
11 PLANNING

In which we see how an agent can take advantage of the structure of a problem to
construct complex plans of action.

The task of coming up with a sequence of actions that will achieve a goal is called planning.
We have seen two examples of planning agents so far: the search-based problem-solving
agent of Chapter 3 and the logical planning agent of Chapter 10. This chapter is concerned
primarily with scaling up to complex planning problems that defeat the approaches we have
seen so far.

Section 11.1 develops an expressive yet carefully constrained language for representing
planning problems, including actions and states. The language is closely related to the propo-
sitional and first-order representations of actions in Chapters 7 and 10. Section 11.2 shows
how forward and backward search algorithms can take advantage of this representation, pri-
marily through accurate heuristics that can be derived automatically from the structure of the
representation. (This is analogous to the way in which effective heuristics were constructed
for constraint satisfaction problems in Chapter 5.) Sections 11.3 through 11.5 describe plan-
ning algorithms that go beyond forward and backward search, taking advantage of the rep-
resentation of the problem. In particular, we explore approaches that are not constrained to
consider only totally ordered sequences of actions.

For this chapter, we consider only environments that are fully observable, deterministic,
finite, static (change happens only when the agent acts), and discrete (in time, action, objects,
and effects). These are called classical planning environments. In contrast, nonclassicalCLASSICAL

PLANNING

planning is for partially observable or stochastic environments and involves a different set of
algorithms and agent designs, outlined in Chapters 12 and 17.

11.1 THE PLANNING PROBLEM

Let us consider what can happen when an ordinary problem-solving agent using standard
search algorithms—depth-first, A∗, and so on—comes up against large, real-world problems.
That will help us design better planning agents.
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376 Chapter 11. Planning

The most obvious difficulty is that the problem-solving agent can be overwhelmed by
irrelevant actions. Consider the task of buying a copy of AI: A Modern Approach from an
online bookseller. Suppose there is one buying action for each 10-digit ISBN number, for a
total of 10 billion actions. The search algorithm would have to examine the outcome states
of all 10 billion actions to find one that satisfies the goal, which is to own a copy of ISBN
0137903952. A sensible planning agent, on the other hand, should be able to work back
from an explicit goal description such as Have(ISBN 0137903952) and generate the action
Buy(ISBN 0137903952) directly. To do this, the agent simply needs the general knowledge
that Buy(x) results in Have(x). Given this knowledge and the goal, the planner can decide
in a single unification step that Buy(ISBN 0137903952) is the right action.

The next difficulty is finding a good heuristic function. Suppose the agent’s goal is to
buy four different books online. Then there will be 1040 plans of just four steps, so searching
without an accurate heuristic is out of the question. It is obvious to a human that a good
heuristic estimate for the cost of a state is the number of books that remain to be bought;
unfortunately, this insight is not obvious to a problem-solving agent, because it sees the goal
test only as a black box that returns true or false for each state. Therefore, the problem-
solving agent lacks autonomy; it requires a human to supply a heuristic function for each new
problem. On the other hand, if a planning agent has access to an explicit representation of the
goal as a conjunction of subgoals, then it can use a single domain-independent heuristic: the
number of unsatisfied conjuncts. For the book-buying problem, the goal would be Have(A)∧
Have(B) ∧ Have(C) ∧ Have(D), and a state containing Have(A) ∧ Have(C) would have
cost 2. Thus, the agent automatically gets the right heuristic for this problem, and for many
others. We shall see later in the chapter how to construct more sophisticated heuristics that
examine the available actions as well as the structure of the goal.

Finally, the problem solver might be inefficient because it cannot take advantage of
problem decomposition. Consider the problem of delivering a set of overnight packages toPROBLEM

DECOMPOSITION

their respective destinations, which are scattered across Australia. It makes sense to find out
the nearest airport for each destination and divide the overall problem into several subprob-
lems, one for each airport. Within the set of packages routed through a given airport, whether
further decomposition is possible depends on the destination city. We saw in Chapter 5 that
the ability to do this kind of decomposition contributes to the efficiency of constraint satisfac-
tion problem solvers. The same holds true for planners: in the worst case, it can take O(n!)
time to find the best plan to deliver n packages, but only O((n/k)!× k) time if the problem
can be decomposed into k equal parts.

As we noted in Chapter 5, perfectly decomposable problems are delicious but rare.1

The design of many planning systems—particularly the partial-order planners described in
Section 11.3—is based on the assumption that most real-world problems are nearly decom-
posable. That is, the planner can work on subgoals independently, but might need to doNEARLY

DECOMPOSABLE

some additional work to combine the resulting subplans. For some problems, this assump-

1 Notice that even the delivery of a package is not perfectly decomposable. There may be cases in which it
is better to assign packages to a more distant airport if that renders a flight to the nearest airport unnecessary.
Nevertheless, most delivery companies prefer the computational and organizational simplicity of sticking with
decomposed solutions.
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tion breaks down because working on one subgoal is likely to undo another subgoal. These
interactions among subgoals are what makes puzzles (like the 8-puzzle) puzzling.

The language of planning problems

The preceding discussion suggests that the representation of planning problems—states, ac-
tions, and goals—should make it possible for planning algorithms to take advantage of the
logical structure of the problem. The key is to find a language that is expressive enough to
describe a wide variety of problems, but restrictive enough to allow efficient algorithms to
operate over it. In this section, we first outline the basic representation language of classical
planners, known as the STRIPS language.2 Later, we point out some of the many possible
variations in STRIPS-like languages.

Representation of states. Planners decompose the world into logical conditions and
represent a state as a conjunction of positive literals. We will consider propositional literals;
for example, Poor ∧ Unknown might represent the state of a hapless agent. We will also
use first-order literals; for example, At(Plane1,Melbourne) ∧ At(Plane2,Sydney) might
represent a state in the package delivery problem. Literals in first-order state descriptions
must be ground and function-free. Literals such as At(x, y) or At(Father(Fred),Sydney)
are not allowed. The closed-world assumption is used, meaning that any conditions that are
not mentioned in a state are assumed false.

Representation of goals. A goal is a partially specified state, represented as a conjunc-
tion of positive ground literals, such as Rich ∧ Famous or At(P2,Tahiti). A propositional
state s satisfies a goal g if s contains all the atoms in g (and possibly others). For example,GOAL SATISFACTION

the state Rich ∧ Famous ∧Miserable satisfies the goal Rich ∧ Famous .
Representation of actions. An action is specified in terms of the preconditions that

must hold before it can be executed and the effects that ensue when it is executed. For
example, an action for flying a plane from one location to another is:

Action(Fly(p, from, to),
PRECOND:At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT:¬At(p, from) ∧ At(p, to))

This is more properly called an action schema, meaning that it represents a number of dif-ACTION SCHEMA

ferent actions that can be derived by instantiating the variables p, from, and to to different
constants. In general, an action schema consists of three parts:

• The action name and parameter list—for example, Fly(p, from, to)—serves to identify
the action.

• The precondition is a conjunction of function-free positive literals stating what mustPRECONDITION

be true in a state before the action can be executed. Any variables in the precondition
must also appear in the action’s parameter list.

• The effect is a conjunction of function-free literals describing how the state changesEFFECT

when the action is executed. A positive literal P in the effect is asserted to be true in

2 STRIPS stands for STanford Research Institute Problem Solver.
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the state resulting from the action, whereas a negative literal ¬P is asserted to be false.
Variables in the effect must also appear in the action’s parameter list.

To improve readability, some planning systems divide the effect into the add list for positiveADD LIST

literals and the delete list for negative literals.DELETE LIST

Having defined the syntax for representations of planning problems, we can now define
the semantics. The most straightforward way to do this is to describe how actions affect
states. (An alternative method is to specify a direct translation into successor-state axioms,
whose semantics comes from first-order logic; see Exercise 11.3.) First, we say that an action
is applicable in any state that satisfies the precondition; otherwise, the action has no effect.APPLICABLE

For a first-order action schema, establishing applicability will involve a substitution θ for the
variables in the precondition. For example, suppose the current state is described by

At(P1, JFK ) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK ) ∧Airport(SFO) .

This state satisfies the precondition

At(p, from) ∧ Plane(p) ∧Airport(from) ∧Airport(to)

with substitution {p/P1, from/JFK , to/SFO} (among others—see Exercise 11.2). Thus,
the concrete action Fly(P1, JFK ,SFO) is applicable.

Starting in state s, the result of executing an applicable action a is a state s′ that is theRESULT

same as s except that any positive literal P in the effect of a is added to s′ and any negative
literal ¬P is removed from s′. Thus, after Fly(P1, JFK ,SFO), the current state becomes

At(P1,SFO) ∧At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK ) ∧Airport(SFO) .

Note that if a positive effect is already in s it is not added twice, and if a negative effect is
not in s, then that part of the effect is ignored. This definition embodies the so-called STRIPS

assumption: that every literal not mentioned in the effect remains unchanged. In this way,STRIPS ASSUMPTION

STRIPS avoids the representational frame problem described in Chapter 10.
Finally, we can define the solution for a planning problem. In its simplest form, this isSOLUTION

just an action sequence that, when executed in the initial state, results in a state that satisfies
the goal. Later in the chapter, we will allow solutions to be partially ordered sets of actions,
provided that every action sequence that respects the partial order is a solution.

Expressiveness and extensions

The various restrictions imposed by the STRIPS representation were chosen in the hope of
making planning algorithms simpler and more efficient, without making it too difficult to
describe real problems. One of the most important restrictions is that literals be function-
free. With this restriction, we can be sure that any action schema for a given problem can
be propositionalized—that is, turned into a finite collection of purely propositional action
representations with no variables. (See Chapter 9 for more on this topic.) For example, in
the air cargo domain for a problem with 10 planes and five airports, we could translate the
Fly(p, from, to) schema into 10 × 5 × 5 = 250 purely propositional actions. The planners
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STRIPS Language ADL Language

Only positive literals in states: Positive and negative literals in states:
Poor ∧Unknown ¬Rich ∧ ¬Famous

Closed World Assumption: Open World Assumption:
Unmentioned literals are false. Unmentioned literals are unknown.

Effect P ∧ ¬Q means add P and delete Q. Effect P ∧ ¬Q means add P and ¬Q
and delete ¬P and Q.

Only ground literals in goals: Quantified variables in goals:
Rich ∧ Famous ∃xAt(P1, x) ∧At(P2, x) is the goal of

having P1 and P2 in the same place.

Goals are conjunctions: Goals allow conjunction and disjunction:
Rich ∧ Famous ¬Poor ∧ (Famous ∨ Smart)

Effects are conjunctions. Conditional effects allowed:
when P : E means E is an effect
only if P is satisfied.

No support for equality. Equality predicate (x = y) is built in.

No support for types. Variables can have types, as in (p : Plane).

Figure 11.1 Comparison of STRIPS and ADL languages for representing planning prob-
lems. In both cases, goals behave as the preconditions of an action with no parameters.

in Sections 11.4 and 11.5 work directly with propositionalized descriptions. If we allow
function symbols, then infinitely many states and actions can be constructed.

In recent years, it has become clear that STRIPS is insufficiently expressive for some
real domains. As a result, many language variants have been developed. Figure 11.1 briefly
describes one important one, the Action Description Language or ADL, by comparing it withADL

the basic STRIPS language. In ADL, the Fly action could be written as

Action(Fly(p : Plane, from : Airport , to : Airport),
PRECOND:At(p, from) ∧ (from 6= to)
EFFECT:¬At(p, from) ∧ At(p, to)) .

The notation p : Plane in the parameter list is an abbreviation for Plane(p) in the precondi-
tion; this adds no expressive power, but can be easier to read. (It also cuts down on the number
of possible propositional actions that can be constructed.) The precondition (from 6= to) ex-
presses the fact that a flight cannot be made from an airport to itself. This could not be
expressed succinctly in STRIPS.

The various planning formalisms used in AI have been systematized within a standard
syntax called the the Planning Domain Definition Language, or PDDL. This language allows
researchers to exchange becnchmark problems and compare results. PDDL includes sublan-
guages for STRIPS, ADL, and the hierarchical task networks we will see in Chapter 12.
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Init(At(C1, SFO) ∧ At(C2, JFK ) ∧ At(P1, SFO) ∧ At(P2, JFK )
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK ) ∧ Airport(SFO))

Goal(At(C1, JFK ) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.2 A STRIPS problem involving transportation of air cargo between airports.

The STRIPS and ADL notations are adequate for many real domains. The subsections
that follow show some simple examples. There are still some significant restrictions, how-
ever. The most obvious is that they cannot represent in a natural way the ramifications of
actions. For example, if there are people, packages, or dust motes in the airplane, then they
too change location when the plane flies. We can represent these changes as the direct ef-
fects of flying, whereas it seems more natural to represent the location of the plane’s contents
as a logical consequence of the location of the plane. We will see more examples of such
state constraints in Section 11.5. Classical planning systems do not even attempt to addressSTATE CONSTRAINTS

the qualification problem: the problem of unrepresented circumstances that could cause an
action to fail. We will see how to address qualifications in Chapter 12.

Example: Air cargo transport

Figure 11.2 shows an air cargo transport problem involving loading and unloading cargo onto
and off of planes and flying it from place to place. The problem can be defined with three
actions: Load , Unload , and Fly . The actions affect two predicates: In(c, p) means that cargo
c is inside plane p, and At(x, a) means that object x (either plane or cargo) is at airport a.
Note that cargo is not At anywhere when it is In a plane, so At really means “available
for use at a given location.” It takes some experience with action definitions to handle such
details consistently. The following plan is a solution to the problem:

[Load(C1, P1,SFO),Fly(P1,SFO , JFK ),
Load(C2, P2, JFK ),Fly(P2, JFK ,SFO)] .

Our representation is pure STRIPS. In particular, it allows a plane to fly to and from the same
airport. Inequality literals in ADL could prevent this.
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Example: The spare tire problem

Consider the problem of changing a flat tire. More precisely, the goal is to have a good spare
tire properly mounted onto the car’s axle, where the initial state has a flat tire on the axle and
a good spare tire in the trunk. To keep it simple, our version of the problem is a very abstract
one, with no sticky lug nuts or other complications. There are just four actions: removing
the spare from the trunk, removing the flat tire from the axle, putting the spare on the axle,
and leaving the car unattended overnight. We assume that the car is in a particularly bad
neighborhood, so that the effect of leaving it overnight is that the tires disappear.

The ADL description of the problem is shown in Figure 11.3. Notice that it is purely
propositional. It goes beyond STRIPS in that it uses a negated precondition, ¬At(Flat ,Axle),
for the PutOn(Spare,Axle) action. This could be avoided by using Clear(Axle) instead, as
we will see in the next example.

Init(At(Flat ,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk),

PRECOND: At(Spare,Trunk)
EFFECT: ¬ At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat ,Axle),
PRECOND: At(Flat ,Axle)
EFFECT: ¬ At(Flat ,Axle) ∧ At(Flat ,Ground))

Action(PutOn(Spare, Axle),
PRECOND: At(Spare,Ground) ∧ ¬ At(Flat ,Axle)
EFFECT: ¬ At(Spare,Ground) ∧ At(Spare,Axle))

Action(LeaveOvernight ,
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)

∧ ¬ At(Flat ,Ground) ∧ ¬ At(Flat ,Axle))

Figure 11.3 The simple spare tire problem.

Example: The blocks world

One of the most famous planning domains is known as the blocks world. This domainBLOCKS WORLD

consists of a set of cube-shaped blocks sitting on a table.3 The blocks can be stacked, but
only one block can fit directly on top of another. A robot arm can pick up a block and move
it to another position, either on the table or on top of another block. The arm can pick up
only one block at a time, so it cannot pick up a block that has another one on it. The goal will
always be to build one or more stacks of blocks, specified in terms of what blocks are on top
of what other blocks. For example, a goal might be to get block A on B and block C on D.

3 The blocks world used in planning research is much simpler than SHRDLU’s version, shown on page 20.
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We will use On(b, x) to indicate that block b is on x, where x is either another block or
the table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order
logic, this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). These could be stated as
preconditions in ADL. We can stay within the STRIPS language, however, by introducing a
new predicate, Clear(x), that is true when nothing is on x.

The action Move moves a block b from x to y if both b and y are clear. After the move
is made, x is clear but y is not. A formal description of Move in STRIPS is

Action(Move(b, x, y),
PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),
EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this action does not maintain Clear properly when x or y is the table. When
x=Table, this action has the effect Clear(Table), but the table should not become clear, and
when y =Table, it has the precondition Clear(Table), but the table does not have to be clear
to move a block onto it. To fix this, we do two things. First, we introduce another action to
move a block b from x to the table:

Action(MoveToTable(b, x),
PRECOND:On(b, x) ∧ Clear(b)),
EFFECT:On(b,Table) ∧ Clear(x) ∧ ¬On(b, x)) .

Second, we take the interpretation of Clear(b) to be “there is a clear space on b to hold a
block.” Under this interpretation, Clear(Table) will always be true. The only problem is that
nothing prevents the planner from using Move(b, x,Table) instead of MoveToTable(b, x).
We could live with this problem—it will lead to a larger-than-necessary search space, but will
not lead to incorrect answers—or we could introduce the predicate Block and add Block(b)∧
Block(y) to the precondition of Move.

Finally, there is the problem of spurious actions such as Move(B,C,C), which should
be a no-op, but which has contradictory effects. It is common to ignore such problems,
because they seldom cause incorrect plans to be produced. The correct approach is add in-
equality preconditions as shown in Figure 11.4.

11.2 PLANNING WITH STATE-SPACE SEARCH

Now we turn our attention to planning algorithms. The most straightforward approach is to
use state-space search. Because the descriptions of actions in a planning problem specify
both preconditions and effects, it is possible to search in either direction: either forward from
the initial state or backward from the goal, as shown in Figure 11.5. We can also use the
explicit action and goal representations to derive effective heuristics automatically.

Forward state-space search

Planning with forward state-space search is similar to the problem-solving approach of Chap-
ter 3. It is sometimes called progression planning, because it moves in the forward direction.PROGRESSION
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Init(On(A,Table) ∧ On(B,Table) ∧ On(C, Table)
∧ Block(A) ∧ Block(B) ∧ Block(C)
∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))
Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧
(b 6= x) ∧ (b 6= y) ∧ (x 6= y),

EFFECT: On(b, y) ∧ Clear(x) ∧ ¬ On(b, x) ∧ ¬ Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b 6= x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b, x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [Move(B,Table, C),Move(A,Table, B)].

(a)

(b)



At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the
initial state.

We start in the problem’s initial state, considering sequences of actions until we find a se-
quence that reaches a goal state. The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state from the planning problem. In general,
each state will be a set of positive ground literals; literals not appearing are false.
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• The actions that are applicable to a state are all those whose preconditions are satisfied.
The successor state resulting from an action is generated by adding the positive effect
literals and deleting the negative effect literals. (In the first-order case, we must apply
the unifier from the preconditions to the effect literals.) Note that a single successor
function works for all planning problems—a consequence of using an explicit action
representation.
• The goal test checks whether the state satisfies the goal of the planning problem.
• The step cost of each action is typically 1. Although it would be easy to allow different

costs for different actions, this is seldom done by STRIPS planners.

Recall that, in the absence of function symbols, the state space of a planning problem is finite.
Therefore, any graph search algorithm that is complete—for example, A∗—will be a complete
planning algorithm.

From the earliest days of planning research (around 1961) until recently (around 1998)
it was assumed that forward state-space search was too inefficient to be practical. It is not
hard to come up with reasons why—just refer back to the start of Section 11.1. First, forward
search does not address the irrelevant action problem—all applicable actions are considered
from each state. Second, the approach quickly bogs down without a good heuristic. Consider
an air cargo problem with 10 airports, where each airport has 5 planes and 20 pieces of cargo.
The goal is to move all the cargo at airport A to airport B. There is a simple solution to the
problem: load the 20 pieces of cargo into one of the planes at A, fly the plane to B, and unload
the cargo. But finding the solution can be difficult because the average branching factor is
huge: each of the 50 planes can fly to 9 other airports, and each of the 200 packages can be
either unloaded (if it is loaded), or loaded into any plane at its airport (if it is unloaded). On
average, let’s say there are about 1000 possible actions, so the search tree up to the depth of
the obvious solution has about 100041 nodes. It is clear that a very accurate heuristic will be
needed to make this kind of search efficient. We will discuss some possible heuristics after
looking at backward search.

Backward state-space search

Backward state-space search was described briefly as part of bidirectional search in Chapter 3.
We noted there that backward search can be difficult to implement when the goal states are
described by a set of constraints rather than being listed explicitly. In particular, it is not
always obvious how to generate a description of the possible predecessors of the set of goal
states. We will see that the STRIPS representation makes this quite easy because sets of states
can be described by the literals that must be true in those states.

The main advantage of backward search is that it allows us to consider only relevantRELEVANCE

actions. An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the
goal. For example, the goal in our 10-airport air cargo problem is to have 20 pieces of cargo
at airport B, or more precisely,

At(C1, B) ∧ At(C2, B) ∧ . . . ∧At(C20, B) .

Now consider the conjunct At(C1, B). Working backwards, we can seek actions that have
this as an effect. There is only one: Unload(C1, p, B), where plane p is unspecified.
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Notice that there are many irrelevant actions that can also lead to a goal state. For
example, we can fly an empty plane from JFK to SFO ; this action reaches a goal state from
a predecessor state in which the plane is at JFK and all the goal conjuncts are satisfied. A
backward search that allows irrelevant actions will still be complete, but it will be much less
efficient. If a solution exists, it will be found by a backward search that allows only relevant
actions. The restriction to relevant actions means that backward search often has a much
lower branching factor than forward search. For example, our air cargo problem has about
1000 actions leading forward from the initial state, but only 20 actions working backward
from the goal.

Searching backwards is sometimes called regression planning. The principal questionREGRESSION

in regression planning is this: what are the states from which applying a given action leads to
the goal? Computing the description of these states is called regressing the goal through the
action. To see how to do it, consider the air cargo example. We have the goal

At(C1, B) ∧ At(C2, B) ∧ . . . ∧At(C20, B)

and the relevant action Unload(C1, p, B), which achieves the first conjunct. The action will
work only if its preconditions are satisfied. Therefore, any predecessor state must include
these preconditions: In(C1, p) ∧ At(p,B). Moreover, the subgoal At(C1, B) should not be
true in the predecessor state.4 Thus, the predecessor description is

In(C1, p) ∧At(p,B) ∧At(C2, B) ∧ . . . ∧ At(C20, B) .

In addition to insisting that actions achieve some desired literal, we must insist that the actions
not undo any desired literals. An action that satisfies this restriction is called consistent. ForCONSISTENCY

example, the action Load(C2, p) would not be consistent with the current goal, because it
would negate the literal At(C2, B).

Given definitions of relevance and consistency, we can describe the general process of
constructing predecessors for backward search. Given a goal description G, let A be an action
that is relevant and consistent. The corresponding predecessor is as follows:

• Any positive effects of A that appear in G are deleted.

• Each precondition literal of A is added, unless it already appears.

Any of the standard search algorithms can be used to carry out the search. Termination occurs
when a predecessor description is generated that is satisfied by the initial state of the planning
problem. In the first-order case, satisfaction might require a substitution for variables in the
predecessor description. For example, the predecessor description in the preceding paragraph
is satisfied by the initial state

In(C1, P12) ∧ At(P12, B) ∧ At(C2, B) ∧ . . . ∧ At(C20, B)

with substitution {p/P12}. The substitution must be applied to the actions leading from the
state to the goal, producing the solution [Unload(C1, P12, B)].

4 If the subgoal were true in the predecessor state, the action would still lead to a goal state. On the other hand,
such actions are irrelevant because they do not make the goal true.
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Heuristics for state-space search

It turns out that neither forward nor backward search is efficient without a good heuristic
function. Recall from Chapter 4 that a heuristic function estimates the distance from a state
to the goal; in STRIPS planning, the cost of each action is 1, so the distance is the number of
actions. The basic idea is to look at the effects of the actions and at the goals that must be
achieved and to guess how many actions are needed to achieve all the goals. Finding the exact
number is NP hard, but it is possible to find reasonable estimates most of the time without too
much computation. We might also be able to derive an admissible heuristic—one that does
not overestimate. This could be used with A∗ search to find optimal solutions.

There are two approaches that can be tried. The first is to derive a relaxed problem
from the given problem specification, as described in Chapter 4. The optimal solution cost
for the relaxed problem—which we hope is very easy to solve—gives an admissible heuristic
for the original problem. The second approach is to pretend that a pure divide-and-conquer
algorithm will work. This is called the subgoal independence assumption: the cost of solvingSUBGOAL

INDEPENDENCE

a conjunction of subgoals is approximated by the sum of the costs of solving each subgoal
independently. The subgoal independence assumption can be optimistic or pessimistic. It
is optimistic when there are negative interactions between the subplans for each subgoal—
for example, when an action in one subplan deletes a goal achieved by another subplan.
It is pessimistic, and therefore inadmissible, when subplans contain redundant actions—for
instance, two actions that could be replaced by a single action in the merged plan.

Let us consider how to derive relaxed planning problems. Since explicit representations
of preconditions and effects are available, the process will work by modifying those repre-
sentations. (Compare this approach with search problems, where the successor function is
a black box.) The simplest idea is to relax the problem by removing all preconditions from
the actions. Then every action will always be applicable, and any literal can be achieved in
one step (if there is an applicable action—if not, the goal is impossible). This almost implies
that the number of steps required to solve a conjunction of goals is the number of unsatisfied
goals—almost but not quite, because (1) there may be two actions, each of which deletes
the goal literal achieved by the other, and (2) some action may achieve multiple goals. If we
combine our relaxed problem with the subgoal independence assumption, both of these issues
are assumed away and the resulting heuristic is exactly the number of unsatisfied goals.

In many cases, a more accurate heuristic is obtained by considering at least the positive
interactions arising from actions that achieve multiple goals. First, we relax the problem fur-
ther by removing negative effects (see Exercise 11.6). Then, we count the minimum number
of actions required such that the union of those actions’ positive effects satisfies the goal. For
example, consider

Goal(A ∧B ∧ C)
Action(X, EFFECT:A ∧ P )
Action(Y, EFFECT:B ∧ C ∧Q)
Action(Z, EFFECT:B ∧ P ∧Q) .

The minimal set cover of the goal {A,B,C} is given by the actions {X,Y }, so the set cover
heuristic returns a cost of 2. This improves on the subgoal independence assumption, which
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gives a heuristic value of 3. There is one minor irritation: the set cover problem is NP-
hard. A simple greedy set-covering algorithm is guaranteed to return a value that is within a
factor of log n of the true minimum value, where n is the number of literals in the goal, and
usually works much better than this in practice. Unfortunately, the greedy algorithm loses the
guarantee of admissibility for the heuristic.

It is also possible to generate relaxed problems by removing negative effects without
removing preconditions. That is, if an action has the effect A ∧ ¬B in the original problem,
it will have the effect A in the relaxed problem. This means that we need not worry about
negative interactions between subplans, because no action can delete the literals achieved
by another action. The solution cost of the resulting relaxed problem gives what is called the
empty-delete-list heuristic. The heuristic is quite accurate, but computing it involves actuallyEMPTY­DELETE­LIST

running a (simple) planning algorithm. In practice, the search in the relaxed problem is often
fast enough that the cost is worthwhile.

The heuristics described here can be used in either the progression or the regression
direction. At the time of writing, progression planners using the empty-delete-list heuristic
hold the lead. That is likely to change as new heuristics and new search techniques are ex-
plored. Since planning is exponentially hard,5 no algorithm will be efficient for all problems,
but many practical problems can be solved with the heuristic methods in this chapter—far
more than could be solved just a few years ago.

11.3 PARTIAL-ORDER PLANNING

Forward and backward state-space search are particular forms of totally ordered plan search.
They explore only strictly linear sequences of actions directly connected to the start or goal.
This means that they cannot take advantage of problem decomposition. Rather than work on
each subproblem separately, they must always make decisions about how to sequence actions
from all the subproblems. We would prefer an approach that works on several subgoals
independently, solves them with several subplans, and then combines the subplans.

Such an approach also has the advantage of flexibility in the order in which it constructs
the plan. That is, the planner can work on “obvious” or “important” decisions first, rather than
being forced to work on steps in chronological order. For example, a planning agent that is in
Berkeley and wishes to be in Monte Carlo might first try to find a flight from San Francisco
to Paris; given information about the departure and arrival times, it can then work on ways to
get to and from the airports.

The general strategy of delaying a choice during search is called a least commitmentLEAST COMMITMENT

strategy. There is no formal definition of least commitment, and clearly some degree of
commitment is necessary, lest the search would make no progress. Despite the informality,
least commitment is a useful concept for analyzing when decisions should be made in any
search problem.

5 Technically, STRIPS-style planning is PSPACE-complete unless actions have only positive preconditions and
only one effect literal (Bylander, 1994).
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Our first concrete example will be much simpler than planning a vacation. Consider
the simple problem of putting on a pair of shoes. We can describe this as a formal planning
problem as follows:

Goal(RightShoeOn ∧ LeftShoeOn)
Init()
Action(RightShoe, PRECOND:RightSockOn, EFFECT:RightShoeOn)
Action(RightSock , EFFECT:RightSockOn)
Action(LeftShoe, PRECOND:LeftSockOn, EFFECT:LeftShoeOn)
Action(LeftSock , EFFECT:LeftSockOn) .

A planner should be able to come up with the two-action sequence RightSock followed by
RightShoe to achieve the first conjunct of the goal and the sequence LeftSock followed by
LeftShoe for the second conjunct. Then the two sequences can be combined to yield the final
plan. In doing this, the planner will be manipulating the two subsequences independently,
without committing to whether an action in one sequence is before or after an action in the
other. Any planning algorithm that can place two actions into a plan without specifying which
comes first is called a partial-order planner. Figure 11.6 shows the partial-order plan that isPARTIAL­ORDER

PLANNER

the solution to the shoes and socks problem. Note that the solution is represented as a graph
of actions, not a sequence. Note also the “dummy” actions called Start and Finish, which
mark the beginning and end of the plan. Calling them actions symplifies things, because
now every step of a plan is an action. The partial-order solution corresponds to six possible
total-order plans; each of these is called a linearization of the partial-order plan.LINEARIZATION

Partial-order planning can be implemented as a search in the space of partial-order
plans. (From now on, we will just call them “plans.”) That is, we start with an empty plan.
Then we consider ways of refining the plan until we come up with a complete plan that
solves the problem. The actions in this search are not actions in the world, but actions on
plans: adding a step to the plan, imposing an ordering that puts one action before another,
and so on.

We will define the POP algorithm for partial-order planning. It is traditional to write
out the POP algorithm as a stand-alone program, but we will instead formulate partial-order
planning as an instance of a search problem. This allows us to focus on the plan refinement
steps that can be applied, rather than worrying about how the algorithm explores the space. In
fact, a wide variety of uninformed or heuristic search methods can be applied once the search
problem is formulated.

Remember that the states of our search problem will be (mostly unfinished) plans. To
avoid confusion with the states of the world, we will talk about plans rather than states. Each
plan has the following four components, where the first two define the steps of the plan and
the last two serve a bookkeeping function to determine how plans can be extended:

• A set of actions that make up the steps of the plan. These are taken from the set of
actions in the planning problem. The “empty” plan contains just the Start and Finish

actions. Start has no preconditions and has as its effect all the literals in the initial state
of the planning problem. Finish has no effects and has as its preconditions the goal
literals of the planning problem.
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Figure 11.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.

• A set of ordering constraints. Each ordering constraint is of the form A≺B, which isORDERING
CONSTRAINTS

read as “A before B” and means that action A must be executed sometime before ac-
tion B, but not necessarily immediately before. The ordering constraints must describe
a proper partial order. Any cycle—such as A≺B and B≺A—represents a contradic-
tion, so an ordering constraint cannot be added to the plan if it creates a cycle.

• A set of causal links. A causal link between two actions A and B in the plan is writtenCAUSAL LINKS

as A p
−→ B and is read as “A achieves p for B.” For example, the causal linkACHIEVES

RightSock RightSockOn
−→ RightShoe

asserts that RightSockOn is an effect of the RightSock action and a precondition of
RightShoe. It also asserts that RightSockOn must remain true from the time of ac-
tion RightSock to the time of action RightShoe. In other words, the plan may not be
extended by adding a new action C that conflicts with the causal link. An action CCONFLICTS

conflicts with A p
−→ B if C has the effect ¬p and if C could (according to the ordering

constraints) come after A and before B. Some authors call causal links protection in-
tervals, because the link A p

−→ B protects p from being negated over the interval from
A to B.

• A set of open preconditions. A precondition is open if it is not achieved by some actionOPEN
PRECONDITIONS

in the plan. Planners will work to reduce the set of open preconditions to the empty set,
without introducing a contradiction.
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For example, the final plan in Figure 11.6 has the following components (not shown are the
ordering constraints that put every other action after Start and before Finish):

Actions:{RightSock ,RightShoe,LeftSock ,LeftShoe,Start ,Finish}
Orderings:{RightSock ≺RightShoe,LeftSock ≺LeftShoe}

Links:{RightSock RightSockOn
−→ RightShoe,LeftSock LeftSockOn

−→ LeftShoe,

RightShoe RightShoeOn
−→ Finish,LeftShoe LeftShoeOn

−→ Finish}
Open Preconditions:{ } .

We define a consistent plan as a plan in which there are no cycles in the ordering con-CONSISTENT PLAN

straints and no conflicts with the causal links. A consistent plan with no open preconditions
is a solution. A moment’s thought should convince the reader of the following fact: every
linearization of a partial-order solution is a total-order solution whose execution from the
initial state will reach a goal state. This means that we can extend the notion of “executing
a plan” from total-order to partial-order plans. A partial-order plan is executed by repeatedly
choosing any of the possible next actions. We will see in Chapter 12 that the flexibility avail-
able to the agent as it executes the plan can be very useful when the world fails to cooperate.
The flexible ordering also makes it easier to combine smaller plans into larger ones, because
each of the small plans can reorder its actions to avoid conflict with the other plans.

Now we are ready to formulate the search problem that POP solves. We will begin with
a formulation suitable for propositional planning problems, leaving the first-order complica-
tions for later. As usual, the definition includes the initial state, actions, and goal test.

• The initial plan contains Start and Finish, the ordering constraint Start ≺Finish , and
no causal links and has all the preconditions in Finish as open preconditions.

• The successor function arbitrarily picks one open precondition p on an action B and
generates a successor plan for every possible consistent way of choosing an action A
that achieves p. Consistency is enforced as follows:

1. The causal link A p
−→ B and the ordering constraint A≺B are added to the plan.

Action A may be an existing action in the plan or a new one. If it is new, add it to
the plan and also add Start ≺A and A≺Finish .

2. We resolve conflicts between the new causal link and all existing actions and be-
tween the action A (if it is new) and all existing causal links. A conflict between
A p
−→ B and C is resolved by making C occur at some time outside the protection

interval, either by adding B≺C or C ≺A. We add successor states for either or
both if they result in consistent plans.

• The goal test checks whether a plan is a solution to the original planning problem.
Because only consistent plans are generated, the goal test just needs to check that there
are no open preconditions.

Remember that the actions considered by the search algorithms under this formulation are
plan refinement steps rather than the real actions from the domain itself. The path cost is
therefore irrelevant, strictly speaking, because the only thing that matters is the total cost of
the real actions in the plan to which the path leads. Nonetheless, it is possible to specify a
path cost function that reflects the real plan costs: we charge 1 for each real action added to
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the plan and 0 for all other refinement steps. In this way, g(n), where n is a plan, will be
equal to the number of real actions in the plan. A heuristic estimate h(n) can also be used.

At first glance, one might think that the successor function should include successors
for every open p, not just for one of them. This would be redundant and inefficient, however,
for the same reason that constraint satisfaction algorithms don’t include successors for every
possible variable: the order in which we consider open preconditions (like the order in which
we consider CSP variables) is commutative. (See page 141.) Thus, we can choose an arbitrary
ordering and still have a complete algorithm. Choosing the right ordering can lead to a faster
search, but all orderings end up with the same set of candidate solutions.

A partial-order planning example

Now let’s look at how POP solves the spare tire problem from Section 11.1. The problem
description is repeated in Figure 11.7.

Init(At(Flat ,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk),

PRECOND: At(Spare,Trunk)
EFFECT: ¬ At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat ,Axle),
PRECOND: At(Flat ,Axle)
EFFECT: ¬ At(Flat ,Axle) ∧ At(Flat ,Ground))

Action(PutOn(Spare, Axle),
PRECOND: At(Spare,Ground) ∧ ¬ At(Flat ,Axle)
EFFECT: ¬ At(Spare,Ground) ∧ At(Spare,Axle))

Action(LeaveOvernight ,
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)

∧ ¬ At(Flat ,Ground) ∧ ¬ At(Flat ,Axle))

Figure 11.7 The simple flat tire problem description.

The search for a solution begins with the initial plan, containing a Start action with the
effect At(Spare,Trunk) ∧ At(Flat ,Axle) and a Finish action with the sole precondition
At(Spare,Axle). Then we generate successors by picking an open precondition to work
on (irrevocably) and choosing among the possible actions to achieve it. For now, we will
not worry about a heuristic function to help with these decisions; we will make seemingly
arbitrary choices. The sequence of events is as follows:

1. Pick the only open precondition, At(Spare,Axle) of Finish . Choose the only applica-
ble action, PutOn(Spare,Axle).

2. Pick the At(Spare,Ground) precondition of PutOn(Spare,Axle). Choose the only
applicable action, Remove(Spare,Trunk) to achieve it. The resulting plan is shown in
Figure 11.8.
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Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

¬


Figure 11.8 The incomplete partial-order plan for the tire problem, after choosing actions
for the first two open preconditions. Boxes represent actions, with preconditions on the left
and effects on the right. (Effects are omitted, except for that of the Start action.) Dark arrows
represent causal links protecting the proposition at the head of the arrow.

3. Pick the ¬At(Flat ,Axle) precondition of PutOn(Spare,Axle). Just to be contrary,
choose the LeaveOvernight action rather than the Remove(Flat ,Axle) action. Notice
that LeaveOvernight also has the effect¬At(Spare,Ground), which means it conflicts
with the causal link

Remove(Spare,Trunk) At(Spare,Ground)
−→ PutOn(Spare,Axle) .

To resolve the conflict we add an ordering constraint putting LeaveOvernight before
Remove(Spare,Trunk). The resulting plan is shown in Figure 11.9. (Why does this
resolve the conflict, and why is there no other way to resolve it?)

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

LeaveOvernight

At(Flat,Axle)
At(Flat,Ground)
At(Spare,Axle)
At(Spare,Ground)
At(Spare,Trunk)

Start
At(Flat,Axle)

At(Spare,Trunk)

¬


¬

¬

¬

¬

¬


Figure 11.9 The plan after choosing LeaveOvernight as the action for achieving
¬At(Flat ,Axle). To avoid a conflict with the causal link from Remove(Spare,Trunk)
that protects At(Spare,Ground), LeaveOvernight is constrained to occur before
Remove(Spare,Trunk), as shown by the dashed arrow.

4. The only remaining open precondition at this point is the At(Spare,Trunk) precondi-
tion of the action Remove(Spare,Trunk). The only action that can achieve it is the ex-
isting Start action, but the causal link from Start to Remove(Spare,Trunk) is in con-
flict with the ¬At(Spare,Trunk) effect of LeaveOvernight . This time there is no way
to resolve the conflict with LeaveOvernight: we cannot order it before Start (because
nothing can come before Start), and we cannot order it after Remove(Spare,Trunk)
(because there is already a constraint ordering it before Remove(Spare,Trunk)). So
we are forced to back up, remove the Remove(Spare,Trunk) action and the last two
causal links, and return to the state in Figure 11.8. In essence, the planner has proved
that LeaveOvernight doesn’t work as a way to change a tire.
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5. Consider again the ¬At(Flat ,Axle) precondition of PutOn(Spare,Axle). This time,
we choose Remove(Flat ,Axle).

6. Once again, pick the At(Spare,Tire) precondition of Remove(Spare,Trunk) and
choose Start to achieve it. This time there are no conflicts.

7. Pick the At(Flat ,Axle) precondition of Remove(Flat ,Axle), and choose Start to
achieve it. This gives us a complete, consistent plan—in other words a solution—as
shown in Figure 11.10.

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)

¬


Figure 11.10 The final solution to the tire problem. Note that Remove(Spare,Trunk)
and Remove(Flat ,Axle) can be done in either order, as long as they are completed before
the PutOn(Spare,Axle) action.

Although this example is very simple, it illustrates some of the strengths of partial-order
planning. First, the causal links lead to early pruning of portions of the search space that,
because of irresolvable conflicts, contain no solutions. Second, the solution in Figure 11.10
is a partial-order plan. In this case the advantage is small, because there are only two possible
linearizations; nonetheless, an agent might welcome the flexibility—for example, if the tire
has to be changed in the middle of heavy traffic.

The example also points to some possible improvements that could be made. For exam-
ple, there is duplication of effort: Start is linked to Remove(Spare,Trunk) before the con-
flict causes a backtrack and is then unlinked by backtracking even though it is not involved
in the conflict. It is then relinked as the search continues. This is typical of chronological
backtracking and might be mitigated by dependency-directed backtracking.

Partial-order planning with unbound variables

In this section, we consider the complications that can arise when POP is used with first-
order action representations that include variables. Suppose we have a blocks world problem
(Figure 11.4) with the open precondition On(A,B) and the action

Action(Move(b, x, y),
PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),
EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .
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This action achieves On(A,B) because the effect On(b, y) unifies with On(A,B) with the
substitution {b/A, y/B}. We then apply this substitution to the action, yielding

Action(Move(A, x,B),
PRECOND:On(A, x) ∧ Clear(A) ∧ Clear(B),
EFFECT:On(A,B) ∧ Clear(x) ∧ ¬On(A, x) ∧ ¬Clear(B)) .

This leaves the variable x unbound. That is, the action says to move block A from somewhere,
without yet saying whence. This is another example of the least commitment principle: we
can delay making the choice until some other step in the plan makes it for us. For example,
suppose we have On(A,D) in the initial state. Then the Start action can be used to achieve
On(A, x), binding x to D. This strategy of waiting for more information before choosing x
is often more efficient than trying every possible value of x and backtracking for each one
that fails.

The presence of variables in preconditions and actions complicates the process of de-
tecting and resolving conflicts. For example, when Move(A, x,B) is added to the plan, we
will need a causal link

Move(A, x,B) On(A,B)
−→ Finish .

If there is another action M2 with effect ¬On(A, z), then M2 conflicts only if z is B. To ac-
commodate this possibility, we extend the representation of plans to include a set of inequal-
ity constraints of the form z 6= X where z is a variable and X is either another variable or aINEQUALITY

CONSTRAINTS

constant symbol. In this case, we would resolve the conflict by adding z 6= B, which means
that future extensions to the plan can instantiate z to any value except B. Anytime we apply
a substitution to a plan, we must check that the inequalities do not contradict the substitution.
For example, a substitution that includes x/y conflicts with the inequality constraint x 6= y.
Such conflicts cannot be resolved, so the planner must backtrack.

A more extensive example of POP planning with variables in the blocks world is given
in Section 12.6.

Heuristics for partial-order planning

Compared with total-order planning, partial-order planning has a clear advantage in being
able to decompose problems into subproblems. It also has a disadvantage in that it does
not represent states directly, so it is harder to estimate how far a partial-order plan is from
achieving a goal. At present, there is less understanding of how to compute accurate heuristics
for partial-order planning than for total-order planning.

The most obvious heuristic is to count the number of distinct open preconditions. This
can be improved by subtracting the number of open preconditions that match literals in the
Start state. As in the total-order case, this overestimates the cost when there are actions
that achieve multiple goals and underestimates the cost when there are negative interactions
between plan steps. The next section presents an approach that allows us to get much more
accurate heuristics from a relaxed problem.

The heuristic function is used to choose which plan to refine. Given this choice, the
algorithm generates successors based on the selection of a single open precondition to work



Section 11.4. Planning Graphs 395

on. As in the case of variable selection on constraint satisfaction algorithms, this selection
has a large impact on efficiency. The most-constrained-variable heuristic from CSPs can
be adapted for planning algorithms and seems to work well. The idea is to select the open
condition that can be satisfied in the fewest number of ways. There are two special cases
of this heuristic. First, if an open condition cannot be achieved by any action, the heuristic
will select it; this is a good idea because early detection of impossibility can save a great
deal of work. Second, if an open condition can be achieved in only one way, then it should
be selected because the decision is unavoidable and could provide additional constraints on
other choices still to be made. Although full computation of the number of ways to satisfy
each open condition is expensive and not always worthwhile, experiments show that handling
the two special cases provides very substantial speedups.

11.4 PLANNING GRAPHS

All of the heuristics we have suggested for total-order and partial-order planning can suffer
from inaccuracies. This section shows how a special data structure called a planning graphPLANNING GRAPH

can be used to give better heuristic estimates. These heuristics can be applied to any of the
search techniques we have seen so far. Alternatively, we can extract a solution directly from
the planning graph, using a specialized algorithm such as the one called GRAPHPLAN.

A planning graph consists of a sequence of levels that correspond to time steps in theLEVELS

plan, where level 0 is the initial state. Each level contains a set of literals and a set of actions.
Roughly speaking, the literals are all those that could be true at that time step, depending on
the actions executed at preceding time steps. Also roughly speaking, the actions are all those
actions that could have their preconditions satisfied at that time step, depending on which of
the literals actually hold. We say “roughly speaking” because the planning graph records only
a restricted subset of the possible negative interactions among actions; therefore, it might be
optimistic about the minimum number of time steps required for a literal to become true.
Nonetheless, this number of steps in the planning graph provides a good estimate of how
difficult it is to achieve a given literal from the initial state. More importantly, the planning
graph is defined in such a way that it can be constructed very efficiently.

Planning graphs work only for propositional planning problems—ones with no vari-
ables. As we mentioned in Section 11.1, both STRIPS and ADL representations can be
propositionalized. For problems with large numbers of objects, this could result in a very
substantial blowup in the number of action schemata. Despite this, planning graphs have
proved to be effective tools for solving hard planning problems.

We will illustrate planning graphs with a simple example. (More complex examples
lead to graphs that won’t fit on the page.) Figure 11.11 shows a problem, and Figure 11.12
shows its planning graph. We start with state level S0, which represents the problem’s initial
state. We follow that with action level A0, in which we place all the actions whose precon-
ditions are satisfied in the previous level. Each action is connected to its preconditions in S0

and its effects in S1, in this case introducing new literals into S1 that were not in S0.
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Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)
EFFECT: ¬ Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake)

Figure 11.11 The “have cake and eat cake too” problem.
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Figure 11.12 The planning graph for the “have cake and eat cake too” problem up to level
S2. Rectangles indicate actions (small squares indicate persistence actions) and straight lines
indicate preconditions and effects. Mutex links are shown as curved gray lines.

The planning graph needs a way to represent inaction as well as action. That is, it needs
the equivalent of the frame axioms in situation calculus that allow a literal to remain true
from one situation to the next if no action alters it. In a planning graph this is done with a
set of persistence actions. For every positive and negative literal C, we add to the problemPERSISTENCE

ACTIONS

a persistence action with precondition C and effect C. Figure 11.12 shows one “real” action,
Eat(Cake) in A0, along with two persistence actions drawn as small square boxes.

Level A0 contains all the actions that could occur in state S0, but just as importantly it
records conflicts between actions that would prevent them from occurring together. The gray
lines in Figure 11.12 indicate mutual exclusion (or mutex) links. For example, Eat(Cake)MUTUAL EXCLUSION

MUTEX is mutually exclusive with the persistence of either Have(Cake) or ¬Eaten(Cake). We shall
see shortly how mutex links are computed.

Level S1 contains all the literals that could result from picking any subset of the ac-
tions in A0. It also contains mutex links (gray lines) indicating literals that could not appear
together, regardless of the choice of actions. For example, Have(Cake) and Eaten(Cake)
are mutex: depending on the choice of actions in A0, one or the other, but not both, could be
the result. In other words, S1 represents multiple states, just as regression state-space search
does, and the mutex links are constraints that define the set of possible states.

We continue in this way, alternating between state level Si and action level Ai until we
reach a level where two consecutive levels are identical. At this point, we say that the graph
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has leveled off. Every subsequent level will be identical, so further expansion is unnecessary.LEVELED OFF

What we end up with is a structure where every Ai level contains all the actions that are
applicable in Si, along with constraints saying which pairs of actions cannot both be executed.
Every Si level contains all the literals that could result from any possible choice of actions
in Ai−1, along with constraints saying which pairs of literals are not possible. It is important
to note that the process of constructing the planning graph does not require choosing among
actions, which would entail combinatorial search. Instead, it just records the impossibility
of certain choices using mutex links. The complexity of constructing the planning graph
is a low-order polynomial in the number of actions and literals, whereas the state space is
exponential in the number of literals.

We now define mutex links for both actions and literals. A mutex relation holds between
two actions at a given level if any of the following three conditions holds:

• Inconsistent effects: one action negates an effect of the other. For example Eat(Cake)
and the persistence of Have(Cake) have inconsistent effects because they disagree on
the effect Have(Cake).
• Interference: one of the effects of one action is the negation of a precondition of the

other. For example Eat(Cake) interferes with the persistence of Have(Cake) by negat-
ing its precondition.
• Competing needs: one of the preconditions of one action is mutually exclusive with a

precondition of the other. For example, Bake(Cake) and Eat(Cake) are mutex because
they compete on the value of the Have(Cake) precondition.

A mutex relation holds between two literals at the same level if one is the negation of the other
or if each possible pair of actions that could achieve the two literals is mutually exclusive.
This condition is called inconsistent support. For example, Have(Cake) and Eaten(Cake)
are mutex in S1 because the only way of achieving Have(Cake), the persistence action, is
mutex with the only way of achieving Eaten(Cake), namely Eat(Cake). In S2 the two
literals are not mutex because there are new ways of achieving them, such as Bake(Cake)
and the persistence of Eaten(Cake), that are not mutex.

Planning graphs for heuristic estimation

A planning graph, once constructed, is a rich source of information about the problem. For
example, a literal that does not appear in the final level of the graph cannot be achieved by
any plan. This observation can be used in backward search as follows: any state containing
an unachievable literal has a cost h(n)=∞. Similarly, in partial-order planning, any plan
with an unachievable open condition has h(n)=∞.

This idea can be made more general. We can estimate the cost of achieving any goal
literal as the level at which it first appears in the planning graph. We will call this the level
cost of the goal. In Figure 11.12, Have(Cake) has level cost 0 and Eaten(Cake) has levelLEVEL COST

cost 1. It is easy to show (Exercise 11.9) that these estimates are admissible for the individual
goals. The estimate might not be very good, however, because planning graphs allow several
actions at each level whereas the heuristic counts just the level and not the number of actions.
For this reason, it is common to use a serial planning graph for computing heuristics. ASERIAL PLANNING

GRAPH
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serial graph insists that only one action can actually occur at any given time step; this is done
by adding mutex links between every pair of actions except persistence actions. Level costs
extracted from serial graphs are often quite reasonable estimates of actual costs.

To estimate the cost of a conjunction of goals, there are three simple approaches. The
max-level heuristic simply takes the maximum level cost of any of the goals; this is ad-MAX­LEVEL

missible, but not necessarily very accurate. The level sum heuristic, following the subgoalLEVEL SUM

independence assumption, returns the sum of the level costs of the goals; this is inadmissible
but works very well in practice for problems that are largely decomposable. It is much more
accurate than the number-of-unsatisfied-goals heuristic from Section 11.2. For our problem,
the heuristic estimate for the conjunctive goal Have(Cake)∧Eaten(Cake) will be 0+1 = 1,
whereas the correct answer is 2. Moreover, if we eliminated the Bake(Cake) action, the es-
timate would still be 1, but the conjunctive goal would be impossible. Finally, the set-levelSET­LEVEL

heuristic finds the level at which all the literals in the conjunctive goal appear in the planning
graph without any pair of them being mutually exclusive. This heuristic gives the correct
values of 2 for our original problem and infinity for the problem without Bake(Cake). It
dominates the max-level heuristic and works extremely well on tasks in which there is a good
deal of interaction among subplans.

As a tool for generating accurate heuristics, we can view the planning graph as a relaxed
problem that is efficiently soluble. To understand the nature of the relaxed problem, we need
to understand exactly what it means for a literal g to appear at level Si in the planning graph.
Ideally, we would like it to be a guarantee that there exists a plan with i action levels that
achieves g, and also that if g does not appear that there is no such plan. Unfortunately,
making that guarantee is as difficult as solving the original planning problem. So the planning
graph makes the second half of the guarantee (if g does not appear, there is no plan), but
if g does appear, then all the planning graph promises is that there is a plan that possibly
achieves g and has no “obvious” flaws. An obvious flaw is defined as a flaw that can be
detected by considering two actions or two literals at a time—in other words, by looking at
the mutex relations. There could be more subtle flaws involving three, four, or more actions,
but experience has shown that it is not worth the computational effort to keep track of these
possible flaws. This is similar to the lesson learned from constraint satisfaction problems that
it is often worthwhile to compute 2-consistency before searching for a solution, but less often
worthwhile to compute 3-consistency or higher. (See Section 5.2.)

The GRAPHPLAN algorithm

This subsection shows how to extract a plan directly from the planning graph, rather than
just using the graph to provide a heuristic. The GRAPHPLAN algorithm (Figure 11.13) has
two main steps, which alternate within a loop. First, it checks whether all the goal literals
are present in the current level with no mutex links between any pair of them. If this is the
case, then a solution might exist within the current graph, so the algorithm tries to extract that
solution. Otherwise, it expands the graph by adding the actions for the current level and the
state literals for the next level. The process continues until either a solution is found or it is
learned that no solution exists.
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function GRAPHPLAN(problem) returns solution or failure

graph← INITIAL-PLANNING-GRAPH(problem)
goals←GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution← EXTRACT-SOLUTION(graph , goals , LENGTH(graph))
if solution 6= failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph← EXPAND-GRAPH(graph, problem)

Figure 11.13 The GRAPHPLAN algorithm. GRAPHPLAN alternates between a solution
extraction step and a graph expansion step. EXTRACT-SOLUTION looks for whether a plan
can be found, starting at the end and searching backwards. EXPAND-GRAPH adds the actions
for the current level and the state literals for the next level.

Let us now trace the operation of GRAPHPLAN on the spare tire problem from Sec-
tion 11.1. The entire graph is shown in Figure 11.14. The first line of GRAPHPLAN ini-
tializes the planning graph to a one-level (S0) graph consisting of the five literals from the
initial state. The goal literal At(Spare,Axle) is not present in S0, so we need not call
EXTRACT-SOLUTION—we are certain that there is no solution yet. Instead, EXPAND-GRAPH

adds the three actions whose preconditions exist at level S0 (i.e., all the actions except
PutOn(Spare,Axle)), along with persistence actions for all the literals in S0. The effects
of the actions are added at level S1. EXPAND-GRAPH then looks for mutex relations and
adds them to the graph.

S0 A1 S2
At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)
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Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬


¬


¬


¬


¬


¬


¬


¬


¬


¬


¬


¬


¬


A0 S1

Figure 11.14 The planning graph for the spare tire problem after expansion to level S2.
Mutex links are shown as gray lines. Only some representative mutexes are shown, because
the graph would be too cluttered if we showed them all. The solution is indicated by bold
lines and outlines.
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At(Spare,Axle) is still not present in S1, so again we do not call EXTRACT-SOLUTION.
The call to EXPAND-GRAPH gives us the planning graph shown in Figure 11.14. Now that
we have the full complement of actions, it is worthwhile to look at some of the examples of
mutex relations and their causes:

• Inconsistent effects: Remove(Spare,Trunk) is mutex with LeaveOvernight because
one has the effect At(Spare,Ground) and the other has its negation.

• Interference: Remove(Flat ,Axle) is mutex with LeaveOvernight because one has the
precondition At(Flat ,Axle) and the other has its negation as an effect.

• Competing needs: PutOn(Spare,Axle) is mutex with Remove(Flat ,Axle) because
one has At(Flat ,Axle) as a precondition and the other has its negation.

• Inconsistent support: At(Spare,Axle) is mutex with At(Flat ,Axle) in S2 because the
only way of achieving At(Spare,Axle) is by PutOn(Spare,Axle), and that is mutex
with the persistence action that is the only way of achieving At(Flat ,Axle). Thus, the
mutex relations detect the immediate conflict that arises from trying to put two objects
in the same place at the same time.

This time, when we go back to the start of the loop, all the literals from the goal are present
in S2, and none of them is mutex with any other. That means that a solution might ex-
ist, and EXTRACT-SOLUTION will try to find it. In essence, EXTRACT-SOLUTION solves a
Boolean CSP whose variables are the actions at each level, and the values for each variable
are in or out of the plan. We can use standard CSP algorithms for this, or we can define
EXTRACT-SOLUTION as a search problem, where each state in the search contains a pointer
to a level in the planning graph and a set of unsatisfied goals. We define this search problem
as follows:

• The initial state is the last level of the planning graph, Sn, along with the set of goals
from the planning problem.

• The actions available in a state at level Si are to select any conflict-free subset of the
actions in Ai−1 whose effects cover the goals in the state. The resulting state has level
Si−1 and has as its set of goals the preconditions for the selected set of actions. By
“conflict-free,” we mean a set of actions such that no two of them are mutex, and no
two of their preconditions are mutex.

• The goal is to reach a state at level S0 such that all the goals are satisfied.

• The cost of each action is 1.

For this particular problem, we start at S2 with the goal At(Spare,Axle). The only choice we
have for achieving the goal set is PutOn(Spare,Axle). That brings us to a search state at S1

with goals At(Spare,Ground) and ¬At(Flat ,Axle). The former can be achieved only by
Remove(Spare,Trunk), and the latter by either Remove(Flat ,Axle) or LeaveOvernight .
But LeaveOvernight is mutex with Remove(Spare,Trunk), so the only solution is to choose
Remove(Spare,Trunk) and Remove(Flat ,Axle). That brings us to a search state at S0 with
the goals At(Spare,Trunk) and At(Flat ,Axle). Both of these are present in the state, so
we have a solution: the actions Remove(Spare, Trunk) and Remove(Flat , Axle) in level
A0, followed by PutOn(Spare, Axle) in A1.
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We know that planning is PSPACE-complete and that constructing the planning graph
takes polynomial time, so it must be the case that solution extraction is intractable in the worst
case. Therefore, we will need some heuristic guidance for choosing among actions during the
backward search. One approach that works well in practice is a greedy algorithm based on
the level cost of the literals. For any set of goals, we proceed in the following order:

1. Pick first the literal with the highest level cost.
2. To achieve that literal, choose the action with the easiest preconditions first. That is,

choose an action such that the sum (or maximum) of the level costs of its preconditions
is smallest.

Termination of GRAPHPLAN

So far, we have skated over the question of termination. If a problem has no solution, can
we be sure that GRAPHPLAN will not loop forever, extending the planning graph at each
iteration? The answer is yes, but the full proof is beyond the scope of this book. Here, we
outline just the main ideas, particularly the ones that shed light on planning graphs in general.

The first step is to notice that certain properties of planning graphs are monotonically
increasing or decreasing. “X increases monotonically” means that the set of Xs at level i + 1
is a superset (not necessarily proper) of the set at level i. The properties are as follows:

• Literals increase monotonically: Once a literal appears at a given level, it will appear
at all subsequent levels. This is because of the persistence actions; once a literal shows
up, persistence actions cause it to stay forever.
• Actions increase monotonically: Once an action appears at a given level, it will appear at

all subsequent levels. This is a consequence of literals’ increasing; if the preconditions
of an action appear at one level, they will appear at subsequent levels, and thus so will
the action.
• Mutexes decrease monotonically: If two actions are mutex at a given level Ai, then they

will also be mutex for all previous levels at which they both appear. The same holds for
mutexes between literals. It might not always appear that way in the figures, because
the figures have a simplification: they display neither literals that cannot hold at level
Si nor actions that cannot be executed at level Ai. We can see that “mutexes decrease
monotonically” is true if you consider that these invisible literals and actions are mutex
with everything.

The proof is a little complex, but can be handled by cases: if actions A and B are
mutex at level Ai, it must be because of one of the three types of mutex. The first two,
inconsistent effects and interference, are properties of the actions themselves, so if the
actions are mutex at Ai, they will be mutex at every level. The third case, competing
needs, depends on conditions at level Si: that level must contain a precondition of A
that is mutex with a precondition of B. Now, these two preconditions can be mutex if
they are negations of each other (in which case they would be mutex in every level) or if
all actions for achieving one are mutex with all actions for achieving the other. But we
already know that the available actions are increasing monotonically, so by induction,
the mutexes must be decreasing.
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Because the actions and literals increase and the mutexes decrease, and because there are
only a finite number of actions and literals, every planning graph will eventually level off—
all subsequent levels will be identical. Once a graph has leveled off, if it is missing one of the
goals of the problem, or if two of the goals are mutex, then the problem can never be solved,
and we can stop the GRAPHPLAN algorithm and return failure. If the graph levels off with
all goals present and nonmutex, but EXTRACT-SOLUTION fails to find a solution, then we
might have to extend the graph again a finite number of times, but eventually we can stop.
This aspect of termination is more complex and is not covered here.

11.5 PLANNING WITH PROPOSITIONAL LOGIC

We saw in Chapter 10 that planning can be done by proving a theorem in situation calculus.
That theorem says that, given the initial state and the successor-state axioms that describe
the effects of actions, the goal will be true in a situation that results from a certain action
sequence. As early as 1969, this approach was thought to be too inefficient for finding inter-
esting plans. Recent developments in efficient reasoning algorithms for propositional logic
(see Chapter 7) have generated renewed interest in planning as logical reasoning.

The approach we take in this section is based on testing the satisfiability of a logi-
cal sentence rather than on proving a theorem. We will be finding models of propositional
sentences that look like this:

initial state ∧ all possible action descriptions ∧ goal .

The sentence will contain proposition symbols corresponding to every possible action occur-
rence; a model that satisfies the sentence will assign true to the actions that are part of a
correct plan and false to the others. An assignment that corresponds to an incorrect plan will
not be a model, because it will be inconsistent with the assertion that the goal is true. If the
planning problem is unsolvable, then the sentence will be unsatisfiable.

Describing planning problems in propositional logic

The process we will follow to translate STRIPS problems into propositional logic is a textbook
example (so to speak) of the knowledge representation cycle: We will begin with what seems
to be a reasonable set of axioms, we will find that these axioms allow for spurious unintended
models, and we will write more axioms.

Let us begin with a very simple air transport problem. In the initial state (time 0), plane
P1 is at SFO and plane P2 is at JFK . The goal is to have P1 at JFK and P2 at SFO ; that is,
the planes are to change places. First, we will need distinct proposition symbols for assertions
about each time step. We will use superscripts to denote the time step, as in Chapter 7. Thus,
the initial state will be written as

At(P1,SFO)0 ∧At(P2, JFK )0 .

(Remember that At(P1,SFO)0 is an atomic symbol.) Because propositional logic has no
closed-world assumption, we must also specify the propositions that are not true in the initial
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state. If some propositions are unknown in the initial state, then they can be left unspecified
(the open world assumption). In this example we specify:

¬At(P1, JFK )0 ∧ ¬At(P2,SFO)0 .

The goal itself must be associated with a particular time step. Since we do not know a priori
how many steps it takes to achieve the goal, we can try asserting that the goal is true in the
initial state, time T = 0. That is, we assert At(P1, JFK )0 ∧ At(P2,SFO)0. If that fails, we
try again with T = 1, and so on until we reach the minimum feasible plan length. For each
value of T , the knowledge base will include only sentences covering the time steps from 0
up to T . To ensure termination, an arbitrary upper limit, Tmax, is imposed. This algorithm
is shown in Figure 11.15. An alternative approach that avoids multiple solution attempts is
discussed in Exercise 11.17.

function SATPLAN(problem ,T max) returns solution or failure
inputs: problem , a planning problem

T max, an upper limit for plan length

for T = 0 to T max do
cnf ,mapping← TRANSLATE-TO-SAT(problem ,T )
assignment← SAT-SOLVER(cnf )
if assignment is not null then

return EXTRACT-SOLUTION(assignment ,mapping)
return failure

Figure 11.15 The SATPLAN algorithm. The planning problem is translated into a CNF
sentence in which the goal is asserted to hold at a fixed time step T and axioms are included
for each time step up to T . (Details of the translation are given in the text.) If the satisfiability
algorithm finds a model, then a plan is extracted by looking at those proposition symbols that
refer to actions and are assigned true in the model. If no model exists, then the process is
repeated with the goal moved one step later.

The next issue is how to encode action descriptions in propositional logic. The most
straightforward approach is to have one proposition symbol for each action occurrence; for
example, Fly(P1,SFO , JFK )0 is true if plane P1 flies from SFO to JFK at time 0. As in
Chapter 7, we write propositional versions of the successor-state axioms developed for the
situation calculus in Chapter 10. For example, we have

At(P1, JFK )1 ⇔ (At(P1, JFK )0 ∧ ¬(Fly(P1, JFK , SFO)0 ∧ At(P1, JFK )0))
∨ (Fly(P1, SFO , JFK )0 ∧At(P1, SFO)0) .

(11.1)

That is, plane P1 will be at JFK at time 1 if it was at JFK at time 0 and didn’t fly away, or
it was at SFO at time 0 and flew to JFK . We need one such axiom for each plane, airport,
and time step. Moreover, each additional airport adds another way to travel to or from a given
airport and hence adds more disjuncts to the right-hand side of each axiom.

With these axioms in place, we can run the satisfiability algorithm to find a plan. There
ought to be a plan that achieves the goal at time T =1, namely, the plan in which the two



404 Chapter 11. Planning

planes swap places. Now, suppose the KB is

initial state ∧ successor-state axioms ∧ goal1 , (11.2)

which asserts that the goal is true at time T = 1. You can check that the assignment in which

Fly(P1,SFO , JFK )0 and Fly(P2, JFK ,SFO)0

are true and all other action symbols are false is a model of the KB. So far, so good. Are
there other possible models that the satisfiability algorithm might return? Indeed, yes. Are
all these other models satisfactory plans? Alas, no. Consider the rather silly plan specified by
the action symbols

Fly(P1,SFO , JFK )0 and Fly(P1, JFK ,SFO)0 and Fly(P2, JFK ,SFO)0 .

This plan is silly because plane P1 starts at SFO , so the action Fly(P1, JFK ,SFO)0 is
infeasible. Nonetheless, the plan is a model of the sentence in Equation (11.2)! That is, it
is consistent with everything we have said so far about the problem. To understand why,
we need to look more carefully at what the successor-state axioms (such as Equation (11.1))
say about actions whose preconditions are not satisfied. The axioms do predict correctly that
nothing will happen when such an action is executed (see Exercise 11.15), but they do not say
that the action cannot be executed! To avoid generating plans with illegal actions, we must
add precondition axioms stating that an action occurrence requires the preconditions to bePRECONDITION

AXIOMS

satisfied.6 For example, we need

Fly(P1, JFK ,SFO)0 ⇒ At(P1, JFK )0 .

Because At(P1, JFK )0 is stated to be false in the initial state, this axiom ensures that every
model also has Fly(P1, JFK ,SFO)0 set to false. With the addition of precondition axioms,
there is exactly one model that satisfies all of the axioms when the goal is to be achieved at
time 1, namely the model in which plane P1 flies to JFK and plane P2 flies to SFO . Notice
that this solution has two parallel actions, just as with GRAPHPLAN or POP.

More surprises emerge when we add a third airport, LAX . Now, each plane has two
actions that are legal in each state. When we run the satisfiability algorithm, we find that
a model with Fly(P1,SFO , JFK )0 and Fly(P2, JFK ,SFO)0 and Fly(P2, JFK ,LAX )0

satisfies all the axioms. That is, the successor-state and precondition axioms allow a plane to
fly to two destinations at once! The preconditions for the two flights by P2 are satisfied in the
initial state; the successor-state axioms say that P2 will be at SFO and LAX at time 1; so the
goal is satisfied. Clearly, we must add more axioms to eliminate these spurious solutions. One
approach is to add action exclusion axioms that prevent simultaneous actions. For example,ACTION EXCLUSION

AXIOMS

we can insist on complete exclusion by adding all possible axioms of the form

¬(Fly(P2, JFK ,SFO)0 ∧ Fly(P2, JFK ,LAX )0) .

These axioms ensure that no two actions can occur at the same time. They eliminate all
spurious plans, but also force every plan to be totally ordered. This loses the flexibility of
partially ordered plans; also, by increasing the number of time steps in the plan, computation
time may be lengthened.

6 Notice that the addition of precondition axioms means that we need not include preconditions for actions in
the successor-state axioms.
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Instead of complete exclusion, we can require only partial exclusion—that is, rule out
simultaneous actions only if they interfere with each other. The conditions are the same as
those for mutex actions: two actions cannot occur simultaneously if one negates a precon-
dition or effect of the other. For example, Fly(P2, JFK ,SFO)0 and Fly(P2, JFK ,LAX )0

cannot both occur, because each negates the precondition of the other; on the other hand,
Fly(P1,SFO , JFK )0 and Fly(P2, JFK ,SFO)0 can occur together because the two planes
do not interfere. Partial exclusion eliminates spurious plans without forcing a total ordering.

Exclusion axioms sometimes seem a rather blunt instrument. Instead of saying that a
plane cannot fly to two airports at the same time, we might simply insist that no object can be
in two places at once:

∀ p, x, y, t x 6= y ⇒ ¬(At(p, x)t ∧ At(p, y)t) .

This fact, combined with the successor-state axioms, implies that a plane cannot fly to two
airports at the same time. Facts such as this are called state constraints. In propositionalSTATE CONSTRAINTS

logic, of course, we have to write out all the ground instances of each state constraint. For the
airport problem, the state constraint suffices to rule out all spurious plans. State constraints
are often much more compact than action exclusion axioms, but they are not always easy to
derive from the original STRIPS description of a problem.

To summarize, planning as satisfiability involves finding models for a sentence contain-
ing the initial state, the goal, the successor-state axioms, the precondition axioms, and either
the action exclusion axioms or the state constraints. It can be shown that this collection of ax-
ioms is sufficient, in the sense that there are no longer any spurious “solutions.” Any model
satisfying the propositional sentence will be a valid plan for the original problem—that is,
every linearization of the plan is a legal sequence of actions that reaches the goal.

Complexity of propositional encodings

The principal drawback of the propositional approach is the sheer size of the propositional
knowledge base that is generated from the original planning problem. For example, the action
schema Fly(p, a1, a2) becomes T × |Planes | × |Airports|2 different proposition symbols. In
general, the total number of action symbols is bounded by T × |Act | × |O|P , where |Act | is
the number of action schemata, |O| is the number of objects in the domain, and P is the
maximum arity (number of arguments) of any action schema. The number of clauses is
larger still. For example, with 10 time steps, 12 planes, and 30 airports, the complete action
exclusion axiom has 583 million clauses.

Because the number of action symbols is exponential in the arity of the action schema,
one answer might be to try to reduce the arity. We can do this by borrowing an idea from
semantic networks (Chapter 10). Semantic networks use only binary predicates; predicates
with more arguments are reduced to a set of binary predicates that describe each argument
separately. Applying this idea to an action symbol such as Fly(P1,SFO , JFK )0, we obtain
three new symbols:

Fly1(P1)
0 : plane P1 flew at time 0

Fly2(SFO)0 : the origin of the flight was SFO

Fly3(JFK )0 : the destination of the flight was JFK .
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This process, called symbol splitting, eliminates the need for an exponential number of sym-SYMBOL SPLITTING

bols. Now we only need T × |Act | ×P × |O|.
Symbol splitting by itself can reduce the number of symbols, but does not automatically

reduce the number of axioms in the KB. That is, if each action symbol in each clause were
simply replaced by a conjunction of three symbols, then the total size of the KB would remain
roughly the same. Symbol splitting actually does reduce the size of the KB because some
of the split symbols will be irrelevant to certain axioms and can be omitted. For example,
consider the successor-state axiom in Equation (11.1), modified to include LAX and to omit
action preconditions (which will be covered by separate precondition axioms):

At(P1, JFK )1 ⇔ (At(P1, JFK )0 ∧ ¬Fly(P1, JFK , SFO)0 ∧ ¬Fly(P1, JFK ,LAX )0)
∨ Fly(P1, SFO , JFK )0 ∨ Fly(P1,LAX , JFK )0 .

The first condition says that P1 will be at JFK if it was there at time 0 and didn’t fly from
JFK to any other city, no matter which one; the second says it will be there if it flew to JFK

from another city, no matter which one. Using the split symbols, we can simply omit the
argument whose value does not matter:

At(P1, JFK )1 Leftrightarrow (At(P1, JFK )0 ∧ ¬(Fly1(P1)
0 ∧ Fly2(JFK )0))

∨ (Fly1(P1)
0 ∧ Fly3(JFK )0) .

Notice that SFO and LAX are no longer mentioned in the axiom. More generally, the split
action symbols now allow the size of each successor-state axiom to be independent of the
number of airports. Similar reductions occur with the precondition axioms and action exclu-
sion axioms (see Exercise 11.16). For the case described earlier with 10 time steps, 12 planes,
and 30 airports, the complete action exclusion axiom is reduced from 583 million clauses to
9,360 clauses.

There is one drawback: the split-symbol representation does not allow for parallel ac-
tions. Consider the two parallel actions Fly(P1,SFO , JFK )0 and Fly(P2, JFK ,SFO)0.
Converting to the split representation, we have

Fly1(P1)
0 ∧ Fly2(SFO)0 ∧ Fly3(JFK )0 ∧

Fly1(P2)
0 ∧ Fly2(JFK )0 ∧ Fly3(SFO)0 .

It is no longer possible to determine what happened! We know that P1 and P2 flew, but we
cannot identify the origin and destination of each flight. This means that a complete action
exclusion axiom must be used, with the drawbacks noted previously.

Planners based on satisfiability can handle large planning problems—for example, find-
ing optimal 30-step solutions to blocks-world planning problems with dozens of blocks. The
size of the propositional encoding and the cost of solution are highly problem-dependent, but
in most cases the memory required to store the propositional axioms is the bottleneck. One
interesting finding from this work has been that backtracking algorithms such as DPLL are
often better at solving planning problems than local search algorithms such as WALKSAT.
This is because the majority of the propositional axioms are Horn clauses, which are handled
efficiently by the unit propagation technique. This observation has led to the development of
hybrid algorithms combining some random search with backtracking and unit propagation.
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11.6 ANALYSIS OF PLANNING APPROACHES

Planning is an area of great current interest within AI. One reason for this is that it combines
the two major areas of AI we have covered so far: search and logic. That is, a planner can
be seen either as a program that searches for a solution or as one that (constructively) proves
the existence of a solution. The cross-fertilization of ideas from the two areas has led to both
improvements in performance amounting to several orders of magnitude in the last decade
and an increased use of planners in industrial applications. Unfortunately, we do not yet have
a clear understanding of which techniques work best on which kinds of problems. Quite
possibly, new techniques will emerge that dominate existing methods.

Planning is foremost an exercise in controlling combinatorial explosion. If there are p
primitive propositions in a domain, then there are 2p states. For complex domains, p can grow
quite large. Consider that objects in the domain have properties (Location, Color , etc.) and
relations (At , On , Between, etc.). With d objects in a domain with ternary relations, we get
2d3

states. We might conclude that, in the worst case, planning is hopeless.
Against such pessimism, the divide-and-conquer approach can be a powerful weapon.

In the best case—full decomposability of the problem—divide-and-conquer offers an expo-
nential speedup. Decomposability is destroyed, however, by negative interactions between
actions. Partial-order planners deal with this with causal links, a powerful representational
approach, but unfortunately each conflict must be resolved with a choice (put the conflicting
action before or after the link), and the choices can multiply exponentially. GRAPHPLAN

avoids these choices during the graph construction phase, using mutex links to record con-
flicts without actually making a choice as to how to resolve them. SATPLAN represents a
similar range of mutex relations, but does so by using the general CNF form rather than a
specific data structure. How well this works depends on the SAT solver used.

Sometimes it is possible to solve a problem efficiently by recognizing that negative
interactions can be ruled out. We say that a problem has serializable subgoals if there existsSERIALIZABLE

SUBGOALS

an order of subgoals such that the planner can achieve them in that order, without having to
undo any of the previously achieved subgoals. For example, in the blocks world, if the goal is
to build a tower (e.g., A on B, which in turn is on C, which in turn is on the Table), then the
subgoals are serializable bottom to top: if we first achieve C on Table , we will never have to
undo it while we are achieving the other subgoals. A planner that uses the bottom-to-top trick
can solve any problem in the blocks world domain without backtracking (although it might
not always find the shortest plan).

As a more complex example, for the Remote Agent planner which commanded NASA’s
Deep Space One spacecraft, it was determined that the propositions involved in command-
ing a spacecraft are serializable. This is perhaps not too surprising, because a spacecraft is
designed by its engineers to be as easy as possible to control (subject to other constraints).
Taking advantage of the serialized ordering of goals, the Remote Agent planner was able to
eliminate most of the search. This meant that it was fast enough to control the spacecraft in
real time, something previously considered impossible.
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There is more than one way to control combinatorial explosions. We saw in Chapter 5
that there are many techniques for controlling backtracking in constraint satisfaction problems
(CSPs), such as dependency-directed backtracking. All of these techniques can be applied to
planning. For example, extracting a solution from a planning graph can be formulated as a
Boolean CSP whose variables state whether a given action should occur at a given time. The
CSP can be solved using any of the algorithms in Chapter 5, such as min-conflicts. A closely
related method, used in the BLACKBOX system, is to convert the planning graph into a CNF
expression and then extract a plan by using a SAT solver. This approach seems to work better
than SATPLAN, presumably because the planning graph has already eliminated many of the
impossible states and actions from the problem. It also works better than GRAPHPLAN,
presumably because a satisfiability search such as WALKSAT has much greater flexibility
than the strict backtracking search that GRAPHPLAN uses.

There is no doubt that planners such as GRAPHPLAN, SATPLAN, and BLACKBOX have
moved the field of planning forward, both by raising the level of performance of planning sys-
tems and by clarifying the representational and combinatorial issues involved. These methods
are, however, inherently propositional and thus are limited in the domains they can express.
(For example, logistics problems with a few dozen objects and locations can require gigabytes
of storage for the corresponding CNF expressions.) It seems likely that first-order representa-
tions and algorithms will be required if further progress is to occur, although structures such
as planning graphs will continue to be useful as a source of heuristics.

11.7 SUMMARY

In this chapter, we defined the problem of planning in deterministic, fully observable envi-
ronments. We described the principal representations used for planning problems and several
algorithmic approaches for solving them. The points to remember are:

• Planning systems are problem-solving algorithms that operate on explicit propositional
(or first-order) representations of states and actions. These representations make possi-
ble the derivation of effective heuristics and the development of powerful and flexible
algorithms for solving problems.

• The STRIPS language describes actions in terms of their preconditions and effects and
describes the initial and goal states as conjunctions of positive literals. The ADL lan-
guage relaxes some of these constraints, allowing disjunction, negation, and quantifiers.

• State-space search can operate in the forward direction (progression) or the backward
direction (regression). Effective heuristics can be derived by making a subgoal inde-
pendence assumption and by various relaxations of the planning problem.

• Partial-order planning (POP) algorithms explore the space of plans without commit-
ting to a totally ordered sequence of actions. They work back from the goal, adding
actions to the plan to achieve each subgoal. They are particularly effective on problems
amenable to a divide-and-conquer approach.
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• A planning graph can be constructed incrementally, starting from the initial state. Each
layer contains a superset of all the literals or actions that could occur at that time step and
encodes mutual exclusion, or mutex, relations among literals or actions that cannot co-
occur. Planning graphs yield useful heuristics for state-space and partial-order planners
and can be used directly in the GRAPHPLAN algorithm.

• The GRAPHPLAN algorithm processes the planning graph, using a backward search to
extract a plan. It allows for some partial ordering among actions.

• The SATPLAN algorithm translates a planning problem into propositional axioms and
applies a satisfiability algorithm to find a model that corresponds to a valid plan. Several
different propositional representations have been developed, with varying degrees of
compactness and efficiency.

• Each of the major approaches to planning has its adherents, and there is as yet no con-
sensus on which is best. Competition and cross-fertilization among the approaches have
resulted in significant gains in efficiency for planning systems.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

AI planning arose from investigations into state-space search, theorem proving, and control
theory and from the practical needs of robotics, scheduling, and other domains. STRIPS (Fikes
and Nilsson, 1971), the first major planning system, illustrates the interaction of these influ-
ences. STRIPS was designed as the planning component of the software for the Shakey robot
project at SRI. Its overall control structure was modeled on that of GPS, the General Problem
Solver (Newell and Simon, 1961), a state-space search system that used means–ends analysis.
STRIPS used a version of the QA3 theorem proving system (Green, 1969b) as a subroutine for
establishing the truth of preconditions for actions. Lifschitz (1986) offers precise definitions
and an analysis of the STRIPS language. Bylander (1992) shows simple STRIPS planning to
be PSPACE-complete. Fikes and Nilsson (1993) give a historical retrospective on the STRIPS

project and a survey of its relationship to more recent planning efforts.
The action representation used by STRIPS has been far more influential than its algorith-

mic approach. Almost all planning systems since then have used one variant or another of the
STRIPS language. Unfortunately, the proliferation of variants has made comparisons need-
lessly difficult. With time came a better understanding of the limitations and tradeoffs among
formalisms. The Action Description Language, or ADL, (Pednault, 1986) relaxed some of the
restrictions in the STRIPS language and made it possible to encode more realistic problems.
Nebel (2000) explores schemes for compiling ADL into STRIPS. The Problem Domain De-
scription Language or PDDL (Ghallab et al., 1998) was introduced as a computer-parsable,
standardized syntax for representing STRIPS, ADL, and other languages. PDDL has been
used as the standard language for the planning competitions at the AIPS conference, begin-
ning in 1998.

Planners in the early 1970s generally worked with totally ordered action sequences.
Problem decomposition was achieved by computing a subplan for each subgoal and then
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stringing the subplans together in some order. This approach, called linear planning byLINEAR PLANNING

Sacerdoti (1975), was soon discovered to be incomplete. It cannot solve some very simple
problems, such as the Sussman anomaly (see Exercise 11.11), found by Allen Brown during
experimentation with the HACKER system (Sussman, 1975). A complete planner must allow
for interleaving of actions from different subplans within a single sequence. The notionINTERLEAVING

of serializable subgoals (Korf, 1987) corresponds exactly to the set of problems for which
noninterleaved planners are complete.

One solution to the interleaving problem was goal regression planning, a technique in
which steps in a totally ordered plan are reordered so as to avoid conflict between subgoals.
This was introduced by Waldinger (1975) and also used by Warren’s (1974) WARPLAN.
WARPLAN is also notable in that it was the first planner to be written in a logic program-
ming language (Prolog) and is one of the best examples of the remarkable economy that can
sometimes be gained by using logic programming: WARPLAN is only 100 lines of code,
a small fraction of the size of comparable planners of the time. INTERPLAN (Tate, 1975a,
1975b) also allowed arbitrary interleaving of plan steps to overcome the Sussman anomaly
and related problems.

The ideas underlying partial-order planning include the detection of conflicts (Tate,
1975a) and the protection of achieved conditions from interference (Sussman, 1975). The
construction of partially ordered plans (then called task networks) was pioneered by the
NOAH planner (Sacerdoti, 1975, 1977) and by Tate’s (1975b, 1977) NONLIN system.7

Partial-order planning dominated the next 20 years of research, yet for much of that
time, the field was not widely understood. TWEAK (Chapman, 1987) was a logical recon-
struction and simplification of planning work of this time; his formulation was clear enough
to allow proofs of completeness and intractability (NP-hardness and undecidability) of var-
ious formulations of the planning problem. Chapman’s work led to what was arguably
the first simple and readable description of a complete partial-order planner (McAllester
and Rosenblitt, 1991). An implementation of McAllester and Rosenblitt’s algorithm called
SNLP (Soderland and Weld, 1991) was widely distributed and allowed many researchers to
understand and experiment with partial-order planning for the first time. The POP algorithm
described in this chapter is based on SNLP.

Weld’s group also developed UCPOP (Penberthy and Weld, 1992), the first planner for
problems expressed in ADL. UCPOP incorporated the number-of-unsatisfied-goals heuristic.
It ran somewhat faster than SNLP, but was seldom able to find plans with more than a dozen
or so steps. Although improved heuristics were developed for UCPOP (Joslin and Pollack,
1994; Gerevini and Schubert, 1996), partial-order planning fell into disrepute in the 1990s
as faster methods emerged. Nguyen and Kambhampati (2001) suggest that a rehabilitation is
merited: with accurate heuristics derived from a planning graph, their REPOP planner scales
up much better than GRAPHPLAN and is competitive with the fastest state-space planners.

Avrim Blum and Merrick Furst (1995, 1997) revitalized the field of planning with their
GRAPHPLAN system, which was orders of magnitude faster than the partial-order planners of

7 Some confusion exists over terminology. Many authors use the term nonlinear to mean partially ordered. This
is slightly different from Sacerdoti’s original usage referring to interleaved plans.
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the time. Other graph planning systems, such as IPP (Koehler et al., 1997), STAN (Fox and
Long, 1998) and SGP (Weld et al., 1998), soon followed. A data structure closely resembling
the planning graph had been developed slightly earlier by Ghallab and Laruelle (1994), whose
IXTET partial-order planner used it to derive accurate heuristics to guide searches. Nguyen
et al. (2001) give a very thorough analysis of heuristics derived from planning graphs. Our
discussion of planning graphs is based partly on this work and on lecture notes by Subbarao
Kambhampati. As mentioned in the chapter, a planning graph can be used in many different
ways to guide the search for a solution. The winner of the 2002 AIPS planning competition,
LPG (Gerevini and Serina, 2002), searched planning graphs using a local search technique
inspired by WALKSAT.

Planning as satisfiability and the SATPLAN algorithm were proposed by Kautz and
Selman (1992), who were inspired by the surprising success of greedy local search for sat-
isfiability problems. (See Chapter 7.) Kautz et al. (1996) also investigated various forms of
propositional representations for STRIPS axioms, finding that the most compact forms did
not necessarily lead to the fastest solution times. A systematic analysis was carried out by
Ernst et al. (1997), who also developed an automatic “compiler” for generating propositional
representations from PDDL problems. The BLACKBOX planner, which combines ideas from
GRAPHPLAN and SATPLAN, was developed by Kautz and Selman (1998).

The resurgence of interest in state-space planning was pioneered by Drew McDermott’s
UNPOP program (1996), which was the first to suggest a distance heuristic based on a relaxed
problem with delete lists ignored. The name UNPOP was a reaction to the overwhelming con-
centration on partial-order planning at the time; McDermott suspected that other approaches
were not getting the attention they deserved. Bonet and Geffner’s Heuristic Search Planner
(HSP) and its later derivatives (Bonet and Geffner, 1999) were the first to make state-space
search practical for large planning problems. The most successful state-space searcher to date
is Hoffmann’s (2000) FASTFORWARD or FF, winner of the AIPS 2000 planning competition.
FF uses a simplified planning graph heuristic with a very fast search algorithm that combines
forward and local search in a novel way.

Most recently, there has been interest in the representation of plans as binary decision
diagrams, a compact description of finite automata widely studied in the hardware verifi-BINARY DECISION

DIAGRAMS

cation community (Clarke and Grumberg, 1987; McMillan, 1993). There are techniques for
proving properties of binary decision diagrams, including the property of being a solution to a
planning problem. Cimatti et al. (1998) present a planner based on this approach. Other rep-
resentations have also been used; for example, Vossen et al. (2001) survey the use of integer
programming for planning.

The jury is still out, but there are now some interesting comparisons of the various
approaches to planning. Helmert (2001) analyzes several classes of planning problems, and
shows that constraint-based approaches, such as GRAPHPLAN and SATPLAN are best for NP-
hard domains, while search-based approaches do better in domains where feasible solutions
can be found without backtracking. GRAPHPLAN and SATPLAN have trouble in domains
with many objects, because that means they must create many actions. In some cases the
problem can be delayed or avoided by generating the propositionalized actions dynamically,
only as needed, rather than instantiating them all before the search begins.
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Weld (1994, 1999) provides two excellent surveys of modern planning algorithms. It is
interesting to see the change in the five years between the two surveys: the first concentrates
on partial-order planning, and the second introduces GRAPHPLAN and SATPLAN. Readings
in Planning (Allen et al., 1990) is a comprehensive anthology of many of the best earlier
articles in the field, including several good surveys. Yang (1997) provides a book-length
overview of partial-order planning techniques.

Planning research has been central to AI since its inception, and papers on planning
are a staple of mainstream AI journals and conferences. There are also specialized confer-
ences such as the International Conference on AI Planning Systems (AIPS), the International
Workshop on Planning and Scheduling for Space, and the European Conference on Planning.

EXERCISES

11.1 Describe the differences and similarities between problem solving and planning.

11.2 Given the axioms from Figure 11.2, what are all the applicable concrete instances of
Fly(p, from, to) in the state described by

At(P1, JFK ) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK ) ∧ Airport(SFO) ?

11.3 Let us consider how we might translate a set of STRIPS schemata into the successor-
state axioms of situation calculus. (See Chapter 10.)

• Consider the schema for Fly(p, from, to). Write a logical definition for the predicate
FlyPrecond(p, from, to, s), which is true if the preconditions for Fly(p, from, to) are
satisfied in situation s.

• Next, assuming that Fly(p, from, to) is the only action schema available to the agent,
write down a successor-state axiom for At(p, x, s) that captures the same information
as the action schema.

• Now suppose there is an additional method of travel: Teleport(p, from, to). It has
the additional precondition ¬Warped(p) and the additional effect Warped(p). Explain
how the situation calculus knowledge base must be modified.

• Finally, develop a general and precisely specified procedure for carrying out the trans-
lation from a set of STRIPS schemata to a set of successor-state axioms.

11.4 The monkey-and-bananas problem is faced by a monkey in a laboratory with some
bananas hanging out of reach from the ceiling. A box is available that will enable the monkey
to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the
box at C. The monkey and box have height Low , but if the monkey climbs onto the box he
will have height High, the same as the bananas. The actions available to the monkey include
Go from one place to another, Push an object from one place to another, ClimbUp onto or
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ClimbDown from an object, and Grasp or Ungrasp an object. Grasping results in holding
the object if the monkey and object are in the same place at the same height.

a. Write down the initial state description.

b. Write down STRIPS-style definitions of the six actions.

c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the
bananas, but leaving the box in its original place. Write this as a general goal (i.e., not
assuming that the box is necessarily at C) in the language of situation calculus. Can this
goal be solved by a STRIPS-style system?

d. Your axiom for pushing is probably incorrect, because if the object is too heavy, its
position will remain the same when the Push operator is applied. Is this an example of
the ramification problem or the qualification problem? Fix your problem description to
account for heavy objects.

11.5 Explain why the process for generating predecessors in backward search does not need
to add the literals that are negative effects of the action.

11.6 Explain why dropping negative effects from every action schema in a STRIPS problem
results in a relaxed problem.

11.7 Examine the definition of bidirectional search in Chapter 3.

a. Would bidirectional state-space search be a good idea for planning?

b. What about bidirectional search in the space of partial-order plans?

c. Devise a version of partial-order planning in which an action can be added to a plan if its
preconditions can be achieved by the effects of actions already in the plan. Explain how
to deal with conflicts and ordering constraints. Is the algorithm essentially identical to
forward state-space search?

d. Consider a partial-order planner that combines the method in part (c) with the standard
method of adding actions to achieve open conditions. Would the resulting algorithm be
the same as part (b)?

11.8 Construct levels 0, 1, and 2 of the planning graph for the problem in Figure 11.2.

11.9 Prove the following assertions about planning graphs:

• A literal that does not appear in the final level of the graph cannot be achieved.

• The level cost of a literal in a serial graph is no greater than the actual cost of an optimal
plan for achieving it.

11.10 We contrasted forward and backward state-space search planners with partial-order
planners, saying that the latter is a plan-space searcher. Explain how forward and backward
state-space search can also be considered plan-space searchers, and say what the plan refine-
ment operators are.
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11.11 Figure 11.16 shows a blocks-world problem known as the Sussman anomaly. TheSUSSMAN ANOMALY

problem was considered anomalous because the noninterleaved planners of the early 1970s
could not solve it. Write a definition of the problem in STRIPS notation and solve it, either
by hand or with a planning program. A noninterleaved planner is a planner that, when given
two subgoals G1 and G2, produces either a plan for G1 concatenated with a plan for G2, or
vice-versa. Explain why a noninterleaved planner cannot solve this problem.

Start State Goal State

B A

C

A

B

C

Figure 11.16 The “Sussman anomaly” blocks-world planning problem.

11.12 Consider the problem of putting on one’s shoes and socks, as defined in Section 11.3.
Apply GRAPHPLAN to this problem and show the solution obtained. Now add actions for
putting on a coat and a hat. Show the partial order plan that is a solution, and show that there
are 180 different linearizations of the partial-order plan. What is the minimum number of
different planning graph solutions needed to represent all 180 linearizations?

11.13 The original STRIPS program was designed to control Shakey the robot. Figure 11.17
shows a version of Shakey’s world consisting of four rooms lined up along a corridor, where
each room has a door and a light switch.

The actions in Shakey’s world include moving from place to place, pushing movable
objects (such as boxes), climbing onto and down from rigid objects (such as boxes), and
turning light switches on and off. The robot itself was never dexterous enough to climb on a
box or toggle a switch, but the STRIPS planner was capable of finding and printing out plans
that were beyond the robot’s abilities. Shakey’s six actions are the following:

• Go(x, y), which requires that Shakey be at x and that x and y are locations in the same
room. By convention a door between two rooms is in both of them.

• Push a box b from location x to location y within the same room: Push(b, x, y). We
will need the predicate Box and constants for the boxes.

• Climb onto a box: ClimbUp(b); climb down from a box: ClimbDown(b). We will
need the predicate On and the constant Floor .

• Turn a light switch on: TurnOn(s); turn it off: TurnOff (s). To turn a light on or off,
Shakey must be on top of a box at the light switch’s location.
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Room 4

Room 3

Room 2

Room 1
Door 1

Door 2

Door 3

Door 4

Box 1

Box 2
Box 3

Shakey

Switch 1

Switch 2

Switch 3

Switch 4

Box 4

Corridor

Figure 11.17 Shakey’s world. Shakey can move between landmarks within a room, can
pass through the door between rooms, can climb climbable objects and push pushable objects,
and can flip light switches.

Describe Shakey’s six actions and the initial state from Figure 11.17 in STRIPS notation.
Construct a plan for Shakey to get Box 2 into Room2.

11.14 We saw that planning graphs can handle only propositional actions. What if we want
to use planning graphs for a problem with variables in the goal, such as At(P1, x)∧At(P2, x),
where x ranges over a finite domain of locations? How could you encode such a problem to
work with planning graphs? (Hint: remember the Finish action from POP planning. What
preconditions should it have?)

11.15 Up to now we have assumed that actions are only executed in the appropriate situa-
tions. Let us see what propositional successor-state axioms such as Equation (11.1) have to
say about actions whose preconditions are not satisfied.

a. Show that the axioms predict that nothing will happen when an action is executed in a
state where its preconditions are not satisifed.
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b. Consider a plan p that contains the actions required to achieve a goal but also includes
illegal actions. Is it the case that

initial state ∧ successor-state axioms ∧ p |= goal ?

c. With first-order successor-state axioms in situation calculus (as in Chapter 10), is it
possible to prove that a plan containing illegal actions will achieve the goal?

11.16 Giving examples from the airport domain, explain how symbol-splitting reduces the
size of the precondition axioms and the action exclusion axioms. Derive a general formula
for the size of each axiom set in terms of the number of time steps, the number of action
schemata, their arities, and the number of objects.

11.17 In the SATPLAN algorithm in Figure 11.15, each call to the satisfiability algorithm
asserts a goal gT , where T ranges from 0 to Tmax. Suppose instead that the satisfiability
algorithm is called only once, with the goal g0 ∨ g1 ∨ · · · ∨ gTmax .

a. Will this always return a plan if one exists with length less than or equal to Tmax?

b. Does this approach introduce any new spurious “solutions”?

c. Discuss how one might modify a satisfiability algorithm such as WALKSAT so that it
finds short solutions (if they exist) when given a disjunctive goal of this form.


