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Abstract 
This paper extends recent work in interactive machine learn-
ing (IML) focused on effectively incorporating human feed-
back. We show how control and feedback signals comple-
ment each other in systems which model human reward. We 
demonstrate that simultaneously incorporating human con-
trol and feedback signals can improve interactive robotic 
systems’ performance on a self-mirrored movement control 
task where a RL-agent controlled right arm attempts to 
match the preprogrammed movement pattern of the left arm. 
We illustrate the impact of varying human feedback pa-
rameters on task performance by investigating the probabil-
ity of giving feedback on each time step and the likelihood 
of given feedback being correct. We further illustrate that 
varying the temporal decay with which the agent incorpo-
rates human feedback has a significant impact on task per-
formance. We found that ‘smearing’ human feedback over 
time steps improves performance and we show varying the 
probability of feedback at each time step, and an increased 
likelihood of those feedbacks being ‘correct’ can impact 
agent performance. We conclude that understanding latent 
variables in human feedback is crucial for learning algo-
rithms acting in human-machine interaction domains. 

Introduction  
Reinforcement learning (RL) agents can learn optimal ac-
tions through building models of environments through 
perceptive sensors during repeated interactions. Often RL 
agents cooperate interactively with human trainers to solve 
difficult tasks. Human teachers are a unique component of 
the environment who may deliver control signals and con-
textual information through feedback. As human-robot 
interaction becomes more complex, due to rapid advance-
ments in actuator and sensor technology, a significant gap 
emerges between the number of possible control signals a 
human can provide and the number of controllable actua-
tors a robotic system. There is often a limited set of control 
signals which a human can provide, and a large number of 
robotic system controllable functions.  

 The limit of human provided control signals is of partic-
ular interest in the field of robotic prostheses—artificial 
limbs attached to the body to augment and/or replace abili-
ties lost through injury or illness. Prosthetic limbs with 
many degrees-of-freedom have been developed [Castellini 
et al., 2014]. State-of-the-art prosthetics can perform com-
plex functions and movements, but rapid, reactive control 
of this functionality, by human users, is limited; this limita-
tion causes some users to abandon their devices [Castellini 
et al., 2014, Biddis et al., 2007, Scheme and Englehart 
2011, Micera et al., 2010]. New methods are in develop-
ment to help humans control complex robotic devices 
through intelligent control sharing and by allowing a learn-
ing agent inside the prosthetic to model the human user. 
The work presented herein explores RL agents controlled 
by simulated human electromyography (EMG) signals, 
with additional reward feedback signals.  

Background 
RL is a learning framework inspired by behaviorism 
[Skinner, 1938] which describes how agents improve over 
time by taking actions in an environment with a goal of 
maximizing expected return—defined as the cumulative 
future reward signal received by the agent [Sutton and Bar-
to, 1998]. An agent’s control policy is iteratively improved 
by selecting actions which maximize return. RL problems 

Figure 1. Configuration with A) results example, B) Myo, 
C) Simulation/Learning/Feedback System, and D) Nao.  
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are often described as sequential decision making problems 
modelled as Markov Decision Processes (MDPs) which 
define tuples: (𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝛾, 𝑅𝑒𝑤𝑎𝑟𝑑), 
full details of MDPs are omitted for space and can be 
found in [Sutton and Barto, 1998 and Mathewson et al., 
2016]. The ultimate goal of an RL agent is to determine a 
policy which maps a given current state to the correct ac-
tions to maximize expected return. In this work we use a 
continuous actor-critic (AC) algorithm (Algorithm 1) simi-
lar to that described in [Pilarski et al. 2011, Pilarski et al. 
2013, Mathewson et al. 2016]. AC methods can reduce 
variance in gradient estimation through the use of two 
learning systems: a policy-focused actor (selects the best 
action) and a critic (estimate of value function, criticizes 
actor) [Sutton and Barto, 1998]. 

The Interactive Shaping Problem (ISP) defines the prob-
lem of optimizing the incorporation of human feedback 
into a learning agent in a sequential decision making prob-
lem [Knox and Stone 2010]. The ISP asks: how can the 
agent learn the best possible task policy as measured by 
task performance or cumulative human feedback, given the 
information contained in the human feedback [Knox and 
Stone, 2009 and 2012]. While there are many ways to in-
corporate human knowledge into a learning system, before 
and during learning [Thomaz and Breazeal, 2008; Cherno-
va and Tomaz 2014], this paper focuses on incorporating 
human feedback directly alongside MDP derived reward.  

This work builds on the work of Vien and Ertel, who 
showed that the human feedback model can be generalized 
to address the problems associated with periods of noisy, 
and/or inconsistent, human feedback [Vien and Ertel, 
2013]. Recent advancements in modelling human feedback 
with a Bayesian approach have improved on the work of 
Knox and Stone in discrete environments [Loftin et al., 
2015]. Most recently work by MacGlashan et al. show that 
human feedback may be better modelled as an advantage 
function to handle changes in a human’s feedback strategy 
over time [MacGlashan et al., 2016]. 

In this study, we explore the implications of varying 
several latent variables in human feedback for learning 

algorithms acting in complex human-machine interaction 
domains. We investigate the probability of the human 
trainer providing feedback, the probability that feedback is 
correct, and the effect of smearing that feedback over time 
to account for the limited number of time steps with direct 
human feedback.  

Methods 

Aldebaran Nao and Myo EMG Data 
The experimental set up is shown in Figure 1. It is com-
posed of the Aldebaran Nao robotic platform (Aldebaran 
Robotics), a wireless Myo EMG armband (Thalmic Labs), 
and a MacBook Air (Apple, 2.2 GHz Intel Core i7, 8GB 
RAM) for human feedback and running the learning agent.  
 The experiments in this paper are performed using a 
simulated Nao platform, a simulated EMG signal, and a 
simulated human feedback model. We have previously 
shown the performance of this experimental set-up to be 
comparable between simulation and real-world experi-
ments [Mathewson et al., 2016]. By simulating the human 
feedback, we are able to characterize and vary important 
latent variables hidden from the agent which impact the 
learning of the system. For this study, we investigate: the 
rate at which a human-delivered feedback should decay 
(smear), the probability with which the human will provide 
a feedback 𝑃(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) , and the probability that this 
feedback will be correct for a given MDP 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) . 
These are critical variables that have been estimated in 
previous experiments [Knox and Stone, 2015, Loftin et al., 
2015], we aim to improve understanding of their impact 
through an experimental grid sweep over the variables of 
interest and investigation into the results.  

Experiments 
We extend on the results in [Mathewson et al., 2016] by 
exploring the impacts of varying model parameters of hu-
man trainer feedback on the RL system during the perfor-
mance of a self-mirrored movement control task. In this 
task, we preprogram the left arm of the Nao to move in a 
periodic pattern of flexion and extension at the elbow joint. 
The RL agent controls the right arm and selects angular 
displacement actions attempting to match the pattern of the 
left. With this configuration we are able to define an opti-
mal policy, which would track the pre-programmed arm 
exactly, with this optimal trajectory we are able to derive 
MDP reward given a set angular error threshold. When the 
RL-controlled elbow joint is within the angular deviation 
threshold of the preprogrammed elbow joint then a reward 
of 1 is received from the MDP, otherwise, a negative rela-



tive error is delivered proportional to the difference be-
tween the actual and optimal angles.  
 We are interested in modelling smear, the time-decay 
with which the feedback given by the human should be 
decayed. As the human is unable to give feedback at every 
step that an agent takes, we need to account for the fact 
that after the exact time step a feedback is given there are 
likely suboptimal states which support the optimal trajecto-
ry. With a decay parameter we are able to smear the human 
feedback forward in time, it has been shown that the lim-
ited human feedback can be applied across near-optimal 
state-action pairs, and support the agent learning an opti-
mal solution [Pilarski et al., 2011]. We further explore the 
following characteristics of human feedback: 
𝑃(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) 	the probability of giving feedback on each 

time step, and 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) 	the probability of giving cor-
rect vs. incorrect feedback. These are important latent hu-
man parameters to understand, cognitively they represent 
how effective and attentive a human trainer is.  

The continuous state space is defined by the filtered and 
time averaged dimensionally reduced EMG signal and the 
angle of the actuated joint, and is represented with approx-
imation using tile coding identically to Mathewson et al. 
[Pilarski et al., 2011 and 2013, Mathewson et al., 2016]. 
Parameters were set as follows: 𝛼:	 = 0.1 𝑚, 𝛼@ =
	𝛼A	,		𝛾 = 0.9, 𝜆D = 0.3, 𝜆: = 0.7, joint angles were lim-
ited by manufacturer specifications at 𝜃	 ∈
	[0.0349, 1.5446] rads. Weight vectors 𝒆:	, 𝒆@	, 𝒆A	, v, 
𝒘@	and 𝒘A	 were initialized to 0 and standard deviation 
was bounded by 𝜎 ≥ 0.01. The eligibility trace update for 
the critic is scaled by 𝛾 to speed up convergence. Maxi-
mum number of time steps = 10k, learning update and ac-
tion selection occurred at ~33 Hz or every ~30 ms, and 
angular deviation threshold was set to ∆𝜃STU = 0.1, abso-
lute angular joint updates were clipped to 0.1 and actions 
were selected and performed on every time step.  

The ACRL system was trained online with simulated 
human feedback and simulated EMG control signals (de-
signed to mimic acceptable control signals). Human feed-
back is integrated into the learning algorithm as reward 
accumulated on Step 6 of Algorithm 1. Performance was 
measured by taking the average mean absolute angular 
error from the last 5k steps. This was done to compare the 
experimental results after some learning and helped to re-
duce noise intrinsic in early learning. 

This paper presents results of a parameterized grid 
sweep over three parameters with given estimates of rea-
sonable values: smear = (0.2, 0.5, 0.9), P(feedback) = 
(0.03, 0.05, 0.09), P(correct) = (0.6, 0.75, 0.9). Additional-
ly, as a control case, n=60 trials without human-feedback 
were performed. On all time steps MDP reward and human 
reward were directly summed and applied to the learning 
agent update (Algorithm 1). 

Results 
The results are presented in Figure 2. Results are presented 
which show performance over a variety of combinations of 
parameters for the latent variables of interest: P(feedback), 
P(correct) and smear. Results indicate that human interac-
tion improves agent performance on a self-mirroring 
movement task where performance is measured by the 
mean angular error over the last 5k time steps. Fig. 2A 
shows that a lower probability of potentially incorrect 
feedback provides better performance. Fig. 2B shows that 
there may not be a significant difference in performance 
when varying the probability of the correctness human 
feedback, given tested values of P(feedback). This may 
also be due to the tested values, which were all greater than 
a 50% chance of being correct. Fig. 2C shows that there is 
a benefit to selecting a smear decay value appropriate for 
the task and robotic control system, this parameter may 
vary task to task and care must be taken when selecting the 
smear constant. The results indicate that there is benefit to 
be gained by correct modelling the latent variables associ-
ated with human reward signal to allow for true simultane-
ous incorporation of human control and feedback. These 
results indicate that the ACRL algorithm robust to a small 
amount of incorrect feedback. 
 On average without human-feedback the RL agent was 
able to attain a mean absolute error on the final 5k steps of 
0.22 ± 0.02 (mean ± SEM, n=60). In comparison, the op-
timal set of parameters (P(feedback)=0.06, P(correct)=0.6, 
smear=0.5) was able to attain a performance of 0.12 ± 0.01 
(mean ± SEM, n=7), the worst performing set of parame-
ters (P(feedback)=0.09, P(correct)=0.9, smear=0.9) at-
tained a performance of 0.38 ± 0.18 (mean ± SEM, n=4). A 
total of 232 trials were run over parameter combinations.  

Discussion 
The experiments in this paper are performed using a simu-
lated Nao, simulated EMG signal and simulated human 
feedback. It has been previously shown the performance of 
this experimental set-up to be comparable between simula-
tion and real-world experiments [Mathewson et al., 2016]. 
In this related work we explore the degree to which the 
learning system is affected when incorporating real human 
feedback. While working in simulation allows rapid itera-
tion and enables testing of many different algorithmic 
characteristics, simulation is often an easier learning prob-
lem than the real-world, due to simplified physics and re-
duced noise. Future work will address robust modelling 
real human feedback, and quantify impact of varying feed-
back density and correctness. We have shown that smear-
ing of human feedback impacts learning, future work will 
investigate if the decay of human delivered rewards is best 



 
   

modelled as time dependent over task performance and if 
optimal decay parameters may be learned online.  
 In this paper we found that modelling the delivery of 
human feedback can significantly impact the performance 
of an ACRL algorithm. While we have not optimized for 
the human feedback characteristics, these results indicate 
that some human reward paradigms may be preferable to 
others [Loftin et al., 2015]. This idea is explored in [Mac-
Glashan et al., 2016] where modelling the user feedback as 
an advantage function, we can understand positive feed 
back as ‘yes, that was good’ and negative feedback as ‘no, 
that was bad’. A greater understanding of human reward 
strategies is required. Personalized robotics will demand 

perception of human strategies to learn optimal in a very 
few sample. Future work will focus predicting and opti-
mizing for known and uncertain feedback strategies. 

 Linking control signals in state space with feedback 
shaping reward signals effectively blends multisensory 
human data to the learning agent. There remains an open 
problem of how feedback should best be interpreted by the 
learning agent and how to encourage human feedback 
without causing prohibitive additional cognitive load. 
Modelling, and predicting, human feedback may relieve 
burden while allowing for shaping control signal interpre-
tation. Human feedback is beneficial to the agent, provid-
ing it adds complimentary information about the contextual 
state the agent is in. Human feedback may shape the MDP 
reward with more specificity and more often than the 
sparse, delayed, MDP-derived reward.  
 Our results demonstrate potential benefits by introducing 
well modelled human feedback into the robotic learning 
system. The inclusion of human shaping signals was 
shown to improve performance over strictly environmen-
tally derived reward. Providing consistent, correct feed-
back demands cognitive attention from the user which may 
be difficult if the user is also required to provide control 
signals to the robotic system. Future work is introduced to 
explore implications of inviting humans to simultaneously 
provide control and feedback signals to learning systems. 

Conclusions 
This paper contributes a set of results from experiments 
incorporating simulated human feedback and simultaneous 
human control in the training of a semi-autonomous robot-
ic agent. These results indicate that task performance in-
creases with the incorporation of human feedback into ex-
isting actor-critic reinforcement learning algorithms. These 
results support the idea that human interaction can improve 
performance in complex robotic tasks when the human 
feedback is delivered correctly, consistently, and on a time 
scale consistent with the original learning problem.  
 This work supports an emerging viewpoint surrounding 
human training of a robotic system tightly coupled to a 
user. By showing improving the performance of the RL 
agent this work further supports the sharing of autonomy 
between human and machine. 
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Figure 2. Mean and standard error over experimental condi-
tions A) P(feedback), B) P(correct), C) smear. 
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