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Abstract

Dynamic Movement Primitives have successfully been used to
realize imitation learning, trial-and-error learning, reinforce-
ment learning, movement recognition and segmentation and
control. Because of this they have become a popular represen-
tation for motor primitives. In this work, we showcase how
DMPs can be reformulated as a probabilistic linear dynamical
system with control inputs. Through this probabilistic repre-
sentation of DMPs, algorithms such as Kalman filtering and
smoothing are directly applicable to perform inference on pro-
prioceptive sensor measurements during execution. We show
that inference in this probabilistic model automatically leads
to a feedback term to online modulate the execution of a DMP.
Furthermore, we show how inference allows us to measure the
likelihood that we are successfully executing a given motion
primitive. In this context, we show initial results of using the
probabilistic model to detect execution failures on a simulated
movement primitive dataset.

Introduction
One of the main challenges towards autonomous robots re-
mains autonomous motion generation. A key observation has
been that in certain environments, such as households, tasks
that need to be executed tend to contain very repetitive behav-
iors (Tenorth, Bandouch, and Beetz 2009). Thus, the idea of
identifying motion primitives to form building blocks for mo-
tion generation has become very popular (Ijspeert et al. 2013;
Paraschos et al. 2013). A popular and effective way to learn
these motion primitives is through imitation learning (Schaal
1999).
Part of the research in this area is concerned with mo-
tion representation, and a variety of options have been pro-
posed (Ijspeert et al. 2013; Khansari-Zadeh and Billard 2010;
Dragan et al. 2015; Wilson and Bobick 1999; Paraschos et
al. 2013). However, recently, there has been interest in going
beyond pure motion representation. In the context of closing
action-perception loops, motor skill representations that al-
low to close that loop are attractive. The ability to feed back
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sensory information during the execution of a motion primi-
tives promises a less error prone motion execution framework
(Pastor et al. 2011). Furthermore, the ability to associate a
memory of how a motor skill should feel during execution can
greatly enhance robustness in execution. This concept of en-
hancing a motor skill representation with a sensory memory
has been termed associative skill memories (ASMs)(Pastor
et al. 2012).

The idea of associative skill memories lies in leveraging the
repeatability of motor skills to associate experienced sensor
information with the motion primitive. This allows to adapt
previously learned motor skills when this primitive is being
executed again and deviates from previously experienced
sensor information (Pastor et al. 2011). Thus far, existing
approaches (Pastor et al. 2011; Gams et al. 2014) use the
concept of coupling terms to incorporate sensor feedback
into DMPs which typically involves setting task-dependent
gains to modulate the effect of the feedback term.

In this work we endow Dynamic Movement Primitives with a
probabilistic representation, that maintains their original func-
tionality, but allows for uncertainty propagation. Inference
in this probabilistic DMP model is realized through Kalman
filtering and smoothing. An interesting component of prob-
abilistic DMPs is the fact that – given a reference signal to
track – sensor feedback is automatically considered when
executing a desired behavior. As a result, the feedback term
is an intrinsic part of this probabilistic formulation. Similar
to Kalman filtering, the feedback term is now scaled based
on a uncertainty based gain matrix. Besides this insight, we
also highlight the benefits of combining a probabilistic mo-
tion primitive representation with a strong structural prior
– which is given by the DMP framework in this work. We
demonstrate the advantage of this by showing how to make
use of the probabilistic model to perform failure detection
when executing a motion primitive.

This paper is organized as follows: We start by reviewing the
DMP framework and related probabilistic motion representa-
tions in the background section. Then in the main section we
propose a graphical model representation for DMPs, detail
the learning procedure and illustrate their usage. Finally, we
discuss how of failure detection can be realized with proba-
bilistic DMPs and evaluate it in that context.



Background
Dynamic Movement Primitives (DMPs) encode a desired
movement trajectory in terms of the attractor dynamics of
nonlinear differential equations (Ijspeert et al. 2013). For a 1
DOF system, the equations are given as:
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ż = αz(βz(g− p)− z)+ s f (x)
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such that p, ṗ, p̈ = ż are position, velocity, and acceleration of
the movement trajectory, where
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In general, it is assumed that the duration τ and goal position
g are known. Thus, given τ and g the DMP is parametrized
through weights w = (w1, ...,wN)T which are learned to rep-
resent the shape of any smooth movement. During this fitting
process, the scaling variable s is set to one, and the value of
∆g is stored as a constant for the DMP.

Probabilistic Motion Primitive Representations
The benefits of taking a probabilistic approach to motion
representation has been discussed by a variety of authors
(Toussaint 2009; Rückert et al. 2013; Meier et al. 2011;
Calinon et al. 2012; Paraschos et al. 2013; Khansari-Zadeh
and Billard 2011). The use of probabilistic models varies
however. For instance, the approaches presented in (Cali-
non et al. 2012; Khansari-Zadeh and Billard 2011) take a
dynamical systems view that utilizes statistical methods to
encode variability of the motion. In contrast, (Toussaint 2009;
Rückert et al. 2013) take a trajectory optimization approach
using a probabilistic planning system.
Here, as outlined in the introduction, we take the dynami-
cal systems view, as a first step towards an implementation
of associate skill memories. In previous work (Meier et al.
2011) we have shown how we can reformulate the DMP equa-
tions into a linear dynamical system (Bishop 2006). Inference
and learning in this linear dynamical system was formulated
as a Kalman filtering/smoothing approach. This Kalman fil-
ter view of DMPs allowed us to perform online movement
recognition (Meier et al. 2011) and segmentation of complex
motor skills into underlying primitives (Meier, Theodorou,
and Schaal 2012).
Finally, compared to previous work on probabilistic motion
primitives, such as (Calinon et al. 2012; Paraschos et al.
2013), this representation explicitly represents the dynami-
cal system structure as a dynamic graphical model and adds
the possibility of considering sensor feedback as part of the
inference process.

Probabilistic Dynamic Movement Primitives
In this section we introduce a new Probabilistic Dynamic
Movement Primitive model. The goal of this work is to es-
sentially provide a probabilistic model that can replace the
standard non-probabilistic representation without loss in func-
tionality. Thus, here we aim at deriving a graphical model
that explicitly maintains positions, velocities and accelera-
tions, such that a rollout of that model creates a full desired
trajectory.

Deriving the Probabilistic DMP Model
We start out by deriving the new formulation and then show
how learning of the new probabilistic DMPs is performed.
The transformation system of a 1-DOF DMP can be dis-
cretized via Euler discretization, resulting in

żt = τ(αz(βz(g− pt−1)− zt−1)+ f ) (2)
zt = żt∆t + zt−1 (3)
p̈t = τ żt (4)
ṗt = τzt (5)
pt = ṗt∆t + pt−1 (6)

where ∆t is the integration step size, and pt , ṗt and p̈t are
position velocity and acceleration at time step t.
by plugging in Equations 2, 3 into Equations 4, 5 and setting
żt = 1

τ
p̈t and zt = 1

τ
ṗt this can be reduced to

p̈t = τ
2(αz(βz(g− pt−1)−

1
τ

ṗt−1)+ f ) (7)

ṗt = p̈t∆t + ṗt−1 (8)
pt = ṗt∆t + pt−1 (9)

By collecting pt , ṗt and p̈t into state st = ( p̈t ṗt pt)T we
we can summarize this linear system of equations as

st =Ast−1+But (10)

where the control input is given as ut = αzβzg+ s ft and the
transition matrix A and control matrix B are given as
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We like to account for two sources of uncertainty: transition
noise, modeling any uncertainty of transitioning from one
state to the next one; and observation noise, modeling noisy
sensory measurements. Next we show how to incorporate
both of these to arrive at the full probabilistic model.
A standard approach to modeling transition noise would be
to assume additive, zero mean, Gaussian noise, eg

st =Ast−1+But−1+ε (11)

with ε =N (ε ∣ 0,Q) which would create a time-independent
transition uncertainty. Here, however, we would like to model
the transition uncertainty as a function of how certain we are
about our non-linear forcing term f . Remember, f represents
the shape of the motion primitive and is typically trained via
imitation learning. Assuming that we several demonstrations



to learn from, we can estimate the mean forcing term f from
the demonstrations, but also the hvariance, using Bayesian re-
gression. Thus, for now, we assume that we have a predictive
distribution over ft , the non-linear forcing term at time step t

ft ∼N ( ft ∣ µ ft ,σ
2
t ) (12)

with mean µ ft and variance σ
2
ft t. The details of deriving this

distribution are given in the next Subsection . Assuming ft to
be drawn from a Gaussian distribution, automatically implies
that the hidden state st is also Gaussian distributed

st ∼N (st ∣ Ast−1+B(αzβzg+ sµ ft ),Qt) (13)

where Qt = s2Bσ
2
ft B

T . Thus, if the variance of the distribution
over ft is time-dependent, so is the state transition noise.
Finally, we also want to be able to include noisy sensor mea-
surements in our model. Thus, we assume that we receive
observations ot that are a function of the hidden state, cor-
rupted by zero mean Gaussian noise

ot ∼ h(st)+N (v ∣ 0,R) (14)

A simple example is for instance, the feedback on the ac-
tual position of the system. In this case, the observation
function would be h(st) = Cst . with observation matrix
C = (0 0 1)T .
Finally, putting it all together, our probabilistic formulation
takes to form of a controlled linear dynamical system, with
time dependent transition noise, and time-independent obser-
vation noise:

st = Ast−1+B(αzβzg+ sµ ft )+εt

ot = h(st)+v

with εt ∼N (εt ∣ 0,s2Bσ
2
ft B

T ) and v ∼N (v ∣ 0,R).
Note, for clarity, we have derived the probabilistic model
for a specific DMP variant (Ijspeert et al. 2013). However,
the same procedure can be followed to arrive at a dynamic
graphical model representation for other variants of motion
primitives, such as (Pastor et al. 2009).

Learning Probabilistic DMPs
Probabilistic Dynamic Movement Primitives can be learned
through imitation learning similar to regular DMPs. Given
K demonstrations Pk

demo of the same motion primitive, it
is possible to estimate the distribution over the non-linear
function term f via Bayesian regression (Bishop 2006).
The standard approach to estimating the noise covariance
R of a linear dynamical system is based on the expectation-
maximization(EM) procedure. The EM algorithm iterates
between estimating the posterior of the hidden state of the
motion primitive, and maximizing the expected complete
log likelihood with respect to the parameter of interest. The
complete data log likelihood for K demonstrations is given
by:

ln p(P,S∣τ,g) =
K

∑
k=1

T

∑
t=1

lnN (ok
t ∣ Csk

t ,R)+ lnN (sk
1 ∣ 0,Q0)

+
K

∑
k=1

T

∑
t=2

lnN (sk
t ∣Ask

t−1+Buk
t−1,Qt) (15)

1: procedure ROLLOUT(w, Q, R)
2: for t = 1 ∶ T do
3: µp, t = Aµu, t-1+But−1

4: V p, t =AV u, t-1AT +Q
5: end for
6: end procedure

Figure 1: Probabilistic DMP: rollout

1: procedure EXECUTEANDMONITOR(w, Q, R)
2: for t = 1 ∶ T do
3: µp, t = Aµu, t-1+But−1

4: V p, t =AV u, t-1AT +Q
5: S =CV p, tCT +R
6: K =V p, tCT S−1

7: µu, t = µp, t+K(ot −CT
µp, t)

8: V u, t =V p, t−KCV p, t
9: end for

10: return loglik
11: end procedure
Figure 2: Probabilistic DMP: executing and tracking a reference
signal

Taking the expectation of the complete-data log likelihood
with respect to the posterior p(S∣P,θ old) defines the function

Q(θ ,θ old) =ES∣θ old [ ln p(P,S∣θ)],

which we maximize with respect to parameters θ . The up-
dates for R can now be derived by setting the derivative
of this function to 0, and then solve for R which can be
done analytically. This completes the learning of a proba-
bilistic dynamic movement primitive, where the parameters
required to fully describe the probabilistic representation are
θprimitive = {µw,Σw,α,β ,R}.

Executing a probabilistic DMP
Dynamic Movement Primitives are typically used to gener-
ate desired trajectories that a controller is expected to track.
Note, the hidden state of the probabilistic DMP is given by
st = ( p̈t ṗt pt) Pure feedforward trajectory generation is
achieved by initializing the linear dynamical system with
the task parameters (goal, start and duration of the motion)
and then simply unrolling the probabilistic model (see Algo-
rithm 1) - this will generate exactly the same desired trajec-
tory as a standard DMP, including uncertainty estimates.
As discussed above, we can also consider noisy sensor feed-
back when executing a probabilistic DMP. Instead of simply
forward predicting the hidden state, inference is performed
to estimate the hidden state distribution. For linear dynamical
systems this inference process is widely known as Kalman
filtering. In order to do so, we need to formulate how the
hidden state st generates the chosen sensor measurements ot .
This is done by defining the observation function h(st) that
creates the reference signal we want to track by transforming
the hidden state. Assuming, we observe the actual position
of the system, this leads to following inference steps: At
time step t, the system feedforward predicts the new desired
(hidden) state µp,t

µp,t =Aµt−1+But−1 (16)
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Figure 3: Failure detection illustration: In the (left) and (middle) plot the mean trajectory of a learned primitive with the variance at each time
step. Additionally: (left) the green trajectory illustrates a non-perturbed observed trajectory that slightly differs from the mean. (middle) The
same trajectory but perturbed. (right) The log-likelihood of both observed trajectories calculated online while trajectories were unrolled.

then the Kalman innovation update, adds a term proportional
to how much the reference signal deviates from the observed
sensor feedback

µt = µp,t +K(ot −h(st)). (17)

Thus at time step t +1 the desired behavior of the DMP is
online modulated

µp,t+1 =A(µp,t +K(ot −h(st))+But (18)
=Aµp,t +But +AK(ot −h(st)) (19)

Note, the similarity of this update to the online modulation
performed in (Pastor et al. 2011). To summarize, the execu-
tion of a probabilistic DMP with noisy measurement observa-
tions is performed via Kalman filtering (see Algorithm 2) and
automatically leads to online adaptation of desired behaviors
to account for disturbances.

Summary
In summary, the main characteristics of our probabilistic
DMP representation are:
• It is a probabilistic model that keep accelerations part of

the hidden state - this allows to execute probabilistic DMPs
just as regular DMPs - where a rollout of the hidden states
produces desired accelerations, velocities and positions.

• The non-linear forcing term is modeled probabilisti-
cally with phase-dependent variability - creating a phase-
dependent transition covariance in the linear dynamical
system view.

• A reference signal can be tracked as part of the probabilis-
tic model - which creates a principled way of modulating
the desired behavior online, when the sensor feedback
deviates from the reference signal.

Failure Detection with Probabilistic DMPs
Besides the insight presented above, other benefits of this
probabilistic formulation exist. For instance, assuming we
have learned a probabilistic representation for a motion prim-
itive {µw,Σw,α,β ,R} we can perform online failure detec-
tion: While executing the motion primitive using Algorithm 2,
we can utilize the probabilistic formulation to continuously
monitor how likely it is that this motion primitive is generat-
ing the measured actual state of the system.

We illustrate this application in Figure 3. This illustration
shows a 1D primitive being executed, first perturbation free
(right), and then we artificially hold the movement such that
the primitive is not continued to executed but the probabilistic
model expects it to (middle). On the left hand side we see
how the likelihood values evolve during movement execu-
tion. Note, how once we artificially hold the movement the
likelihood value significantly drops. Thus, we can use this
likelihood measure to detect execution failures.
For initial quantitative evaluation purposes we recorded a
dataset of 2D trajectories of letters with a digitizing tablet.
All letters that are easily written with one stroke have been
recorded, a total of 22. Each of this letter is meant to represent
a movement primitive. To learn a probabilistic representation
per primitive we collected 10 training demonstrations and an
additional 10 demonstrations for testing purposes.
Once a probabilistic representation of a motion primitive
has been learned, we measure the minimum likelihood of
each training demonstration given the learned model param-
eters, and store that value with the parameters. Throughout
the execution of a motion primitive the loglikelihood value
might increase or decrease depending on how much variation
from the mean we observe. The challenge is thus to detect
natural variation from a perturbation and/or failure. Here we
simply classify an execution as failed, if at any point during
execution the loglikelihood values drops below 2 times the
minimum reported value for that primitive. On our data this
works very well, such that of all 22∗10 = 220 test cases only
2 test cases where classified as failed when not perturbed.
When we perturb the simulated execution of each test case by
artificially blocking the execution (as illustrated in Figure 3),
then all 220 test cases are classified as failed.

Conclusions
We have presented a probabilistic model for dynamic move-
ment primitives. Inference in this graphical model is equiv-
alent to Kalman filtering, and when performing inference a
feedback term is automatically added to the DMP trajectory
generation process. Besides this insight, we have shown the
potential of probabilistic DMPs on the application of failure
detection. Future work will explore and evaluate the potential
impact of these probabilistic representation in more detail.
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