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In theory, there is no difference between theory and
practice.

In practice, there is.

—Attributed to Yogi Berra and Jan L.A. van de Snepscheut.

1 Introduction

This tutorial is extracted from my Ph.D. thesis [43]. It is available as a techincal report (TR-
CIM-04-02) from the Centre for Intelligent Machines, McGill University [44]. It is placed online
to help other researchers that are interested in implementing a particle filter for mobile robots.
A shorter version of this text was accepted in the International Conference on Robotics and
Automation 2003 (ICRA-2003) [42].

The following subjects are presented in this tutorial. The next Section 2 contains a detailed
description of the Monte-Carlo Simulation method (particle filtering) we used in order to imple-
ment the Bayesian framework. Appendix A introduces some relevant background on the topics of
estimation theory, odometry error modeling and mobile robot localization. Appendix B provides
an outline of the Bayesian framework the particle filter is based on. Appendix C presents an
odometric error study of a differential drive robot and an analysis of odometric error modeling.
Appendix D presents different algorithms for the resampling stage of the particle filter.

2 Particle Filter

The main objective of particle filtering is to “track” a variable of interest as it evolves over time,
typically with a non-Gaussian and potentially multi-modal pdf. The basis of the method is to
construct a sample-based representation of the entire pdf. A series of actions are taken, each
one modifying the state of the variable of interest according to some model. Moreover at certain
times an observation arrives that constrains the state of the variable of interest at that time.



Multiple copies (particles) of the variable of interest are used, each one associated with a weight
that signifies the quality of that specific particle. An estimate of the variable of interest is
obtained by the weighted sum of all the particles. The particle filter algorithm is recursive in
nature and operates in two phases: prediction and update. After each action, each particle is
modified according to the existing model (prediction stage), including the addition of random
noise in order to simulate the effect of noise on the variable of interest. Then, each particle’s
weight is re-evaluated based on the latest sensory information available (update stage). At times
the particles with (infinitesimally) small weights are eliminated, a process called resampling.

More formally, the variable of interest (in our case the pose of the moving robot x* = [z¥, y*, 0%]7)
at time ¢ = k is represented as a set of M samples (the “particles”) (S} = [x¥, wh]:j=1... M),
where the index j denotes the particle and not the robot, each particle consisting of a copy of
the variable of interest and a weight (wf) that defines the contribution of this particle to the
overall estimate of the variable.

If at time ¢ = k we know the pdf of the system at the previous instant (time t = k — 1) then we
model the effect of the action to obtain a prior of the pdf at time ¢ = k (prediction). In other
words, the prediction phase uses a model in order to simulate the effect an action has on the set
of particles with the appropriate noise added. The update phase uses the information obtained
from sensing to update the particle weights in order to accurately describe the moving robot’s
pdf. Algorithm 1 presents a formal description of the particle filter algorithm and the next two
subsections discuss the details of prediction and update.

Given a particle distribution, we often need to take actions based on the robot pose. Three
different methods of evaluation have been used in order to obtain an estimate of the pose. First,
the weighted mean (P.g = Zj\il w;x;) can be used; second, the best particle (the P; such
that w; = max(wy) : k = 1...M) and, third, the weighted mean in a small window around
the best particle (also called robust mean) can be used. Each method has its advantages and
disadvantages: the weighted mean fails when faced with multi-modal distributions, while the
best particle introduces a discretization error. The best method is the robust mean but it is also
the most computationally expensive.

2.1 Prediction

In order to predict the probability distribution of the pose of the moving robot after a motion
we need to have a model of the effect of noise on the resulting pose. Many different approaches
have been used (see Borenstein et al. [5, 7] for an overview), most of which use an additive
Gaussian noise model for the motion. Any arbitrary motion [Az, Ay]” can be performed as a
rotation followed by a translation (a piecewise linearisation, see Figure 1). The robot’s initial
pose is [z,y,0]". First the robot rotates by 60 = 6, — 0, where 0, = arctan(Ay/Az) to face
the destination position, and then it translates forward by distance p = VAz? + Ay? '. If the
starting pose is [z, y, 0]7, the resulting pose [2/,/, 0]T is given in Equation 1. Consequently, the
noise model is applied separately to each of the two types of motion because they are assumed

'In our experimental setup the Nomadic Technologies Superscout II robots used are controlled by the same
rules.



Require: A set of Particles for Robot ¢ at time 0: S) = [x;,w; :j =1...M].
W=wj:j=1...M
while (Exploring) do
k=Fk+1;
if (ESS(W) < 8% M) then {Particle Population Depleted (Equation 5)}
Index=Resample(V);
Sk = Sk(Index);
end if
for (j =1to M) do {Prediction after action «}

x; = f(x},0)

end for
s=Sense()
for (j =1 to M) do {Update the weights}
k+1 _ 'k k+1
w; T = wixW(s,x7)
end for
for (j =1 to M) do {Normalize the weights}
k+1
o
T
end for
end while

{ESS is the Effective Sample Size, see Equation 5}

Algorithm 1: Particle Filter Algorithm; procedures are noted as underlined text, Comments
are inside curly brackets “{comment}”.

independent.
x 4 pcos (Bg)
y'| = |y+ psin(6h) (1)
o' 0,

2.1.1 Rotation

When the robot performs a relative rotation by 60 the noise from the odometry error is modeled as
a Gaussian with mean (M, ;) experimentally established (see appendix C) and sigma proportional
to 00. More formally, if at time ¢ = k the robot has an orientation 0), then after the rotation (time
t =k + 1) the orientation of the robot is given by Equation 2. Therefore, to model the rotation
of 5@, the orientation éj of each particle j is updated by adding 50 plus a random number drawn
from a normal distribution with mean M,,; and standard deviation o,.;00 (N (M, o, arotéé), where
Orot 18 in degrees per 360°).

Okr1 = Ok + 00 + N(M,pr, 07000) (2)
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Figure 1: Arbitrary motion [Az, Ay]" of robot R;. At time ¢ = k — 1 the pose is [z, y, é]TA, after
the motion at time ¢t = k the pose is [z',9,0;]". The robot first rotates to orientation ) and
then translates by py.

2.1.2 Translation

Modeling the forward translation is more complicated 2. There are two different sources of error,
the first related to the actual distance traveled and the second related to changes in orientation
during the forward translation. During the translation the orientation of the robot changes
constantly resulting in a deviation from the desired direction of the translation; such effect is
called drift and we model it by adding a small amount of noise to the orientation of the robot
before and after each step. As well, if the intended distance is p, the actual distance traveled
is given by p plus some noise following a Gaussian distribution. Experimental results provide
the expected value and the standard deviation for the drift and pure translation. Because it is
very difficult to analytically model the continuous process, a simulation is used that discretizes
the motion to K steps, where K is chosen to be low enough for computational efficiency but
high enough in order to describe the effect of noise in forward translation. If [0y ansiation, Oarifi]
are experimentally obtained values per distance traveled then at each step of the simulation the
standard deviation used is given in Equation 3. Algorithm 2 provides a formal description of the
prediction phase of a set of particles S for a forward translation by distance p.

Otrs = OtranslationV K
K (3)
Odrft = Odrift\/ o

Figure 2 presents a graphical illustration of the effect of the two noise parameters (o5, 0grf1) in
the predictive model. In both cases the robot makes a single forward motion of 100cm (upper
left sub-plot), 200cm (upper right sub-plot), 300cm (lower left sub-plot), and 400cm (lower right

2For a detailed description of the model please refer to appendix C sections C.2.2,C.3.2.
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Input: Set of M Particles::S; Translation distance::p
0p = %
for (j =1 to M) do { For each particle}
for (k=1 to K) do { At each of K steps}
Eys =rand _N(My,s % dp, 04,5 % 0p);
l?drft :Arand_N(Mdrft % 0P, Oarpi % 0p);
0[j] = 03] + Earps; A
z[j] = z[j] + (6p + Eus * cos (0[4]);
ylil = ylil + (0p + Etrs * sin (0[5]);
l?drft :Arand_N(Mdrft % 0P, Oarpi % 0p);
0[j] = 0lj] + Earps;
end for X
S'l5] = [=[5], ylg], O]
end for
Return(S")

Algorithm 2: Forward Translation with Noise; rand_N(M, o) is a pseudo-random number gen-
erator drawing samples from a Normal distribution with mean M and standard deviation o;
procedures are noted as underlined text, Comments are inside curly brackets “{comment}”. The
variables M;,s and Mg, ¢, represent the mean error and are experimentally derived.

sub-plot). In Figure 2a the uncertainty in the distance traveled is the dominant uncertainty and
thus the particles spread a lot more in the direction of the motion. In contrast, in Figure 2b,
where the drift noise dominates, the particles spread in a circular pattern. Appendix C contains
a detailed experimental study of these parameters using the Nomadic Technologies Superscout
IT mobile platform.

2.2 Resampling

One of the problems that appear with the use of particle filters is the depletion of the population
after a few iterations. Most of the particles have drifted far enough for their weight to become
too small to contribute to the pdf of the moving robot 3. If we consider the current set of particles
Sk = {xF,wF} : k =1...M as a discrete representation of the pdf of the moving robot-pose, a
new representation S, = {x'¥, w'¥} : k = 1... M is needed such that x¥ = x'’ for k, 1 in [1, M]
and weights (w'¥ = 1/M) that represent the same pdyf.

Liu et al. [34] refer to two different measures that estimate the number of near-zero-weight
particles: one is the coefficient of variation cv? (see Equation 4) and the second is the effective
sample size ESS; (see Equation 5).

o _ var(wy(i)) _ 1 - wi) —1)2
Cuy = E2(wy(3)) M;(M (i) = 1) (4)

3For most practical implementations the weights become zero due to rounding off.
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Figure 2: The effect of 04,5, 04, for the forward translation: (a) oy,s = 5em/m, o4y = 1°/m
(b) 045 = lem/m, 04y 51 = 5°/m.

M
1+ cv?

ESS, = (5)

When the effective sample size drops below a certain threshold, usually a percentage of the
number of particles M, then the particle population is resampled, eliminating (probabilistically)
the ones with small weights and duplicating the ones with higher weights.

Different methods have been proposed for resampling; three of the most common ones are dis-
cussed in Appendix D. In every case the input is an array of the weights of the particles and
the output is an array of indices of which particles are going to propagate forward. The require-
ment is that the pdf reconstructed by the resampled population is very close to the one before
the resampling. Experimental tests showed no noticeable improvements over the simple select
with replacement scheme. In Select with Replacement each particle is selected to continue with a
probability equal to its weight. We used the approach of Carpenter et al. [9] that runs in linear
time in the number of particles (see Appendix D for a description of the algorithm).

Figure 3 presents two examples of complex motions and illustrates the performance of the predic-
tion stage of the particle filter. In figure 3a, the robot moves forward three times, rotates ninety
degrees, then translates forward three more times, after which it rotates again by ninety degrees
and translates forward five times. As can be seen the uncertainty grows unbounded. Sub-figure
3b presents experimental validation of our predictive model. In this case the predictive model
was guided by a set of motion commands that were used in an experiment in our laboratory (for
the full description of this experiment please refer to chapter 8 of [43]). In short, the experiment
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Figure 3: (a) Large trajectory, the uncertainty build up is represented by the spread of the
particle cloud. (b) Series of forward translations and 360° rotations performed in our laboratory.
The connected curved line represent the uncorrected odometer values (captured accurately by
the cloud of particles), and the bottom line represents the actual trajectory.

consisted of forward translations, each one followed by four rotations by ninety degrees (in order
to sense the environment in four different directions). The connected circles in sub-figure 3b
represent the uncorrected odometer values. In fact, the actual trajectory of the robot was kept
in a straight line but the odometry estimates did deviate due to noise. The predictive model was
constructed using the noise statistical parameters collected in our laboratory (see Appendix C).
The predicted cloud of particles can be seen around the recorded values following the trajectory
with high accuracy.

2.3 Update

After an action (the motion of one of the robots) the robot tracker sensor is employed in order
to estimate the pose of the moving robot *. The calculations are dependent on the configuration
of the robot tracker employed. The next two sections present the update of the weights of the
particles of the moving robot for the laser/target robot tracker combination for two different
cases. First we derive the update equations when the laser range finder is mounted on the
stationary robot (subsection 2.3.1); second for when the laser range finder is mounted on the
moving robot and the target is mounted on the stationary robot (subsection 2.3.2).

4Additional sources of information (e.g. consistency of sensed parts of the environment with the map up to
this point) can also be used during the update stage.



2.3.1 Pose Estimation, stationary robot observing moving robot
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Figure 4: The stationary robot with the robot tracker sensor observes the moving robot that
carries the target.

~

If the pose of the stationary robot x, = [z, ys,0,]" (with laser range finder) and the pose of
the moving robot X, = [T, Ym,Om]” (With target) are known, then the robot tracker sensor
measurement z = [p, 6, ¢|7 can be calculated by Equation 6:

Vdz? + dy?
= atan2(dy/dx) — 0 (6)
¢ atan2(—dy/ — dz) — 6,

7 =

?
6
where dr = x,,, — s and dy = Y, — VYs-

If the known information is the pose of the stationary robot (x,) (with the laser range finder)

and the robot tracker measurement is (z = [p, 0, $]7) then the estimate of the pose of the moving
(target) robot (Xm,,,(k + 1)) is given in Equation 7:

Ty Ts + pcos (és + é)-l
Xmeee (K +1) = | Ymear | = [ ys + psin (05 + 0) (7)
I B R

The Equations 6 and 7 are equivalent. Consequently, the above equations can be used in order
to calculate the weight of each particle of the moving robot, assuming a Gaussian error model for
each component of the sensor data (p, 0, ¢), in two different ways. First, let the i** particle at time
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kbe xE = [T, Ym,, 0,,.]7. Then if the pose of the stationary robot is known x, = [, ys, 0,]7
the estimated tracker measurement z; for particle 7 is given in Equation 8:

i Vda? + dy?
z; = | 0; atan2(dy;, dz;) — 0 (8)
Oi atan2(—dy;, —dx;) — O,

where dz; = x,,, — x5 and dy; = Ym, — Ys-
k+1

The weight for particle 7 then is proportional to the probability of x;"' given x, and z; (see
Equation 9). As can be seen in Equation 8 the value of dA)Z is affected by the complete pose of
particle i (both position and orientation). Therefore the error in position (z,,, ym,) is used twice.
In Equation 9 the constants o,, 0y, 0, are the presumed standard deviation of the robot trackers

measurement noise and they signify the confidence with which we weight each measurement.

—(p—p; —(6-6)°
- B = o

e 2c'p e g
V2mo, 2V 27raé 27r0qA5

Figure 5 illustrates the spatial variation of Equation 9. In particular the spatial variation of the
contribution of each component (p, é, é) to the weighting function is presented in the first three
sub-plots, and the spatial variation of the weighting function is presented on the lower right sub-
plot. For clarity of presentation, the pose of the observing robot is set at x, = [0,0,0]” and the
pose of the moving robot at x,,, = [100, 100, 45]7, and using Equation 6 the tracker measurement
z = [p, 0, dA)]T is calculated. Then the spatial variation of the different terms of the product in
Equation 9 is plotted keeping the moving robots orientation at the correct value (45°).

)2 —(6-8:)*
2

1 202

e ¢ 9)

P(Xk+1|xs, Z) =

m;

Experimental results have shown that the accuracy of the position of the robot is (almost) fixed
(independent of the distance at which the observed robot is seen). Unfortunately, the tracker

measurements are in polar coordinates and thus for a fixed error in the angle () the longer the
distance (p) the higher the error. In practice, it is necessary to calculate o, as a function of p:

0y = hip,04) = asin(o;/p) (10)

If the o4 is kept at a fixed value then the weighting function is spread out, as can be seen in
the upper right sub-plot in Figure 6, and the prediction is less accurate. Figure 6 presents the
spatial variation of the weighting function for the same condition as in Figure 6, except o is not
scaled.

An alternative weighting function is to use the difference in Cartesian coordinates and the ori-
entation estimate in order to weight the particle xf, given x, and z; (see Equation 11).

f 1 —(dz—dz;)* 1 —(dy—dy;)? 1 7_(ém_§mi)2
P(xfx,. z) = e % e 25 e 11
( i X5:2) V2mo, V2mo, 27r0qA5 (11)
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Figure 5: The contribution of each measurement of the robot tracker in the weighting pdf of the
moving robot.

The second approach is to use Equation 7 and weight every particle depending on how far it
is from the estimated pose of the moving robot (see Equation 12). Where if xm,, (k + 1) =

[Zimests Ymest> Omese) 1S the estimate pose and XF, = [Zm,, Ym;, Om,|” is the “’"” particle then

di = /(Tm.y, — Tm;)® + Ymese — Ym;)?- The disadvantage of this approach is that o4, 05 do
not represent the sensor’s noise model.

g 3 2
—(di)2 —Omegy —Om;)
2

1 1
P(xFHx,, z) 2 % (12)

i fd e d e
i V2roy V2o,

During the estimation of the weight the pose of the stationary robot x;, is used. As the actual
pose is not known, different estimates x, can be employed. The following options have been
considered:

e The best particle (the one with maximum weight):

%, = X[
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Figure 6: The contribution of each measurement of the robot tracker in the weighting pdf of the
moving robot. In contrast to Figure 5 the o, is not calculated to be proportional to distance

between the two robots.

e Weighted Mean:
M
X, = ZX;’U)J'
j=1

e Use every particle of the stationary robot (O(n?)):
P(x ! xs,2) = 7 P(xpt|x], 2)
e Robust Mean: Select only the particles that are less than e from the particle with maximum

weight. The advantage of this method is that it selects the mode of the distribution and
reduces the discretization error (which occurs when only a single particle is used).

K
= Tory. J _ mazr
XS—E xJw; :|x] — x| <€

Jj=1
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Figure 7: Observation.

2.3.2 Pose Estimation, moving robot observing stationary robot

This time the stationary robot has the target. If the poses of the two robots (x, = [z, ys, és]T
and X, = [T, Ym, Om]") are known then the robot tracker sensor measurement (z = [p, 0, ¢]")

can be calculated by Equation 13 (exactly as in the previous case Equation 6).

p Vdz? + dy?

0| = atan2(dy, dx) — O (13)

¢ atan2(—dy, —dz) — 0,
where dz = v, — 1, and dy = y, — Y, °.
If the pose of the stationary robot (x;) (carrying the target) and the robot tracker measurement
(z=[p,0,$]") are known then the estimate of the pose of the moving (carrying the laser) robot
(X;,) is given in Equation 14.

Ty Ty + p* COS (qAS + és)
Xmew (K +1) = | Ymewr | = | Ys + pxsin (¢ + ;) (14)
emest 7T+¢)+95_9

Applying the same methodology as in the previous section the weight update functions are
identical with the ones in Equations 9, 11, 12.

®Note that dxz,dy are different from Equation 6.
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Figure 8: (a) Prediction of the first step. (b) Update using the robot tracker. (c) Prediction of
the second step. (d) Update using the robot tracker.

13



Figure 8 presents an illustration of the above described process over two iterations. The first
column present the prediction phase and the second column the update phase. The moving robot
starts at position [0,0], and the stationary robot is located at [0,100]. At figure 8a the moving
robot moves by [100cm,100cm] and the particles form a cloud of approximately 20cm in radius.
Figure 8b presents the update phase based on the tracker sensor measurement (darker color
represents higher weights). At the second step the robot moves by [100cm,-100cm] and figure 8c
presents the cloud of particles. It is worth noting that the particles with higher weights (darker
grey) have spread out. Finally, figure 8d presents the second update phase where again the
particles closer to the sensed pose have higher weights.
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A Background

In this Appendix we examine some relevant background. A brief overview on estimation theory
is presented in Section A.1. Section A.2 discusses the work on odometric error estimation and
dead reckoning, and Section A.3 presents an overview on localization.

A.1 Estimation Theory

During the exploration of the unknown environment, the robots maintain a set of hypotheses
with regard to their position and the position of the different objects around them. The input
for updating these beliefs comes from the various sensors the robots poses. An “ optimal estima-
tor” [20] can be employed in order for the mobile robots to update their beliefs as accurately as
possible. More precisely, the position of an obstacle observed in the past can be updated every
time more data become available (a process called smoothing). Moreover, after an action, the
estimate of the pose of the robot can be updated based on the data collected up to that point in
time (a process called filtering).

Kalman filtering [20, 8, 39] is a standard approach for reducing the error, in a least squares
sense, in measurements from different sources. In particular, in mobile robotics, Smith, Self
and Cheeseman provided a framework for estimating the statistical properties of the error in
robot positioning given different sets of sensor data [49, 50]. A variation is based on Extended
Kalman filtering (EKF), where a nonlinear model of the motion and measurement equations is
used [32, 11]. Roumeliotis et al. successfully employed Extended Kalman Filter in a variety
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of tasks such as localization and multi-robot mapping [46, 45, 47]. Kurazume et al. proposed
the use of multiple robots, equipped with a sophisticated laser range finder, in order to localize,
using some of them as movable landmarks [31, 30, 29]. The team of mobile robots uses a swarm
behavior, using each other for localization. The fact that two robots could see each other was
not used to infer that the space between them was empty.

One approach that has gained popularity lately falls under the category of Monte Carlo Simu-
lation (see Doucet et al. [15] for an overview) and is known under different names in different
fields. The technique we use was introduced as particle filtering by Gordon et al. [22] for tracking
a moving target. In mobile robotics particle filtering has been applied successfully by different
groups for single robots [12, 13, 26, 53|, or for multiple robots [14], during navigation for online
localization and for localization with a uniform prior (solving the kidnaped robot problem) [52],
but also during exploration and mapping [25]. In vision this technique was introduced under the
name of condensation [23] and particle filtering [3] for the estimation of optical flow in image
sequences [24] and for tracking multiple moving objects in video sequences [37, 51].

A.2 Dead Reckoning

Dead reckoning is the procedure of modeling the pose (position and heading) of a robot by
updating an ongoing pose estimate through some internal measures of velocity, acceleration and
time [6, 16]. In most mobile robots this is achieved with the use of optical encoders on the wheels
and is called odometric estimation. The estimate of the pose of the robot is usually corrupted
with errors resulting from conditions such as: unequal wheel diameters, misalignment of wheels,
finite encoder resolution (both space and time), wheel-slippage, travel over uneven surfaces [6].
The process of correcting the pose estimate is referred to as localization.

Borenstein and Fend in numerous studies present an analysis of the mechanical/kinematic causes
of odometry error. Furthermore, they proposes a standard test (UMBtest) for the estimation of
systematic error [7]. Chong and Kleeman [10] use the UMBtest for the elimination of systematic
error and then calculate analytically the Covariance matrix for an extended Kalman Filter. Moon
et al. [40] studied the effect of speed and acceleration in the kinematics of differential-drive robot,
and proposed a method for maintaining a straight line trajectory. Roy et al [48] proposed an
online calibration using external sensing in order to estimate the systematic error as a separate
component for rotation and for translation.

A.3 Localization

There are two major approaches to localization of a mobile robot based on whether the full
structure of the environment is used. For both approaches a variety of sensing methodologies
can be used including computational vision, sonar or laser range finding [16].The first approach is
to use landmarks in the environment in order to localize frequently and thus reduce the odometry
error [6]. A common technique is to select a collection of landmarks in known positions and inform
the robot beforehand [19, 33, 21]. Another technique is to let the robot select its own landmarks
according to a set of criteria that optimize its ability to localize, and then use those landmarks
to correct its position [2]. The second approach to localization is to perform a matching of the
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sensor data collected at the current location to an existing model of the environment. Sonar and
laser range finder data have been matched to geometrical models [32, 35, 36, 54, 38, 41], and
images have been matched to higher order configuration space models [1, 17] in order to extract
the position of the robot. Borenstein suggested a two-part robot that would more accurately
measure its position by moving one part at a time [4]. Also, Markov models have been used in
order to describe the state of the robots during navigation [28].

The existence of clearly identifiable landmarks is an optimistic assumption for an unknown
environment. Even in man-made environments, the cost of maintaining labels in prearranged
positions may be prohibitive. Moreover, in large-scale explorations the robot may have to travel
a large distance (larger than its sensor range) before being able to locate a distinct landmark.

B Bayesian Reasoning

The Bayesian approach provides a general framework for the estimation of the state of our system
(the current pose of all robots) in the form of a probability distribution function (pdf), based on
all the available information.

For the linear-Gaussian estimation problem® the required pdf remains Gaussian and the Kalman
filter provides a provably optimal solution [27, 8, 45]. In the non-linear Gaussian case the
Extended Kalman Filter (EKF) has been successfully used by linearizing the control equa-
tions [49, 50]. For non-linear, non-Gaussian models two difficulties must be resolved: how to
represent a general pdf using finite computer storage and how to perform the integrations in-
volved in updating the pdf when new data are acquired. During the exploration the uncertainty
build-up in the pose estimate of each robot translates into uncertainty in the resulting map. In
order to improve the accuracy of the map the pose of the robot has to be estimated at discrete
time steps. This is an instance of the discrete time estimation problem and can be formulated
in state-space notation (see also Gordon et al. [22]).

The i robot pose at time ¢ = k is represented by the state vector xi = [z%, yi, 0i]T, xi € R2x S
Each robot takes action («}) and its pose evolves according to Equation 15. 7

X = fo(Xk 1,V%) (15)

where, f, is the system transition function that models how action a probabilistically modifies
the pose of the robot and how it is affected by the noise v,. The actual transfer function f, is
not analytically available; instead, a simulation (as described in Appendix C Section C.3) that
models the effect of noise and provides an approximation fa ~ fq is used.

After each action is performed the robot acquires one (or more) sensor readings. Every sensor
measurement available at time ¢ = k is included in a sensor data vector noted as zi. These
measurements are related to the state vector via the observation equation 16.

6Where the noise probability distribution functions are Gaussian and the model of the system is linear.
"The superscript “i” that indicates the robot to which we refer is dropped for clarity of presentation for the
rest of the discussion.
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zp = g (X, Ur) (16)

where g is the measurement function and wuy is the noise model.

It is assumed that the initial pdf P(xg) is known and that the available information at time ¢ = k&
is the set of measurements and the set of actions up to that time. In order for the robot to
decide the next action it needs to know its current pose or, since knowledge of the true pose is
not feasible due to noisy measurements, at least the pdf of its pose given the previous actions and
observations (P(xy|Xo,;,2z; : j = 1...k)). This can be achieved recursively, by first predicting
the prior probability of x; from the previous pose xj_; (presuming it is available) and the action
taken oy (see Equation 17) and then updating using the latest sensor data zj in order to obtain
the posterior distribution of the pose x; of the moving robot given all available information.

P(xg|xo, i, 0,2 )= /P(xk|ak,xk1)P(xk1|x0, @j,2; )dXp_1 (17)
i=1..k—1 i=1..k—1
j=1l..k— j=1l...k—

Note that the P(xy|ag,xg 1) can be derived by the system model (Equation 15), the known
characteristics of the noise vy_; and the P(xj_1|Xo, j,z; : j = 1...k—1), which is the posterior
of x at time t =k — 1.

When new sensory information becomes available we can use Bayes rule in order to update the
pdf of the moving robot with the latest observations (Equation 18). The conditional probability
of the sensor measurement z; given the pose x; from which it was obtained can be estimated
by the sensing function g and the noise model v;. Finally the normalizing denominator can be
obtained through Equation 19.

P(zg|xi) P(xk|%0, j,zj 1 j=1...k—1)
P(zg|xo,j,2z;: j=1...k—1)

P(xg|xp,j,2z;: j=1...k) = (18)

P(zg|xo, 0,2 : j=1...k—1) = /P(zk|xk)P(xk|x0,aj,zj cj=1...k—1)dxy (19)

C Odometry Error Study

C.1 Introduction

In this Appendix we consider the measurement of odometric uncertainty for a mobile robot. The
primary emphasis is to experimentally estimate the rate of odometry error buildup in a small
differential-drive research robot, and to model its behavior probabilistically. Although the use of
Kalman filters and related techniques are common place for robotic systems, it is not uncommon
for mobile robotics practitioners to merely make educated guesses not only for the rate of error
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accumulation for their robots, but also for the error model itself. While there are a few notable
papers that rigorously consider error measurement for mobile robots [5, 7, 40], the most common
error model used in practice is an unrealistic univariate two-dimensional Gaussian. Furthermore,
in simulated environments very crude odometry error models are used, if the error is modeled at
all.

Our goal was to develop a more realistic odometry error model that would reflect (at least par-
tially) the complexity of the robot’s locomotion. Such a model is used to describe faithfully the
probability distribution function of the robot’s pose after an arbitrary motion. The odometry
error study presented here in combination with the proposed model provides a practical frame-
work for the implementation of realistic odometry error in different simulation packages. Our
primary experimental data is obtained from a differential-drive robot, although we believe the
proposed probabilistic model applies to other types of drive mechanism and we have tested it
informally on synchro-drive systems as well. The odometry error is detected using a calibrated
laser range finder.

BREIIITa I

| - E I«J'.l

Figure 9: Measuring the odometry error on carpet.

C.2 Odometry Study of a Differential Drive Robot

As a baseline we consider the odometry error accrued under various conditions by a commercial
differential-drive robot, the Nomadic Technologies Superscout II. This robot uses two wheels
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to provide differential drive and odometry feedback with a third rear-mounted castor wheel
for balance. Without loss of generality any arbitrary motion by AX, AY can be achieved by
combining a rotation that points the robot towards the target location, followed by a translation
that moves the robot to the target location. Therefore we divided the observations into rotational
errors and translational errors.

C.2.1 Rotation

=] HPiob_vES[G.) [ ] I #Pat wES[G. )

(a) (b)

Figure 10: The four walls providing three landmarks. (a) Before the rotation. (b) After the
rotation.

Empirical knowledge suggests that the largest factor in odometry error is the rotational error®. In
order to measure the rotational error we placed the robot inside a “C”-shaped enclosure consisting
of four walls (see Figure 9,10a). The intersections of the four walls provide three geometric
landmarks detectable both in world coordinates and “raw” laser coordinates (see Chapter 6
section 3.2 of [43]). Moreover, the orientations of the four walls in world coordinates should
change by the amount of the robot’s rotation. To estimate the error, the three landmarks are
detected then the robot rotates and the three landmarks are detected again (see Figure 10b). The
three landmarks in laser coordinates provide three estimates for the rotation and the orientations
of the four walls provide four more estimates. The seven estimates are kept only if they all agree

8While we make this observation empirically, it follows naturally from the kinematics of the robot and a simple
model for uncertainty in wheel velocity.
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up to 0.2 degree. We proceed to measure the rotational error for different motion parameters
(rotation angle, speed, acceleration) and on different surfaces.

Error in Rotation from Odometer (for three different speeds)

0.8 T T T T T T T
0.6% i
N o}
N
N
N &
N
NR -
v § N ERN
— 7 N \ + +
g - 2
o 02r- X 3
= z X \ \ y
8 7/ % \ N
© x \ s
c 7 \ ’ % A 7
< % , N + N N M p
s oF N N e ; :
[} + s X ’
N\ \ N\
. ’ \ X N + ’
\ N /
-0.2f \ g 1
+ \g - _
& § -4
-0.4 1
%
x
0.6 I I I I I I I I I
-50 -40 -30 -20 -10 0 10 20 30 40 50

Rotation angle (in degrees)

Figure 11: Error in rotation relative to the odometer for different angles and for different speeds
(“0” speed 10, “x” speed 50, “+” speed 90, lines connect the mean values).

First, we measured the error in rotation for different rotation and translation speeds and for
different angles. Figures 11,12 present the error measurements relative to the odometer estimate
(Figure 11) and relative to the intended pose (Figure 12); for every speed/angle we gather twenty
samples. It is worth noting that they are concentrated (small standard deviation) around a non
zero mean value. Moreover from Figures 11,12 it is clear that a systematic error occurs that
biases the error by the direction of the rotation (negative rotation have positive mean error).
As it was expected the small rotations provide negligible error. Surprisingly though, the higher
speed produced less odometry error (“+” in the figures).

The effect of different surfaces on the rotational error was studied next. Four different surfaces
were tested for a rotation of —90° and forty samples were collected each time. The two types
of carpets follow more closely a normal distribution than the other two surfaces. This is due
to the fact that the surface is smooth contrary to the tile floor that contains bumps. The
friction between the wheels of the robot and the floor (or the carpet) was relatively similar. On
the contrary the plastic surface provided less friction thus significantly increasing the rotational
error.

From Figure 14 we see that the error from the intended rotation is much larger. Even though
the odometer reported a pose different than the intended one, the control software of the robot
stopped the rotation. For applications that require precise positioning, this extra error should
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Error in Rotation from Intended Angle (for three different speeds)
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Figure 12: Error in rotation relative to the intended pose for different angles and for different
speeds (as in Figure 11)

be taken into account.

From the results described above we can deduce that a study of the odometry error of the
particular mobile robot used is essential in order to model the systematic error that occurs
during rotations. A zero mean Gaussian representation would require an unnecessarily large
standard deviation forcing us to consider poses of the robot that are in fact unlikely.

C.2.2 Translation

The same setup used for the estimation of the rotational error is used also for the translation.
The same enclosure was used (see Figure 9). The robot was moved forward by a distance D over
different surfaces and with different speeds. After every translation the robot was translated
back (by -D) and the pose of the robot was reset to the origin (P, = [z,,y,,0.]7 = [0,0,0]).
Figure 15 presents the error accumulated after an intended translation of 100cm. The robot was
moved 165 times over different areas of our lab (tiled floor). The first three sub-plots present a
histogram of the error along the X and Y axis and for the orientation ©. The fourth sub-plot
present the spatial distribution of the robot poses for all the motions.

Table 1 illustrates the effect of speed in the accumulation of odometry error for three different
speeds (20, 60, 100) during the translation of 100cm along the x-axis. There is a significant
increase when the higher speed was used, especially in the systematic error as it manifests in
the mean error along the axis of translation. The observations are consistent with the work
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Figure 13: Error distribution from the odometry measurement for different surfaces (rotation of
90°).

presented by Moon et al. [40] where higher acceleration gives reduced orientation error. As can
be seen in Table 1 the high acceleration results in small orientation error but higher error along
the direction of the translation.

The measurement of odometry error over different surfaces is presented next. Figure 16 presents
the results for a translation of 120cm on a plastic surface. The same behavior as with the rotation
manifests during the translation, with the error in the distance traveled (X-axis) much higher
than the error on carpet or tile floor. Figure 17 presents the results for the translation on carpet.

The statistical properties of the odometry error collected above enable us to create a realistic
error model for the type of robot used. Furthermore, the odometry error measurements could be
utilized in the construction of realistic simulation experiments.

C.3 Odometry Error Modeling

In the past little attention has been paid to the modeling of odometry error. The computing
power was not enough to permit a precise modeling forcing early researchers to a simple Gaussian
pdf around the final position of the moving robot as the most general error model. With the com-
puting power currently available, even on board autonomous robots, more elaborate techniques
such as condensation (a Monte-Carlo simulation method) and multiple Gaussians are used in
order to track the accumulation of uncertainty during motion. In many cases, however, the error
model is still based on a single random variable drawn from a normal distribution.
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Figure 14: Error distribution from the intended pose for different surfaces (rotation of 90°).

There are many sources of error that contribute to the accumulation of uncertainty during motion
such as wheel slippage, difference in the diameters of the wheels and anomalies of the floor .
Without loss of generality any arbitrary motion by AX, AY can be achieved by combining a
rotation that points the robot towards the target location, followed by a translation that moves
the robot to the target location.

For modeling purposes the odometry error could be divided into rotational error ' and trans-
lational error. These errors can be modeled statistically by random variables drawn from three
Gaussians with zero mean and oo, Otrans, Oarire Standard deviations. The first Gaussian models
the error accumulated during pure rotations of the robot. The other two Gaussians model the
error that occurs during a forward translation of the robot and affects the complete pose of the
moving robot. It is worth noting that an additional source of error could be added that would
represent bumps on the floor and small collisions by adding some “salt and pepper” noise.

C.3.1 Rotation

As we saw in section 2.1.1 the noise model for rotational is straight forward described by the
general equation 20.

9For a more detailed study please refer to Borenstein [5, 18].
0For simplicity’s sake it is assumed that only the orientation of the moving robot is affected.
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Figure 15: Error distribution after translation of 100cm. Tile floor, 165 samples.
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C.3.2 Translation

Modeling the translation of the robot is more difficult because the noise model is more complex.
During a translation by a distance R towards the orientation the robot two kinds of uncertainty
accumulate: first, the distance the robot traveled is given by R plus an error. Second, the
orientation of the robot constantly changes adding the equivalent of a Brownian type of noise
to the final position. While for the real robot the drift is a continuous process that affects
the complete trajectory of the translation during simulations, but more important during the
modeling of uncertainty, a discretization of the process is required. The simplest approximation !
of the above process is to model the translation as a partial rotation followed by a translation
followed by a second rotation (Fig. 18). The reason for this is that the robot would deviate from
the trajectory, hence the initial rotation by a small angle, and also the final orientation of the
robot is corrupted by some noise, hence the second rotation.

Orientation: For a single translation modeled as one step the orientation of the robot at the
beginning would be 6; and at the end the orientation is 6,1 = 6; + &y, + &p,, where &y, and

HTt is the most commonly used.
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Speed 20 60 100

M o M o M o
X -1.843 | 0.372 | -1.850 | 0.363 | -2.266 | 0.526
Y -0.863 | 0.317 | -0.977 | 0.491 | -1.041 | 0.491
C) 0.587 | 0.215 | 0.760 | 0.366 | 0.107 | 0.314

Table 1: Mean error and Standard Deviation along the X,Y-axis (in cm) and orientation © (in
degrees) after the translation of 100cm for three different speeds.

&y, are the amount of the two rotations that occur before and after the translation (see Fig.
18). From experimental data we could have an estimate about the standard deviation of the
orientation as a function of the distance traveled (oqup in degrees per meter traveled). The
standard deviation of the orientation after one translation can be calculated in terms of the
characteristics of the noise &,,7 = 1,2, and if &, = &y, = &, then the standard deviation of the
noise &, is calculated in the equation 21.

Ugiﬂ = E{éiﬂéﬁl} where
01 = Oi1— E{0ip1} = 0; + Ep, + Ep, — 0;
= &y, + &y, Therefore
op.. = E{(E + ) + )"}
= E{(&,)’} + E{(£0,)"} +
2FE{(&p,Ep,)} where
E{(&y,Ep,)} = 0 Uncorrelated, and
E{(gal)Q} = E{(gal)Q} = 0]2- Therefore
= 2072 &
95 = o (21)

V2

00i+1

More realistically, the translation could be modeled as a series of N equal steps of R/N length
each, then the pose of the robot after step 7 would be: X; = (x;,y;, ;)T and the trajectory could
be modeled as: Xg,X; ...X,. Figure 18 illustrates one step from X; to X;,;. If the translation
was performed in one step only then the drift could be modeled as a small rotation before the
translation and a small rotation after the translation. Equation 22 expresses the above described
process, £a, is the noise added in the distance traveled and &, , &y, is the noise added in the
orientation of the robot due to drift. The number of steps N used to model the uncertainty
should not change the resulting distribution of the robot position. The statistical properties of
the distribution of the robot Pose are established experimentally.
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Figure 16: Error distribution after translation of 120cm. Plastic surface, 43 samples.

Tis1 z; + (Ap+Eap) cos (0; + &p,)
Xitt = | Yir1 | = | yi + (Ap + gAp) sin (91 + 591) (22)
9i+1 01, + 501 + 692

Orientation: At the end of step ¢ the orientation of the robot is #; = 0;_; + n; where n; is the
noise accumulated during that step. We assume the noise n; to be zero mean Gaussian and as
we saw earlier the result of the addition of two Gaussians (see equation 21). Therefore, after the

N
Nth step the orientation of the robot is Oy = 0y + Zn, And the statistical properties of the
i=1
distribution are :
N
E{6n} = E{60}+ Y _ E{n;} where
i=1
N
Z E{n;} = 0 zero mean noise <
i=1
E{On} = 0 (23)
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Figure 17: Error distribution after translation of 120cm. Carpet surface, 43 samples.
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E{é]\fé%} where éN =0y — E{QN} =0y —0, &

E{(On — 01)(0n — 01)"} = E{(Z nz’)(z ni)"}

E{(ni+...4nx)n+...+n0)"}

Z E{n?} + E{ni(na+...n0)"} + E{ng(ny +ns ... +ny) '} + ...

N j<>i
ZE{nf} because E{n;( Z (n;))"} = 0 Uncorrelated <
i=1 j=1:N

]\/VO'Z-2 & oy =VNo, & OdriftP = V Na'step% <

Odrift * \/N

Ap+Ep ,,""

Finishing Position
Starting Position
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Figure 18: One step in translation.
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In conclusion, for a given set of uncertainty parameters, defined as < oyrqns, Oarige >, the noise
(Eaps Eoy, Ep,) that should be added during the modeling of odometry error is given in equation
25, where N(0, 1) is a random number drawn from a Gaussian distribution with zero mean and
sigma equal to one.

N(O, l)atrans\/NAp

Enp N(O l)Udrift\/NAP
Eo, | = ’ \/§ (25)
Ep, .

0 N(O, l)o—dmft\/ﬁAp
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Figure 19: The standard deviations of 30000 particles as they move along the x axis for 100cm
using different number of steps each time. The experiment is repeated 100 times.

Using the above model we run experiments for different number of steps using multiple samples.
It is worth noting that a change in the number of steps affects only the distribution of the
points along the direction normal to the direction of the translation and only for small number of
steps. As the number of steps increases the standard deviation of the samples along the direction
perpendicular to the direction of the translation converges. Figure 19 presents the standard
deviation of 10000 particles along the X-axis, Y-axis and the orientation after they moved along
the X-axis for 300cm, for different number of steps. The standard deviations along the axis of
motion and for the orientation is constant for all practical purposes.

D Resampling Methods

In this Appendix three methods of resampling are described together with some variations that
help improve the performance. In every case the input is an array '2 of the weights of the
particles (normalized to sum up to one) and the output is an array of indices that indicate which

I2The arrays start at 1.
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particles are going to propagate forward. The premise of all algorithm is that particles with high
weights are going to be duplicated while the particles with small (or zero) weights are going to
be eliminated.

D.1 Select with Replacement

The simplest method of resampling is to select each particle with a probability equal to its weight.
In order to do that efficiently, first the cumulative sum of the particle weights are calculated, and
then N sorted random numbers (sorting is O(nlog(n)) uniformly distributed in [0, 1] are selected.
Finally, the number of the sorted random numbers that appear in each interval of the cumulative
sum represents the number of copies of this particular particle which are going to be propagated
forward to the next stage. Intuitively, if a particle has a small weight, the equivalent cumulative
sum interval is small and therefore, there is only a small chance that any of the random numbers
would appear in it; in contrast, if the weight is large then many random numbers are going to be
found in it and thus, many duplicates of that particle are going to survive. Algorithm 3 presents
a formal description of the “select with replacement” algorithm.

Input: double W[N]
Require: Y W, =1
Q = cumsum(W); { calculate the running totals Q; = S1_ W}
t = rand(N+1); {t is an array of N+1 random numbers.}
T = sort(t); {Sort them (O(nlogn) time)}
T(N+1) = 1; i=1; j=1; {Arrays start at 1}
while (i < N) do
if T[i] < Q[j] then
Index[i]=j;
i=1+1;
else
=it
end if
end while
Return(Index)

Algorithm 3: Select with Replacement Resampling Algorithm; functions are noted as under-
lined text, Comments are inside curly brackets “{}”.

D.2 Linear time Resampling

Carpenter et al. [9] proposed a linear time algorithm for resampling from a set of particles. It
is based on a manipulation of the random number sequence in order to achieve a new sorted
random number sequence in linear time. Using the cumulative sum of the negative logarithm of
N random numbers uniformly distributed in [0, 1], a new sequence of N sorted random number
uniformly distributed in [0, 1] is created. The final step is the same as in the previous algorithm
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Input: double W[N]
Require: Zl]\il W, =1
Q = cumsum(W); {calculate the running totals Q; = ./ , W}
t = -log(rand(N+1));
T = cumsum(t); {calculate the running totals T; =37 .t}
TN = T/T(N+1);{normalize T to TN;}
i=1; j=1; {Arrays start at 1}
while (i < N) do
if T[i] < Q[j] then
Index|[i]=j;
i=i+1;
else
J=i+L
end if
end while
Return(Index)

Algorithm 4: Linear Time Resampling Algorithm; functions are noted as underlined text,
Comments are inside curly brackets “{}”.

where the particles are selected with a probability proportional to their weights. Algorithm 4
presents a formal description of the “select with replacement” algorithm.

D.3 Resampling by Liu et al.

Instead of using directly the weights (w;) of the particles in order to decide which ones are going
to be propagated forward, another number a; can be used, usually a function of the particles
weights (a; = f(w;)). A generic choice is the the square root (f(w;) = ,/wj). Then the new
weights (a;) are normalized so they sum up to the number of particles N (31, a; = N). Then
each particle is examined separately, and, if its weight (a;) is greater or equal to one, k copies of
it are propagated forward (k = |a;]); otherwise, the particle “survives” with probability equal
to aj. One drawback of this approach is that the number of particles after resampling is not N
anymore as the choice of how many particles survive is stochastic 3.

D.4 Variations on Resampling

Two main variations at the resampling stage have been proposed: corrective resampling and
keeping a small percentage of particles from the old distribution.

13Gtochastic is a process that is random but it follows certain distributions.
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Input: double W[N]
for (j =1 to N) do {Update the weights}
alj] = VWIJ]
end for
sum = 0;
for (j =1 to N) do {calculate Y.~ a;}
sum = sum + alil;
end for
for (j =1 to N) do {Normalize the weights (a) to sum up to N}
ali] = N+ 3
end for
i=1;
for (j =1 to N) do {For each particle}
if (a[j] > 1) then {Accept the ones with bigger weights}
for (I =1 to |a[j]] ) do {Add |a;] copies of the j”* Particle}
Index[i]=j;
=1+ 1;
end for
else
R =rand(1);
if a[j] > R then {Accept the particle with probability a;}
Index[i]=j;
1 =14 1;
end if
end if
end for
Return(Index)

Algorithm 5: Resampling Algorithm; functions are noted as underlined text, Comments are
inside curly brackets “{}”.

D.4.1 Corrective Resampling

Jensfelt et al. [25] suggested a modification to the traditional SIR filter that “boosts” the con-
tribution of the sensing versus the contribution of the predictive model. The particle population
is “injected” during the update phase with a small number of particles created directly from the
sensor data independently of where the rest of the particles are located.

D.4.2 Maintaining the variance of the distribution

Contrasting to the previous approach is the method of maintaining a small percentage of the
particle population independently of their weights. More precisely during the resampling stage a
small number of particles selected uniformly from the particle population are being propagated
forward given a small weight. The intuition behind this approach is to maintain the coverage of
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the predictive model in the particle population without affecting the accuracy of the localization.
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