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a b s t r a c t

Vision-based human action recognition is the process of labeling image sequences with action labels.
Robust solutions to this problem have applications in domains such as visual surveillance, video retrieval
and human–computer interaction. The task is challenging due to variations in motion performance,
recording settings and inter-personal differences. In this survey, we explicitly address these challenges.
We provide a detailed overview of current advances in the field. Image representations and the subse-
quent classification process are discussed separately to focus on the novelties of recent research.
Moreover, we discuss limitations of the state of the art and outline promising directions of research.
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1. Introduction

We consider the task of labeling videos containing human motion
with action classes. The interest in the topic is motivated by the
promise of many applications, both offline and online. Automatic
annotation of video enables more efficient searching, for example
finding tackles in soccer matches, handshakes in news footage or typ-
ical dance moves in music videos. Online processing allows for auto-
matic surveillance, for example in shopping malls, but also in smart
homes for the elderly to support aging in place. Interactive applica-
tions, for example in human–computer interaction or games, also
benefit from the advances in automatic human action recognition.

In this section, we first discuss related surveys and present the
scope of this overview. Also, we outline the main characteristics
and challenges of the field as these motivate the various ap-
proaches that are reported in literature. Finally, we briefly describe
the most common datasets. In its simplest form, vision-based hu-
man action recognition can be regarded as a combination of feature
extraction, and subsequent classification of these image represen-
tations. We discuss these two tasks in Sections 2 and 3, respec-
tively. While many works will be described and analyzed in
more detail, we do not intend to give complete coverage of all
works in the area. In Section 4, we discuss limitations of the state
of the art and outline future directions to address these.
1.1. Scope of this overview

The area of human action recognition is closely related to other
lines of research that analyze human motion from images and
ll rights reserved.
video. The recognition of movement can be performed at various
levels of abstraction. Different taxonomies have been proposed
and here we adopt the hierarchy used by Moeslund et al. [90]:
action primitive, action and activity. An action primitive is an
atomic movement that can be described at the limb level. An action
consists of action primitives and describes a, possibly cyclic,
whole-body movement. Finally, activities contain a number of
subsequent actions, and give an interpretation of the movement
that is being performed. For example, ‘‘left leg forward” is an action
primitive, whereas ‘‘running” is an action. ‘‘Jumping hurdles” is an
activity that contains starting, jumping and running actions.

We focus on actions and do not explicitly consider context such
as the environment (e.g. [119]), interactions between persons (e.g.
[105,122]) or objects (e.g. [47,91]). Moreover, we consider only
full-body movements, which excludes the work on gesture recog-
nition (see [30,89]).

In the field of gait recognition, the focus is on identifying per-
sonal styles of walking movement, to be used as a biometric cue.
The aim of human action recognition is opposite: to generalize
over these variations. This is an arbitrary process as there is often
significant intra-class variation. Recently, there have been several
approaches that aim at simultaneous recognition of both action,
and style (e.g. [22,28,152]). In this overview, we will discuss
mainly those approaches that can deal with a variety of actions.
1.2. Surveys and taxonomies

There are several existing surveys within the area of vision-
based human motion analysis and recognition. Recent overviews
by Forsyth et al. [38] and Poppe [109] focus on the recovery of hu-
man poses and motion from image sequences. This can be regarded
as a regression problem, whereas human action recognition is a
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classification problem. Nevertheless, the two topics share many
similarities, especially at the level of image representation. Also re-
lated is the work on human or pedestrian detection (e.g.
[29,41,43]), where the task is to localize persons within the image.

Broader surveys that cover the above mentioned topics, includ-
ing human action recognition, appear in [2,10,42,69,90,143,153].
Bobick [10] uses a taxonomy of movement recognition, activity
recognition and action recognition. These three classes correspond
roughly with low-level, mid-level and high-level vision tasks. It
should be noted that we use a different definition of action and
activity. Aggarwal and Cai [2], and later Wang et al. [153], discuss
body structure analysis, tracking and recognition. Gavrila [42] uses
a taxonomy of 2D approaches, 3D approaches and recognition.
Moeslund et al. [90] use a functional taxonomy with subsequent
phases: initialization, tracking, pose estimation and recognition.
Within the recognition task, scene interpretation, holistic ap-
proaches, body-part approaches and action primitives are dis-
cussed. A recent survey by Turaga et al. [143] focuses on the
higher-level recognition of human activity. Krüger et al. [69] addi-
tionally discuss intention recognition and imitation learning.

We limit our focus to vision-based human action recognition to
address the characteristics that are typical for the domain. We dis-
cuss image representation and action classification separately as
these are the two parts that are present in every action recognition
approach. Due to the large variation in datasets and evaluation
practice, we discuss action recognition approaches conceptually,
without presenting detailed results. We focus on recent work,
which has not been discussed in previous surveys. In addition,
we present a discussion that focuses on promising work and points
out future directions.

1.3. Challenges and characteristics of the domain

In human action recognition, the common approach is to ex-
tract image features from the video and to issue a corresponding
action class label. The classification algorithm is usually learned
from training data. In this section, we discuss the challenges that
influence the choice of image representation and classification
algorithm.

1.3.1. Intra- and inter-class variations
For many actions, there are large variations in performance. For

example, walking movements can differ in speed and stride length.
Also, there are anthropometric differences between individuals.
Similar observations can be made for other actions, especially for
non-cyclic actions or actions that are adapted to the environment
(e.g. avoiding obstacles while walking, or pointing towards a cer-
tain location). A good human action recognition approach should
be able to generalize over variations within one class and distin-
guish between actions of different classes. For increasing numbers
of action classes, this will be more challenging as the overlap be-
tween classes will be higher. In some domains, a distribution over
class labels might be a suitable alternative.

1.3.2. Environment and recording settings
The environment in which the action performance takes place is

an important source of variation in the recording. Person localiza-
tion might prove harder in cluttered or dynamic environments.
Moreover, parts of the person might be occluded in the recording.
Lighting conditions can further influence the appearance of the
person.

The same action, observed from different viewpoints, can lead
to very different image observations. Assuming a known camera
viewpoint restricts the use to static cameras. When multiple cam-
eras are used, viewpoint problems and issues with occlusion can be
alleviated, especially when observations from multiple views can
be combined into a consistent representation. Dynamic back-
grounds increase the complexity of localizing the person in the im-
age and robustly observing the motion. When using a moving
camera, these challenges become even harder. In vision-based hu-
man action recognition, all these issues should be addressed
explicitly.

1.3.3. Temporal variations
Often, actions are assumed to be readily segmented in time.

Such an assumption moves the burden of the segmentation from
the recognition task, but requires a separate segmentation process
to have been employed previously. This might not always be real-
istic. Recent work on action detection (see Section 3.3) addresses
this issue.

Also, there can be substantial variation in the rate of perfor-
mance of an action. The rate at which the action is recorded has
an important effect on the temporal extent of an action, especially
when motion features are used. A robust human action recognition
algorithm should be invariant to different rates of execution.

1.3.4. Obtaining and labeling training data
Many works described in this survey use publicly available

datasets hat are specifically recorded for training and evaluation.
This provides a sound mechanism for comparison but the sets of-
ten lack some of the earlier mentioned variations. Recently, more
realistic datasets have been introduced (see also Section 1.4). These
contain labeled sequences gathered from movies or web videos.
While these sets address common variations, they are still limited
in the number of training and test sequences.

Also, labeling these sequences is challenging. Several automatic
approaches have been proposed, for example using web image
search results [55], video subtitles [48] and subtitle to movie script
matching [20,26,73]. Gaidon et al. [40] present an approach to re-
rank automatically extracted and aligned movie samples but man-
ual verification is usually necessary. Also, performance of an action
might be perceived differently. A small-scale experiment showed
significant disagreement between human labeling and the as-
sumed ground-truth on a common dataset [106]. When no labels
are available, an unsupervised approach needs to be pursued but
there is no guarantee that the discovered classes are semantically
meaningful.

1.4. Common datasets

The use of publicly available datasets allows for the comparison
of different approaches and gives insight into the (in)abilities of
respective methods. We discuss the most widely used sets.

1.4.1. KTH human motion dataset
The KTH human motion dataset (Fig. 1a [125]) contains six

actions (walking, jogging, running, boxing, hand waving and hand
clapping), performed by 25 different actors. Four different scenar-
ios are used: outdoors, outdoors with zooming, outdoors with dif-
ferent clothing and indoors. There is considerable variation in the
performance and duration, and somewhat in the viewpoint. The
backgrounds are relatively static. Apart from the zooming scenario,
there is only slight camera movement.

1.4.2. Weizmann human action dataset
The human action dataset (Fig. 1b [9]) recorded at the Weizmann

institute contains 10 actions (walk, run, jump, gallop sideways,
bend, one-hand wave, two-hands wave, jump in place, jumping jack
and skip), each performed by 10 persons. The backgrounds are static
and foreground silhouettes are included in the dataset. The view-
point is static. In addition to this dataset, two separate sets of
sequences were recorded for robustness evaluation. One set shows
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Fig. 1. Example frames of (a) KTH dataset, (b) Weizmann dataset, (c) Inria XMAS dataset, (d) UCF sports action dataset and (e) Hollywood human action dataset.
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walking movement viewed from different angles. The second set
shows fronto-parallel walking actions with slight variations
(carrying objects, different clothing, different styles).
1.4.3. INRIA XMAS multi-view dataset
Weinland et al. [166] introduced the IXMAS dataset (Fig. 1c) that

contains actions captured from five viewpoints. A total of 11 persons
perform 14 actions (check watch, cross arms, scratch head, sit down,
get up, turn around, walk, wave, punch, kick, point, pick up, throw
over head and throw from bottom up). The actions are performed
in an arbitrary direction with regard to the camera setup. The
camera views are fixed, with a static background and illumination
settings. Silhouettes and volumetric voxel representations are part
of the dataset.
1.4.4. UCF sports action dataset
The UCF sports action dataset (Fig. 1d [120]) contains 150 se-

quences of sport motions (diving, golf swinging, kicking, weight-
lifting, horseback riding, running, skating, swinging a baseball bat
and walking). Bounding boxes of the human figure are provided
with the dataset. For most action classes, there is considerable var-
iation in action performance, human appearance, camera move-
ment, viewpoint, illumination and background.
1.4.5. Hollywood human action dataset
The Hollywood human action dataset (Fig. 1e [73]) contains

eight actions (answer phone, get out of car, handshake, hug, kiss,
sit down, sit up and stand up), extracted from movies and per-
formed by a variety of actors. A second version of the dataset in-
cludes four additional actions (drive car, eat, fight, run) and an
increased number of samples for each class [83]. One training set
is automatically annotated using scripts of the movies, another is
manually labeled. There is a huge variety of performance of the ac-
tions, both spatially and temporally. Occlusions, camera move-
ments and dynamic backgrounds make this dataset challenging.
Most of the samples are at the scale of the upper-body but some
show the entire body or a close-up of the face.
1.4.6. Other datasets
Ke et al. introduced the crowded videos dataset in [64]. Datasets

containing still images figure skating, baseball and basketball are
presented in [158]. _Ikizler et al. [54] presented a set of still images
collected from the web.
2. Image representation

In this section, we discuss the features that are extracted from
the image sequences. Ideally, these should generalize over small
variations in person appearance, background, viewpoint and action
execution. At the same time, the representations must be suffi-
ciently rich to allow for robust classification of the action (see Sec-
tion 3). The temporal aspect is important in action performance.
Some of the image representations explicitly take into account
the temporal dimension, others extract image features for each
frame in the sequence individually. In this case, the temporal vari-
ations need to be dealt with in the classification step.

We divide image representations into two categories: global
representations and local representations. The former encodes
the visual observation as a whole. Global representations are ob-
tained in a top-down fashion: a person is localized first in the im-
age using background subtraction or tracking. Then, the region of
interest is encoded as a whole, which results in the image descrip-
tor. The representations are powerful since they encode much of
the information. However, they rely on accurate localization, back-
ground subtraction or tracking. Also, they are more sensitive to
viewpoint, noise and occlusions. When the domain allows for good
control of these factors, global representations usually perform
well.

Local representations describe the observation as a collection of
independent patches. The calculation of local representations pro-
ceeds in a bottom-up fashion: spatio-temporal interest points are
detected first, and local patches are calculated around these points.
Finally, the patches are combined into a final representation. After
initial success of bag-of-feature approaches, there is currently
more focus on correlations between patches. Local representations
are less sensitive to noise and partial occlusion, and do not strictly
require background subtraction or tracking. However, as they de-
pend on the extraction of a sufficient amount of relevant interest
points, pre-processing is sometimes needed, for example to com-
pensate for camera movements.

We discuss global and local image representations in Sections
2.1 and 2.2, respectively. A small number of works report the use
of very specific features. We discuss these briefly in Section 2.3.
2.1. Global representations

Global representations encode the region of interest (ROI) of a
person as a whole. The ROI is usually obtained through background
subtraction or tracking. Common global representations are de-

https://www.researchgate.net/publication/221361842_Learning_realistic_human_actions_from_movies_In_IEEE_CVPR?el=1_x_8&enrichId=rgreq-677ef4f4-a50b-46ab-9119-770c9d062a02&enrichSource=Y292ZXJQYWdlOzI3MDI3MTY1MztBUzoxODA0MDE3MTI2NzI3NjhAMTQyMDAyMjUyODA2Mg==
https://www.researchgate.net/publication/221362695_Action_MACH_a_spatio-temporal_Maximum_Average_Correlation_Height_filter_for_action_recognition?el=1_x_8&enrichId=rgreq-677ef4f4-a50b-46ab-9119-770c9d062a02&enrichSource=Y292ZXJQYWdlOzI3MDI3MTY1MztBUzoxODA0MDE3MTI2NzI3NjhAMTQyMDAyMjUyODA2Mg==
https://www.researchgate.net/publication/221361316_Unsupervised_Discovery_of_Action_Classes?el=1_x_8&enrichId=rgreq-677ef4f4-a50b-46ab-9119-770c9d062a02&enrichSource=Y292ZXJQYWdlOzI3MDI3MTY1MztBUzoxODA0MDE3MTI2NzI3NjhAMTQyMDAyMjUyODA2Mg==
https://www.researchgate.net/publication/258896444_Free_Viewpoint_Action_Recognition_Using_Motion_History_Volumes?el=1_x_8&enrichId=rgreq-677ef4f4-a50b-46ab-9119-770c9d062a02&enrichSource=Y292ZXJQYWdlOzI3MDI3MTY1MztBUzoxODA0MDE3MTI2NzI3NjhAMTQyMDAyMjUyODA2Mg==


R. Poppe / Image and Vision Computing 28 (2010) 976–990 979
rived from silhouettes, edges or optical flow. They are sensitive to
noise, partial occlusions and variations in viewpoint. To partly
overcome these issues, grid-based approaches spatially divide the
observation into cells, each of which encodes part of the observa-
tion locally (see Section 2.1.1). Multiple images over time can be
stacked, to form a three-dimensional space–time volume, where
time is the third dimension. Such volumes can be used for action
recognition, and we discuss work in this area in Section 2.1.2.

The silhouette of a person in the image can be obtained by using
background subtraction. In general, silhouettes contain some noise
due to imperfect extraction. Also, they are somewhat sensitive to
different viewpoints, and implicitly encode the anthropometry of
the person. Still, they encode a great deal of information. When
the silhouette is obtained, there are many different ways to encode
either the silhouette area or the contour.

One of the earliest uses of silhouettes is by Bobick and Davis [11].
They extract silhouettes from a single view and aggregate differ-
ences between subsequent frames of an action sequence. This re-
sults in a binary motion energy image (MEI) which indicates
where motion occurs. Also, a motion history image (MHI) is
constructed where pixel intensities are a recency function of the sil-
houette motion. Two templates are compared using Hu moments.
Wang et al. [162] apply a R transform to extracted silhouettes. This
results in a translation and scale invariant representation. Souvenir
and Babbs [137] calculate a R transform surface where the third
dimension is time. Contours are used in [16], where the star skeleton
describes the angles between a reference line, and the lines from the
center to the gross extremities (head, feet, hands) of the contour.
Wang and Suter [154] use both silhouette and contour descriptors.
Given a sequence of frames, an average silhouette is formed by cal-
culating the mean intensity over all centered frames. Similarly, the
mean shape is formed from the centered contours of all frames.
Weinland et al. [164] match two silhouettes using Euclidean dis-
tance. In later work [163], silhouette templates are matched against
edges using Chamfer distance, thus eliminating the need for back-
ground subtraction.

When multiple cameras are employed, silhouettes can be ob-
tained from each. Huang and Xu [52] use two orthogonally placed
cameras at approximately similar height and distance to the per-
son. Silhouettes from both cameras are aligned at the medial axis,
and an envelope shape is calculated. Cherla et al. [17] also use
orthogonally placed cameras and combine features of both. Such
representations are somewhat view-invariant, but fail when the
arms cannot be distinguished from the body. Weinland et al.
[166] combine silhouettes from multiple cameras into a 3D voxel
model. Such a representation is informative but requires accurate
camera calibration. They use motion history volumes (see
Fig. 2b), which is an extension of the MHI [11] to 3D. View-invari-
ant matching is performed by aligning the volumes using Fourier
transforms on the cylindrical coordinate system around the medial
axis.
Fig. 2. (a) Space–time volume of stacked silhouettes (reprinted from [45], � IEEE, 2007) (
representations appear similar, (a) is viewed from a single camera, whereas (b) shows a
Instead of (silhouette) shape, motion information can be used.
The observation within the ROI can be described with optical flow,
the pixel-wise oriented difference between subsequent frames.
Flow can be used when background subtraction cannot be per-
formed. However, dynamic backgrounds can introduce noise in
the motion descriptor. Also, camera movement results in observed
motion, which can be compensated for by tracking the person.
Efros et al. [27] calculate optical flow in person-centered images.
They use sports footage, where persons in the image are very small.
The result is blurred as optical flow can result in noisy displace-
ment vectors. To make sure that oppositely directed vectors do
not even out, the horizontal and vertical components are divided
into positively and negatively directed, yielding 4 distinct chan-
nels. Ahad et al. [3] use these four flow channels to solve the issue
of self-occlusion in a MHI approach. Ali and Shah [5] derive a num-
ber of kinematic features from the optical flow. These include
divergence, vorticity, symmetry and gradient tensor features. Prin-
cipal component analysis (PCA) is applied to determine dominant
kinematic modes.

2.1.1. Global grid-based representations
By dividing the ROI into a fixed spatial or temporal grid, small

variations due to noise, partial occlusions and changes in view-
point can be partly overcome. Each cell in the grid describes the
image observation locally, and the matching function is changed
accordingly from global to local. These grid-based representations
resemble local representations (see Section 2.2), but require a glo-
bal representation of the ROI.

Kellokumpu et al. [66] calculate local binary patterns along the
temporal dimension and store a histogram of non-background re-
sponses in a spatial grid. Thurau and Hlaváč [141] use histograms
of oriented gradients (HOG, [23]) and focus on foreground edges by
applying non-negative matrix factorization. Lu and Little [80] ap-
ply PCA after calculating the HOG descriptor, which greatly reduces
the dimensionality. _Ikizler et al. [54] first extract human poses
using [113]. Within the obtained outline, oriented rectangles are
detected and stored in a circular histogram. Ragheb et al. [112]
transform, for each spatial location, the binary silhouette response
over time into the frequency domain. Each cell in the spatial grid
contains the mean frequency response of the spatial locations it
contains.

Optical flow in a grid-based representation is used by Danafar
and Gheissari [24]. They adapt the work of Efros et al. [27] by divid-
ing the ROI into horizontal slices that approximately contain head,
body and legs. Zhang et al. [179] use an adaptation of the shape
context, where each log-polar bin corresponds to a histogram of
motion word frequencies. Combinations of flow and shape descrip-
tors are also common, and overcome the limitations of a single rep-
resentation. Tran et al. [142] use rectangular grids of silhouettes
and flow. Within each cell, a circular grid is used to accumulate
the responses. _Ikizler et al. [53] combine the work of Efros et al.
b) Motion history volumes (reprinted from [166], � Elsevier, 2006). Even though the
recency function over reconstructed 3D voxel models.
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[27] with histograms of oriented line segments. Flow, in combina-
tion with local binary patterns is used in [172].

2.1.2. Space–time volumes
A 3D spatio-temporal volume (STV) is formed by stacking

frames over a given sequence. Accurate localization, alignment
and possibly background subtraction are required.

Blank et al. [9,45] first stack silhouettes over a given sequence
to form an STV (see Fig. 2a). Then the solution of the Poisson equa-
tion is used to derive local space–time saliency and orientation fea-
tures. Global features for a given temporal range are obtained by
calculating weighted moments over these local features. To deal
with performances of different temporal durations, Achard et al.
[1] use a set of space–time volumes for each sequence, each of
which covers only a part of the temporal dimension.

Several works sample the STV surface and extract local descrip-
tors. While this approach shares many similarities with local ap-
proaches, the STV is a global representation. Batra et al. [6] stack
silhouettes, and sample the volume with small 3D binary space–
time patches. Yilmaz and Shah [175] use differential geometric
properties on the STV surface, such as maxima and minima in
the space–time domain. An action sketch is the set of these local
descriptors. The method is sensitive to noise on the surface. The
idea is extended by Yan et al. [171] by first constructing 3D exem-
plars from multiple views, for each frame in a training sequence.
Then, for each view, an action sketch is calculated from the view-
based STV and projected onto the constructed 3D exemplars. The
action sketch descriptors encode both shape and motion, and can
be matched with observations from arbitrary viewpoints. Grund-
mann et al. [46] extend the shape context to 3D and apply it to
STVs. The sampling of interest points is adapted to give more
importance to moving regions.

Jiang and Martin [60] use 3D shape flows over time, calculated
at edge points. The matching can deal with cluttered backgrounds.
Ke et al. [63] construct an STV of flow and sample the horizontal
and vertical components in space–time using a 3D variant of the
rectangle features of [149]. Ogata et al. [100] extend this work with
[27]. A combination of STVs of silhouettes and flow is used by Ke
et al. [65]. No background subtraction is needed, as 3D super-pixels
are obtained from segmenting the STV. Action classification is cast
as 3D object matching, where the distance to the segment bound-
ary is used as a similarity measure. The work is extended in [64] to
allow for the matching of parts, thus enabling recognition of
actions under partial occlusion.

2.2. Local representations

Local representations describe the observation as a collection of
local descriptors or patches. Accurate localization and background
subtraction are not required and local representations are some-
what invariant to changes in viewpoint, person appearance and
partial occlusions. Patches are sampled either densely or at
space–time interest points. The latter are locations that correspond
to interesting motions and we discuss these in Section 2.2.1. Local
descriptors describe small windows (2D) in an image or cuboids
(3D) in a video volume, and are discussed in Section 2.2.2. Similar
to global representations, observations can be grouped locally
within a grid, see Section 2.2.3. By exploiting correlations in space
and time between the patches, actions can be modeled more effec-
tively since only the meaningful patches are retained. We discuss
these correlations in Section 2.2.4.

2.2.1. Space–time interest point detectors
Space–time interest points are the locations in space and time

where sudden changes of movement occur in the video. It is as-
sumed that these locations are most informative for the recogni-
tion of human action. Usually, points that undergo a translational
motion in time will not result in the generation of space–time
interest points.

Laptev and Lindeberg [72] extended the Harris corner detector
[49] to 3D. Space–time interest points are those points where the
local neighborhood has a significant variation in both the spatial
and the temporal domain. The scale of the neighborhood is auto-
matically selected for space and time individually. The work is ex-
tended to compensate for relative camera motions in [71].
Oikonomopoulos et al. [102] extended the work on 2D salient point
detection by Kadir and Brady [62] to 3D. The entropy within each
cuboid is calculated, and the centers of those with local maximum
energy are selected as salient points. The scale of each salient point
is determined by maximizing the entropy values.

One drawback of these methods is the relatively small number
of stable interest points. This issue is addressed by Dollár et al. [25],
who apply Gabor filtering on the spatial and temporal dimensions
individually. The number of interest points is adjusted by changing
the spatial and temporal size of the neighborhood in which local
minima are selected. Chomat et al. [19] use the responses after
applying spatio-temporal receptive fields. In a similar fashion,
Rapantzikos et al. [118] apply discrete wavelet transforms in each
of the three directions of a video volume. Responses from low-pass
and high-pass filtering for each dimension are used to select salient
points in space and time. In addition to intensity and motion cues,
Rapantzikos et al. [117] also incorporate color. They compute sal-
iency as the solution of an energy minimization process which in-
volves proximity, scale and feature similarity terms.

Willems et al. [167] identify saliency as the determinant of a 3D
Hessian matrix, which can be calculated efficiently due to the use
of integral videos. Another attempt to decrease the computational
complexity is presented by Oshin et al. [103], who train random-
ized ferns to approximate the behavior of interest point detectors.
In a comparison on the task of human action recognition, Wang
et al. [151] found that dense sampling outperformed the interest
point detectors of Dollár et al. [25], Laptev and Lindeberg [72]
and Willems et al. [167].

Instead of detecting interest points over the entire volume,
Wong and Cipolla [168] first detect subspaces of correlated move-
ment. These subspaces correspond to large movements such as an
arm wave. Within these spaces, a sparse set of interest points is de-
tected. In a similar approach, Bregonzio et al. [13] first calculate the
difference between subsequent frames to estimate the focus of
attention. Next, Gabor filtering is used to detect salient points
within these regions.

2.2.2. Local descriptors
Local descriptors summarize an image or video patch in a rep-

resentation that is ideally invariant to background clutter, appear-
ance and occlusions, and possibly to rotation and scale. The spatial
and temporal size of a patch is usually determined by the scale of
the interest point. Fig. 3 shows cuboids at detected interest points.
Schüldt et al. [125] calculate patches of normalized derivatives in
space and time. Niebles et al. [95] take the same approach, but ap-
ply smoothing before reducing the dimensionality using PCA. Dol-
lár et al. [25] experiment with both image gradients and optical
flow.

Patches can also be described by local grid-based descriptors.
These summarize the local observation within grid cells, thus
ignoring small spatial and temporal variations. SURF features [7]
are extended to 3D by Willems et al. [167]. These eSURF features
contain in each cell the sums of Haar-wavelets. Laptev et al. [73]
use local HOG and HOF (histogram of oriented flow) descriptors.
The extension of HOG to 3D is presented by Kläser et al. [68]. 3D
gradients are binned into regular polyhedrons. They extend the
idea of integral images into 3D which allows rapid dense sampling

https://www.researchgate.net/publication/221110626_Recognizing_Action_at_a_Distance?el=1_x_8&enrichId=rgreq-677ef4f4-a50b-46ab-9119-770c9d062a02&enrichSource=Y292ZXJQYWdlOzI3MDI3MTY1MztBUzoxODA0MDE3MTI2NzI3NjhAMTQyMDAyMjUyODA2Mg==
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Fig. 3. Extraction of space–time cuboids at interest points from similar actions performed by different persons (reprinted from [71], � Elsevier, 2007).
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of the cuboid over multiple scales and locations in both space and
time. In related work by Scovanner et al. [126], the SIFT descriptor
[79] is extended to 3D. Wang et al. [151] compared local descrip-
tors and found that, in general, a combination of image gradient
and flow information resulted in the best performance.

Several approaches combine interest point detection and the
calculation of local descriptors in a feed-forward framework. For
example, Jhuang et al. [58] use several stages to ensure invariance
to a number of factors. Their approach is motivated by the human
visual system. At the lowest level, Gabor filters are applied to dense
flow vectors, followed by a local max operation. Then the re-
sponses are converted to a higher level using stored prototypes
and a global max operation is applied. A second matching stage
with prototypes results in the final representation. The work in
[96] is similar in concept, but uses different window settings.
Schindler and Van Gool [124] extend the work by Jhuang et al.
[58] by combining both shape and flow responses. Escobar et al.
[31] use motion-sensitive responses and also consider interactions
between cells, which allows them to model more complex proper-
ties such as motion contrasts.

Comparing sets of local descriptors is not straightforward due to
the possibly different number and the usually high dimensionality
of the descriptors. Therefore, often a codebook is generated by
clustering patches and selecting either cluster centers or the clos-
est patches as codewords. A local descriptor is described as a code-
word contribution. A frame or sequence can be represented as a
bag-of-words, a histogram of codeword frequencies (e.g. [95,125]).

2.2.3. Local grid-based representations
Similar to holistic approaches, described in Section 2.1.1, grids

can be used to bin the patches spatially or temporally. Compared
to the bag-of-words approach, using a grid ensures that spatial
information is maintained to some degree.

In the spatial domain, _Ikizler and Duygulu [56] sample oriented
rectangular patches, which they bin into a grid. Each cell has an
associated histogram that represents the distribution of rectangle
orientations. Zhao and Elgammal [180] bin local descriptors
around interest points in a histogram with different levels of
granularity. Patches are weighted according to their temporal dis-
tance to the current frame.

Nowozin et al. [98] use a temporal instead of a spatial grid. The
cells overlap, which allows them to overcome small variations in
performance. Observations are described as PCA-reduced vectors
around extracted interest points, mapped onto codebook indices.
Laptev and Pérez [74] bin histograms of oriented gradients and
flow, extracted at interest points, into a spatio-temporal grid. This
grid spans the volume that is determined based on the position and
size of a detected head. The distribution of these histograms is
determined for every spatio-temporal cell in the grid. Three differ-
ent block types are used to form the new feature set. These types
correspond to a single cell, a concatenation of two temporally
neighboring cells and a concatenation of spatially neighboring
cells. A subset of all possible blocks within the grid is selected
using AdaBoost. A larger number of grid types, with different spa-
tial and temporal divisions and overlap settings, is evaluated in
[73]. Flow descriptors from [27] are used by Fathi and Mori [35],
who select a discriminative set of low-level flow features within
space–time cells which form an overlapping grid. In a subsequent
step, a set of these mid-level features is selected using the Ada-
Boost algorithm. In the work by Bregonzio et al. [13], no local im-
age descriptor are calculated. Rather, they look at the number of
interest points within cells of a spatio-temporal grid with different
scales. This approach is computationally efficient but depends on
the number and relevancy of the interest points.

2.2.4. Correlations between local descriptors
Grid-based representations model spatial and temporal rela-

tions between local descriptors to some extent. However, they
are often redundant and contain uninformative features. In this
section, we describe approaches that exploit correlations between
local descriptors for selection or the construction of higher-level
descriptors.

Scovanner et al. [126] construct a word co-occurrence matrix,
and iteratively merge words with similar co-occurrences until
the difference between all pairs of words is above a specified
threshold. This leads to a reduced codebook size and similar
actions are likely to generate more similar distributions of code-
words. Similar in concept is the work by Liu et al. [76], who use
a combination of the space–time features and spin images, which
globally describe an STV. A co-occurrence matrix of the features
and the action videos is constructed. The matrix is decomposed
into eigenvectors and subsequently projected onto a lower-dimen-
sional space. This embedding can be seen as feature-level fusion.
Instead of determining pairs of correlated codewords, Patron-Perez
and Reid [106] approximate the full joint distribution of features
using first-order dependencies. Features are binary variables that
indicate the presence of a codeword. A maximum spanning tree
is formed by analyzing a graph between all pairs of features. The
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work by Kim et al. [67] is different in the sense that the correlation
between two videos is measured. Canonical correlation analysis is
extended to handle image sequences. The approach implicitly
deals with affine variations. Discriminative features are subse-
quently selected using AdaBoost.

In contrast to the above approaches where spatial information
is ignored, Savarese et al. [123] introduce correlatons that describe
co-occurrences of codewords within spatio-temporal neighbor-
hoods. The codebook size strongly influences the classification per-
formance. Too few entries do not allow for good discrimination,
while too great a codebook size is likely to introduce noise due
to sparsity of the histograms. Liu and Shah [78] solve this issue
and determine the optimal size of the codebook using maximiza-
tion of mutual information. This technique merges two codebook
entries if they have comparable distributions. In addition, they
use spatio-temporal pyramid matching to exploit temporal infor-
mation. Yao and Zhu [173] introduce an active basis of shape and
flow patches, where locations in space and time are allowed to
vary slightly.

Correlations between descriptors can also be obtained by track-
ing features. Sun et al. [140] calculate SIFT descriptors around
interest points in each frame and use Markov chaining to deter-
mine tracks of these features. Similar work by Messing et al. [87]
extracts trajectories using the KLT tracker. In both cases, tracks
are summarized in a log-polar histogram of track velocities. Oiko-
nomopoulos et al. [101] fit B-splines to the STV boundary that is
formed by a coherent region of saliency responses. Song et al.
[136] track points between frames. They fit a triangulated graph
to these points to detect and recognize human actions. In Fanti
et al. [32], additional local appearance cues are used. Global vari-
ables are introduced for scale, viewpoint and translation. These
methods assume static backgrounds and motion due to objects in
the background generates feature tracks that do not belong to
the person.

This limitation is partly addressed by Niebles and Fei-Fei [94],
who model the frame as a mixture of constellations. Each constel-
lation models the spatial arrangement of codewords instead of
tracked features. Filipovych and Ribeiro [37] include both pose
constellations and dynamics constellations. Star graphs of static
and dynamic features are combined into a tree by conditioning
on the landmark vertices of the individual graphs. These models
are trained without supervision. Related work introduces hidden
variables that correspond to action categories. Probabilistic latent
semantic analysis (pLSA) is a generative model used by Niebles
et al. [95]. In an unsupervised way, the mapping from latent action
labels to distribution of codewords is learned. Wong et al. [169] ex-
tend pLSA by including the location of a person’s centroid. Both
works require that the number of action labels is determined
empirically. Instead, Wang et al. [160] take a supervised approach
and use a semi-latent Dirichlet allocation (S-LDA) model. In Wang
and Mori [159], an adapted hidden conditional random field
(HCRF) model is used to learn constellations of codewords discrim-
inatively. A more efficient learning algorithm is presented in [161].

A number of works take the approach of extracting and mining
large number of features. Mikolajczyk and Uemura [88] extract for
each frame local shape and motion features. For each feature, the
relative location and orientation to a person’s center of mass are
stored together with the annotated action label. These features
are clustered and represented in vocabulary trees. By matching
features extracted from an observed frame, votes are cast over a
persons’ location, orientation and action label. In Uemura et al.
[146], global motion patterns are detected and compensated for,
in order to recognize action from moving cameras. In related work,
Gilbert et al. [44] find spatio-temporal corners and determine the
relative spatial arrangement of all other corners in the frame. This
results in an extremely large number of features. Data mining tech-
niques are further used to discriminatively select those feature
combinations that are informative of a class. Liu et al. [77] select
discriminative features by applying the PageRank algorithm on
the feature co-occurrence graph.

There are relatively few works that address the effect of view-
point on the recognition of human actions. Farhadi and Tabrizi
[33] explicitly address the correlations between actions observed
from different views. They use a split-based representation to de-
scribe clusters of codewords in each view. The transfer of these
splits between views is learned from multi-view action sequences.
Farhadi et al. [34] model the view as a latent parameter, and learn
features that can discriminate between views and actions.

2.3. Application-specific representations

In contrast to the more general image representations that have
been discussed in the previous sections, a number of works use
representations that are directly motivated by the domain of hu-
man action recognition.

Joint locations or joint angles are rich representations, but it is
challenging to derive them from video (see [38,109]). In 3D, the
representations are completely view-invariant, whereas for 2D,
there have been several approaches proposed to address the issue
of matching 2D joint trajectories to action labels (e.g.
[5,104,116,131,132,174]). Since we focus on the recognition of hu-
man actions from image and video, we do not discuss these works
here.

Smith et al. [135] use a number of specifically selected features.
Some of these are low-level and deal with color and movement.
Others are higher-level and are obtained from head and hand re-
gions. A boosting scheme is used that takes into account the his-
tory of the action performance. The work by Vitaladevuni et al.
[150] is inspired by the observation that human actions differ in
accelerating and decelerating force. They identify reach, yank and
throw types. Temporal segmentation into atomic movements de-
scribed with movement type, spatial location and direction of
movement is performed first.
3. Action classification

When an image representation is available for an observed
frame or sequence, human action recognition becomes a classifica-
tion problem. An action label or distribution over labels is given for
each frame or sequence. Section 3.1 discusses approaches that clas-
sify image representations into actions without explicitly modeling
variations in time. Temporal state-space approaches do model such
variations of an action and are discussed in Section 3.2. In Section
3.3, we describe general approaches to detect human action in vi-
deo without modeling the action.

3.1. Direct classification

The approaches that we describe in this section do not pay spe-
cial attention to the temporal domain. They summarize all frames
of an observed sequence into a single representation or perform ac-
tion recognition for each frame individually. While both these ap-
proaches can deal with variations in executing and recording rate,
the temporal order is neglected. In Section 3.1.2, we discuss near-
est neighbor classification where an observed sequence is com-
pared to labeled sequences or action class prototypes. A second
class of approach is that of the discriminative classifiers. These
learn a function that discriminates between two or more classes
by directly operating on the image representation. Dimensionality
reduction is a common step before the actual classification and is
discussed first.
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3.1.1. Dimensionality reduction
In many cases, image representations are high-dimensional.

This makes matching computationally more expensive. Also, the
representation might contain noisy features. It is expected that a
more compact, robust feature representation is obtained by
embedding the space of image representations onto a lower
dimensional space. This embedding can be learned from training
data.

PCA is a common linear dimensionality reduction method that
has been used by Masoud and Papanikolopoulos [84] and Rosales
[121]. Often, the mapping between full and lower dimensional im-
age representation is better described as a non-linear function.
Chin et al. [18] learn manifolds using local linear embedding
(LLE). They experiment with different projection functions. Wang
and Suter [157] use locality preserving projections (LPP), Isomap
is used by Blackburn and Ribeiro [8].

The above dimensionality reduction methods learn the embed-
ding in an unsupervised manner, which does not guarantee good
discrimination between classes. Poppe and Poel [110] address this
issue and learn discriminative feature transforms between pairs of
classes. Jia and Yeung [59] use an embedding that is discriminative
both in a spatial and temporal sense. They propose local spatio-
temporal discriminant embedding (LSTDE), which maps silhou-
ettes of the same class close in the manifold and model temporal
relations in subspaces of the manifold.

3.1.2. Nearest neighbor classification
k-Nearest neighbor (NN) classifiers use the distance between

the image representation of an observed sequence and those in a
training set. The most common label among the k closest training
sequences is chosen as the classification. For a large training set,
such comparisons can be computationally expensive. Alternatively,
for each class, an action prototype can be calculated by taking the
mean of all corresponding sequences. The ability to cope with vari-
ations in spatial and temporal performance, viewpoint and image
appearance depends on the training set, the type of image repre-
sentation and the distance metric.

NN classification can be either performed at the frame level, or
for whole sequences. In the latter case, issues with different frame
lengths need to be resolved, for example by using majority voting
over all frames in a sequence. 1-NN with Euclidean distance are
used by Blank et al. [9] for global features and Batra et al. [6] for
histograms of codewords. Euclidean distance might not be the
most suitable choice given the type of image representation. Bo-
bick and Davis [11] use Hu moments of different orders of magni-
tude. Mahalanobis distance is used to take into account the
variance of each dimension. Rodriguez et al. [120] describe a meth-
od to generate spatio-temporal templates that effectively capture
the intra-class variance into a single prototype.

Several authors have used NN classification in combination
with dimensionality reduction. Wang and Suter [155] either use
the minimum mean frame-wise distance in an embedded space,
or a frame-order preserving variant. Turaga et al. [145] focus on
parametric and non-parametric manifold density functions and de-
scribe distance functions for Grassmann and Stiefel manifold
embeddings. Tran et al. [142] and Poppe and Poel [110] use a
learned discriminative distance metric in the NN classification.

It has been observed that many actions can be represented by
key poses or prototypes. Sullivan and Carlsson [138] recognize
forehand and backhand tennis strokes by matching edge represen-
tations to labeled key poses. Wang et al. [158] also use edge repre-
sentations but learn action clusters in an unsupervised fashion.
They manually provide action class labels after the clustering.
Weinland et al. [165] learn a set of action key poses as 3D voxel
representations. These methods use only a single frame for action
classification. As many poses are only weakly informative for the
action class, considering a sequence of poses over time is likely
to reduce ambiguities. Weinland and Boyer [163] use the mini-
mum distance of each key pose to the frames in the sequences.
The set of key poses is discriminatively selected. Lin et al. [75] store
prototypes in a tree to allow for efficient matching.

3.1.3. Discriminative classifiers
Discriminative classifiers focus on separating two or more clas-

ses, rather than modeling them. Support vector machines (SVM)
learn a hyperplane in feature space that is described by a weighted
combination of support vectors. SVMs have been used in combina-
tion with local representations of fixed lengths, such as histograms
of codewords in [58,71,125]. Relevance vector machines (RVM)
can be regarded as the probabilistic variant of the SVM. Training
an RVM usually results in a sparser set of support vectors. They
have been used for action recognition by Oikonomopoulos et al.
[102].

In a boosting framework, a final strong classifier is formed by a
set of weak classifiers, each of which usually uses only a single
dimension of the image representation. Boosting is used in many
works, either as a discriminative feature selection step or as the ac-
tual classifier. AdaBoost [39] has been used by [35,74,100]. LPBoost
yields sparser coefficients and is reported to converge faster, and is
used in [98]. Smith et al. [135] introduce a variant that uses history
information in the boosting scheme.

3.2. Temporal state-space models

State-space models consist of states connected by edges. These
edges model probabilities between states, and between states and
observations. In the models that we discuss in this section, each
state summarizes the action performance at a certain moment in
time. An observation corresponds to the image representation at
a given time. Temporal state-space models are either generative
or discriminative. While they share many characteristics, they
are conceptually different. Generative models learn a joint distri-
bution over both observations and action labels. They thus learn
to model a certain action class, with all its variations. In contrast,
discriminative models learn probabilities of the action classes con-
ditioned on the observations. They do not model a class but rather
focus on differences between classes. We discuss generative and
discriminative models in Sections 3.2.2 and 3.2.3, respectively. Dy-
namic Time Warping (DTW) can be regarded as a generative mod-
el, but it is used between pairs of sequences. Due to this rather
different use, we discuss DTW separately in Section 3.2.1.

3.2.1. Dynamic time warping
Dynamic time warping is a distance measure between two se-

quences, possibly with different lengths. It simultaneously takes
into account a pair-wise distance between corresponding frames
and the sequence alignment cost. For a low alignment cost, two
sequences need to be segmented similarly in time and be per-
formed at similar rates. Dynamic programming is used to calcu-
late the optimal alignment. Veeraraghavan et al. [148] use DTW
for sequences of normalized shape features. As these lie on a
spherical manifold, the distance function between shapes is
adapted. In [147], they also address the alignment by considering
the space of temporal warping functions for a given activity. Yao
et al. [173] introduce dynamic space–time warping where, in
addition to the temporal dimension, sequences are also aligned
on image position and scale. A related distance is longest com-
mon subsequence (LCS). It only takes into account similar ele-
ments of both sequences and results in an increased distance
when more inserts or deletions are necessary. LCS has been used
in [50,172].
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3.2.2. Generative models
Hidden Markov models (HMM) use hidden states that corre-

spond to different phases in the performance of an action. They
model state transition probabilities and observation probabilities.
To keep the modeling of the joint distribution over representation
and labels tractable, two independence assumptions are intro-
duced. First, state transitions are conditioned only on the previous
state, not on the state history. This is the Markov assumption. Sec-
ond, observations are conditioned only on the current state, so sub-
sequent observations are considered independent.

HMMs have been used in a large number of works. Yamato et al.
[170] cluster grid-based silhouette mesh features to form a com-
pact codebook of observations. They train HMMs for the recogni-
tion of different tennis strokes. Training of an HMM can be done
efficiently using the Baum–Welch algorithm. The Viterbi algorithm
is used to determine the probability of observing a given sequence.
When using a single HMM per action, action recognition becomes
finding the action HMM that could generate the observed sequence
with the highest probability.

Feng and Perona [36] use a static HMM where keyposes corre-
spond to states. They effectively train the dynamics at the cost of
reduced flexibility due to a simpler observation model. Weinland
et al. [164] construct a codebook by discriminatively selecting tem-
plates. In the HMM, they condition the observation on the view-
point. Related work by Lv and Nevatia [82] uses an Action Net,
which is constructed by considering key poses and viewpoints.
Transitions between views and poses are encoded explicitly. Ah-
mad and Lee [4] take into account multiple viewpoints and use a
multi-dimensional HMM to deal with the different observations.
Instead of modeling viewpoint, Lu and Little [80] use a hybrid
HMM where one process denotes the closest shape-motion tem-
plate while the other models position, velocity and scale of the per-
son in the image. Ramanan and Forsyth [115] track persons in 2D
by learning the appearance of the body-parts. In [114], these 2D
tracks are subsequently lifted to 3D using stored snippets of anno-
tated pose and motion. An HMM is used to infer the action from
these labeled codeword motions.

Instead of modeling the human body as a single observation,
one HMM can be used for each every body-part. This makes train-
ing easier, as the combinatorial complexity is reduced to learning
dynamical models for each limb individually. In addition, compos-
ite movements that are not in the training set can be recognized.
_Ikizler and Forsyth [57] use the 3D body-part trajectories that are
obtained using [114]. They construct HMMs for the legs and arms
individually, where 3D trajectories are the observations. For each
limb, states of different action models with similar emission prob-
abilities are linked, which allows for automatic segmentation of ac-
tions. A similar approach has been taken by Chakraborty et al. [15],
where arms, legs and head are found with a set of view-dependent
detectors. Lv and Nevatia [81] also use 3D joint locations but con-
struct a large number of action HMMs, each of which uses a subset
of all joints. This results in a large number of weak classifiers. They
use AdaBoost to form the final classifier.

Several works aim at improving pose recovery by modeling the
dynamics for each class of movement. These approaches can also
be used for action recognition by selecting the action class whose
corresponding model has the highest probability of generating
the observed sequence. Peursum et al. [107] use a factored-state
hierarchical HMM (FS-HHMM) to jointly model image observa-
tions and body dynamics per action class. Caillette et al. [14] uses
a variable length Markov model (VLMM) to model observations
and 3D poses for each action. Natarajan and Nevatia [92] introduce
a hierarchical variable transition HMM (HVT–HMM) which con-
sists of three layers that model composite actions, primitive ac-
tions and poses. Due to the variable window, actions can be
recognized with low latency.
Grammars are generative models that specify explicitly in
which order parts of an action can be observed. Ogale et al. [99]
construct a probabilistic context-free grammar where probabilities
of pose pairs are learned from training data, while small viewpoint
changes are allowed. Turaga et al. [144] model an action as a cas-
cade of linear time invariant (LTI) dynamical models. In an unsu-
pervised way, they simultaneously learn the dynamical models
and temporally segment a sequence. Similar models are grouped
into action prototypes. A cascade structure is formed by learning
n-grams over the sequence of action prototypes. This cascade can
be regarded as a grammar that describes the production rules for
each action in terms of a sequence of action prototypes.

3.2.3. Discriminative models
The independence assumptions in HMMs assume that observa-

tions in time are independent, which is often not the case. Discrim-
inative models overcome this issue by modeling a conditional
distribution over action labels given the observations. These mod-
els can take into account multiple observations on different time-
scales. They can be trained to discriminate between action
classes rather than learning to model each class individually, as
in generative models. Discriminative models are suitable for classi-
fication of related actions that could easily be confused using a
generative approach. In general, discriminative graphical models
require many training sequences to robustly determine all
parameters.

Conditional random fields (CRF) are discriminative models that
can use multiple overlapping features. Sminchisescu et al. [134]
use a linear chain CRF, where the state dependency is first-order.
They compare CRFs with HMMs and maximum entropy Markov
models (MEMM). The latter are related to the CRF, but are directed
models instead. They suffer from the label bias problem, where
states with few outgoing transitions are favored. A more detailed
comparison between CRFs and MEMMs is given in [70]. Sminchise-
scu et al. show that CRFs outperform both MEMMs and HMMs
when using larger windows, which take into account more of the
observation history. These results are partly supported by Men-
doza and Pérez de la Blanca [86], who obtain better results for CRFs
compared to HMMs using shape features, especially for related ac-
tions (e.g. walking and jogging). Interestingly, when using motion
features, HMMs outperformed CRFs.

Variants of CRFs have also been proposed. Wang and Suter [156]
use a factorial CRF (FCRF), a generalization of the CRF. Structure
and parameters are repeated over a sequence of state vectors,
which can be regarded as a distributed state representation. This
allows for the modeling of complex interactions between labels
and long-range dependencies, while inference is approximate in-
stead of exact as in CRFs. Zhang and Gong [178] use a hidden
CRF (HCRF, [111]) to label sequences as a whole. They introduce
a HMM pathing stage, which ensures that learning the HCRF
parameters is globally optimal. Natarajan and Nevatia [93] use a
two-layer model where the top level encodes action and view-
point. On the lower level, CRFs are used to encode the action and
viewpoint-specific pose observation. Ning et al. [97] combine a dis-
criminative pose recovery approach with a CRF for action recogni-
tion. The parameters of both layers are jointly optimized. No
image-to-pose data is required during training, but has been
shown to improve performance. Shi et al. [133] use a semi-Markov
model (SMM), which is suitable for both action segmentation and
action recognition.

3.3. Action detection

Action detection approaches do not explicitly model the image
representation of a person in the image, nor do they model action
dynamics. Rather, they correlate an observed sequence to labeled
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video sequences. Such work is aimed at the detection of actions,
rather than at their recognition. However, these works share many
similarities to those previously discussed and we will describe
them briefly in this section. The detection of cyclic actions is dis-
cussed in Section 3.3.1.

Zelnik-Manor and Irani [177] describe video segments as bag-
of-words encoded over different temporal scales. Each word is
the gradient orientation of a local patch. Patches with low tempo-
ral variance are ignored, which focuses the representation on mov-
ing areas. This restricts the approach to detection against non-
moving backgrounds. Ning et al. [96] use Gabor responses instead
of gradient orientations. In both works, a histogram distance mea-
sure is used.

Shechtman and Irani [130] consider the spatial dimension by
correlating space–time patches over different locations in space
and time. They use patches that locally describe motion. To avoid
calculating the optical flow, a rank-based constraint is used di-
rectly on the intensity information of the cuboids. Matikainen
et al. [85] approximate this approach but use motion words and
a look-up table to allow for faster correlation. More recently,
Shechtman and Irani [129], propose a self-similarity descriptor
that correlates local patches. The descriptor is invariant to color,
texture and can deal with small spatial variations. A query tem-
plate is described by an ensemble of all descriptors. Seo et al.
[128] use space–time local steering kernels, which can be regarded
as a generalization of [129]. By applying PCA on a collection of ker-
nels, they obtain the most salient features.

The above methods require that a window is sled through time
and space, which makes them computationally expensive. This is-
sue is addressed by Hu et al. [51], who describe a sequence as a col-
lection of windows of different temporal scales and positions and
use multiple-instance learning to learn the binary action classifier.
Yuan et al. [176] detect space–time interest points and classify
whether each is part of the query action. An efficient branch-
and-bound approach is taken to search for the subvolume that
has the maximum of positively labeled points.

Junejo et al. [61] observe that the temporal self-similarity ma-
trix of an action seen from different viewpoints is very similar
(see Fig. 4). They describe a sequence as a histogram of local
descriptors, calculated from the self-similarity matrix. Boiman
and Irani [12] take a different approach by describing a sequence
as an ensemble of local spatial or spatio-temporal patches. A sim-
ilarity score is based on the composition of a query sequence from
these patches. Similar sequences require less but larger patches.

3.3.1. Cyclic actions
Some works assume motion periodicity, which allows for tem-

poral segmentation by analyzing the self-similarity matrix. Seitz
and Dyer [127] introduce a periodicity detection algorithm that
is able to cope with small variations in the temporal extent of a
motion. They track markers and use an affine distance function.
Fig. 4. Example of cross-correlation between viewpoints, (a and c) a golf swing seen from
the similarity in structure (reprinted from [61], � Springer-Verlag, 2008).
Cutler and Davis [21] perform a frequency transform on the self-
similarity matrix of a tracked object. Peaks in the spectrum corre-
spond to the frequency of the motion. The type of action is deter-
mined by analyzing the matrix structure. Polana and Nelson [108]
also use Fourier transforms to find the periodicity and temporally
segment the video. They match motion features to labeled 2D mo-
tion templates.

4. Discussion

In this section, we summarize the state of the art, point out lim-
itations and identify promising directions for future research to ad-
dress these limitations.

Global image representations have proven to yield good results,
and they can usually be extracted with low cost. However, their
applicability is limited to scenarios where ROIs can be determined
reliably. Moreover, they cannot deal with occlusions. Local repre-
sentations address these issues. Initial work used bag-of-feature
representations but more recent work takes into account spatial
and temporal correlations between patches. Still, the question
how to deal with more severe occlusions has largely been ignored.

Most of the reported work is restricted to fixed and known
viewpoints, which severely limits its applicability. The use of mul-
tiple view-dependent action models solves this issue but at the
cost of increased training complexity. Recently, researchers have
begun to address the recognition of actions from viewpoints for
which there is no corresponding training data [33,34,61].

Regarding classification, we discussed direct classification and
temporal state-space models. In the former, temporal variations
are not explicitly modeled, which proved to be a reasonable ap-
proach in many cases. For more complex motions, it is question-
able whether this approach is suitable. Generative state-space
models such as HMMs can model temporal variations but have dif-
ficulties distinguishing between related actions (e.g. jogging and
walking). In this respect, discriminative graphical approaches are
more suitable. In future work, the flexibility of the classifier with
respect to adding or removing action classes from the repertoire
will play a more important role.

Many approaches assume that the video is readily segmented
into sequences that contain one instance of a known set of action
labels. Often, it is also assumed that the location and approximate
scale of the person in the video is known or can easily be esti-
mated. The action detection task is thus ignored, which limits the
applicability to situations where segmentation in space and time
is possible. While several works (e.g. [51,176]) have addressed this
topic, it remains a challenge to perform action detection for online
applications.

Another aspect of human action recognition is the current eval-
uation practice. Publicly available datasets (see Section 1.4) have
shaped the domain by allowing for objective comparison between
approaches on common training and test data. They also allow for
two different viewpoints, (b and d) the corresponding self-similarity matrices. Note
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better understanding of methods since researchers are aware of
the challenges of each set. However, algorithms may be biased to
a particular dataset. This may lead to complex approaches that per-
form better on a specific dataset but may be less generally
applicable.

Also, given the increasing level of sophistication of action recog-
nition algorithms, larger and more complex datasets should direct
research efforts to realistic settings. Initially, datasets were not fo-
cused on an application domain. However, action recognition in
surveillance, human–computer interaction and video retrieval
poses different challenges. Human–computer interaction applica-
tions require real-time processing, missed detections in surveil-
lance are unacceptable and video retrieval applications often
cannot benefit from a controlled setting and require a query inter-
face (e.g. [139]). Currently, there is a shift towards a diversification
in datasets. The HOHA dataset [73] targets action recognition in
movies, whereas the UFC sport dataset [120] contains sport foot-
age. Such a diversification is beneficial as it allows for realistic
recording settings while focusing on relevant action classes. More-
over, the use of application-specific datasets allows for the use of
evaluation metrics that go beyond precision and recall, such as
speed of processing or detection accuracy. Still, the compilation
or recording of datasets that contain sufficient variation in move-
ments, recording settings and environmental settings remains
challenging and should continue to be a topic of discussion.

Related is the issue of labeling data. For increasingly large and
complex datasets, manual labeling will become prohibitive. Auto-
matic labeling using video subtitles [48] and movie scripts
[20,26,73] is possible in some domains, but still requires manual
verification. When using an incremental approach to image har-
vesting such as in [55], the initial set will largely affect the final
variety of action performances.

We discussed vision-based human action recognition in this
survey but a multi-modal approach could improve recognition in
some domains, for example in movie analysis. Also, context such
as background, camera motion, interaction between persons and
person identity provides informative cues [83].

Given the current state of the art and motivated by the broad
range of applications that can benefit from robust human action
recognition, it is expected that many of these challenges will be ad-
dressed in the near future. This would be a big step towards the
fulfillment of the longstanding promise to achieve robust auto-
matic recognition and interpretation of human action.
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