 mo-
bile manipulator. The uBot-6 and the actions are detailed in
(Ruiken, Lanighan, and Grupen 2013; Ruiken et al. 2016b).

In the first setup, we illustrate solving two different find
tasks. A second setup shows how the aforementioned task
types can be sequenced for the robot to solve a structure
copying task.

Find Tasks
As described in previous sections, assigning different par-
titions to a task can change the distribution over which the
ABP plans, and thus, reconfigure the planner for different
tasks. We define task specifications for two different find
tasks and run the planner using their respective task par-
titions in simulation. We use 30 ATG models for ARcube
objects. This model set contains 16 visually unique cubes.
Some of these cubes have up to six eccentrically weighted
counterparts. For each case, we provide rollouts of the belief
over the subsets ci of partition C. Figures 2(a) and 2(b) in-
clude the belief over objects to illustrate how the subsets of
C are composed. Each oi is textured based on the subset of
C to which it belongs.

We demonstrate two examples of the find task to show-
case two common scenarios. The first task is to find an ob-
ject matching ATG model o24. The robot is presented with
an unknown object and needs to determine if this object is
indeed object o24. The rollout of the beliefs over subsets c
and the object identity o can be seen in Figure 2(a). The



planner chooses a sequence of actions to focus on o24 with-
out having to worry about telling it apart from all the other
object models.

The second task is to find an object that could be oriented
such that a set of features is in the correct relative position to
the robot. In this example, ARtag ‘1’ should face the robot,
‘4’ should be on top, and ‘2’ should be on the bottom of
the cube facing the floor. The identity of the object is not
important. The subsets c defining the task can be seen in
Figure 2(b) together with rollouts of the beliefs over c and
o. The task succeeds without the belief condensing over the
identity of the object at hand; the robot can focus on what
matters for the task.

Figure 2: Top: Example task to find an object matching a
specific ATG model (o24). Target subset c1 contains all as-
pect nodes of object o24; those of all other objects are in c0.
Bottom: Example task to find an object with matching fea-
tures. Target subset c1 contains all aspect nodes of objects
that contain the necessary features; those of all other objects
are in c0. Task specification: belief over subsets c is shown
on the left. To visualize how subsets c are composed, the
belief over objects o is shown on the right

Structure Copying
In this setup uBot-6 is presented an assembly consisting of
two ARcubes. The robot is required to observe the target ob-
jects and reproduce the structure in a staging area. Both the
original assembly and staging area for the copied structure
are known to the robot and contain visual markers on the
wall as pose guidance fiducials. For simplicity, the task spec-
ification is only based on observations from a single van-

tage point (one aspect). In general, the task can be based on
constraints from a history of observations. For example, the
robot could take observations from different vantage points
and interact with the objects in the target assembly to gather
more information in order to replicate it more precisely. Fig-
ure 3 (top) shows a side-by-side comparison of the target as-
sembly and the assembly reproduced by the robot. For this
experiment, the robot needs to pick-and-place two ARcubes
in the designated staging area. We use our proposed algo-
rithm to perform pick-and-place actions by sequencing task
types that were presented above. The ATG model set used
for this demonstration contains 14 object models.

Figure 3: Side-by-side comparison of the assembly template
(top left) and the assembly reproduced by the robot (top
right). The robot observes the assembly template and copies
it in the staging area using objects that it determines to be
appropriate from the search scene (bottom).

Conclusion
We have shown a method for solving a variety of tasks in
belief-space. The ATG restricts the state space and the set of
actions to only useful interactions with an object. To demon-
strate the flexibility of our task representation, we applied it
to tasks at multiple levels in our hierarchy and showed, the
planner selects actions that are relevant for the task. This
allows the planner to quickly condense belief and efficiently
complete tasks on the robot. Future work will extend the fea-
tures to include haptic feedback.
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