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Abstract

The ability of the brain to integrate multimodal informa-
tion is crucial for providing a coherent perceptual expe-
rience, with perception being modulated by the inter-
play of different cortical and subcortical regions in the
brain. Recent research has shown that affective stimuli
play an important role in attentional mechanisms, with
behavioral studies supporting that the focus of attention
in a region of the visual field is increased when affective
stimuli are present. This work proposes a deep neural
model that learns to locate and recognize emotional ex-
pressions modulated by an attentional mechanism. Our
model consists of two hierarchies of convolutional neu-
ral networks: one to learn the location of emotional ex-
pressions in a cluttered scene, and the other to recog-
nize the type of emotion. We present experimental re-
sults processing facial and body motion cues, showing
that our model for emotion-driven attention improves
the accuracy of emotion expression recognition.

Introduction

Audiovisual spatial attention allows animals and humans to
process relevant environmental stimuli while suppressing ir-
relevant information. Several brain areas and neural mecha-
nisms have been identified to be involved in the processing
of spatial attention during perception (Driver 2001)). For in-
stance, it has been found that the superior colliculus (SC),
a subcortical part of the brain, plays a crucial role in spatial
attention in terms of target selection and producing motor
responses such as head-eye movements (Krauzlis, Lovejoy,
and Zénon 2013). The integration of audiovisual stimuli in
the SC has been extensively investigated from a neurophys-
iological perspective (Ursino, Cuppini, and Magosso 2014),
with different computational approaches modeling the inte-
gration of multiple perceptual cues for triggering spatial at-
tention in line with neurobehavioral evidence, e.g. with the
use of a self-organizing neural architecture (Bauer, Magg,
and Wermter 2015)).

The SC is connected to higher cortical areas such as the
visual and the auditory cortex, which are both able to pro-
cess information events that unfold over larger time scales
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such as body actions and speech. Neurons selective to ac-
tions in terms of time-varying patterns have been found in a
wide number of brain structures, such as the superior tempo-
ral sulcus (STS), parietal, premotor and motor cortex (Giese
and Rizzolatti 2015). It has been argued that the STS in the
mammalian brain may be the basis of an action-encoding
network with neurons driven by audiovisual stimuli (Barra-
clough et al. 2005)). Thus, the STS area is hypothesized to
be an associative learning device for linking unimodal rep-
resentations and accounting for the mapping of naturally oc-
curring, highly correlated features such as body pose and
motion, the characteristic sound of an action and linguistic
stimuli.

Top-down connectivity from cortical areas is used by the
SC to modulate attentional shifts. For instance, converging
findings suggest that selective attention is modulated by the
affective significance of sensory inputs (Vuilleumier 2005)).
In particular, it has been argued that emotional salience has
a direct influence on attention and that neural processes re-
sponsible for emotional attention may supplement and even
compete with other top-down mechanisms of perception.
Behavioral studies have shown that people pay more at-
tention to emotional rather than neutral stimuli, and that
these effects often are reflexive and involuntary, e.g. visual
targets expressing an emotion such as happy or angry are
found faster among distractors than targets without such
emotional values (Williams, Mathews, and MacLeod 1996;
Vuilleumier and Schwartz 2001). Together, these findings
indicate that emotional salience has a strong role in captur-
ing attention, and that this emotional bias is also subject to a
set of different non-affective regulatory effects.

Different computational models have been proposed
for the detection and recognition of emotional expres-
sions (Arkin et al. 2003)). Different cues may carry emotional
information such as face expressions, sound (voice pitch and
intensity), and body movements (Gu, Mai, and Luo 2013]).
The combination of these cues increases recognition accu-
racy (Castellano, Kessous, and Caridakis 2008), suggesting
that models for the robust processing of emotional states
should integrate multiple modalities for the meaningful pro-
cessing of a set of available perceptual cues.

The goal of our research is to introduce a cortico-
collicular architecture aimed to model multimodal attention
and that accounts for the interplay between the SC and cor-
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Figure 1: Diagram of the proposed cortico-collicular archi-
tecture for audiovisual inputs.

tical processing (Fig. 1). In particular, we investigate the use
of convolutional neural networks (CNN) for stimulus local-
ization (Speck et al. 2016) and CNN architectures for obtain-
ing mid-level feature representations and spatial information
from raw audiovisual stimuli. This representation serves as
input for a cortical visual-auditory integration model to learn
inherent spatio-temporal structure, e.g. recognition of emo-
tions from face, body features, and auditory cues. The out-
put from cortical areas is used as feedback for the SC model,
thereby modulating attentional shifts as an interplay between
bottom-up and top-down processing mechanisms.

We present experiments in the visual domain, where a
deep neural architecture is used to learn the location of emo-
tional stimuli (Barros et al. 2016). Emotion-driven attention
is the input to the cortical architecture responsible for emo-
tion recognition. Our experimental results show our atten-
tion model improves the performance of the recognition of
emotional expressions.

Methods

Our learning architecture comprises the interaction of two
modules: the attention model for locating emotionally
salient areas in an image, and the recognition model for clas-
sifying emotions from face and body motion. Both mod-
els use extended CNN architectures with the aim to clas-
sify emotion classes from raw images. Although the input is
composed of a single image sequence containing both face
and body motion, the model will autonomously learn sep-
arate cue-specific filters. The recognition model classified
emotional expressions modulated by emotion-driven atten-
tion. A diagram of our neural architecture is illustrated in
Fig. 2.

For the recognition model, we extended a Cross-channel
Convolution Neural Networks (CCCNN) (Barros, Weber,
and Wermter 2015). This approach introduces the use
of multi-channel and cross-channel learning for emotion
expression recognition, and presented competitive perfor-
mance and good generalization capabilities. The proposed
model is able to learn simple and complex features and to
model the dependencies of these features in a sequence. Us-

ing a multichannel implementation, it is possible to learn
different features for each stimulus. We use the concept
of cross-channel learning to deal with differences across
modalities. This allows us to have regions of the network
specified to learn features from face expressions and body
movements but the final representation integrates both spe-
cific features.

The attention model uses the filtering capability of the
convolution layers to learn the location of emotional expres-
sions conveyed by two visual cues: face expressions and
body movements. To modulate our recognition model, we
train an attentional model that comprises a CNN architec-
ture to distinguish between neutral and happy expressions
conveyed by facial features and body movement. In contrast
to traditional CNN learning models using discrete target la-
bels for modulating the learning process, we use probability
distributions that allow the model to estimate the location of
interest, i.e. the region in the image that triggers selective at-
tention. The attention model has two output layers, each one
responsible for describing positions on the 2D visual field.
An example of an emotionally salient region of an image
and network output is shown in Fig. 3. Furthermore, using
a probability distribution allows faster convergence with re-
spect to having precise image coordinates.

To reduce the necessity of many layers, we use shunting
inhibitory fields (Fregnac et al. 2003)) in the last layers of
our attention model. The shunting neurons act as an over
specification tool, which makes the filters in a layer learn
complex patterns. When applied to low-level features such
as edges and contours, the shunting neurons tend to destroy
the generalization properties of deep neural networks. How-
ever, when applied to high-level features with a very abstract
specification, the shunting neurons tend to filter noise and
learn only the most relevant features. Interestingly, after us-
ing teaching signals with only one emotional expression in
the image, experiments have shown that the model is able
to produce congruent probability distributions for more than
one expression present in the scene.

To integrate the CCCNN and the CNN models, we con-
nect the filters in the second convolutional layer of the recog-
nition model with the attention model. This means that our
attention model feeds specific facial and movement features
to the second layer of the CCCNN. The second layer was
chosen because the face channel already extracts features
which are similar to the ones coming from the attention
model, thus very related to the final facial features. The body
motion channel still needs one more convolution layer to
learn specific movement features.

Experiments

We evaluated our system with a bi-modal face and body
benchmark dataset (FABO) (Gunes and Piccardi 2009),
showing that the combination of facial features and body
movements significantly improve the detection of emotion-
relevant areas in the image. This corpus contains recordings
of the upper torso of 23 subjects while performing 11 differ-
ent emotion expressions. We extracted the face expression
and body movement of the FABO corpus and located it in
a random position in our meeting scene background. The
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Figure 2: Our attention modulation model, which uses the specific

(3128)

features learned from the attention architecture as input for

the specific channels of deeper layers of the CC-CNN. In this figure, the red dotted line represents the specific facial feature
maps and the black dotted line represent the movement feature maps.
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Figure 3: Example of the output of the attention model for
an image with a happy expression.

Table 1: Reported accuracy and standard deviation (%) for
the visual channels of the CCCNN trained with the FABO
corpus with and without emotion-driven attention.

Class No attention ~ With attention
Anger 95.9 (1.3) 95.7 (1.1)
Anxiety 91.2 (1.6) 95.4 (0.7)
Uncertainty 86.4 (1.1) 92.1 (1.3)
Boredom 92.3 (1.7) 90.3 (0.8)
Disgust 93.2 (1.8) 93.3 (1.6)
Fear 94.7 (0.6) 94.5 (0.7)
Happiness 98.8 (0.2) 98.0 (0.3)
Negative Surprise  99.6 (0.1) 99.7 (0.2)
Positive Surprise  89.6 (1.1) 94.8 (0.2)
Puzzlement 88.7 (1.2) 93.2 (0.8)
Sadness 99.8 (0.1) 99.5 (0.3)
Average 93.65 (1.0) 95.13 (0.7)

expressions were the same size, while their position in the
images were randomly selected.

The classification accuracy of our architecture using the
11 classes of the FABO dataset is shown in Table 1, using
70% of the data for training and 30% for testing. We per-
formed the experiments 30 times and computed the aver-
age accuracy. Table 1 also shows the results obtained after
training the recognition model with the FABO corpus mod-
ulated from the attention model. We can see that the average
recognition rate increased from 93.65% to 95.13% with the



use of the attention modulation. Expressions such as Bore-
dom, Fear and Happiness led to slightly smaller accuracy.
Our interpretation is that these expressions probably rely on
presented hand-over-face or very slight movements, which
were determined by the recognition model but ruled out by
the attention model.

Conclusion

We presented a deep neural model that learns to locate and
recognize emotional expressions modulated by emotion-
driven attention as supported by biological and behavioral
studies (Barros et al. 2016)). Our approach is based on con-
volutional neural networks using the filtering capability of
the convolution layers to learn the location of emotional ex-
pressions conveyed by facial and body motion cues. This
resulted in a model that uses unlabeled expressions to locate
regions of interest around faces and body motion, especially
when they convey affective information.

The obtained results motivate the extension of our current
architecture for the integration of auditory information. We
expect that the addition of auditory cues will increase the
precision of the model and approximate our computational
approach to neurobiologically motivated neural mechanisms
for multimodal integration and attention. To integrate audi-
tory information, a new decision layer would have to be in-
cluded to identify the region of interest based on the audi-
tory and visual information. This decision layer would inte-
grate both spatial cues, one coming from our visual attention
model, and the other coming from a model for sound source
localization (Bauer, Magg, and Wermter 2015). An auditory
convolution layer could be used to identify emotional as-
pects of the auditory signal, such as arousal and valence,
and use this information in the integration level (Barros and
‘Wermter 2016)).

By modeling the underlying neural mechanisms of mul-
timodal attention in terms of cortico-collicular interaction,
we aim at reproducing behavioral responses measured by
psychological studies on attentional shifts from audiovisual
stimuli. Future studies may examine and improve our model
comparing results with human behavior in emotional expres-
sion recognition. In addition, the study on neural imaging
data is a possible direction to test the model.
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