
Learning To Look
Nicholas J. Butko and Javier R. Movellan
Machine Perception Laboratory, UC San Diego

{nick,movellan}@mplab.ucsd.edu

Abstract—How can autonomous agents with access to only
their own sensory-motor experiences learn to look at visual
targets? We explore this seemingly simple question, and find
that naı̈ve approaches are surprisingly brittle. Digging deeper, we
show that learning to look at visual targets contains a deep, rich
problem structure, relating sensory experience, motor experience,
and development. By capturing this problem structure in a
generative model, we show how a Bayesian observer should trade
off different sources of uncertainty in order to discover how
their sensors and actuators relate. We implement our approach
on two very different robots, and show that both of them can
quickly learn reliable intentional looking behavior without access
to anything beyond their own experiences.

I. FROM SIMULATIONS TO PHYSICAL SYSTEMS

There are many situations in which a robot may want orient
its cameras toward objects in its environment. A security
camera may want to track a person in a building, a social
robot may want to make eye-contact, or a teaching robot may
want to give a student a clue about what object the student
should focus on for her task.

In order to intentionally fixate an object, a robot must know
what signal to send to its motors. This signal can be calibrated
in a straightforward manner by the robot’s engineers. They
send an arbitrary signal to its eye-motors, and measure how
many degrees its eyes move. After repeating this procedure
several times for several motion signals, the solution to “what
signal to send the motors to achieve a desired rotation”
becomes a straightforward regression problem.

This process is tedious and it is impractical to calibrate
the sensory-motor properties of many different robots. Even
for different versions of the same robot, there may be slight
variations in motor calibration, making mass deployment dif-
ficult. More importantly, from a developmental point of view,
this calibration process is infeasible: a scientist measuring the
properties of an infant’s eye is not a prerequisite for an infant
being able to look at things.

Robots with calibration parameters endowed by their exper-
imenters violate Sutton’s verification principle [1]:

An AI system can create and maintain knowl-
edge only to the extent that it can verify that knowl-
edge itself.

In this paper, we consider how infants and robots may use
their own developmental experiences to learn to look. We
explore this seemingly simple question, and find that rule-
based approaches are brittle. An alternative is to explore the
computational structure of the problem [2]. It is well known
how objects in the world project a 2D image onto a robot’s
camera, as well as how a robot’s cameras generally move

Fig. 1: Different robots like Nobody (left) and Diego-san (right)
have sensory and motor capabilities. It is tedious and impractical
to measure the sensory-motor properties of many different robots. It
would be better if each robot could learn to use and make sense of its
sensory-motor capabilities in terms of its developmental experience.

through space. We can derive an algorithm for learning to
look by encoding this knowledge formally into a generative
model [3]. The generative model begins with formal models
of the relationships among three components:

1) How the appearance of the world changes over time.
2) How the physical parameters of a robot’s motor system

cause a motor signal to re-orient the robot’s cameras in
space.

3) How the orientation of a robot’s cameras in space cause
the robot to see an image of the appearance of the world.

Given this formal structure, the robot can simultaneously infer
the appearance of the world, the kinematics of its eye motion,
and the direction of the eyes. This inference problem has a
special mathematical structure: it is a conditional Gaussian
process and thus efficient algorithms can be used to solve this
inference problem robustly [3].

A. Nature or Nurture?

In this document, we present a model by which a robot
may “learn to look.” This is a necessary problem to consider
because each robot may have a different configuration of
motors. The motors from robot to robot may have different

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 70

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

Fig. 2: This robot is currently looking at the car, but he would like
to look at the beach (starred). What command should he send to
his servo motors? Can the robot learn what command to send from
developmental experience?

range of reasonable control values. Some robots may be fixed
to a point in space, with only the ability to rotate their cameras;
others may be able to move easily in three dimensional space.
Thus it is critical that each robot be able to use developmental
sensory-motor experience to figure out how to use its motors,
seemingly putting us on the “nurture” side of the “nature vs.
nurture” question.

However, we present a generative model by which the robot
can anchor its motor experience in its sensory experience, and
use Bayesian inference to discover how its motors work. It is
“born” with a generative probabilistic model and machinery
for doing Bayesian inference. This seems to argue more for
the “nature” side of the “nature vs. nurture” question.

We argue that in our case, both the “nature” and “nurture”
views are correct: Each robot or developing organism is “born”
with a framework for learning from sensory-motor experiences
how their individual bodies are organized.

B. A rule-based approach

How can a robot learn how to look at some interesting visual
target? A naı̈ve algorithm might look something like this:

1) Calculate ∆1, the distance from your center of gaze to
some object.

2) Make an arbitrary eye movement a.
3) Calculate ∆2, the new distance from your center of gaze

to the same object.
4) Calculate ∆3 = ∆2 − ∆1, the actual eye-movement

caused by a.
5) Use ∆3 as a training signal to learn the functional

mapping f(a)→ ∆.
6) Repeat 1–5 for many training examples, until the map-

ping f(a)→ ∆ becomes reliable.
7) Calculate ∆4, the distance from your center of gaze to

something you want to look at.
8) Calculate a← f−1(∆4) to look at the target.
This approach, while basically sound, suffers from being

brittle. Specifically, it requires reliable identification the same

Whole Scene View 1 View 2 Difficulty

No match

Same object?
(Which lightpost?)

Same object type?
(Lake or Cloud?)

Same location?
(Moving Target)

Fig. 3: Matching objects in two consecutive images may fail for
many reasons. 1) After moving its camera, there may be no objects
in common. 2) Common objects may be present at regular intervals
in the environment, and give systematic false matches. 3) Objects
may have a similar appearance to different objects. 4) Objects may
move; assuming a matched object is in the same location may give
a corrupt training signal.

object before and after an eye-movement. Many things can
cause this process to go wrong, as illustrated in Figure 3.

In order to overcome these difficulties, one possibility is
to explicitly list the things we can think of that could go
wrong, and encode a series of “if-then” style coping heuristics
the robot can use. An alternative is to consider the robot’s
sensors and actuators and their relation to the basic structure
of the world. This relationship can be encoded in a generative
probabilistic model. Generative models force us to explicitly
explore the full structure of the problems that intelligent,
developing agents face. In return, they often offer natural
compromises to dealing with sources of ambiguity like those
in Figure 3. For example, when Marks et al. considered the
generative process in tracking non-rigid face deformation, they
found an optimal tradeoff between optic-flow based tracking
methods and template-based tracking methods [3].

Using the machinery of Bayesian inference, the robot can
account for the exceptions in Figure 3 naturally, and in the
right way. Specifically, we show that there is a tradeoff among
three quantities: where you expect to look, what you expect
to see, and how unsure you are about what you expect to see.

II. GENERATIVE MODEL

Two sources of information are available to the robot
moment to moment. First, the robot knows what commands it
is sending to its motors (motor information). Second, it senses
an array of pixels (sensory information).

Let each pixel in the sensor array be a random variable Ψx
t ,

where x ∈ R2 denotes the location of the pixel in the array,
and t the time at which the image was collected. The value
of the pixel, ψxt , is rendered from the conditional probability
distribution p(ψxt |λxt , τt), where λxt is the appearance of the
world at that point.

When the robot issues a motor command a, its camera
moves to a new position. However, its retinal coordinate
system has not changed. The effect of an action a is that the
appearance of the world λx

′
at a previous location x′ moves

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 71

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

Fig. 4: Top: The information available to the robot moment to
moment (sensory & motor). Left: Graphical model that gives rise
to the robot’s experiences. Circles denote hidden states that the robot
must infer. Greek letters denote random variables. Right: Graphical
depiction of the generative process.

to a new location x in the sensor array. This transformation is
parameterized by τ , for some f(x′, τt)→ x. While τt literally
represents the parameters of a coordinate transformation, it is
useful to think of it as intuitively representing “How did the
robot’s eyes just move?”

The particular transform τt that describes the move-
ment of the robot’s cameras through the world is drawn
moment-to-moment from the conditional probability distribu-
tion p(τt|at, αt), where at is the change to previous setting
of the robot’s actuators (e.g. “look down a little, look right
a lot”), and αt are the unknown motion parameters that
relate the setting of the actuators to the robot’s physical
orientation in space. While αt literally represents the current
parameters of a model of motion, it is useful to think of it as
intuitively representing “How the robot’s motors work,” which
is ultimately what we want the robot to learn.

This generic sketch of the generative process for the robot’s
experiences is illustrated in Figure 4. The variables in the
generative model are summarized as:
• ψt: “Sensor,” the entire image a robot sees right now
• ψxt : A single pixel at location x of that image.
• λt: “Light,” the appearance of the whole world right now.
• λxt : The appearance of the world at the single point,

which is currently located at point x in the robot’s sensor
coordinate system. If x is outside the bounds of the sensor
array, the robot cannot see this point in the world right
now, but it still has an appearance.

• λx
′

t−1 The same point in the world, which was previously
at a different point, x′, in the robot’s sensor coordinate

system at time t− 1, before the robot moved.
• τt: “Transform,” where the robot is looking now, relative

to where it was looking previously . Recall x = f(x′, τt).
• at: “Action,” The command the robot just sent to change

its eye-motor position.
• αt: “Actuation Parameters,” The robot’s current parame-

ters of motion; how the robot’s motors currently work.

The desire to look somewhere can be equated to the desire to
achieve a particular coordinate transformation τt, which cannot
be done unless the robot knows the motion parameters αt.
Ultimately, in order for the robot to learn to look, it must infer
the parameters of motion αt. These describe the consequence
of a particular actuation value, at.

A. Model details

The above model is generic and flexible. For the sake of
implementing a solution, we are forced to fill in the probability
distributions and functions. In general, we will take a “condi-
tional Gaussian” approach, where all conditional probabilities
are Gaussian. However, the overall filtering distribution will
be highly non-Gaussian.

1) p(ψt|λt, τt): At every moment in time, each pixel value
ψxt in the sensor array is drawn from the Gaussian distribution,
ψxt ∼ N(λxt , q

2
λ).1 For things that the robot cannot currently

see (i.e. x is a point beyond the bounds of the sensor array),
it is useful to think of these regions as being drawn from
ψxt ∼ N(λxt ,∞).

2) p(λxt |λx
′

t−1): Since objects may move, the world may
change appearance over time. Rather than explicitly modeling
the movement of objects, we simply say that the world changes
appearance over time according to Brownian motion with drift
r2λ: λxt ∼ N(λx

′

t−1, r
2
λ).

3) p(λ0): The intensity of light in an image can be repre-
sented as a real number from 0 to 1. We consider each λx0 to
be initially drawn i.i.d. from λx0 ∼ N(0.5, σ2

λ0).
4) f(x′, τt): General robots may have a rich set of actuators

that can move them around in space as well as change the
orientation of their cameras. Based on their motions through
space, they may experience translation, rotation, scaling, and
sheer of the visible environment around them. For this paper
we begin by considering a less general class of robots that only
can rotate their cameras up and down, and left and right. We
model this constrained class by considering only translation
transforms. Let τ be a two-dimensional vector,

τt
def
=

[
τht

τvt

]

then x = x′ + τt.

1Throughout this document, we use the notation x ∼ N(µ, σ2) to denote
that the random variable X has its value x drawn from the normal probability
distribution with mean µ and variance σ2. We use the notation Nx(µ, σ2)
to denote the value of the normal probability density function for that
distribution, evaluated at x. When x and µ are vectors, the variance is given
by a matrix Σ.

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 72

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

5) p(τ |a, α): For stationary robots that can pan and tilt
their cameras, there are two actuators: aA and aB .2 The robot
does not know which is horizontal and which is vertical, and
actually they may not be axis aligned, so we let horizontal
translation τht and the vertical translation τvt be linear func-
tions of both motor commands:

[
τht

τvt

]
︸ ︷︷ ︸

τt

=

[
aAt aBt 1 0 0 0

0 0 0 aAt aBt 1

]
︸ ︷︷ ︸

Ct

α1
t

α2
t

α3
t

α4
t

α5
t

α6
t

︸ ︷︷ ︸

αt

where α1:3
t described how much the camera moves in the

horizontal direction, and α4:6
t describe how much the camera

moves in the vertical direction. The learned motion parameters
α1:3
t for two robots are shown in Figure 5 Row 1, and α4:6

t

are shown in Row 2.
For less simple robots, more complicated features of the

motors may be useful, such as sin(aA) or (aA + aB)2.
Generally, let φ(a) be a function that outputs a length-m
feature vector of the actuation values, and let τ have n
elements; then C is an nxmn block-diagonal matrix where
each block is φ(a)T , and α is a vector of length mn.

In practice, it may be useful to think of the robot’s actuators
as somewhat unreliable. In this event, we say that on each
moment, the elements of τt are drawn from the Gaussian dis-
tribution, τt ∼ N(Ctαt, Qα), where Qα is an nxn covariance
matrix describing the reliability of the motors with respect to
the elements of τt.

6) p(αt|αt−1): In principle, the motion parameters α may
change over time. Infants’ developing bodies change radically
throughout their development, but even in robots, gears may
become looser or stiffer over time and change the parameters
of motion slightly, according to Brownian motion with drift
Rα: αt ∼ N(αt−1, Rα), where Rα is mnxmn.

7) p(α0): Initially we are very uncertain about the mn
parameters of motion. We consider each as being drawn from
some prior belief distribution, α0 ∼ N(~0,Σα0).

B. Implementation Parameters

In implementing the approach above, many free parameters
need to be chosen. The parameters used are listed in Table I.

III. INFERRING PARAMETERS OF MOTION

Although each component of the model presented
above is conditionally Gaussian, the filtering distribution
p(λt, τt, αt|ψ1:t, a1:t) is highly non-Gaussian. This arises from
the index remapping function f(x′, τt)→ x, in which chang-
ing τt slightly may lead to a large change in p(ψt|λt, τt).

2We encode actions in a relative coordinate system where positive is one
direction of motion, negative is another, and the value 1 represents the entire
range of motion (i.e. a value of -.1 moves 1/10th of the full range of motion
in the negative direction).

TABLE I: Model Parameters & Implementation Values

World Appearance Model Motor Model

Parameter Value Parameter Value

Prior Value µλ0 0.5 ~µα0 ~0

Prior Variance σ2
λ0 0.52 Σα0 5002I

Dynamics Variance r2λ 0.012 Rα 52I

Sensor Variance q2λ 0.12 Qα 202I

However, if we were given τ1:t, we could write the filtering
distribution

p(λt,αt|τ1:t, ψ1:t, a1:t) =

= p(αt|τ1:t, a1:t)p(λt|τ1:t, ψ1:t)

= Nαt
(µ̄αt, Σ̄αt)

∏
x

Nλx(µ̄λxt, σ̄
2
λxt)

where αt ∼ N(µ̄αt, Σ̄αt) is a Kalman Filter estimate of the
posterior motion parameter filtering distribution, and λx ∼
N(µ̄λxt, σ̄

2
λxt) is a Kalman Filter estimate of the posterior

filtering distribution for the appearance of pixel-location x (i.e.
there is a separate Kalman Filter per pixel of the world).

In such a situation, a Rao-Blackwellized Particle Filter
might be used to sample from trajectories of τ1:t according to
the posterior distribution p(τ1:t|ψ1:t, a1:t), while maintaining
Kalman Filter estimates for p(αt|τ1:t, a1:t) and p(λt|τ1:t, ψ1:t)
for each sampled τ trajectory. This approach was taken in [3]
and is commonly used in SLAM applications [4]. While a
full RBPF implementation may be helpful for general mobile
robots, in our case we consider simpler, stationary robots that
can only move their cameras.

A simpler approach is to construct the single trajectory τ∗1:t,
for which at every time t, τ∗t is the coordinate transform with
maximum probability given the previous estimated trajectory,3

i.e. τ∗t = argmaxτt p(τt|τ1:t−1, ψ1:t, a1:t):

p(τt|τ1:t−1, ψ1:t, a1:t) =

=
p(τt|τ1:t−1, a1:t)p(ψ1:t|τ1:t−1, a1:t)

p(ψ1:t|a1:t−1, τ1:t−1)

= p(τt|τ1:t−1, a1:t)p(ψt|ψ1:t−1, τ1:t−1)
p(ψ1:t−1|τ1:t−1)

p(ψ1:t|τ1:t−1)

= Z Nτt(Ctᾱt, CtΣ̄αtC
T
t +Qα)∏

x

Nψx
t
(µ̄λxt, σ̄2

λxt + q2λ)

where Z is a constant with respect to τt, and can be ignored
in finding the argmax. Rewriting this as a log function and
ignoring terms that don’t depend on τt, which preserves the

3Note that this may not be the most likely coordinate transform of all,
which would be τ∗∗t = argmaxτt p(τt|ψ1:t, a1:t).

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 73

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

maximum, gives a function g(τt) with three terms:

g(τt) =

= −.5

Predicted Motion Match︷ ︸︸ ︷
(τt − Ctµ̄αt)T (CtΣ̄αtC

T
t +Qα)−1(τt − Ctµ̄αt)

− .5
∑
x

(ψxt − µ̄λxt)
2

(σ̄2
λxt + q2λ)︸ ︷︷ ︸

Image Match

−.5
∑
x

log(σ̄2
λxt + q2λ)︸ ︷︷ ︸

Uncertainty Penalty

Each term has an important meaning:
• Predicted Motion Match: Prefer coordinate-transforms

that are close to what we expect for the current action,
Ct, based on the current estimate of the motion model,
µ̄αt.

• Image Match: Prefer coordinate-transforms that give a
match, pixel-for-pixel, between what we are seeing now,
ψt, and what we remember the world should look like,
µ̄λxt. Note that µ̄λxt depends on τt through the transform
x = x′ + τt.

• Uncertainty Penalty: If possible, prefer a transform where
you know what the world looks like. This term is impor-
tant for discouraging inferences like “I’ve never seen that
part of the world before, so let’s just assume that this is
what it looks like.” Note that σ̄2

λxt depends on τt through
the transform x = x′ + τt.

The function g(τt) gives us a way to score and compare
candidate transforms τt, but evaluating a single τt is somewhat
expensive, involving every pixel ψx in the sensor image ψ.
There are efficient ways to search the space of τt to find a local
maximum [5], but for this paper, we just search exhaustively
for the maximum.

The general sketch of inferring the parameters of motion α
can be described as:

1) Choose a new action at, observe a new image ψt.
2) Search the space of τt for τ∗t = argmaxτ g(τt).
3) Update the coordinates for the Kalman Filter estimates

of world appearance, µ̄λx′ t, and the uncertainties in
those appearances, σ̄2

λx′ t
, by x = x′ + τ∗t .

4) Update the Kalman Filters for p(αt|τ1:t, a1:t) and
p(λt|τ1:t, ψ1:t) given the current τ∗t , ψt, and at.

5) Repeat steps 1 – 4 forever.

A. Neural Implementation

The algorithm above describes the consequence of our
generative model of Learning to Look. According to this
model, at each fixation, the robot should shift its map of how
the world (λ) looks to line up with what it’s about to see.
A strikingly similar remapping process has been observed in
monkey LIP [6]. In this case, what the generative model tells
us would be a good idea to do if you want to solve a particular
problem, biology also seems to think is a good idea.

IV. NOBODY & DIEGO LEARN TO LOOK

We implemented the above approach on two robots:
• Nobody: A simple surveillance robot consisting of a

webcam and two servo-motors on a pan-tilt platform.

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

800

1000

1200

Bias
Horizontal Gain
Vertical Gain

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4 x 105

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

800

1000

1200

Bias
Horizontal Gain
Vertical Gain

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

800

1000

1200

Bias
Horizontal Gain
Vertical Gain

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4 x 105

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

800

1000

1200

Bias
Horizontal Gain
Vertical Gain

Nobody Diego

H
or

iz
on

ta
l

M
ot

io
n

Pa
ra

m
et

er
s

Ve
rti

ca
l

M
ot

io
n

Pa
ra

m
et

er
s

Pr
ed

ic
tio

n
Er

ro
r

Pr
ed

ic
tio

n
Lo

g-
Li

ke
lih

oo
d

Eye-Movements Eye-Movements

Fig. 5: Rows 1&2: Stable parameters of motion, α are learned. Row
3: Euclidean distance from the intended fixation target τ It to the
robot’s best guess of the actual fixation target, τ∗t . Row 4: Likelihood
of the intended target g(τ It) increases over time.

• Diego-san: A robot with similar level of complexity to
the human body, consisting of 88 pneumatic degrees of
freedom in the body, and 6 motors for eye-movements
and facial expressions.

Both robots were initialized with the same parameters (Table
I), and moved their eyes according to an identical Brownian
motion trajectory for a total of 400 eye-movements. On each
fixation t, they computed τ It , the place that they intended to
look, as well as τ∗t , their best guess of where they actually
looked.

The trajectories of learning are shown in Figure 5. The
learned parameters of motion, αt, stabilize given sufficient
experience. For both robots, horizontal and vertical motion are
learned to be independently controlled by different motors.
From the intended fixation target τ It to the robot’s best
guess of the actual fixation target, τ∗t the Euclidean distance

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 74

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

Fig. 6: Estimates of µ̄λxt, the appearance of the world, at all locations, x, at time points, t = {25, 50, 75, 100, 200, 400}, during each
robot’s learning.

decreases, until the robot is able to look at intended targets.
The likelihood of the intended target g(τ It) increases over
time, indicating that both robots are better able to predict the
consequences of their actions. Together, these show that both
robots develop intentional looking behavior without access to
anything but subjective, verifiable experiences.

The learning of the motor parameters αt relies heavily
on the robot’s estimate µ̄λxt, the robot’s memory of the
appearance of the world around it, which is bigger than the
things it can see with any single fixation. As the robot has
more experience looking around its environment, it develops
a better idea of “what’s out there,” as shown in Figure 6.

V. SENSORY-MOTOR DEVELOPMENT

Initially, we laid out one property of physical eye-movement
that we targeted for developmental learning. However, there
are many other properties of physical eye-movements that a
robot may find it useful to be aware of:

1) The time course from execution to completion of an
eye-movement.

2) The size of the robot’s instantaneous field of view (visual
angle), relative to its total field of view, from one limit
of its eye-movement to the other.

3) The quality of image frames collected during an eye
movement.

4) The likelihood that objects in the robot’s environment
will move spontaneously.

We set out to discover how a robot could learn to look based
only on its sensory-motor experiences; the approach that we
took was powerful and robust enough to enable two separate
robots to each learn to look at intended visual targets. The
same approach is rich enough to ultimately afford solutions to
at least these other four problems.

Problem 1) Rather than simply analyzing images after an
eye-movement, the same analysis can be applied to the whole
series of camera frames from the time of issuing a motor
command to the time of its completion. This gives the position
trajectory of the camera throughout an eye-movement.

Problem 2) Figure 6 shows each robot’s entire world,
from one motion extreme to the other. By comparing its
instantaneous field of view to the total, the robot can solve
this problem.

Problem 3) The likelihood function g(τ∗) measures how
well what the robot sees matches what it remembers. As the
camera image becomes blurred and distorted from motion, the
match between ψxt and µ̄λxt will plummet, as reflected in the
dynamics of g(τ∗) over the course of an eye-movement. This
can give a robot an idea of when to trust its sensors, and when
to ignore them.

Problem 4) Motion is captured by temporal variation in the
appearance of the robot’s world. By empirically estimating
this variance at each location, the robot not only can estimate
how much objects in its world move, but it can also figure out
where they are likely to move. E.g. objects on the floor are
more likely to move than objects on the ceiling.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation (NSF) grants IIS INT2 0808767, and ECCS 0622229
Infomax Neural Networks for Real-Time Learning and Con-
trol.

REFERENCES

[1] R. S. Sutton, “Verification, the key to AI,” http://webdocs.cs.ualberta.ca/
∼sutton/IncIdeas/KeytoAI.html, November 2001.

[2] D. Marr, Vision: A computational investigation into the human represen-
tation and processing of visual information. Henry Holt and Co., Inc.
New York, NY, USA, 1982.

[3] T. K. Marks, J. R. Hershey, and J. R. Movellan, “Tracking motion,
deformation, and texture using conditionally gaussian processes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2,
February 2010.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[5] B. D. Lucas and T. Kanade, “An iterative image registration technique
with application to stereo vision.” in Proceedings of Image understanding
workshop, 1981, pp. 121–130.

[6] J.-R. Duhamel, C. L. Colby, and M. E. Goldberg, “The updating of
the representation of visual space in parietal cortex by intended eye-
movements,” Science, vol. 255, no. 5040, pp. 90–92, January 1992.

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 75

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

