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Abstract

Interactive perception methods exploit the correlation be-
tween robot actions and changes in the sensor signals to ex-
tract task-relevant information from the sensor stream. These
interactions can have effects in one or multiple sensor modal-
ities. In this work we propose an interactive perception sys-
tem to build kinematic and dynamic models of articulated ob-
jects from multi-modal sensor streams. Our system leverages
two properties of the multi-modal signals: 1) consequences of
actions are frequently best perceived in the combined multi-
modal sensor-action stream, and 2) properties perceived in
one modality may depend on properties perceived in other
modalities. To fully exploit these properties we propose a
perceptual architecture based on two main components: a
set of (possibly recursive) estimation processes and an inter-
connection mechanism between them. The processes extract
patterns of information from the multi-modal sensor-action
stream by enriching it with prior knowledge; the interconnec-
tion mechanism leverages their inter-dependencies by using
estimations of one process as measurements, priors or for-
ward models of other processes. We show experimentally that
our system integrates and balances between different modal-
ities according to their uncertainty in order to overcome lim-
itations of uni-modal perception.

Introduction

Interactive perception is a way to approach perceptual prob-
lems that makes interaction part of the solution by leveraging
it as source of perceptual information (Bohg et al. 2016). In-
teractive perception methods have been successfully applied
to segment the visual field, perceive shape, kinematic struc-
tures and dynamic properties, by exploiting the interaction
capabilities of the robot’s embodiment.

Traditionally, interactive perception methods have been
based on one single sensor modality, most frequently vi-
sion (Fitzpatrick 2003; Kenney, Buckley, and Brock 2009;
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Figure 1: Our robot interacting with an articulated object
and schematic representation of our multi-modal interactive
perception system; the system is composed of several in-
terconnected estimation processes; two-colored loops repre-
sent recursive processes; orange arrows indicate inputs to es-
timation processes (sensor streams or estimations from other
processes); blue arrows indicate predictions

Hausman et al. 2013; Katz et al. 2013; van Hoof et al.
2012), force-torque sensor signals (Atkeson, An, and Holler-
bach 1986; Karayiannidis et al. 2013; Endres, Trinkle, and
Burgard 2013) or tactile feedback (Dragiev, Toussaint, and
Gienger 2013). These uni-modal methods fail when the sen-
sor modality does not contain the necessary perceptual infor-
mation. These failures can be caused by changes in the en-
vironmental conditions (e.g. lights go off), in the character-
istics of the interaction (e.g. self occlusions or grasp/contact
loss), or in the perceptual task.

While some authors realized that these failures could be
alleviated by integrating multiple sensor modalities (Haus-
man et al. 2015; Sukhoy and Stoytchev 2010; Bohg et al.
2010; Illonen, Bohg, and Kyrki 2013; Park et al. 2016), there
is no generic approach to merge multiple sensor modalities
and information about the interaction in a multi-purpose per-
ceptual system. In this work we present a multi-modal in-
teractive perception system that integrates information from



multiple sensor modalities to extract information more ro-
bustly in dynamically changing environments. Our proposed
system is in essence an interconnected network of (possibly
recursive) estimation processes. Each process extracts dif-
ferent perceptual patterns based on priors about 1) the tem-
poral evolution of the environment and the signals, and 2)
its consequences in the multi-modal sensor-action stream.
The inter-communication between processes allows them to
bootstrap and feed information into each other and to reuse
priors at different levels, effectively leveraging the correla-
tion between modalities.

We apply our system to the perception of articulated ob-
jects from multi-modal sensor-action signals. Our goal is
to perceive in an online manner the kinematic and dynamic
properties of the articulated objects by integrating informa-
tion from vision, force-torque sensing and proprioception.
Such an online perceptual system supports and enables suc-
cessful reactive autonomous interaction with unknown artic-
ulated objects.

In the following we present our online multi-modal inter-
active perception system to perceive articulated objects from
interactions and show some preliminary results.

Online Multi-Modal Interactive Perception

We propose to realize online multi-modal interactive percep-
tion for autonomous robots as a network of interconnected
estimation processes. Most of these processes are recur-
sive processes ( ). Recursive
estimation is well suited for interactive perception because
1) it leverages the temporal coherence of the multi-modal
sensor-action stream, and 2) it extracts patterns of informa-
tion (e.g. motion) by interpreting a (possibly multi-modal)
sensor-action stream as evidences of an underlying dynamic
process.

In order to extract patterns of information a recursive esti-
mation process makes use of prior knowledge in two forms:
in the form of a process model, to predict the dynamics of
the process (possibly affected by the interaction), and in the
form of a measurement model, to explain the correlations
between the process and the input stream. Several process
models and measurement models are possible within a sin-
gle estimation process. If the estimation process is not recur-
sive, we assume that there is no process model and the prior
knowledge is entirely encoded in the measurement model.

Recursive estimation can be applied to different types of
input streams. First, the input stream can include informa-
tion about interactions, making recursive estimation suited
for Interactive Perception. Second, the input stream can
include multiple modalities, making recursive estimation a
good solution for multi-modal perception. Third, the in-
put stream can contain patterns of information extracted by
other processes, allowing for a bottom-up hierarchical per-
ceptual process.

This last property defines one of the intercommunication
flows that defines our network of estimation processes. The
second intercommunication flow is composed of predictions
(states, measurements), that can be used as alternative pro-
cess models and/or as measurements by other processes.

This top-down communication allows to reuse high level pri-
ors and to inject high level information into lower level per-
ceptual processes, effectively restricting their space of pos-
sible states.

Building Kinematic and Dynamic Models of
Articulated Objects

Based on the aforementioned components, we developed a
system that perceives articulated objects from interactions.
The system integrates visual information (RGB-D images),
haptics (force-torque sensor measurements) and propriocep-
tion (joint encoder measurements) to infer the kinematic and
dynamic properties of the interacted object.

This system of this work is a multi-modal extension of our
system presented in ( ). In our
previous system, we used only visual information provided
by an RGB-D sensor and factorized the original problem
(the perception of kinematic structures) into three estimation
subproblems. The first subproblem is to extract patterns of
local motion from the visual stream. We address this prob-
lem by estimating recursively the motion of a set salient 3D
point features. The second subproblem is the extraction of
patters of rigid body motion from the local patterns of mo-
tion. We tackle this problem with a set of recursive filters
(extended Kalman filters) that interpret the motion of the
features as motion of rigid bodies. The last subproblem is
the extraction of patterns of motion of pairs of bodies, which
define the kinematic model. For this problem we instantiate
a set of recursive filters (again extended Kalman filters) per
joint that infer the joint parameters and joint state from the
motion of the rigid bodies. The combined result of these
filters defines the kinematic structure and state of the inter-
acted articulated object.

Our original system presents the limitations of a uni-
modal perceptual system: it fails if the visual stream does
not contain the relevant information for the perceptual task
due to characteristics of the environment or the task (e.g.
occlusions). Clearly, when the robot interacts with an ar-
ticulated object, much richer patterns of information can be
extracted from the multi-modal sensor-action that includes
force-torque sensor signals and proprioceptive information.
In this work we propose to overcome the limitations of our
original system by exploiting this richer information of the
multi-modal stream (see Fig. 1).

The proprioception information (raw joint encoder val-
ues) is first merged with prior information about the kine-
matics of the robot manipulator to obtain an estimation of
the pose of the end-effector. This is not a recursive pro-
cess because the rich available prior information (the kine-
matic model of the robot) is enough to uniquely estimate the
pose of the end-effector (forward kinematics) and does not
require to exploit the temporal correlation of the propriocep-
tory sensor stream.

The outcome of this first estimation process is integrated
with the estimations obtained from the visual stream to
obtained a combined estimation of the pose of the end-
effector. Both sources are integrated in a probabilistic fash-
ion, weighting their contribution to the multi-modal estima-



tion based on their relative uncertainty. The information
from proprioception is more reliable than the visual infor-
mation and therefore dominates the final estimate. However,
by merging both modalities we can explain the motion pat-
terns of the visual field as evidences of the motion of the
end-effector, and overcome situations that decrease the reli-
ability or the amount of information contained in the visual
stream, e.g. due to occlusions or due to an abrupt change in
the lighting conditions.

We extended our previous solution for the third subprob-
lem, the extraction of patterns of motion of pairs of rigid
bodies, to fully exploit the multi-modal information of the
sensor stream. Additionally to the estimation of the kine-
matic structure of the articulated object we estimate the
grasping interface between the end-effector and the rigid
body under direct interaction. We create four new models
that define this kinematic relationship: perfect grasp, cylin-
drical grasp with rotation around the main axis, cylindrical
grasp with rotation and translation along the main axis and
ungrasped. These four models cover the most frequent types
of grasp performed by humanoid hands (like the one we use
in our experiments, see next Section) when actuating artic-
ulated objects. They constrain 6, 5, 4 or none of the 6 DoF
of relative motion between the hand and the object, respec-
tively.

In order to select the most likely grasp model we integrate
information from vision, proprioception and haptics (from
a force-torque sensor mounted on robot’s wrist). We de-
fine a multi-modal measurement model for each new grasp
model and use them to generate predictions about the ex-
pected multi-modal signals. The model that best predicts
the multi-modal measurements at each step is selected (see
see Sec. Experiments). The grasp models predicted force-
torque sensor signals due to the kinematic constraint be-
tween hand and interacted body, but not due to the dynamics
of the hand (weight). Therefore, the raw force-torque signal
is first merged with prior information about the hand (mass
and center of mass) and with the estimation of the current
end-effector pose to obtain the force-torque signal without
the weight of the manipulator.

Once we have identified the most likely grasp model, we
can revert this model and use it as source of information to
perceive the motion of the object under interaction based on
the motion of the end-effector. This new estimation of the
motion of the interacted body and the estimation obtained
from visual information are merged based on their relative
uncertainty (weighted average), similarly to how we inte-
grated multiple evidences of the motion of the end-effector.
However, in this integration both estimations are of compa-
rable uncertainty. The result of the integration will be bal-
anced between both inputs depending on the number and
reliability of 3D features perceived on the interacted rigid
body. The uncertainty of the 3D features depends in turn on
the depth of the feature (the accuracy of the RGB-D camera
decreases with the depth) and the lightness of the color im-
ages (the noise in the location of the 3D features increases
in dark environments).

Finally, we extended our system with a new process to
perceive the dynamic properties of articulated objects. This

Figure 2: Robot view at two time-steps of the experiment;
(left) robot view with normal lighting conditions; (right)
robot view after the lights go off (most of the visual fea-
tures are lost); the robot balances the uncertainty between
the visual and the proprioceptive modalities and perceives
correctly the kinematic properties of the object in both con-
ditions

new process integrates information about the kinematics
with the estimated force-torque signal without the weight
of the end effector. The process generates a dynamic profile
that characterizes the interaction with the articulated object
(see Sec. Experiments). In a nutshell, the process uses the
estimated kinematic model to project the force signal ex-
erted by the robot (without the weight of the hand) into the
tangential and the normal directions of the kinematically al-
lowed dimension of motion for the interacted joint. Only the
tangential force causes motion of the mechanism while the
normal force is absorbed by the kinematic constraints of the
articulation.

Experiments

We tested our system for the task of building a kinematic and
dynamic model of an unknown articulated object, a cabinet
with a drawer, from interactions. Our robot is a WAM 7-DoF
arm and an RBO-2 soft-hand ( ) as
end-effector. The robot has an Asus RGB-D sensor mounted
on the base of the arm and a ATI 6-DoF force-torque sensor
mounted on the wrist.

To trigger the interaction we guide the robot’s hand to one
of the handles in the environment, command it to close the
hand and start a compliant pulling interaction that exploits
the force-torque sensor readings to guide the manipulation
to the allowed dimensions of motion of the object. We use
a velocity-force controller that tries to keep a certain lin-
ear velocity for the end-effector, increasing or decreasing
the applied force if the velocity is under or over the desired
value (1 cm/s). The orientation of the end-effector is adapted
compliantly to the allowed dimension of motion of the artic-
ulated object.

Robustness against changing environmental and
task conditions

In the first experiment, we evaluate the robustness of our
multi-modal system to changes in the environmental and
task conditions, by switching on and off the lights (Fig. 2)
and causing the robot to lose the grasp. In the first phase the
robot observes its own interaction with an articulated object
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Figure 3: Probability of the different grasping models be-
tween the end-effector and the articulated object; initially
the most probable joint type is perfect grasp; after enough
visual and proprioceptive information has been acquired, the
most probable grasp model is cylindrical grasp with allowed
rotation around the y axis; at the end of the interaction the
robot perceives that the grasp was lost based on the force-
torque measurements and correctly assigns the highest prob-
ability to the ungrasp model

(adrawer) and determines the most probable grasp model in-
tegrating the evidences from vision, proprioception and hap-
tic information. At some point of the interaction the lights go
off and the robot uses proprioception (through the estimated
grasp model) as most reliable source of information to per-
ceive and update the kinematic state. Eventually, the robot
perceives that the grasp was lost and stops using proprio-
ception to update the kinematic state of the object (Fig. 3).
Figure 4 depicts the result of the grasp model selection. The
final configuration of the mechanism is 21.0 cm while the
robot perceived 21.9 cm. Our perceptual system combines
and balances the reliability of the different sources of infor-
mation and is unaffected by abrupt environmental changes.

Perceiving dynamic properties

In the second experiment, we evaluate the integration of
vision, proprioception and haptics to generate a dynamic
model of the articulated object. The plot at the bottom of
Fig. 5 depicts the dynamic profile perceived from the inter-
action with the articulated object. The new process inte-
grates the kinematic structure perceived by another process
based on the multi-modal vision-proprioception stream with
haptic information, and separates the force exerted by the
robot into forces in the normal and the tangential directions
to the kinematically allowed dimension of motion.

The plot at the top of Fig. 5 depicts the joint state and
the joint velocity associated to the interaction. The saw-like
profile of the force plot and the stair-like profile of the joint
state is the effect of the velocity-force compliant controller
and the stiction of the mechanism: under certain tangential
force (around 2.5 N of tangential force) stiction dominates
the interaction and there is no motion. This causes the de-
sired force of the controller to increase until overcomes stic-
tion, which triggers a fast joint motion of the object. The
velocity generated is over the desired value for the controller

Figure 4: 3-D visualization of the final step of the interac-
tion with an articulated object; the black region is the re-
ceived colored point cloud when the lights are off, which is
the visual input of our algorithm; the green line indicates the
perceived prismatic joint (translucent cone indicates uncer-
tainty); the gray model is a model of our robot placed using
the joint encoder values; note that the grasp was lost at the
end of the experiment and the hand is away from the articu-
lated object
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Figure 5: Dynamic profile of an articulated object perceived
with multi-modal Interactive Perception; (top) joint state and
joint velocity of the articulated object; (bottom) force ap-
plied by the robot on the mechanism, separated into tangen-
tial and normal forces; only normal forces cause motion

and causes the reference force to decrease under the stiction
threshold. At the end of the interaction the tangential force
increases drastically because the joint limit was reached.

This preliminary experiment indicates that is possible to
perceive dynamic properties of the articulated object in an
online manner and that they contain crucial information to
improve ongoing interactions.
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