
Homework 4: Multi-Agent System

Reactive Paradigm Example

Reactive Paradigm Example

Reactive Paradigm Example

. .
 .

.

Reactive Paradigm Example

Reactive Paradigm Example

. .
 .

.

Homework 4: Prerequisites

• ROS tutorial on launch files (#8):
http://wiki.ros.org/ROS/Tutorials/UsingRqtco
nsoleRoslaunch

• ROS tutorial on services (#14)

• Turtlesim video tutorial:
http://wiki.ros.org/turtlesim/Tutorials#Video_Tu
torials

http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch
http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch
http://wiki.ros.org/turtlesim/Tutorials#Video_Tutorials
http://wiki.ros.org/turtlesim/Tutorials#Video_Tutorials

Homework 4: Part 1

• Create a new package called
“cs378_<eid>_hw4”

• The package's dependencies should
include the turtlesim package

Homework 4: Part 1

• For part 1, the task is to write a ROS node
which adds a new turtle to the simulator

• After adding the new turtle, it should follow
turtle1

• Include a launch file called
“hw4_part1.launch” which should launch
the simulator, your node and the keyboard
teleop node to control turtle1

Homework 4: Part 2

Homework 4: Part 2

• For Part 2, you should implement three
different ROS nodes, with each
corresponding to the “turtle”, the “shark”,
and the “fish”.

• Behavior:
– “fish” should move randomly with low velocity
– “shark” should follow the turtle
– “turtle” should avoid the shark but try to get to

the fish

Homework 4: Part 2

• A single launch titled “hw4_part2.launch”
should launch all 3 nodes along with the
turtlesim simulator

• 2 of the 3 nodes, the “fish”, and the “shark”
should make a client call to the simulator
to add a turtle that will represent them

Homework 4: Part 2

• At start time, the “fish” and the “shark” nodes should:
– Use the /spawn service to add the agents to random positions on

the board

– Use the /<turtle_name>/set_pen service to set the fish's pen to
yellow and the shark's pen to red

• At start time, the “turtle” node should use the
/turtle1/teleport_absolute service to teleport to a random
location

• As a result, all three agents should start at random
locations and have different color pens so you can tell them
apart

Homework 4: Part 2

Extra Credit:

• Write an additional node which monitors the positions of
all three agents. If the turtle gets within a set threshold
of the “fish”, then the node should call the /kill service
on the fish. Similarly, it the “shark” gets within a
threshold of the turtle, bye bye turtle :(

• Extra credit can also be gained if the turtle reasons
explicitly about the boundaries of the stage (i.e., it
should be turning away form the edge if it is running
into the wall

Homework 4: Part 2

The README.txt file should contain:
– A detailed explanation in plain English describing

how you implemented the behavior of each agent
– Comments on any completed extra credit

– Statistics on how often the turtle gets to the fish
and how often the shark gets to the turtle. A
successful completion of this assignment should
result in both cases. To estimate the statistics, run
your solution 10 different times (at least).

Homework 4: Part 2

• Due Friday March 4th

• What to turn in:
– A zip of your package as it is in the

catkin_ws/src folder

– A README.txt file inside the package
describing how you solved the problem and
whether any extra credit was completed

	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

