
Autonomous Simultaneous Localization And

Mapping

Michail Shaposhnikov, Mustafa Abban, Jake Crabtree
CS309

May 12, 2017

1 Abstract

A discussion of the methodology by which a robot may autonomously explore
and map a previously unmapped area is presented in the context of the tools
provided by the Robot Operating System project and the BWI Segbot project
of the University of Texas at Austin Autonomous Intelligent Robotics labora-
tory. The approach we took was based on the existing gmapping library which
constructs a map from a stream of odometry data as well as our own nodes that
were responsible for moving the robot around in an unmapped environment.
Our idea was to have the robot use a greedy algorithm to move forwards if
it can, then rotate left or right by the minimal amount needed for it to pass
through without colliding into anything. We attempted to make use of the ac-
tionlib, costmap2d, hector mapping, and point cloud libraries. Experimental
results showed that navigating in an unmapped area presents a chicken-and-egg
scenario in which cyclical dependencies prevent a straightforward or standard
approach to navigation.

2 Introduction

2.1 What is Autonomous SLAM (Simultaneous Localiza-
tion and Mapping)?

The current process for mapping a new area in the BWI is manually maneu-
vering the robot through the entire environment and visually confirming that
the entire area is mapped. While this procedure has accurately mapped many
rooms and floors at the University of Texas campus, there are several drawbacks
to this methodology: notably, how it is very time-consuming for researchers to
do this for each and every new environment the robot is exposed to, and also,
how it makes the robots reliable on humans to provide its navigation, losing
their autonomy. What SLAM does is it allows for the placing of an autonomous

1



robot in an unknown area and then navigate the area, mapping it and maintain-
ing its own localization within this newly mapped environment. Since this area
is completely unknown when the robot begins to navigate, no prior knowledge
of the environment or assitance from humans is necessary, remedying the main
issues with the aforementioned solution. [3] One of the most popular algorithms
for solving the SLAM problem is what are known as Rao-Blackwellized parti-
cle filters (what is used in the Gmapping package used in both the BWIBots
and this project, the results of which can be seen below). The approach gives
each particle an individual map of the environment, which are narrowed down
by both considering the change in position and in observation (via its sensory
inputs) of its surroundings of the robot within the environment. In addition,
the process only selectively resamples and eliminates particles in order to reduce
the chance of running out of possible particles and causing the robot to become
completely lost. A study on these methodologies conducted by Professor Giorgio
Grisetti of the University of Freidburg with their own robots traversing through
the university’s campus, MIT, and Intel Labs indicate that this methodology is
much more effective than its predecessors, and for this reason, was selected for
use in this project. [4]

Figure 1: An example map produced by the gmapping package.

2



3 Background and Related Work

3.1 Behavior-Based Exploration

What we wanted to accomplish was the ability for the robot to use only
local odometry and laser scan data to make reach the global goal of exploring
the entire space of open area available to the robot. Now, we did not care
in which order the robot explored each portion of the open area. We simply
wanted it to exhibit the behavior of exploring each section of the open area.
This type of approach where we are not concerned with the individual actions
that the robot takes but rather the overall perceived behavior is called behavior-
based exploration. The advantage of behavior-based exploration is that it only
depends on local information (such as the location of nearby obstacles) to make
a decision. In contrast, the current in-use planning-based navigation of the BWI
segbots relies on a global costmap and a local costmap to decide the best series
of navigation goals that, in sum, would lead to a successful plan.

3.2 Bug Algorithms

One specific example of a class of behavior-based exploration algorithms that
we perceived to be particularly useful to our endeavor are known as ”bug algo-
rithms”. These are completely based on data obtained from the sensory inputs
of the robot’s immediate surroundings (e.g the Kinect sensors, cameras, etc.),
being very useful for an autonomous SLAM implementation that inherently be-
gins with no maps. Bug algorithms all consist of determining, via these local
inputs, where walls of impassable terrain occur and then moving by following
along with these walls to the issued navigation goal. Some strategies for reaching
the navigation goal were discussed in a lecture by Professor Choset of Carnegie
Mellon University, one of which, the simplest approach, follows along the wall
to completion and then returns to the path for its original navigation. Another,
more robust approach creates a line between the agent’s inital position and its
navigation goal, follows the path created by that line until it encounters a wall,
traverses the wall until it re-enters the path of the line, and repeats until the
navigation goal is reached and another can be reached. [2]

Most modern robotics systems, however, the robot possesses sensors that
allow detection of range for objects in the distance, allowing for one of the most
popular of these algorithms: the tangent bug algorithm. This can be broken
up into a two parts, the first of which is: computing the ranges of all segments
in view, estimating and taking the path that minimizes the distance to the end
goal(similar to the second bug mentioned earlier). This process is repeated until
the goal is reached or the path taken increases the distance from the goal point,
in which case, the boundary-following behavior is invoked. In this phase, the
robot follows the boundary until the goal is reached, the entire blocking object
is circumnavigated (and therefore the goal is unreachable), or when the shortest
distance between the boundary the robot is following and the goal exceeds the

3



shortest distance between the obstacle’s center and the navigation goal, and, in
this case, returns to the first state.[2]

4 Technical Approach

4.1 Greedy Exploration

We believed the most practical solution was to approach the problem in terms
of a greedy heuristic. The segbot should have a bias towards going forward
because that is the most optimal case when trying to cover as much new ground
as possible. However, it is important to note that effective exploration can not be
achieved without a sufficient understanding of the segbot’s current environment.
This inspired us to break the problem down into two. First we must be able
to keep track of what is in front relative to the segbot. This is a notable
factor of our approach because forward is the only movement we make besides
rotating. However, a problem occurs after the segbot has changed orientation.
For example, a segbot facing east and one facing north both develop the same
cost map. So one must know where to check on the cost map relative to the
segbot’s current orientation. This can be done with the following formulas:

y′ = y + 2r(cos(θ))

x′ = x+ 2r(sin(θ))

The results from these are the coordinates on the cost map for the new area in
front of the segbot. Once this has been set, we can go onto interpret our en-
vironment in order to create decisions. The process is done recursively as follows:

Data: x, y, r, θ Where x - x-coordinate of forward area on cost map, y -
y-coordinate of forward are on cost map, r - radius of robot
footprint, θ - robot’s pose rotation in degrees from when it
started, 0 being the initial starting state

begin
y′ = y + 2*r*cos(θ); x′ = x + 2*r*sin(θ); bool occupied =
areaOccupied(x′,y’, 1.5 ∗ π ∗ r2); if occupied then

if x > map.size/2 then
return explore(x,y,r,θ - 10);

end
else

return explore(x,y,r,θ + 10);
end

end
else

return Go forward;
end

end
Algorithm 1: Exploration Decision

4



The result of the algorithm is visualized in Figure 2. Essentially what occurs
is the segbot will keeping rotating away from occupied spaces until reaching a
safe goal. Alongside this, the segbot is also updating any blind spots that had
developed as it rotates.

Figure 2: Determining orientation and defining a new forward position.

5 Experiments and Evaluation

5.1 Challenges

Moving the segbot with the vanilla ROS navigation stack without a pre-
existing map of the robot’s environment posed many challenges for the imple-
mentation of our algorithm.

We wanted the segbot to map out an area and in order for the gmapping
package to construct a map, the robot needs to physically move to new locations
in order to aggregate new laser scan data. The simplest solution would be to use
a SimpleActionClient to issue a MoveBaseAction to a given location. However,
the default navigation stack relies on a global map in order to test whether
the given navigation goal would result in a dangerous maneuver. When we run
gmapping, we don’t have access to this map because we are building it.

The next logical step would be to simply use local costmap data to determine
where out of the nearby locations pose threats to the robot and move to the
empty locations then repeat that process over and over. However, without the
ability to issue navigational goals using SimpleActionClient, the only other way
we knew how was to publish velocity commands directly to the
/cmd vel ROS topic. However, in doing so, we circumvent the built-in obstacle
avoidance countermeasures and safety checks that ensure the robot does not
endanger itself or any person that happens to be around it.

5



We will discuss how we propose to solve this chicken-and-egg problem between
being able to move the robot and being confident that our move is safe in the
Conclusion and Future Work section.

5.2 A Modified Solution

In order to comply with and be able to use the BWI’s pre-existing naviga-
tion stack, a much simpler algorithm was developed that emulates the spinning
behavior of the popular consumer cleaning product, the Roomba, which is as
follows:

begin
for i = 1 to 10 do

Explore 10 times before stopping
attemptToMoveOneMeterForward(); while can’t successfully
moved forward do

turn()Turn to try new direction to avoid obstacle
end
if once every 5 moves then

spinAround(); Spin around 360 degrees to gather more
accurate readings for gmapping

end

end

end
Algorithm 2: Theoretical Exploration Navigation

5.3 Results

After running this algorithm through the 3rd Floor Robotics lab of the GDC
several times, the effect of the navigation goal’s size (initally 1 meter) im-
mediately became apparent. With higher distances, the robot was able to
traverse significantly further distances, but became delocalized significantly
quicker, whereas with a smaller navigation goal (around 0.5 meters), the robot
traversed significantly less horizontal distance, but remained localized with valid
goals for much longer. This effect is due to the purely random nature of yaw
selection in this algorithm, leading to opposing yaws that significantly decrease
the net distance traversed that is significantly enchanced in the case where more
yaws are selected prior to the goal being unrecognized by the map structure and
the fact that with a larger navigation goal, it is more likely to be placed out-
side the bounds of the previously mapped environment. From this, it can be
concluded that in a truly autonomous SLAM algorithm, goals and attempts to
traverse the environment should not be randomly selected, but based on where
the algorithm has already been and has yet to be, as the greedy algorithm
described in Section 5.1 implements.

6



Figure 3: Segbot exploring local region.

6 Conclusion and Future Work

6.1 Refining the Problem

We have learned that in order for a robot to autonomously explore its own
environment (autonomous simultaneous localization and mapping) it needs to
solve a chicken-and-egg problem. It needs to feed data from its odometry sensors
into a package that analyzes the point cloud of nearby obstacles and converts
that data into a local cost map with probability distributions of potential ob-
structions.

As for sending navigational goals without a global map, it appears that the
ROS navigation stack offers a plugin system that allows ROS nodes that follow
a certain API to be able to be drop-in replaced or even combined with existing
ROS navigation nodes. This method would allow the majority of the navigation
stack to remain the same while still modifying the decision tree to allow the
robot to map areas of interest. From preliminary reading, it appears that this
process includes a substantial amount of editing configuration files and various
registration files across the ROS stack. Nonetheless, this solution appears to be
the most reasonable because it does not reinvent the wheel and it requires the
least amount of code.

6.2 Future Work

Advanced Obstacle Avoidance There remains a lot to be done in this
domain before a truly autonomous and intelligent agent is able to map new

7



areas. For instance, there are still no robust obstacle avoidance mechanisms
on the BWI Segbots. Currently, there are only 2D lidar and Kinect sensors.
There are no 3D implementations or anything that would protect the robot from
falling down stairs for instance. Therefore, before this project can continue, we
need to give the robot a greater perception of its surroundings. This can be
accomplished both with additional hardware (depth sensors, pan-tilt cameras,
etc.) or with additions to the software (3D cost maps, etc).

Correctness and Completeness Next, while the robots are able to explore
the area in front of them, a human must still act as the fitness function in
order to check whether or not the robot correctly identified all the areas that
are needed for operation. This is because the robot’s sensors may not correctly
identify certain hard to reach areas or areas that require advanced interaction to
access such as doors or elevators. This is a fault tolerance problem that can be
approached by thinking of the area to map as a maze. Now, we can apply maze-
solving algorithms that would simply infinitely look for an exit until they map
the entire explorable region. Lastly, when the maze solver runs out of options
to explore and terminates, we know we have mapped the entire area. What
remains to create is a framework for checking the correctness of these solutions.
This can be accomplished by testing a variety of maze solving algorithms and
perhaps deploying several of them at once and creating some sort of weighted
average of the different maps created by the various algorithms.

Labeling and Semantics Of course, without some semantic meaning, a map
of an area by itself offers little benefit to higher level planning. Consequently, we
have to develop a methodology for easy and streamlined labeling and captioning
of a given map. Our current vision is an interactive web-based application that
we can share with people who are familiar with the layout of a given region.
They would add labels to the image (similar to tagging faces on Facebook).
Then, the labeled image would be analyzed and a .yaml file with the proper
name-location parings would be generated from these labels in order to allow
the robot to process high-level navigation requests between various locations in
the environment.

6.3 Future Applications

The application of autonomous exploration is crucial for the deployment of
the BWI segbots to new and varying locations. This technology would allow
researchers to test their own experiments in more diverse locations in order to
prove that their projects are not restricted to the GDC lab spaces. In fact, once
the robots have generated a map of their environment, virtually anywhere can
be mapped: allowing for, although perhaps not with segway bots, deep-sea and
space exploration, as well as opportunities for autonomous vehicles, air, and
spacecraft that cannot only traverse the previously inaccessible environments,
but map them for all of humanity to enjoy and learn from.

8



References

[1] A solution to the simultaneous localization and map building (SLAM) prob-
lem (http://ieeexplore.ieee.org/abstract/document/938381/)

[2] Robotic Motion Planning with Bug Algorithms
(http://www.cs.cmu.edu/ motionplanning/lecture/lec3.pdf)

[3] A Solution to the Simultaneous Localization and Map Building Problem
(https://roboticsclub.org/redmine/projects/colony/repository/revisions
/1613/raw/branches/scout/SLAM/IEEEXplore.pdf)

[4] Improved Techniques for Grid Mapping with Rao-Blackwellized Par-
ticle Filters (http://www2.informatik.uni-freiburg.de/ stachnis/pdf/-
grisetti07tro.pdf)

Code Cited

• BWI https://github.com/utexas-bwi/bwi

• Segbot Navigation https://github.com/utexas-bwi/segbot/tree/master/segbot navigation/launch

• Hector SLAM https://github.com/tu-darmstadt-ros-pkg/hector slam

GitHub Repo

• https://github.com/MishaShapo/bwi a slam

9

http://ieeexplore.ieee.org/abstract/document/938381/
http://ieeexplore.ieee.org/abstract/document/938381/
http://www.cs.cmu.edu/~motionplanning/lecture/lec3.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/lec3.pdf
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1613/raw/branches/scout/SLAM/IEEEXplore.pdf
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1613/raw/branches/scout/SLAM/IEEEXplore.pdf
https://roboticsclub.org/redmine/projects/colony/repository/revisions/1613/raw/branches/scout/SLAM/IEEEXplore.pdf
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti07tro.pdf
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti07tro.pdf
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti07tro.pdf

	Abstract
	Introduction
	What is Autonomous SLAM (Simultaneous Localization and Mapping)? 

	Background and Related Work
	Behavior-Based Exploration
	Bug Algorithms

	Technical Approach
	Greedy Exploration

	Experiments and Evaluation
	Challenges
	A Modified Solution
	Results

	Conclusion and Future Work
	Refining the Problem
	Future Work
	Future Applications


