

CS 309: Autonomous Intelligent Robotics

Instructor: Jivko Sinapov

http://www.cs.utexas.edu/~jsinapov/teaching/cs309_spring2017/

Computer Vision: 2D Images

Semester Schedule

You are here

Time

Announcements

• Homework 5 is out

Announcements

FRI Summer Fellowship Applicants: let me know if your status has changed (e.g., if you're willing to go part time instead of full time or if you've already accepted an offer from somewhere else)

FAI Talk

How Can We Trust a Robot? Benjamin Kuipers University of Michigan

Friday, March 24 11 am @ GDC 6.302 https://www.cs.utexas.edu/~ai-lab/fai/

Computer Vision: 2D Images

Readings

- Jain, Kasturi, and Schunck (1995).
 Machine Vision, ``Chapter 1: Introduction," McGraw-Hill, pp. 1-24.
- Jain, Kasturi, and Schunck (1995).
 Machine Vision, ``Chapter 2: Binary Image Processing," McGraw-Hill, pp. 25-72.

Readings (con't)

 J. K. O'Regan and A. Noe, (2001).
 ``A sensorimotor account of vision and vis ual consciousness" , Behavioral and Brain Sciences, 24(5), 939-1011.

What is an image?

A grayscale image

Index	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	10
1	11	12	13	14	15	16	17	18	19	20
2	21	22	23	24	25	26	27	28	29	30
3	31	32	33	34	35	36	37	38	39	40
4	41	42	43	44	45	46	47	48	49	50
5	51	52	53	54	55	56	57	58	59	60
6	61	62	63	64	65	66	67	68	69	70
7	71	72	73	74	75	76	77	78	79	80
8	81	82	83	84	85	86	87	88	89	90
9	91	92	93	94	95	96	97	98	99	100

An RGB image

How did computer vision start?

In 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman to "spend the summer linking a camera to a computer and getting the computer to describe what it saw". We now know that the problem is slightly more difficult than that!

Computer vision vs human vision

What a computer sees

What we see

Intensity Levels

- 2
- 32
- 64
- 128
- 256 (8 bits)
- 512

. . .

- •
- 4096 (12 bits)

Intensity Levels

- 2
- 32
- 64
- 128
- 256 (8 bits)
- 512

. . .

- •
- 4096 (12 bits)

Image Plane v.s. Image Array

Point Operations

Local Operations

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 1]

Global Operations

 $P = O_{\text{global}}\{f[i, j]\}$

Thresholding an Image

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 1]

Dark Image on a Light Background

$F_T[i,j] = \begin{cases} 1 & \text{if } F[i,j] \leq T \\ 0 & \text{otherwise.} \end{cases}$

Selecting a range of intensity values

$$F_T[i,j] = \begin{cases} 1 & \text{if } T_1 \leq F[i,j] \leq T_2 \\ 0 & \text{otherwise.} \end{cases}$$

Generalized Thresholding

A general thresholding scheme in which the intensity levels for an object may come from several disjoint intervals may be represented as

$$F_T[i,j] = \begin{cases} 1 & \text{if } F[i,j] \in Z \\ 0 & \text{otherwise} \end{cases}$$
(2.4)

Thresholding Example (1)

Thresholding Example (2)

Original grayscale Image

Area of a Binary Image

$$A = \sum_{i=1}^{n} \sum_{j=1}^{m} B[i, j].$$

This figure now becomes important

Calculating the Position of an Object

The center is given by

$$\bar{x} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} jB[i,j]}{A}$$
$$\bar{y} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} iB[i,j]}{A}.$$

Horizontal and Vertical Projections

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 2]

Horizontal and Vertical Projections

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 2]

Projection Formulas

$$H[i] = \sum_{j=1}^{m} B[i, j]$$
$$V[j] = \sum_{i=1}^{n} B[i, j].$$

Diagonal Projection

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 2]

The area and the position can be computed from the H and V projections

$$A = \sum_{j=1}^{m} V[j] = \sum_{i=1}^{n} H[i]$$
$$\bar{y} = \frac{\sum_{i=1}^{n} iH[i]}{A}$$
$$\bar{x} = \frac{\sum_{j=1}^{m} jV[j]}{A}.$$

Neighbors and Connectivity

4-Connected

8-connected

8-neighbors [i + 1, j + 1], [i + 1, j - 1], [i - 1, j + 1], [i - 1, j - 1] plus all of the 4-neighbors

[i, j]	

Examples of Paths

Boundary, Interior, and Background

An Image (a) and Its Connected Components (b)

Color Perception

The RGB Color Space

[http://www.arcsoft.com/images/topics/darkroom/what-is-color-space-RGB.jpg]

The RGB Color Space

https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/RGBCube_b.svg/2000px-RGBCube_b.svg.png

3D Scatter Plot for a patch of skin

The HSV Color Space

Hue

Color Detection and Segmentation

Color Detection and Segmentation

Discussion: how may we achieve this?

Example Hand Tracking using Color

Computer Vision in ROS

Computer Vision in ROS

- 1) Subscribing to an image topic
- 2) Converting a ROS image to an OpenCV image
- 3) Copy an image
- 4) Convert an image to grayscale
- 5) Access and set individual pixel values

Resources

- OpenCV in ROS:
 - http://wiki.ros.org/vision_opencv
 - http://wiki.ros.org/cv_bridge/Tutorials
 - http://docs.opencv.org/2.4/doc/tutorials/tutorial s.html

THE END