
ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 1 (32-149)

Artificial Intelligence 00 (1999) 1–53

Experiences with an
interactive museum tour-guide robot

Wolfram Burgarda, Armin B. Cremersa, Dieter Foxb, Dirk Hähnela,
Gerhard Lakemeyerc, Dirk Schulza, Walter Steinera, Sebastian Thrunb,∗

a Computer Science Department III, University of Bonn, Germany
b Computer Science Department and Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
c Computer Science Department V, Technological University of Aachen, Germany

Received 30 June 1998

Abstract

This article describes the software architecture of an autonomous, interactive tour-guide robot.
It presents a modular and distributed software architecture, which integrates localization, mapping,
collision avoidance, planning, and various modules concerned with user interaction and Web-based
telepresence. At its heart, the software approach relies on probabilistic computation, on-line learning,
and any-time algorithms. It enables robots to operate safely, reliably, and at high speeds in highly
dynamic environments, and does not require any modifications of the environment to aid the robot’s
operation. Special emphasis is placed on the design of interactive capabilities that appeal to people’s
intuition. The interface provides new means for human-robot interaction with crowds of people in
public places, and it also provides people all around the world with the ability to establish a “virtual
telepresence” using the Web. To illustrate our approach, results are reported obtained in mid-1997,
when our robot “RHINO” was deployed for a period of six days in a densely populated museum.
The empirical results demonstrate reliable operation in public environments. The robot successfully
raised the museum’s attendance by more than 50%. In addition, thousands of people all over the
world controlled the robot through the Web. We conjecture that these innovations transcend to a
much larger range of application domains for service robots. 1999 Elsevier Science B.V. All rights
reserved.

Keywords:Mobile robotics; Probabilistic reasoning; Localization; Mapping; Planning; Collision avoidance;
Logic; Human robot interaction; Machine learning; Entertainment

∗ Corresponding author. Email: thrun@heaven.learning.cs.cmu.edu.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00070-3

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 2 (149-212)

2 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

1. Introduction

Ever since the Czech novelist KarelČapek invented the term “robot” [154]—which
was later popularized by Isaak Asimov [2,3]—the dream of building autonomous robots—
willing, intelligent and human-like machines that make life pleasant by doing the type
work we don’t like to do—has been an active dream in people’s minds. With universal
personal robots still far beyond reach, we are currently witnessing a rapid revolution in
robots that directly interact with people and affect their lives (see, e.g., [128,155]). This
paper describes one such robot, which is really just a step in this direction. Presented here
is the software architecture of an interactive robot named RHINO, which has been built to
assist and entertain people in public places, such as museums. RHINO is shown in Fig. 1.
Its primary task is to give interactive tours through an exhibition, providing multi-modal
explanations to the various exhibits along the way (verbal, graphical, sound). In May 1997,
RHINO was deployed in the “Deutsches Museum Bonn” (see Fig. 2). During a six-day
installation period the robot gave tours to more than 2,000 visitors. Through an interactive
Web-Interface, people from all over the world could watch the robot’s operation and even
control its operation—and more than 2,000 did.

On the software side, on which this article focuses, RHINO employs some of the most
recent developments in the field of artificial intelligence (AI) and robotics. At its core,
RHINO relies upon data-driven probabilistic representation and reasoning to cope with the
uncertainties that necessarily arise in complex and highly dynamic environments. RHINO
can also learn models (maps) of its environment and change its plans on-the-fly. It is
equipped with an easy-to-understand multi-modal user interface, and it can react to the
presence of people in various ways.

The necessity to employ state-of-the-art AI technology arose from the complexity of
the task domain. The majority of RHINO’s users were complete novices in robotics; yet,
since the typical tour lasted for less than ten minutes, appealing to visitors’ intuition was
essential for the success of the concept. RHINO’s environment, the museum, was densely
populated. Most of the time, RHINO was “lucky” in that it lead the way when giving a tour
with people following. At times, however, we counted more than a hundred people that

Fig. 1. The robot and its sensors. Fig. 2. RHINO, pleasing the crowd.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 3 (212-280)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 3

surrounded the robot from all sides, making it difficult for the robot to reach the exhibits
as planned while not losing track of its orientation. The museum itself, its geometry and
its exhibits, posed further challenges on the software. While there were several narrow
passages in the environment in which accurate motion control was essential, most of the
museum consisted of wide open spaces that, to a large extent, lacked the necessary structure
for the robot to orient itself. One of the key constraints was the necessity to avoid collisions
with obstacles at all costs, humans and exhibits alike. Many of the obstacles, however, were
literally “invisible”, i.e., they could physically not be detected with the robot’s sensors. The
inability to sense certain obstacles was not necessarily due to the lack of an appropriate
sensor suite—in fact, RHINO used four different sensor systems, ranging from laser range
finders, sonar, and active infrared sensors to touch-sensitive panels—rather, it was the
nature of the obstacles. For example, many exhibits were protected by glass cases, whose
very purpose implied that they were not detectable by light-based sensors such as cameras,
laser, or infrared, and whose smoothness made it impossible to detect them reliably even
with sonar. Other exhibits were placed on solid metal plates, many of which were below
the range of our lowest sensors.

Not all objects in the museum were static. In particular, the museum provided stools
for the visitors to rest, and people tended to leave them behind at random places, usually
close to exhibits. The problem of safe navigation was made more difficult by the speed
requirements in the museum. To be interesting to the people, the robot had to move at
walking speed whenever possible. At speeds of up to 80 cm/sec, the inertia of the robot
is significant; turning or stopping on the spot is impossible. Lastly, some of the users
were not at all cooperative, imposing further difficulties for the software design. Often
museum visitors tried to “challenge” the robot. For example, by permanently blocking its
way, they sometimes sought to make the robot leave the designated exhibition area towards
other parts of the museum, where several unmapped and undetectable hazards existed
(including a staircase). We quickly learned that one cannot necessarily expect humans
to be cooperative, so the safety of the system may not depend on specific behavioral
requirements on the side of the users. On the other hand, people are thrilled if robots
interact with them—just like they are if people interact with them. Thus, a primary
component of a successful tour-guide is the ability to notice the presence of people, and to
interact with them in a meaningful, appealing way. In fact, when we interviewed museum
visitors, most of them assigned more weight to the robot’s interactive capabilities than to
its ability to navigate.

These challenges mandated the development of a collection of new, innovative software
solutions. Our past work (e.g., [16,149]) focused primarily on office navigation—which
involved moving through static corridors and into offices with well-detectable obstacles
and cooperative people—where many of the difficulties simply did not exist. Many of
the assumptions underlying this work do not apply in populated public places, such as a
museum. As a result, we had to develop several new techniques and, more importantly,
changed our view on several well-established methodologies in the field.

For example, most successful mobile robot architectures employ sensor-based, reactive
methods for real-time collision avoidance [85]. The typical paradigm is to consider a short
time window of past sensor readings when setting the speed and final motion direction
of the robot. Of course, the purely sensor-based approach is inappropriate if obstacles

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 4 (280-327)

4 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

cannot be sensed. RHINO employs a hybrid approach, which incorporates a map of the
environment in addition to sensor readings. The map contains “invisible” obstacles and
hazards such as staircases. For the map to be useful, however, the robot has to know
where it is with high accuracy. RHINO employs an efficient, fine-grain variant of Markov
localization, capable of tracking the robot’s position with high accuracy. Localization
proved more difficult in the museum than in our office environment. Markov localization
relies on the assumption that the robot’s location is the only state in the world. However,
large numbers of people that followed the robot closely, thereby blocking most of its
sensors constantly violate this assumption. As demonstrated here and elsewhere [53], the
basic Markov localization algorithm would have failed under such conditions. RHINO
employs an extended localization method that filters out corrupted sensor readings. This
approach, described in detail below, considers only sensor data that reduce the uncertainty
of the robot during localization. As a result, the robot pays only attention to sensor data
that confirms its current belief while ignoring all other data. While this approach critically
departs from the basic Markov approach, it makes localization succeed in this highly non-
Markovian environment.

Most navigation approaches either rely on a fixed, pre-given map of the environment,
or learn such a map by themselves. Neither of these two options was appropriate—
a fixed map would have made it impossible to navigate successfully when obstacles
blocked the robot’s path persistently (such as the stools). A pure learning approach, which
was used successfully in a prototype tour-guide robot that was previously installed in
our university building [149], was inappropriate since the robot was unable to map those
invisible obstacles. RHINO’s software integrates both types maps, using a hand-crafted
CAD map as a starting point and a map learned on-the-fly from sensor data. To cope with
changing maps, RHINO uses an efficient motion planner that can quickly react to changes
in the map.

Finally, a key ingredient of any robot that interacts with people in public places is
its interactive component. To interact with people, a method for finding people is called
for. Unfortunately, sensor differencing (e.g., image differencing) is inapplicable since it
typically assumes that the people move and the robot doesn’t—in our case, the robot was
almost always in motion, while people often didn’t move. Thus, RHINO finds people by
comparing the map with its range measurements, using the inverse of the filter described
above. The robot then invokes a series of means that inform people of the robot’s intentions
and goals. RHINO also possesses two user interfaces, one for visitors and one for Web-
users, which are designed to be simple enough for people to operate even without prior
exposure to robotics.

This article provides an overview of the major components of RHINO’s software
architecture. As this description of the museum suggests, operating a robot in public
environments as complex (and dangerous) as it poses research challenges that go beyond
many of those found in most office environments. To cope with them, this paper describes
a collection of algorithms which provide the robot with some unique features, such
as its ability navigate smoothly and safely at high speed, to determine its location in
an unmodified environment and populated, the ability to quickly find detours if paths
are blocked, and the ability to engage and interact with people. We believe that these
characteristics are prototypical for a large variety of application domains for mobile robots,

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 5 (327-447)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 5

and conjecture that virtually all of the technology described in this paper can be applied to
a much larger variety of tasks.

2. Architectural overview

The overall software architecture consists of 20 modules (processes) listed in Table 1,
which are executed in parallel on 3 on-board PCs and 2 off-board SUN workstations, con-
nected via Ethernet. The software modules communicate using TCX [46], a decentralized
communication protocol for point-to-point socket communication. Fig. 3 shows the overall
software architecture along with the major software modules and the flow of information
between them. Similar to other robot control architectures [55,138], the RHINO system is
also organized in a hierarchical manner, with the device drivers at the lowest level and the
user interfaces at the highest. The hierarchy, however, is not strict in the sense that mod-
ules would pass information only within the same or across adjacent layers. In RHINO’s
software, modules often communicate across multiple layer boundaries.

Among the various principles that can be found in RHINO’s software system, the
following three are the most important ones:

(1) Probabilistic representations, reasoning, and learning.Robot perception is inaccu-
rate and incomplete. Therefore, robots are inherently unable to determine the state
of the world. Probabilistic data structures lend themselves nicely to the inherent un-
certainty inside a robot. Instead of extracting just a single interpretation from sensor
data, as is traditionally done in the field of robotics, probabilistic methods extract
multiple interpretations (often all possible ones), weighted by a numeric plausibil-

Fig. 3. Major components of the RHINO system and major flow of information.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 6 (447-447)

6 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Table 1
Complete listing of all software modules. Modules labeled “(*)” must be and those labeled “(**)” should be
run on board the robot. The exact on-board configuration during the exhibition varied; however, a dual Pentium
computer is sufficient to execute all major components on-board

Communication

tcxServer TCP/IP communication interface

router communication pipeline for low-bandwidth radio communication

Hardware interfaces

baseServer (*) interface to motors and sonar sensors

laserServer (*) interface to laser range finder

buttons (*) interface to buttons

sound (*) interface to on-board CD player

showpic (*) interface to on-board graphics display

pantilt (*) interface to pan/tilt unit

meteor (*) interface to on-board cameras

scenecam interface to off-board camera

meteorServer module for synchronizing images from the on-board and the off-board camera

Navigation, planning, and control

colliServer (**) collision avoidance module

collgraph display for collision avoidance

obstacle-server provider of “virtual” (map-based) obstacles

localize localization module

laserint conversion of raw sensor data into local maps

map global mapper

plan motion planner

hli interface between high-level mission planner, user interface, and lower level software

eclipse high-level planner

User and Web interfaces

detection module for people detection

positionServer auxiliary module which communicates robot positions to to the Java applets (Web)

picServer(2) two auxiliary modules, both of which communicate images and goal locations to the
Java applets (Web), one of which located in the museum, and the other is located at a
remote high-speed node

map-applet module for displaying the map and the robot’s status in the Web

explanation-applet control of in-time explanations of exhibits and robot actions/intentions

tour_select.cgi module for processing input by Web users, and interface to the high-level mission
planner

frame.cgi module for the selection of image update rates (by Web user)

commander command interface for on-line monitoring and tele-operation

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 7 (447-520)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 7

ity factor that is expressed as a conditional probability. By considering multiple
hypotheses, the robot can deal in a mathematically elegant way with ambiguities
and uncertainty. In our experience, robots that use probabilistic representations re-
cover easier from false beliefs and therefore exhibit more robust behavior. In addi-
tion, probability theory provides nice and elegant ways to integrate evidence from
multiple sources over time, and to make optimal decisions under uncertainty. Re-
cently, probabilistic methods have been employed in a variety of successful mobile
robots [19,66,74,111,139], for reasons similar to the ones given here.

(2) Resource flexibility. Most of RHINO’s software can adapt to the available compu-
tational resources. For example, modules that consume substantial processing time,
such as the motion planner or the localization module, can produce results regard-
less of the time available for computation. The more processing cycles are available,
however, the better or more accurate the result. In RHINO’s software, resource flex-
ibility is achieved by two mechanisms: selective data processing and any-time al-
gorithms [38,162]. Some modules consider only a subset of the available data, such
as the localization routine. Other modules, such as the motion planning module, can
quickly draft initial solutions which are then refined incrementally, so that an answer
is available when needed.

(3) Distributed, asynchronous processing with decentralized decision making.RHINO’s
software does not possess a centralized clock or a centralized communication mod-
ule. Synchronization of different modules is strictly decentral. Time-critical soft-
ware (e.g., all device drivers), and software that is important for the safety of the
robot (e.g., collision avoidance), are run on the robot’s on-board computers. Higher-
level software, such as the task control module, is run on the stationary comput-
ers. This software organization has been found to yield robust behavior even in the
presence of unreliable communication links (specifically the radio link which con-
nected the on-board and off-board computers) and various other events that can
temporarily delay the message flow or reduce the available computational time. The
modular, decentralized software organization eases the task of software configura-
tion. Each module adds a certain competence, but not all modules are required to
run the robot. The idea of decentralized, distributed decision making has been at
the core of research on behavior-based robotics over the last decade [1,15,121], but
here modules are typically much lower in complexity (e.g., simple finite state ma-
chines).

The remainder of this paper will describe those software modules that were most essential
to RHINO’s success.

3. State estimation

To find its way safely through a populated environment with invisible obstacles, RHINO
employs several methods to estimate its current state. State comprises the robot’s position
and the position of people and obstacles. This section describes RHINO’s approach to
localization and mapping, both of which use probabilistic estimators for interpreting and
integrating sensor evidence.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 8 (520-592)

8 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

3.1. Localization

At the core of RHINO’s navigation routines is a module that continuously estimates the
robot’s position inx-y-θ space, wherex andy are the coordinates of the robot in a 2D
Cartesian coordinate system andθ is its orientation. RHINO employs a variant ofMarkov
localization, which is a probabilistic method for robot localization [19,74,111,139,145]. Its
input is a stream of sensor readings from the robot’s proximity sensors, interleaved with a
sequence of action commands. Throughout this paper, this sequence will be denoted

d = {o(1), o(2) . . . , o(T)}, (1)

where eacho(t) with t ∈ {1, . . . , T } is either a sensor reading or an action command. The
localization module computes, incrementally and in real-time, a probability distribution
P(ξ(t)) that expresses the robot’s belief to be at locationξ(t) at timet where eachξ(t) is a
location in the three-dimensionalx-y-θ space.

The robot’s belief at timet is described by the conditional probability

P(ξ(t))= P (ξ |o(1), o(2), . . . , o(t)). (2)

To compute this probability, three aspects have to be discussed: (1) initialization, (2)
sensing, and (3) motion. The latter two, sensing and motion, have opposite effects on
the robot’s belief. While sensor readings convey information about the robot’s position,
thereby often decreasing the entropy ofP(ξ(t)), actions generally cause a loss of
information due to the inaccurate nature of robot motion, and increase the entropy of
P(ξ(t). The entropy ofP(ξ(t)) will be discussed further below in Section 3.1.6.

3.1.1. Initialization
Initially, at time t = 0, P(ξ(0)) reflects the robot’s initial state of knowledge in the

absence of any datad . If the robot’s initial position isξ0 and if it knows exactly where
it is, P(ξ(0)) is initialized with a Dirac distribution

P(ξ(0))=
{

1, if ξ = ξ0,

0, if ξ 6= ξ0.
(3)

If the robot does not know where it is,P(ξ) is initialized with a uniform distribution.
Of particular interest in this paper is the latter case, since the robot was often placed
somewhere in the museum without initial knowledge of its position. Thus, the robot had to
localize itself under global uncertainty, a problem also known asglobal localizationor the
kidnapped robot problem[44].

3.1.2. Robot perception
Suppose at timet , the robot receives a sensor measuremento(t). In RHINO’s localization

module,o(t) is either a laser scan or a sonar scan. This measurement is used to update the
internal belief as to where the robot is, according to the following rule:

P
(
ξ(t)|o(1), . . . , o(t))
= α P (o(t)|ξ(t), o(1), . . . , o(t−1)) P (ξ(t)|o(1), . . . , o(t−1))
= α P (o(t)|ξ(t)) P (ξ(t)|o(1), . . . , o(t−1)). (4)

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 9 (592-680)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 9

Hereα is the Bayes normalizer that ensures that the probabilities on the left-hand side of
(4) sum up to 1, andP(ξ(t)|o(1), . . . , o(t−1)) is the robot’s belief just before sensingo(t).
The first step of the derivation of (4) follows from Bayes rule. The second step rests on the
following conditional independence assumption, also calledMarkov assumption:

P
(
o(t)|ξ(t), o(1), . . . , o(t−1))= P (o(t)|ξ(t)). (5)

This conditional independence assumption states that if the robot’s location at timet is
known, knowledge of past sensor readingso(1), . . . , o(t−1) do not convey any information
relevant to the prediction ofo(t). In other words, the Markov property assumes there
is no state in the environment other than the robot’s own location. In most realistic
environments such as the museum, this assumption is violated; for example, people
often block the robot’s sensors for multiple time steps, which makes sensor readings
conditionally dependent even if the exact robot location is known. Section 3.1.6 will
explicitly address this problem. For now, the Markov assumption will be adopted, as it
is mathematically convenient and as it justifies a simple, incremental update rule.

The update equation (4) relies on the probabilityP(o(t)|ξ(t)) of observingo(t) at location
ξ(t), which henceforth is called theperceptual model. The perceptual model does not
depend ont ; thus, for the reader’s convenience we will omit the superscript(t) and write
P(o|ξ) instead.

RHINO uses its proximity sensors (sonars, lasers) for localization. Its perceptual model
is obtained using a generic noise model of the robot’s sensors along with a map of the
environment. More specifically,P(o|ξ) is computed in two steps:

P(o|ξ)= P(o|dist(ξ)), (6)

Here the functiondist:Ξ → R computes theexpectedmeasurement that a noise-free
sensor would obtain in a stationary environment. The value ofdist(ξ) is computed by
ray tracing in a map of the robot’s environment. The remaining probability,P(o|dist(ξ)),
models thenoisein perception. It is learned from data. The left diagram in Fig. 4 shows
the empirical distribution ofP(o|dist(ξ)) obtained from 11× 106 measurements; here
“expected distance” refers todist(ξ), “measured distance” refers too, and the vertical axis
plots the probabilityP(o|dist(ξ)). In RHINO’s software,P(o|dist(ξ)) is approximated
by a mixture of a Gaussian, a geometric, and a Dirac distribution, as shown in the right
diagram in Fig. 4. The coefficients of these distribution are learned from data, using the
maximum likelihood estimator [8].

Fig. 5 illustrates the perceptual model in practice. An example laser range scan is shown
in Fig. 5(a). Fig. 5(b) shows, for each positionξ , the likelihoodP(o|ξ) of this specific
range scan in a pre-supplied map (projected into 2D). As is easy to be seen,P(o|ξ) is high
in the main corridor, whereas it is low in the rooms.

In our implementation, the parameters of the perceptual model are obtained through
maximum likelihood estimation from data, i.e., pairs of measurementso and “true”
distancesdist(ξ). Since such data is difficult to obtain—it requires knowledge of the exact
robot location, a bootstrapping algorithm was used to automatically derive position data.
More specifically, our approach relies with position labels derived using an approximate
perpetual model, and used these approximate positions to optimize the model parameters.
Once the model parameters have been fit, new position labels are computed using the

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 10 (680-723)

10 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Fig. 4. The conditional probabilityP(o|dist(ξ)) obtained from 11,000,000 laser measurements (left) and its
approximation using a mixture of a Gaussian, a uniform and a Dirac density (right).

(a) (b)

Fig. 5. Probabilistic model of perception: (a) Laser range scan, projected into a previously acquired map. (b)
The probabilityP(o|ξ), evaluated for all positionsξ and projected into the map (shown in grey). The darker a
position, the largerP(o|ξ).

improved perceptual model. This approach is iterated in an EM-like fashion [40], leading
to increasingly better data fits. Notice that this approach bears close similarity to a rich
body on research on learning from labeled and unlabeled data [9,24,25,109,113,132], and
is commonly used in other data-intense fields such as speech recognition [156]. As a
result, our approach can effortlessly use millions of data items gathered during everyday
operation, for building a highly accurate perceptual model.

3.1.3. Robot motion
Motion changes the location of the robot. Ifo(t) is a motion command, the robot’s belief

changes according to the following rule:

P
(
ξ(t+1)|o(1), . . . , o(t))
=
∫
P
(
ξ(t+1)|ξ(t), o(1), . . . , o(t))P (ξ(t)|o(1), . . . , o(t))dξ(t)

=
∫
P
(
ξ(t+1)|ξ(t), o(t))P (ξ(t)|o(1), . . . , o(t−1))dξ(t). (7)

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 11 (723-791)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 11

(a) (b)

Fig. 6. Probabilistic model of robot motion: Accumulated uncertainty after moving (a) 40 meter, (b) 80 meter.

This update rule is incremental, just like the perceptual update rule (4). The first step in its
derivation is obtained using the Theorem of total probability, and the second step is based
on a similar Markov assumption as the one above:

P
(
ξ(t+1)|ξ(t), o(t))= P (ξ(t+1)|ξ(t), o(1), . . . , o(t)). (8)

In fact, both Markov assumptions described in this section are consequences of a single
one, which states that the location of the robot is the only state in the environment.

Eq. (7) relies onP(ξ(t+1)|ξ(t), o(t)), which is a probabilistickinematic model of robot
motion. Since the motion model does not depend ont , we will henceforth denote it
by P(ξ |ξ ′, o). In our implementation,P(ξ |ξ ′, o) is realized using a mixture of two
independent, zero-centered distributions, which model rotational and translational error,
respectively [19,150]. The width of these distributions are proportional to the length of
the motion command. Fig. 6 illustrates RHINO’s motion model for two example motion
commands. Shown there are “banana-shaped” distributionsP(ξ |ξ ′, o), which result if
the robot starts atξ ′ and executes the motion commands specified in the figure caption.
Both distributions are of course three-dimensional (inx-y-θ -space); Fig. 6 shows their 2D
projections intox-y-space.

3.1.4. Grid-based Markov localization
The generic, incremental Markov localization algorithm is depicted in Table 2. Here

the time index is omitted, to emphasize the incremental nature of the algorithm. In
experimental tests this method has been demonstrated to localize the robot reliably in
static environments even if it does not have any prior knowledge about the robot’s position
[19,20,51].

Recently, different variants of Markov localization have been developed [19,74,111,139].
These methods can be roughly distinguished by the nature of the state space representa-
tion. Virtually all published implementations of Markov localization, with the more recent
exception of [39,48], are based on coarse-grained representations of space, often with a
spatial resolution of less than one meter and an angular resolution of 90 degrees. For ex-
ample, in [74,111,139] Markov localization is used for landmark-based corridor navigation
and the state space is organized according to the topological structure of the environment.
Unfortunately, coarse-grained, topological representations are insufficient for navigating
in the close vicinity of invisible (but known) obstacles, such as the glass cases described

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 12 (791-907)

12 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Table 2
Markov localization—the basic algorithm

(1) Initialization:P(ξ)← Belpri(ξ
(0))

(2) For each observationo do:

P(ξ)← P(o|ξ) P (ξ)

P (ξ)← P(ξ)

[∫
P(ξ ′)dξ ′

]−1
(normalization)

(3) For each action commando do:

P(ξ)←
∫
P(ξ |ξ ′, o) P (ξ ′)dξ ′

above. Thus, RHINO’s localization algorithm differs from previous approaches in that it
employs a fine-grained, grid-based decomposition of the state space [19]. In all our exper-
iments reported here, the spatial resolution was 15 cm and the angular distribution was 2◦.

The advantage of this approach is that it provides a high accuracy with respect to the
position and orientation of the robot. Its disadvantage, however, is the huge state space
which has to be maintained and updated. With such a high resolution, the number of
discrete entities is huge, and the basic algorithm cannot be run fast enough on our current
low-cost computer hardware for the algorithm to be of practical use.

3.1.5. Selective computation
To cope with the large numbers of grid cells, RHINO updates themselectively. The

legitimacy of selectively updatingP(ξ)—instead of updating all values at all times—
is based on the observation that most of the time, the vast majority of grid cells have
probability vanishingly close to zero and, thus, can safely be ignored. This is because in
most situations, the robot knows its location with high certainty, and only a small number
of grid cells close to the true location have probabilities that differ significantly from zero.

In RHINO’s localization algorithm, grid cells whose probability are smaller than a
thresholdθ are not updated. Instead, they are represented by a single value, which
uniformly represents the probability of all non-updated grid cells [18]. In the museum
exhibit, the thresholdθ was set to 0.1% of the a priori position probability. This led to
an average savings of two orders of magnitude while not reducing the accuracy of the
localization algorithm in any noticeable way.

Fig. 7 shows a typical example of global localization in the Deutsches Museum
Bonn. RHINO is started with a uniform distribution over its belief state. The probability
distribution after integrating the first sensor scan is shown on the left side of Fig. 7. Thus,
after incorporating a single sensor scan, the probability mass is readily centered on a much
smaller number of grid cells. After incorporating a few more sensor scans, the robot knows
its position with high certainty. In the museum exhibit, the localization algorithm was run
on a single-processor SUN 170 Mhz UltraSparc station, equipped with 256 MB RAM.
The time required to process a sensor scan varied, depending on the uncertainty in the
robot’s position. Initially, when the robot was maximally uncertain about its position and
therefore had to update every single value inP(ξ), processing a sensor scan required
approximately 20 sec. After the initial localization, the robot’s uncertainty was consistently

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 13 (907-944)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 13

Fig. 7. Global localization in the Deutsches Museum Bonn. The left image shows the belief state after
incorporating one laser scan. After incorporating a second scan, the robot uniquely determined its position (right).

low, which reduced the computational complexity tremendously. The average processing
time for processing a sensor scan was approximately 0.5 sec. Since our sensors (sonar and
laser) generate approximately 8 scans per second, not every sensor reading was considered
in localization. In addition, only a subset of the 360 range readings generated with the
laser range finder were considered, since these readings are highly redundant. The practical
success of the localization algorithm, however, demonstrates that sufficiently much sensor
data was incorporated while the robot was moving.

3.1.6. Entropy gain filters: Beyond the Markov assumption
Unfortunately, the basic Markov localization approach is bound to fail in densely

populated environments. Markov localization approaches, by definition, assume that the
environment is static—a direct consequence of the underlying Markov assumption. The
presence of people violates the Markov assumption by introducing additional state.

In the museum, people often followed the robot closely for extended durations of time.
In such situations, the Markov assumption can be fatal. For example, when multiple visitors
collaboratively blocked the robot’s path, the sensor readings often suggested the presence
of a wall in front of the robot. For such readingso,P(o|ξ) is maximal for locationsξ next to
walls. Since the Markov localization algorithm incorporatesP(o|ξ) in a multiplicative way
every time a sensor reading is taken, multiple iterations of this algorithm will ultimately
make the robot believe that it is next to a wall. This property is a direct consequence of the
conditional independence assumption (Markov assumption) that was used in the derivation
of the Markov localization algorithm.

At first glance, one might attempt to remedy the problem by introducing additional
state features in the Markov approach. Instead of estimating the location of the robot
as the only state, one could extend Markov localization to simultaneously estimate the
locations of the people. With such an enriched state representation, the Markov assumption
would be justified and the approach would therefore be applicable. Unfortunately, such an

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 14 (944-1050)

14 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

extension is computationally expensive, since the computational and memory complexity
increases exponentially in the number of state variables. In addition, such an approach
requires probabilistic models of the behavior of the various non-stationary obstacles, such
as humans, which may be difficult to obtain.

In our approach, we pursued a different line of thought: filtering. The idea is to sort
sensor readings into two buckets, one that corresponds to known obstacles such as walls,
and one that corresponds to dynamic obstacles such as humans. Only the former readings
are incorporated into the position estimation, whereas the latter ones are simply discarded.
The filtering approach does not explicitly estimate the full state of the environment; rather,
it reduces the damaging effect that arises from state other than the robot’s location.

The specific filter used in our implementation is calledentropy gain filter[53] and works
as follows. TheentropyH(P) of a distributionP is defined by [23]

H(P)=−
∫
P(ξ) logP(ξ)dξ. (9)

Entropy is a measure of uncertainty: The larger the entropy, the higher the robot’s
uncertainty as to where it is.Entropy gainmeasures the relative change of entropy upon
incorporating a sensor reading intoP . More specifically, leto denote a sensor scan, and
let oi denote an individual component of the scan (i.e., a single range measurement). The
entropy gain of a probability distributionP with respect to a sensor measurementoi is
defined as:

1H(P |oi) :=H
(
P(ξ(t)|o(t)i)

)−H (P(ξ(t−1))
)
. (10)

Entropy gain measures the change of certainty. A positive entropy gain indicates that
after incorporatingoi , the robot is less certain about its position. A negative entropy gain
indicates an increase in certainty upon incorporatingoi .

RHINO’s entropy gain filterfilters out sensor measurements that, if used, would
decreasethe robot’s certainty. This is achieved by considering only thoseoi for which
1H(P |oi) 6 0. The entropy gain filter makes robot perception highly selective, in that
only sensor readings are considered that confirm the robot’s current belief. The resulting
approach does not comply with the original Markov assumption.

Fig. 8 shows a prototypical situation which illustrates the entropy gain filter. Shown there
are examples where RHINO has been projected into the map at its most likely position.
The lines indicate the current proximity measurements, some of which correspond to
static obstacles that are part of the map, whereas others are caused by humans (max-range
measurements are not shown). The different shading of the measurements demonstrates the
result of the entropy gain filter. The black values reduce entropy, whereas the gray values
would increase the robot’s entropy and are therefore filtered out. Here all measurements
of humans are successfully filtered out. These examples are prototypical. In the museum
exhibit, we never observed that a reading caused by a dynamic obstacle (such as a human)
was not successfully filtered out. We did observe, however, that the robot occasionally
filtered out measurements that stemmed from stationary obstacles that were part of the map.

The entropy gain filter proved to be highly effective in identifying non-static obstacles
and in filtering sensor readings accordingly. Throughout the complete deployment period,
the robot incorporated sufficiently many sensor readings that it never lost track of its

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 15 (1050-1050)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 15

Fig. 8. Sensor measurements (black) selected by the entropy filter from a typical scan (left image) and endpoints
of selected scans on a longer trajectory (right image).

Fig. 9. One of the data sets used to evaluate the accuracy of RHINO’s localization in densely populated
environments. Here more than half of all sensor readings were corrupted by people; yet the robot managed to
keep its average localization error below 10 cm.

position. Using the data gathered in the museum, we evaluated the accuracy of our
localization algorithm systematically using 118 reference positions, whose coordinates
were determined manually [53]. One of the data sets, shown in Fig. 9, contains data
collected during 4.8 hours of robot operation in peak traffic, in which the robot traversed
1,540 meters. In this data set, more than 50% of all sensor readings were corrupted by
people for extended periods of time. The average localization error was found to be smaller
than 10 cm [53]. In only one case did we observe some noticeable error. Here the robot’s

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 16 (1050-1134)

16 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

internal belief deviated approximately 30 cm from the real position. As a result, the robot
touched a large, invisible metal plate in the center of the museum. The localization error
was preceded by a failure of the robot’s sonar sensors for an unknown duration of time.

Unfortunately, the basic entropy gain filter also has a disadvantage. When applied as
described above, it impairs the robot’s ability to recover from large errors in its localization.
This is because if the robot’s position estimate is wrong, the entropy gain filter might filter
out those sensor readings that convey information about its correct position, making a
recovery impossible. To solve this problem we always incorporated a randomly chosen set
of readings. A successor of the entropy gain filter, which is better suited to proximity
sensors and outperforms the entropy gain filter, is described in [53]. As discussed in
more depth there, Markov localization combined with the entropy gain filter was able to
accurately estimate the position of the robot throughout the entire deployment period, and
the entropy filter played a crucial role in its success. Additional comparative experimental
results, using the data obtained in the museum, can be found in [53].

3.1.7. Finding people
As an aside, it is interesting to notice that the entropy gain filter fulfills a secondary

purpose in RHINO’s software. Sensor measurementsoi with 1H(P |oi) > γ (with γ > 0)
indicate the presence of an unexpected obstacle, such as people and other objects not
contained in the map. Thus, the inverse of the entropy gain filter is a filter that can
detect people. This filter differs from many other approaches in the literature on people
detection [72,76] in that it can find people who donot move, and it can do this even
while the robot itself is in motion. As will be described in more detail below, this filter,
in combination with a criterion that measures the robot’s progress towards its goal, was
used to activate the robot’s horn. As a result, the robot blew its horn whenever humans
blocked its path; an effect, that most visitors found highly entertaining.

3.2. Mapping

The problem of mapping is the problem of estimating the occupancy of all〈x,y〉
locations in the environment [10,41,106,147] from sensor data. Mapping is essential if
the environment changes over time, specifically if entire passages can be blocked. In the
museum, stools or people often blocked certain regions or passages for extended durations
of time. RHINO’s ability to acquire maps on-the-fly enabled it to dynamically plan detours,
which prevented it from getting stuck in many cases.

The statistical estimation involved in building occupancy maps from sensor data is
similar to the probabilistic estimation of the robot’s location. Letcxy denote a random
variable with events in{0,1} that corresponds to the occupancy of a location〈x,y〉 (in
world coordinates). Here 1 stands foroccupied, and 0 stands forfree. The problem of
mapping is to estimate

P
({cxy}|o(1), . . . , o(t)), (11)

where the set of all occupancy values{cxy} denotes the map. Since the set of variables to be
estimated—the map—is usually extremely high-dimensional (many of our maps contain
106 or more grid cells), it is common practice to treat the occupancy estimation problem

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 17 (1134-1224)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 17

Table 3
Mapping—the basic algorithm

(1) Initialization:P(cxy)← 0.5

(2) For each observationo do:

P(cxy)← 1−
(

1+ P(cxy |o)
1− P(cxy |o)

P (cxy)

1−P(cxy)
)−1

independently for each location〈x,y〉 [106,147]. This effectively transforms the high-
dimensional occupancy estimation problem into a collection of one-dimensional estimation
problems{

P(cxy |o(1), . . . , o(t))
}

(12)

which can be tackled efficiently.

3.2.1. Temporal integration of evidence
The temporal integration of sensor evidence is analogous to Markov localization.

Just like Markov localization, our mapping approach relies on the following Markov
assumption

P
(
o(t)|cxy, ξ (t), d\o(t)

)= P (o(t)|ξ(t), cxy) (13)

which renders sensor data conditionally independent given the true occupancy of the grid
cell 〈x,y〉. Hereo(t) stands for the sensor reading taken at timet . To separate the problem
of mapping from the localization problem, it is assumed that the robot’s locationξ(t) is
known;1 henceforth, the estimation ofξ(t) will be omitted in the mathematical derivation.
In our implementation, the maximum likelihood estimation

ξ̂ (t) = argmax
ξ (t)

P
(
ξ(t)

)
(14)

is used as the robot’s location.
Armed with all necessary assumptions, we are now ready to derive an efficient algorithm

for statistical occupancy estimation from data. The probability that a location〈x,y〉 is
occupied given the data is given by

P
(
cxy |o(1), . . . , o(t)

)= P(o(t)|cxy, o(1), . . . , o(t−1))P (cxy |o(1), . . . , o(t−1))

P (o(t)|o(1), . . . , o(t−1))

= P(o
(t)|cxy)P (cxy |o(1), . . . , o(t−1))

P (o(t)|o(1), . . . , o(t−1))

= P(cxy |o
(t)) P (o(t))P (cxy |o(1), . . . , o(t−1))

P (cxy) P (o(t)|o(1), . . . , o(t−1))
. (15)

This transformation is obtained via Bayes rule, followed by applying the Markov
assumption and a second application of Bayes rule.

1 See [150] for an approach to concurrent localization and mapping that relaxes these assumption and estimates
both the robot’s location and the location of the obstacles using a single, mathematical approach.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 18 (1224-1323)

18 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

The binary nature of occupancy—a location〈x,y〉 is either occupied or not—can
be exploited to derive a more compact update equation than in the real-valued case of
position estimation [106]. In analogy to (15), the probability that a location〈x,y〉 is free
(unoccupied) is given by

P(¬cxy |o(1), . . . , o(t))= P(¬cxy |o
(t)) P (o(t))P (¬cxy |o(1), . . . , o(t−1))

P (¬cxy) P (o(t)|o(1), . . . , o(t−1))
. (16)

To see, just replace every occurrence ofcxy by¬cxy in Eq. (15).
Dividing (15) by (16) yields the following expression, which is often referred to as the

oddsof 〈x,y〉 being occupied [116]:

P(cxy |o(1), . . . , o(t))
P (¬cxy |o(1), . . . , o(t)) =

P(cxy |o(t)) P (¬cxy) P (cxy |o(1), . . . , o(t−1))

P (¬cxy |o(t)) P (cxy) P (¬cxy |o(1), . . . , o(t−1))
(17)

it follows that the desired probability is given by

P(cxy |o(1), . . . , o(t))

= 1−
(

1+ P(cxy |o(t))
1− P(cxy |o(t))

1− P(cxy)
P (cxy)

P (cxy |o(1), . . . , o(t−1))

1− P(cxy |o(1), . . . , o(t−1))

)−1

. (18)

HereP(cxy) represents theprior distribution of cxy (in the absence of data), which in out
implementation is set to 0.5 and can therefore be ignored.

As is easily seen, the latter estimation equation can be computed incrementally, leading
to the mapping algorithm shown in Table 3. The probabilityP(cxy |o) is called theinverse
sensor model(or sensor interpretation), whose description is subject to the next section.

3.2.2. Neural network sensor interpretation
In RHINO’s mapping approach,P(cxy |o) maps a sensor reading to a conditional

probability that location〈x,y〉 is occupied (under knowledge of the actual positionξ).
In traditional approaches to mobile robot mapping,P(cxy |o) is usually crafted by hand,
based on knowledge of the characteristics of the respective sensor. In our approach, which
is described in more detail in [147], an artificial neural network is trained with Back-
Propagation [65,123] to approximateP(cxy |o) from data. Thisinterpretation network,
which is shown in Fig. 10(a), accepts as input an encoding of a specific〈x,y〉-location,
encoded in polar coordinates, relative to the robot’s local coordinate system. Part of the
input are also the four sensor readings that are geometrically closest to〈x,y〉. The output
of the network, after training, is an approximation ofP(cxy |o). Training data for learning
P(cxy |o) is obtained by placing the robot at random places in a known environment, and
recording its sensor readings. For each〈x,y〉 within the robot’s perceptual range (which in
our implementation is between 3 and 5 meters), a training pattern is generated, whose label
reflects whether or not the〈x,y〉 is occupied. After appropriate training [100,104,147],
which in RHINO’s case is carried out using a simulator [147], the output of the network can
be interpreted as the desired conditional probabilityP(cxy |o). Fig. 10(b) shows examples
of sonar sensor readings and the corresponding probabilities generated by the trained neural
network.

In conjunction with any of the approaches presented in [59,60,98,143,147,150,152], the
mapping algorithm is powerful enough to generate consistent maps from scratch. Two

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 19 (1323-1395)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 19

(a) (b)

Fig. 10. (a) An artificial neural network maps sensor measurements to probabilities of occupancy. (b) An example
sonar scan, along with the local map generated by the neural network. The darker a region, the more likely it is
to be occupied.

(a) (b)

Fig. 11. Maps learned from scratch: (a) the Deutsches Museum Bonn, and (b) the Dinosaur Hall of Pittsburgh’s
Carnegie Museum of Natural History, built in preparation of the installation of a similar tour-guide robot. Both
maps were acquired in less than an hour.

example maps are shown in Fig. 11. Both maps were constructed in less than one hour.
The scarceness of the map shown in Fig. 11(a), however, illustrates the large number of
undetectable obstacles (cf. the hand-crafted map shown in Fig. 18). Because of this, we
chose to provide RHINO with a hand-crafted CAD map instead.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 20 (1395-1419)

20 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

3.2.3. Integration of multiple maps
RHINO possesses two major proximity sensor systems, a ring of 24 ultrasonic

transducers (sonars) and a pair of laser range finders. Both sensor systems cover a full
360 degree range. Since the perceptual characteristics of both systems are quite different,
and since they are mounted at different heights, separate maps are built for each sensor.

From those, and from the hand-supplied CAD map, a single map is compiled using the
conservative rule

P(cint
xy)=max

{
P(claser

xy),P (csonar
xy),P (cCAD

xy)
}
, (19)

where the superscript “int” marks the integrated map and the various superscripts on
the right hand-side correspond to the respective maps. The integrated map is used for
navigation. The reader may notice that the integration rule (step (2) in Table 3) is inap-
plicable if different sensors detect different obstacles, which is the case for the specific
sensor systems considered in this article.

(a) (b) (c) (d)

Fig. 12. Integrating multiple maps: (a) CAD map, (b) laser map, (c) sonar map, and (d) the integrated map. The
scarceness of the sensor-based maps, when compared to the CAD map, indicates how few of the obstacles are
actually detectable.

(a) (b)

Fig. 13. Two integrated maps, acquired in situations where a massive congestion of the museum forced the robot
to take a detour.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 21 (1419-1496)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 21

Fig. 12 shows an example of the various maps and their integration. Other examples of
integrated maps are shown in Fig. 13. These examples were recorded during peak traffic
hours. In both cases, a massive congestion made it impossible to make progress along the
original path. The robot’s ability to modify its map and hence its paths on-the-fly was
absolutely essential for the high reliability with which the robot reached its destinations.

4. Planning and execution

RHINO motion control is implemented hierarchically, using three different modules for
generating control. These are, in increasing levels of abstraction:

(1) Collision avoidance.This module directly sets the velocity and the motion direction
of the robot so as to move in the direction of a target location while avoiding
collisions with obstacles. It is the only module that considers the dynamics of the
robot.

(2) Motion planner.The motion planner consults the map to find shortest paths to an
exhibit. The path is communicated to the collision avoidance module for execution.
Since maps are updated continuously, the motion planner continuously revises its
plans.

(3) Task control module.The task control module coordinates the various robot
activities related to motion and interaction. For example, it determines the sequence
at which exhibits are visited during a tour, and it also determines the sequence of
steps involved in the dialogue with the user.

The hierarchical organization is fairly classical [85]. Each module has its own way to
monitor the execution and reacts accordingly. In the museum, the robot was always in
motion—unless, of course, it intentionally stopped to explain an exhibit.

4.1. Collision avoidance

The task of the collision avoidance module is to determine the actual motion direction
and velocity of the robot so as to operate the robot safely while maximizing its progress
towards its goal location. The majority of literature on mobile robot collision avoidance
suffers from two limitations, both of which are critical in environments like the museum.

(1) Inability to handle invisible obstacles.Virtually all existing methods for collision
avoidance are purely sensor-based, i.e., they only consult the robot’s sensors to
determine collision-free motion [13,50,71,78,79,137]. If all obstacles can be sensed,
such strategies suffice. However, since some of the obstacles in the museum were
invisible, a purely sensor-based approach would have been likely to fail.

(2) Inability to consider dynamics.With few exceptions [50,137], existing approaches
model only the kinematics of the robot and ignore dynamic effects such as inertia.
At lower speeds (such as 20 cm/sec), the dynamics of mobile robots can safely
be ignored. At higher speeds (such as 80 cm/sec), however, the robot’s inertia can
prohibit certain maneuvers, such as sudden stops or sharp turns. Since one of the
requirements in the museum was to operate at walking speed, it was essential that
the robot’s dynamics were taken into account.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 22 (1496-1652)

22 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

RHINO’s collision avoidance module, which is calledµDWA (short for: model-based
dynamic window algorithm), specifically addresses these limitations [52]. µDWA consults
a hand-supplied map of the environment to avoid collisions with obstacles that cannot be
sensed. The map is also used to bound the area in which the robot operates. To ensure
safe motion at high speed, constraints imposed by the robot’s dynamics are explicitly
considered.

4.1.1. The dynamic window algorithm
The key idea ofµDWA is to choose control directly in thevelocity spaceof the robot,

that is thetranslational and rotational velocity. As shown in [50], robots with fixed
velocity always travel on a circular trajectory whose diameter is determined by the ratio
of translational and rotational velocity. Motor current (torque) change the velocity of the
robot and, as a consequence, its motion direction. The problem of collision avoidance is,
thus, the problem of selecting appropriate velocities for translation and rotation.

In regular time intervals (every .25 seconds),µDWA chooses velocities so as to best
obey various hard and soft constraints (see also [122]):

(1) Hard constraintsare vital for a robot’s safety and are imposed by torque limits.
µDWA considers two types of hard constraints:torque constraintsand safety
constraints. Torque constraints rule out velocities that physically cannot be attained
(e.g., a fast moving robot cannot take a 90 degree turn). Safety constraints rule out
velocity settings that would inevitably lead to a collision with an obstacle. Notice
that hard constraints do not specify preferences among the different control options;
neither do they take into account the robot’s goal.

(2) Soft constraintsexpresspreferencesfor both the motion direction and the velocity
of the robot.µDWA measures the progress towards the goal by trading off three
different soft constraints, which measure
(1) translational velocity,
(2) heading towards the target position, and
(3) forward clearance.
If combined in the right ratio [50], these criteria lead to goal-directed behavior while
graciously avoiding collisions.

Consider the situation depicted in Fig. 14, in which the robot is nearly in straight motion
at a translational speed of about 40 cm/sec (the location of obstacles as perceived by the
robot are shown in Fig. 15). Fig. 17 depicts the whole velocity space, in which each axis
corresponds to a velocity (translational and rotational). The robot’s current velocity is in
the center of the small rectangular box in the diagram, called thedynamic window. This
window includes all velocities that can be attained in the next 0.25 seconds under the
robot’s torque limits. Nearby obstacles carve out regions in the diagram (shown there in
white), as those velocities would inevitably lead to a collision. The remaining velocities
are then evaluated according to a superposition of the three soft constraints listed above,
which favors velocity vectors with high translational velocity and for which the robot’s
heading direction points towards the goal. The overall evaluation of each velocity pair is
represented by its grey level, where darker values correspond to velocity pairs with higher
value. The cross marksµDWA’s final selection, which makes the robot follow the (circular)
trajectory shown in Fig. 16.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 23 (1652-1661)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 23

Fig. 14. Scan of the laser sen-
sors, missing much of the large
center obstacle.

Fig. 15. Obstacle line field,
purely sensor-based. Without
map information, the robot
would collide with an “invis-
ible” obstacle.

Fig. 16. Obstacle line field
enriched using virtual sen-
sors. Here the collision is
avoided. The circular trajec-
tory visualizes the control,
as chosen byµDWA for the
next 0.25 seconds.

Fig. 17. Each control is a combination of translational (y-axis) and rotational (x-axis) velocity. The darker a
control, the higher its value. Also shown here is thedynamic windowof velocities that can actually be attained.
The cross marks the control chosen byµDWA.

4.1.2. Integrating sensor readings and maps
µDWA integrates “real” proximity measurements, obtained from the robot’s various

sensors (tactile, infrared, sonar, laser), with “virtual” proximity measurements, generated
using a map of the environment. Fig. 18 shows the map that was used in the museum for
this purpose. This map marks as dark grey all regions that contain obstacles that cannot
be sensed. This map was also used to limit the robot’s operational range. By adding
appropriate virtual obstacles (shown in light grey) it can be ensured that the robot does
not accidentally leave the area where it is supposed to operate.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 24 (1661-1696)

24 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Fig. 18. This map depicts, in dark grey, obstacles
which could be detected, and in light grey, the
boundary of the robot’s operational area.

Fig. 19. Probability of measuring a given distance under
different degrees of certainty.

Just like the real sensors (tactile, infrared, sonar, laser), the virtual sensors inµDWA
are assumed to be mounted on a circular array around the robot. The generation of virtual
measurements is not straightforward, as the robot never knows exactly where it is; instead,
it is given the beliefP(ξ) that assigns conditional probabilities to the various locationsξ .
At first glance, one might want to use the maximum likelihood position

ξ∗ = argmax
ξ
P (ξ) (20)

to generate virtual proximity sensor measurements. However, such an approach would be
brittle, since it ignores the robot’s uncertainty.µDWA uses a more robust rule which takes
uncertainty into account, by generating virtual measurements so that with high likelihood
(e.g., 99%), virtual measurements underestimate the actual distance to the nearest object.
To explain how this is done, let us first consider situations in which the robot position
ξ is known. Recall thatdist(ξ) denotes the distance an ideal (noise-free) sensor would
measure if the robot’s position wasξ , and letX denote a random variable that models
the measurement of this ideal sensor. Obviously, the probabilityP(X = o|ξ) is given by a
Dirac distribution:

P(X = o|ξ)=
{

1, if o= dist(ξ),

0, if o 6= dist(ξ).
(21)

In our case, the robot only has a probabilistic beliefP(ξ) as to where it might be. Under
this belief, the probability that the sensor returns a valueo is given by

P(X = o)=
∫
P(X = o|ξ) P (ξ)dξ. (22)

The probability that the sensor measures a value larger thano is given by

P(X > o)=
∫
P(X > o|ξ) P (ξ)dξ =

∫∫
o′>o

P(X = o′|ξ) P (ξ)do′ dξ

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 25 (1696-1785)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 25

=
∫
o′>o

P(X = o′)do′. (23)

µDWA generates virtual measurements using a conservative rule: The measurement of a
virtual sensor is the largest distance that, with 99% probability, underestimates the true
distance.

o∗ = sup
{
o: P(X > o)> .99

}
. (24)

Let us illustrate this approach using two examples. Fig. 7 show two situations, one in which
the robot is uncertain about its position, and one in which it is fairly certain. Both situations
induce different densitiesP(X = o), which are shown in Fig. 19. The solid curve depicts
P(X = o) in the uncertain case, whereas the dashed curve illustratesP(X = o) when the
robot is certain. As is easy to be seen,P(X = o) is fairly unspecific in the uncertain case,
whereas it is narrow in the certain case. The vertical lines (solid and dashed) indicate the
virtual reading thatµDWA generates in either situation. With 99% probability, the real
distance is larger than the distance suggested by the virtual reading. This conservative rule
ensures that the robot does not collide with any of the invisible obstacles, unless it assigns
less than 1% probability to its actual position.

Both virtual and real measurements form the basis for determining the robot’s motion
direction and velocity. Fig. 16 shows the integrated sensor information (real and virtual).
Fig. 16 also shows the trajectory chosen byµDWA, which safely avoids collision with
the center obstacle. This figure demonstrates that a purely sensor-based approach is
inappropriate.

The collision avoidance module proved to be highly effective in the museum. Because of
the unified approach to setting speed and motion direction, the approach often maintained
walking speed even in cluttered environments. The robot reacted quickly when people
blocked its way, which prevented visitors from perceiving the robot as a potential threat.
We never observed that parents kept their children—many of whom were much shorter
than the robot—from approaching the robot.

4.2. Motion planning

The collision avoidance module only considers local constraints. As any local motion
planning method, cannot cope with U-shaped obstacles and similar configurations that
require unbounded look-ahead. RHINO’s motion planning module takes a more global
view. Its task is to determine globally shortest paths to arbitrary target points. Paths
generated by the motion planner are then communicated to the collision avoidance routine
for execution.

The idea for path planning is to let the robot always move on a minimum-cost path to
the next exhibit. The cost for traversing a grid cell〈x,y〉 is proportional to its occupancy
valueP(cint

xy) (cf. Eq. (19)). The minimum-cost path is computed using a modified version
of value iteration, a popular dynamic programming algorithm [6,70]:

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 26 (1785-1836)

26 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

(1) Initialization. The grid cell that contains the target location is initialized with 0, all
others with∞:

Vx,y←
{

0, if 〈x,y〉 target cell,

∞, otherwise.

(2) Update loop.For all non-target grid cells〈x,y〉 do:

Vx,y← min
1x=−1,0,1
1y=−1,0,1

{
Vx+1x,y+1y + P(cx+1x,y+1y)

}
.

Value iteration updates the value of all grid cells by the value of their best neighbors,
plus the costs of moving to this neighbor (just like A* [110]). Cost is here equivalent
to the probabilityP(cx,y) that a grid cell〈x,y〉 is occupied. The update rule is
iterated. When the update converges, each valueVx,y measures thecumulative cost
for moving to the nearest goal. However, control can be generated at any time, long
before value iteration converges.

(3) Determine motion direction.To determine where to move, the robot generates a
minimum-cost path to the goal. This is done by steepest descent inV , starting at the
actual robot position. The steepest descent path is then post-processed to maintain a
minimum clearance to the walls. Determining the motion direction is done in regular
time intervals and is fully interleaved with updatingV .

Fig. 20 showsV after convergence for a typical situation in the museum, using the map
shown in Fig. 18. The grey-level indicates the cumulative costsV for moving towards the
goal point. Notice that every local minimum in the value function corresponds to a goal, if
multiple goals exist. Thus, for every point〈x,y〉, steepest descent inV leads to the nearest
goal point.

Fig. 20. The motion planner uses dynamic programming to compute the shortest path to the nearest goal(s)
for every location in the unoccupied space, as indicated by the gray shading. Once the distance has been
computed, paths are generated by hill-climbing in distance space. An additional post-processing step increases
the side-clearance to obstacles.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 27 (1836-1903)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 27

Unfortunately, plain value iteration is too inefficient to allow the robot to navigate while
simultaneously learning maps. Strictly speaking, the basic value iteration algorithm can
only be applied if the cost function does not increase (which frequently happens when the
map is modified). This is because when the cost function increases, previously adjusted
valuesV might become too small. While value iteration quickly decreases values that are
too large,increasingtoo small a value can be arbitrarily slow [143,147]. Consequently, the
basic value iteration algorithm requires that the value function be initialized completely
(step (1)) whenever the map—and thus the cost function—is updated. This is very
inefficient, since the map is updated almost constantly.

To avoid complete re-initializations, and to further increase the efficiency of the
approach, the basic paradigm was extended in the following way:

(4) Selective reset phase.Every time the map is updated, valuesVx,y that are too small
are identified and reset. This is achieved by the following loop, which is iterated:
For all non-goal〈x,y〉 do:

Vx,y←∞ if Vx,y < min
1x=−1,0,1
1y=−1,0,1

{
Vx+1x,y+1y + P(cx+1x,y+1y)

}
.

Notice that the remainingVx,y-values are not affected. Resetting the value table
bears close resemblance to value iteration.

(5) Bounding box.To focus value iteration, a rectangular bounding box[xmin, xmax]
×[ymin, ymax] is maintained that contains all grid cells in whichVx,y may change.
This box is easily determined in the value iteration update. As a result, value iteration
focuses on a small fraction of the grid only, hence converges much faster. Notice that
the bounding box bears similarity to prioritized sweeping [105].

Value iteration is a very general procedure, which has several properties that make it
attractive for real-time mobile robot navigation:
• Any-time algorithm.Value iteration can be understood as an any-time planner [38],

since it allows the generation of a robot action at (almost) any time, long before value
iteration has converged. It allows the robot to move in real-time, even though some of
its motion commands might be sub-optimal.
• Full exception handling.Value iteration pre-plans for arbitrary robot locations. This

is becauseV is computed for every location in the map, not just the current
location of the robot. Consequently, the robot can quickly react if it finds itself
in an unexpected location, and generate appropriate motion directions without any
additional computational effort. This is particularly important in our approach, since
the collision avoidance module adjusts the motion direction commanded by the
planner based on sensor readings and dynamic constraints.

In the museum, the motion planner was fast enough for real-time operation. In grid maps
of size 30× 30 meter and with a spatial resolution of 15 cm, optimized value iteration,
done from scratch, requires approximately one to five seconds on a SUN Sparc station.
In cases where the selective reset step does not reset large fractions of the map (which
is the common situation), value iteration converges in much less than a second. Fig. 13
shows situations in which a passage is temporarily blocked, along with partially executed
plans generated by the motion planner. Such situations occurred frequently in the museum,
and without the ability to dynamically change the map and generate new plans, the robot

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 28 (1903-2008)

28 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

would have frequently been stuck for extended durations of time (e.g., waiting for a stool
to be moved away). The motion planner, together with the collision avoidance and the
various state estimation modules described above, provided the robot with the ability to
safely move from one exhibit to another, while adjusting the velocity to the circumstances,
circumventing obstacles when possible, but choosing completely different trajectories
when passages were blocked.

4.3. High-level task control

RHINO also employs a high-level planner, which is responsible for the composition of
entire tours.

The task control module coordinates the various robot activities related to motion and
user interaction at the highest level. It transforms abstract, user-level commands (such as:
“give tour number three”) into a sequence of appropriate actions, where actions either
correspond to motion commands (e.g., “move to exhibit number five”) or control the
robot’s user interface (e.g., “display image four” and “play pre-recorded message number
seventeen”). The task control module also monitors the execution and modifies task-level
plans if necessary.

In the museum exhibition, the primary role of the task control module was to determine
the order at which exhibits were visited, and to control the user interaction to ensure the
robot functioned in accordance to the user’s demands. When tours were given to real
visitors, the job of the task control module was to monitor and control the dialogue with
the visitor, and to monitor plan execution. Internet users were able to compose tours by
selecting individual tour items. Since multiple Internet users often sent commands at the
same time, there was a combinatorial problem of sequencing exhibits appropriately.

RHINO’s task control monitor is an augmented version of GOLOG, which has been
described in depth elsewhere [95]. GOLOG was chosen for two primary reasons: First,
its seamless integration of programming and planning makes it a promising framework to
specify high-level control. However, GOLOG lacks several features necessary for robot
control in unpredictable and dynamic environments. The second reason for choosing
GOLOG, thus, underlines a general interest to better understand how to integrate physical
robot control with high level planning and decision tools, which have been subject of
intense AI research ever since its interception.

GOLOG is a first-order logical language that represents knowledge in the situation
action calculus [96]. It uses a built-in theorem prover to generate plans and to verify their
correctness [103]. Programs (and plans) in GOLOG are sequences of elemental actions
expressed in a logical language usingif-then-else rulesandrecursive procedures. GOLOG
also requires the programmer to provide an abstract model of the robot’s environment (a
domain theory), describing the effects of its actions. The key benefit of GOLOG is that
it facilitates designing high-level controllers by seamlessly integrating programming and
problem solving [95,96]. Table 4 depicts an example GOLOG program for scheduling
requests by Internet users. It basically specifies that the robot shall serve all pending
requests by moving to the corresponding position and explaining it, and return to its homing
position thereafter.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 29 (2008-2084)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 29

Table 4
Fraction of the GOLOG program for the Internet tour-guide robot

proc internet-tourguide
while (∃ exhibit) request(exhibit)∧ next(exhibit)do

(π exhibit).goto(exhibit); explain(exhibit)
endWhile
goto(homing-position)
endProc

proc goto(loc)
if robotLocation(robotloc)∧ robotloc 6= loc then drive(loc)endIf
endProc

Unfortunately, GOLOG, in its current form, suffers from several limitations such as the
lack of sensing, interaction, and execution monitoring.2 Also, there is a mismatch between
the level of abstraction of GOLOG actions and those the robot is able to perform, thus
making it difficult to directly control the low-level software from GOLOG:

Sensing and interaction: GOLOG is unable to accept and react to exogenous events. It
cannot handle plans conditioned on events not known in the beginning of program
execution. In the museum, the robot’s actions are, of course, conditioned on user input
and various other circumstances, and the ability to react to exogenous events is essential.

Execution monitoring: By default, GOLOG assumes that actions always succeed if their
preconditions are met. It does not monitor the execution of its actions. In practice,
however, actions can fail, and it is important that the robot reacts adequately. For
example, the actionwait_for_user_request() often does not result in a user
response, and timeout mechanisms have to be employed to avoid getting stuck
indefinitely.

Level of abstraction: The primitive actions provided by RHINO’s low-level software
components are too fine-grained to be used directly in GOLOG. For example, the action
goto(exhibit)involves a collection of low-level control directives, such as setting track-
points for the cameras, setting target locations for the motion planner, turning the robot
towards the exhibit after arrival, etc. While in principle, GOLOG can cope with any
granularity, dealing with low-level action sequencing at the most abstract level would
make GOLOG programs cumbersome and difficult to understand.

These difficulties are overcome by an intermediate software layer, called GOLEX [63].
GOLEX is a runtime and execution monitoring system for GOLOG, which extends
GOLOG in three aspects:
• GOLEX integrates sensing and user interaction capabilities into GOLOG. It enables

the programmer to formulate conditional programs. Action sequences can be
conditioned upon exogenous events (such as the arrival of a tour item request) and

2 In recent work, which was not available when RHINO’s software was developed, extensions of GOLOG were
proposed which address these shortcomings [36,37,91].

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 30 (2084-2147)

30 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

timer events. If necessary, GOLEX can activate GOLOG’s planner to generate new
plans in reaction to unexpected events.
• GOLEX permanently monitors the execution of the various concurrent actions of the

underlying robot control system. If it detects a failure, it chooses appropriate actions
for recovery and updates the internal state accordingly, so that GOLOG can resume
its operation.
• GOLEX decomposes the primitive actions specified in GOLOG into a macro-like

sequence of appropriate directives for the robot control system, thereby bridging the
gap between GOLOG’s abstract task-level programs, and the remaining robot control
software.

Table 5 shows an excerpt of RHINO’s GOLEX program. This program segment
implements, in a Prolog-like notation, the re-scheduling of new tour items by calling
GOLOG to compute a new plan, and the various commands involved when moving
from one item to another. This program illustrates how high-level actions, such as
drive(location), are decomposed into sequences of lower level actions. In particular, the
drive(location)action involves setting the appropriate tracking point for the cameras,
blowing its horn, playing music thereafter, initiating the motion by informing the motion
planner, turning the robot towards the exhibit upon arrival, and continuing with the next
action in the schedule. The program segment also illustrates how GOLEX can react
to exogenous events (in this case: requests for tour items) and change the execution
accordingly.

As an example, consider a situation where RHINO is waiting in its parking position and
receives a tour request for the exhibits 1 and 12. GOLOG then generates the plan

do(drive(p), do(explain(e12), do(drive(e12), do(explain(e1), do(drive(e1), s0))))),

which is graphically illustrated by Fig. 22. Now suppose RHINO receives a new request
for exhibit 5 while it explains exhibit 1. In this case GOLEX uses the predicate

Table 5
Implementation of primitive actions in GOLEX

exec([], Done, Schedule).

exec([explain(Exhibit)|ToDo], Done, Schedule) :-
explain(Exhibit),
updateSchedule([explain(Exhibit)|Done], Schedule,

NewToDo, NewSchedule),
exec(NewToDo, [explain(Exhibit)|Done], NewSchedule).

exec([drive(L)|ToDo], Done, Schedule) :-
position(L, (X, Y)),
panTiltSetTrackPoint((X, Y)),
soundPlay(horn),
soundPlay(jamesBondTheme)
robotDrivePath([(X, Y)]),
robotTurnToPoint((X, Y)),
exec(ToDo, [drive(L)|Done], Schedule).

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 31 (2147-2216)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 31

Fig. 21. Schedule of tour items for the exhibits 1
and 12.

Fig. 22. Re-scheduled plan after receiving a request
for a exhibit 5.

updateSchedule to initiate replanning using GOLOG’s planner. Since exhibit 5 is
closer than exhibit 12, the plan is revised to

do(drive(p), do(explain(e12), do(drive(e12), do(explain(e5), do(drive(e5), . . .))))).

The resulting plan for the tour-guide is illustrated in Fig. 22. By providing these methods
for executing primitive actions, reacting to user requests, and monitoring the progress of
the robot, GOLEX provides the necessary “glue” between GOLOG and the rest of the
robot control software.

5. Human-robot interaction

An important aspect of the tour-guide robot is its interactive component. User interfaces
are of great importance for robots that are to interact with “normal” people. In settings such
as the museum, where people typically do not spend extensive amounts of time with the
robot, two criteria are most important: ease of use, and interestingness. The user interfaces
must be intuitive, so that untrained and non-technical users can operate the system without
instruction. Interestingness is an important factor in capturing people’s attention.

RHINO possesses two user interfaces, one on-board interface to interact with people
directly, and one on the Web. The on-board interface is a mixed-media interface that
integrates graphics, sound, and motion. The Web-based interface uses graphics and text.
The interactive component was critical for RHINO’s user acceptance in the museum.
Visitors of the museum paid considerably little attention to the fact that the robot navigated
safely from exhibit to exhibit. Instead, many seemed to be most intrigued when the robot
interacted with them in some noticeable way. Some of RHINO’s most enthusiastic users
were less than six years old; others were over 80. The vast majority of users had not been
exposed to robots prior to visiting the museum. Since the majority of visitors stayed less
than 15 minutes, it was critical that RHINO’s interface was easy-to-use and robust.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 32 (2216-2256)

32 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

5.1. Mixed-media user interface

RHINO’s on-board control interface integrates graphics, motion, and spoken, pre-
recorded language and sound.

(1) Initially, visitors can select a tour or, alternatively, listen to a brief, pre-recorded
explanation of the system (the “help text”). They indicate their choice by pressing
one out of four colored buttons, shown in Fig. 23.

(2) When RHINO moves towards an exhibit, it displays an announcement on its screen.
It also uses its camera-head to indicate the direction of its destination, by continually
pointing the camera towards the next exhibit. While in motion, the robot plays music
in order to entertain the people.

(3) At each exhibit, the robot first plays a brief pre-recorded verbal explanation. Users
are then given the choice to listen to more text or to move on to the next exhibit.
Users are informed about their choice through the graphical display, and they can
indicate their selection by pressing one of two lit buttons next to the screen. If no
user presses a button within five seconds, the robot defaults to the fast version of the
tour where a minimum of verbal explanations are provided.

(4) When a tour is finished, the robot returns to a pre-defined starting position in the
entrance area where it waits for new visitors.

Fig. 23 illustrates the interaction between visitors in the museum and the robot. The left
images shows an example screen of the graphical display. All text was in German. The four
colored buttons adjacent to the screen were the sole input interface.

Unfortunately, we were unable tosystematicallyevaluate the various components of the
user interface (see [129] for a detailed comparison based on a later tour-guide robot). All
evidence is therefore anecdotal. We observed that people consistently grasped the main
aspects of the interface within seconds, and without the need for further explanation. They
were able to select a tour without being given any instructions. Often, they did not realize
immediately that they were given the choice to obtain more detailed explanations, once

Fig. 23. On-board interface of the tour-guide robot. The users were required to press the buttons right from the
display to choose between different options (left image). During the tour the robot used its camera to point to
the exhibits. It showed text and graphics on its display and played pre-recorded sounds from CD to explain the
exhibits (right image).

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 33 (2256-2344)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 33

a tour was started. After visiting the third exhibit or so, users were usually aware of this
option and made use of it.

5.2. Web interface

RHINO’s Web interface consists of a collection of Web pages,3 which serves four main
purposes.

(1) Monitoring.
(2) Control.
(3) Providing background information.
(4) Providing a forum for discussion.

The interface enabled remote users to establish a “virtual tele-presence” in the museum, by
controlling the robot and to observing it, along with the museum and the people therein.

Three of the most frequently visited pages of the Web interface are shown in Fig. 24. The
page on the left enables users to observe the robot’s operation on-line. In regular intervals,
users receive live camera images. The left image includes camera images obtained with
one of RHINO’s cameras (left) and taken by a fixed, wall-mounted camera (right). The
center of this page shows a map of the robot’s environment from a bird’s eye perspective,
along with the actual location of the robot and the exhibits. The bottom portion of this page
has two functions. When the robot is moving, it indicates which exhibit RHINO is moving
towards. Once an exhibit is reached, information is provided about this specific exhibit,
including hyper-links to more detailed background information. All information on this
page is updated synchronously in approximately five second intervals, or when the robot
reaches or leaves an exhibit. Each user’s Web browser automatically reloads this page in
periodic time intervals. The update rate can be specified by the user in accordance to the
speed of his communication link (the default is 15 seconds).

To provide more frequent updates of the robot’s state we additionally provided a Java
page illustrating the current position of the robot and explaining the robot’s current action
(see middle image of Fig. 24). This Java applet directly connects to a dedicated server and
updates the position of the robot every 0.3 seconds, thereby providing smooth animations
of the robot’s motion in the map. At the bottom of the map this applet also scrolls text
explaining the current robot mode (e.g., “approaching exhibit 5”).

The middle image of Fig. 24 serves as the remote control interface of the robot. To send
the robot to an exhibit, users can click on exhibits directly in the map or, alternatively,
highlight one or more exhibits listed on the left side of this Web page. For four of the
exhibits (9–12) the users could additionally specify the heading from which they wanted
to see the images. Up to 12 different viewpoints were admissible for these exhibits.
A particular viewpoint could be chosen by clicking on the appropriate region closely
around the exhibit. When hitting the “select” button, the selected exhibits are queued.
Users can also identify themselves by typing their name (or acronyms) into the name
box at the top of this page. This name is then displayed in the queue. The task planner
schedules exhibits so as to minimize the travel distance. Requests of multiple users for
the same exhibits are accommodated in parallel, so that the exhibit is visited only once.

3 See http://www.cs.uni-bonn.de/~rhino/tourguide/.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 34 (2344-2387)

34 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Fig. 24. Popular pages of the Web interface. The left image shows a page with on-line images from the museum,
including background information about the exhibits and further hyper links. The middle image contains a screen
dump of a page for smooth animations of the robot’s trajectory and actions based on a Java applet. The right
image shows the control page, where Web-users can specify where they want the robot to go.

Thus, the length of the queue is limited by the number of different exhibits (13 exhibits
plus 36 view points in the museum). At times, there were over 100 pending requests of
different individual users. Particularly popular was the tour item “the crew”, which was
only available to Web users. Upon sending the robot to the crew, the robot positioned itself
so that it could see the off-board computers and, at rare occasions, some of us.

When the robot was controlled through the Internet, we quickly learned that the robot
was too fast to convince some Web-users that there was actually a physical machine
involved. This was specifically the case during a so-called “Internet night”, a scheduled
event that took place outside the opening hours of the museum. Because the museum was
empty, most of the time the robot traveled close to its maximum speed of 80 cm/sec. With
an update rate of 15 seconds per update, Web users saw mostly images of exhibits (where
the robot waited for 30 seconds), but they rarely saw the robot traveling from one exhibit
to another. This problem was remedied by lowering the maximum speed of the robot to
30 cm/sec. Now Web users saw images recorded along the way, raising their confidence
that there might actually be a real machine (as if we couldn’t have pre-recorded those
images as well).

One of the major drawback of the interface was the fact that the control and monitor
interface was implemented on two separate pages. This forced Web users to open multiple
windows when operating the machine. In a later implementation [130,148], the problem
was remedied by placing everything necessary for the control of the robot on a single
page.

5.3. Reaction to people

RHINO’s ability to react directly to people was, for most visitors, the most fascinating
aspects of the entire system. If people stepped in the robot’s way, RHINO reacted in
multiple ways, each of which was characterized by a different time constant:

(1) The first behavior of the robot is initiated by its collision avoidance, slowing the
robot down so as to avoid a collision. If the obstacle is not contained in the map

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 35 (2387-2459)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 35

Fig. 25. Typical situation in which visitors try to challenge the robot, here by intentionally blocking its path.

(and thus most likely a person), the robot blows its horn. Such obstacles are detected
using the inverse entropy gain filter, as described in Section 3.1.7.

(2) The next visible behavior is an attempt to find a local detour around the person. This
behavior is also driven by the collision avoidance method. At the same time, the
map is modified.

(3) If the blockage persists and no local detour exists, the modification of the map leads,
after a few seconds, to a global detour. The robot then turns away and chooses the
second best global path.

During all this, the robot uses its cameras to indicate the desired direction of travel.
In the museum, people were all but cooperative. Many shared an ambition to “break the

system”. Attempts to do so included intentionally blocking the robot’s way for extensive
periods of time, by trying to “push” it outside its operational boundary (e.g., close to the
hazardous staircase), or by lining up in a way that looked like a wall to the robot, in order
to confuse its sense of location. Typical examples of such a situations are show in Fig. 25.
Luckily none of these attempts succeeded. We attribute this robustness to the extensive use
of methods that are non-reactive, in the sense that they did not base their decisions on the
most sensor readings only, as advocated elsewhere [14,32].

RHINO’s ability to react to people proved to be one of the most entertaining aspects,
which contributed enormously to its popularity. Many visitors were amazed by the fact
that the robot acknowledged their presence by blowing its horn, and repeatedly stepped in
its way to get the acoustic “reward”. The ability of RHINO to decelerate in the presence of
people and to “ask” for clearance proved to be one of the most entertaining aspects of the
entire systems.

6. Statistics

The results of the six day deployment are summarized in Table 6 [17]. RHINO operated
for approximately 47 hours without any significant down-time (i.e., more than one hour).
Over this period of time, the robot traveled approximately 18.6 km. More than 2,000 real
visitors and over 2,000 “virtual” Web-based visitors were guided by RHINO. We counted
over 200,000 accesses to RHINO’s Web site. The robot served a total of 2,400 tour requests
by real and virtual visitors of the museum. Only six requests were not fulfilled, all but

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 36 (2459-2524)

36 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Table 6
Summary of the robot’s six-day deployment period

Hours of operation 47

Number of visitors >2,000

Number of Web visitors 2,060

Total distance 18.6 km

Maximum speed >80 cm/sec

Average speed during motion 36.6 cm/sec

Number of collisions 6

Exhibits explained 2,400

Success rate 99.75%

Increased attendance >50%

one of them due to scheduled battery changes at the time of the request. Thus, RHINO’s
overall success-rate was 99.75%. Whenever possible, RHINO chose its maximum speed
(80 cm/sec when guiding real people, between 30 and 50 cm/sec when controlled through
the Web). The discrepancy between the top and the average speed (36.6 cm/sec) was due
to the fact that in the presence of obstacles, the collision avoidance module was forced to
slow the robot down.

To the best of our knowledge, during its 47 hours of operation RHINO suffered a total
of six collisions with obstacles, all of which occurred at low speed and did not cause
any damage. Only one of these collisions was caused by a software failure. Here the
localization module failed to compute the robot’s position with the necessary accuracy.
All other collisions were results of various hardware failures (which were usually caused
by neglect on our side to exchange the batteries in time) and by omissions in the manually
generated map (which were fixed after the problem was observed).

Overall, RHINO was received with enthusiasm in all age groups. We estimate that more
than 90% of the museum’s visitors followed the robot for at least a fraction of a tour. Kids
often followed the robot for more than an hour. According to the director of the museum,
RHINO raised the overall number of visitors by at least 50%.

7. Related work

7.1. Localization

Mobile robot localization has frequently been recognized as a key problem in robotics
with significant practical importance. Cox [33] noted that “Using sensory information to
locate the robot in its environment is the most fundamental problem to providing a mobile
robot with autonomous capabilities”. A recent book by Borenstein et al. [11] provides an
excellent overview of the state-of-the-art in localization. Localization plays a key role in
various successful mobile robot architectures [35,54,67,93,94,108,117,120,138,158] and
various chapters in [85]. While some localization approaches, such as those described

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 37 (2524-2597)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 37

in [69,88,139] localize the robot relative to some landmarks in a topological map, RHINO’s
approach localizes the robot in a metric space, just like those methods proposed in [7,145,
150].

The vast majority of approaches is incapable of localizing a robot globally; instead,
they are designed to track the robot’s position by compensating small odometric errors.
Thus, they differ from the approach described here in that they require knowledge of
the robot’s initial position; and they are not able to recover from global localizing
failures. Probably the most popular method for tracking a robot’s position is Kalman
filtering [77,102], which represent uncertainty by single-modal distributions [60,61,98,
125,140]. While these approaches are computationally extremely fast, they are unable to
localize robots under global uncertainty—a problem which Engelson called the “kidnapped
robot problem” [44]. Recently, several researchers proposedMarkov localization, which
enables robots to localize themselves under global uncertainty [19,39,48,74,111,139].
Global approaches have two important advantages over local ones: First, the initial location
of the robot does not have to be specified, and second, they provide an additional level of
robustness, due to their ability to recover from localization failures. Unfortunately, none
of these methods were appropriate for the museum. This is because previous Markov
localization methods relied on extremely coarse-grained,topological representations of
the environment, making it impossible to navigate close to “invisible” obstacles. By using
a fine-grained, metric representation of space, our approach can localize a robot with much
higher accuracy, and it can also deal with a wider variety of environments, including those
that do not possess obvious geometric features such as corridors, intersections and doors.

In addition, the vast majority of approaches differ from the method described here in
that they can only cope withstaticenvironments, that is, environments that do not possess
measurable state other than the robot’s location. These approaches are typically brittle
in dynamic environments. The approach described in [80] uses cameras pointed towards
the ceiling and thus cannot perceive most of the changes that occur in typical office
environments. Unfortunately, such an approach is only applicable if the ceiling contains
enough structure for accurate position estimation. RHINO’s approach, by filtering out
sensor data, has been demonstrated to function even in highly dynamic environments. The
results obtained in the museum illustrate that it is capable of reliably localizing a robot
even if more than 50% of all sensor readings are corrupted by people (see also [53]).

Finally, most existing approaches are restricted in the type features that they consider.
Many approaches reviewed in a recent survey book on this topic [11] are limited in
that they require modifications of the environment. Some require artificial landmarks
such as bar-code reflectors [45], reflecting tape, ultrasonic beacons, or visual patterns
that are easy to recognize, such as black rectangles with white dots [10]. Of course,
modifying the environment is not an option in many application domains. Some of the
more advanced approaches use more natural landmarks that do not require modifications
of the environment. For example, the approaches of Kortenkamp and Weymouth [88] and
Mataríc [101] use gateways, doors, walls, and other vertical objects to determine the robot’s
position. The Helpmate robot uses ceiling lights to position itself [80]. Dark/bright regions
and vertical edges are used in [31,159], and hallways, openings and doors are used by
the approach described in [82,135,138]. Others have proposed methods for learning what
feature to extract, through a training phase in which the robot is told its location [58,114,

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 38 (2597-2667)

38 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

145,146]. These are just a few representative examples of many different features used for
localization.

RHINO’s approach differs from all these approaches in that it does not extract predefined
features from the sensor values. Instead, it directly processes raw sensor data. Such an
approach has two key advantages: First, it is more universally applicable since fewer
assumptions are made on the nature of the environment; and second, it can utilize all sensor
information, typically yielding more accurate results. Other approaches that process raw
sensor data can be found in [60,61,98]; however, these approaches do not address the global
localization problem.

7.2. Mapping

RHINO’s mapping approach is a variant of the well-known occupancy grid method.
Occupancy grids have originally been proposed by Elfes and Moravec [41,42,106] and
since been adopted in numerous robotic systems (e.g., [13,16,62,127,160,161]). To date,
occupancy grids have become the most successful metric approach to mobile robot map
acquisition. Our approach differs from previous ones in that neural networks are used
to learn the mapping from sensors to occupancy values; as a result, sensor readings are
interpreted in the context of their neighbors, which increases the accuracy of the resulting
maps [143,147].

Occupancy grids, however, are not the only approach to mobile robot mapping. Chatila
and Laumond [26] proposed to represent objects by polyhedra in a global coordinate frame.
Cox [34] proposed to construct probabilistic trees to represent different, alternative models
of the environment. In his work, Kalman filters and Bayesian methods are used for handling
uncertainty. Lu, Milios and Gutmann [59,98,99] presented an approach that memorizes
raw proximity sensor data in a metric coordinate system, using an alignment procedure
that extracts lines from laser range finder data. Jeeves [144], an award-winning robot at
the 1996 AAAI mobile robot competition [87], constructs geometric maps incrementally
by concatenating wall segments detected in temporal sequences of sonar measurements.
Jeeves’s design was strongly inspired by the work presented here; its inability to handle
dynamic environments and its strong commitment to parallel/orthogonal walls make its
software approach more brittle than the approach described here.

A statistical approach, which addresses both mobile robot localization and metric
mapping, has been proposed in [150–152]. This approach uses efficient statistical
estimators to interleave localization and mapping. It is specifically tailored towards
building maps of large, indoor environments, where the natural drift of the robot makes
it difficult to maintain an accurate sense of a robot’s position. In the current application,
this is not an issue, as an initial map of the environment is readily available.

All approaches discussed thus far fall into themetric paradigm [147]. There exists a
second, major paradigm to mapping, calledtopologicalmethods. This family of algorithms
represents environments by graphs, where nodes correspond to places and arcs correspond
to actions for moving from one place to another. Often, topological graphs are enriched by
local metric information to facilitate the navigation from one place to another. Among the
earliest successful work in this field is an approach by Kuipers and Byun [89,90]. In their
approach, topological places are defined as points that maximize the number of equidistant

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 39 (2667-2734)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 39

obstacles (a similar idea can be found in Choset’s work, who refers to such points as
“meetpoints” [27–29]). Topological places are connected by arcs, which contain metric
information for locally moving from one place to another. The approach disambiguates
different places by local sensor information (taken at a single node or, if necessary, at a
small number of neighboring nodes). In systematic simulations, this approach has been
found to reliably learn large maps of indoor environments, even if sensor data is noisy.
However, in these experiments the robot was equipped with a compass, which simplifies
the localization problem significantly.

A different approach to learning topological maps was proposed by Matarić [101]. Her
algorithm acquires topological maps of the environment in which nodes correspond to
pre-defined landmarks such as straight wall segments. Neighboring topological entities are
connected by links. The topological representation is enriched by distance information
to help keeping track of the location of the robot. The approach was evaluated on a
physical robot and was found to be robust in practice. Its inability to maintain an exact
position estimate imposes intrinsic scaling limitations. Moreover, since the recognition
of landmarks in this approach involves robot motion, the approach might have severe
difficulties in recognizing previously visited locations when approaching them from
different directions (e.g., T-junctions).

Shatkay and Kaelbling proposed a method that learns topological map from landmark
observations [133–135]. Their work extends work by Koenig and Simmons [82], who
investigated the problem of learning topological maps if a topological sketch of the
environment is readily available. In Shatkay and Kaelbling’s work, no such assumption
is made. Their approach considers local topological information along with landmark
label information (which is assumed to be observable), to disambiguate different locations.
A key feature of their approach is the use of a recursive estimation routine (the Baum–
Welsh algorithm [118]) that enables the topological mapper to refine position estimates
backwards in time. As a result, their approach has built fairly large topological maps. Their
work is similar to the metric approach in [150,152] in that it also employs the Baum-
Welsh algorithm to interleave mapping and localization. Other topological approaches can
be found in [30,107,153,163].

7.3. Collision avoidance

In the field of collision avoidance for mobile robots, potential field methods [79] are
highly popular. They determine the steering direction of the robot by (hypothetically)
assuming that obstacles assert negative forces on the robot and that the target location
asserts a positive force. By restricting the field of view to the close vicinity of the
robot, these methods are computationally highly efficient. While the physical analogy
of considering the robot as a free-flying object is attractive, Borenstein and Koren [84]
identified that in practice, such methods often fail to find trajectories between narrowly
spaced obstacles; they also can produce oscillatory behavior in narrowly confined
corridors. An extended version of the potential field approach is introduced in [78]. By
modifying the potential function the motion of the robot becomes more efficient and
different behaviors such as wall following and tracking can be achieved.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 40 (2734-2799)

40 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

The virtual force field histogramalgorithm [12], which closely resembles potential
field methods, uses occupancy grids to represent information about obstacles close to the
robot. This grid is generated and updated continuously using ultrasonic proximity sensors.
Borenstein later extended this approach to thevector field histogram[13]. In this algorithm.
occupancy information is transformed into a histogram description of the free space around
the robot, which is used to compute the motion direction and velocity for the robot.

All of the approaches discussed above generate motion commands for mobile robots
under the assumption that infinite forces can be asserted on the robot—a common
assumption in the field of collision avoidance for indoor robots, as most robots are operated
at low speed where inertial effect can be neglected. However, to operate robots safely
at higher speeds (such as walking speed), it is necessary to take the robot dynamics
into account. Both the dynamic window approach [16,49] and the “curvature velocity
method” [137], which despite their similarity were developed independently, are designed
to deal with the dynamics of mobile robots.

To deal with obstacles that cannot be detected by the robot’s sensors it is necessary to
integrate model-based information into reactive collision avoidance. Little attention has
been payed to this problem in the literature. In [126], an approach to motion planning is
proposed which in principle could solve this problem. The emphasis of their work lies
in the combination of global path planning and local collision avoidance. Here, motion
commands are generated based on a global model of the environment, which is updated
based on sensory input. They propose a method which efficiently extracts a path to a
goal point based on such a map. Unfortunately, the authors do not discuss the problem
of robot dynamics and uncertain position estimation. Furthermore it is not clear how the
static model of the environment is combined with the fast-changing information obtained
on-the-fly.

RHINO’s current method, calledµDWA [53], is specifically designed for environments
where not all obstacles can be perceived, guaranteeing safe navigation with high
probability even if the robot is not certain as to where it is. To the best of our knowledge,
this feature is unique in the literature on mobile robot collision avoidance.

7.4. Motion planning

Robot motion planning has been subject to intense research, as documented by a large
body of literature on this topic (see, e.g., [92,131]). The majority of work addresses more
complicated problems than the one addressed in this article, such as motion planning in
higher-dimensional and continuous space. Motion planning for circular mobile robots is
often performed in 2D, ignoring costs of rotation and the dynamics of the robot. Such a
methodology yields only sub-optimal results, but greatly reduces the complexity of motion
planning, which is known to be exponential in the number of degrees of freedom [21,119].

A popular algorithm for robot motion planning is A* [110], which bears close
resemblance to the value iteration approach proposed here (see [81]). Both approaches
can be used to find shortest paths to multiple goals, and they also generate values for
arbitrary locations, facilitating rapid replanning in the face of unexpected events. The issue
of efficient re-planning has also been addressed in [143] and by Stentz [141]. Stenz’s D*
(dynamic A*) planning algorithm is designed to quickly repair motion plans if the map is

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 41 (2799-2891)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 41

updated. RHINO’s motion planner does the same; given sufficient computation time, it is
guaranteed to generate optimal plans with respect to the underlying representation.

In the AI community, conditional planning has also been a subject of intense research.
A recent textbook [124] provides a collection of references to the most important work
in this field. Almost all of the work surveyed here is focused on domains where the
model is specified by a collection of logical axioms, often expressed as STRIPS-like
operators [110]. This work usually does not exploit the highly geometric nature of robot
motion planning, and is therefore not directly applicable. State-based representations,
such as the one used here, are commonly used in the literature on partially observable
Markov decision processes (POMDPs) [73,75,97]. POMDPs are the mathematically the
most appropriate framework to formulate the motion planning problem, since they can
encompass uncertainty both in the map and the robot’s location. Unfortunately, the
complexity of the domain does not permit efficient planning even if today’s best POMDP
algorithms are employed.

7.5. Task planning and control

Recent research has produced a variety of frameworks for task-level control (see, e.g.,
[47,136] and various chapters in [85]). A recent AAAI symposium on this topic illustrates
the interest in this area [5]. To our knowledge, GOLOG is unique in its seamless integration
of a programming language and a powerful theorem prover for planning. Other special-
purpose programming languages for mobile robots, such as COLBERT [83], do not feature
built-in problem solvers. COLBERT also stays below the level of abstraction of GOLOG
in that it is designed to deal with raw sensor input and motor commands. However, since
the expressive power of the situation calculus exceeds that of STRIPS-like planners (which
rely on an implicit close-world assumption), GOLOG is less efficient than most existing
planning algorithms (see [124]).

Historically, Nilsson’s SHAKEY robot was the first, successful demonstration of the
synthesis of symbolic, AI-type problem solving and low-level control. While SHAKEY
was a milestone in the history of mobile robotics, it suffered from a lack of robustness
on the low-level side, making it too brittle to operate in domains as dynamic as the one
considered in this paper. More recently, Haigh integrated PRODIGY [22] with a suite
of low-level software developed for CMU’s XAVIER project [138]. Her system, called
ROUGE [64], uses PRODIGY to generate cost-optimal motion plans for XAVIER, a robot
navigating in the corridors of an office building. This approach differs from ours in that it
does not offer a programming option on the task control level, i.e., all plans are generated
by the planner, not by the programmer.

7.6. Human robot interfaces

Most existing robots do not possess user-friendly interfaces. This is because mobile
robotics research tends to focus on issues related to navigation, not on human robot
interaction. Nevertheless, the need for more effective human robot interfaces has clearly
been recognized. For example, in his M.Sc. Thesis, Torrance developed a natural language
interface for teaching mobile robots names of places in an indoor environment [153].

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 42 (2891-2938)

42 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

Due to the lack of a speech recognition system, his interface still required the user to
operate a keyboard; however, the natural language component made instructing the robot
significantly easier. More recently, Asoh and colleagues [4] developed an interface that
integrates a speech recognition system into a phrase-based natural language interface.
They successfully instructed their “office-conversant” robot to navigate to office doors and
other significant places in their environment, using verbal commands. Other researchers
have proposed vision-based interfaces that allow people to instruct mobile robots via arm
gestures. For example, Kortenkamp and colleagues [86] recently developed a gesture-
based interface, which is capable of recognizing arm poses such as pointing towards
a location on the ground. In a similar effort, Kahn and colleagues [76] developed a
gesture-based interface which has been demonstrated to reliably recognize static arm poses
(pose gestures) such as pointing. This interface was successfully integrated into Firby’s
reactive plan-execution system RAP [47], where it enabled people to instruct a robot to
pick up free-standing objects. A recent paper by Waldherr and colleagues [157] extends
these approaches todynamicgestures, i.e., gestures which are defined through motion,
not just poses. Motion gestures, which are commonly used for communication among
people, provide additional freedom in the design of gestures. In addition, they reduce
the chances of accidentally classifying arm poses as gestures that were not intended as
such.

Unfortunately, while these interfaces are important steps in the right direction, they
are not quite suited for application domains as museums, where people typically interact
with a robot for an extremely short duration. Most visitors spent less than 15 minutes
following the robot through the museum, and even RHINO’s most enthusiastic supporters
stayed rarely for more than two hours. Under such circumstances, it is important that the
robot appeals to the “intuitions” of its users. It is generally undesirable that users have to
learn how to interact with a robot, even if the nature of the interface (language, gestures)
facilitates this process. We believe that we currently lack a convincing methodology for
“intuitive” human robot interaction.

7.7. Integrations and applications

Various researchers have devised integrated systems similar to the one described
here [85,128]. A good survey of fielded systems is provided in a recent book by Schraft and
Schmierer [128]. For example, Siemens Corp. (Germany) has recently developed a mobile
cleaning robot, which it successfully deployed in a supermarket [43]. Unfortunately, much
of their technology is proprietary. The robot differs from RHINO in that does not interact
with people; it also moves at much lower speed. We suspect that the basic software
architecture is similar to the one used by RHINO. A second, prominent example of a
successfully deployed robot is Helpmate Inc.’s Helpmate robot [80]. This robot has been
deployed at dozens of hospitals worldwide, where it carries food and other items through
hospital corridors. The Helpmate does not interact with people either, but it features an
easy-to-use interface which enables nurses to tell the robot where to go.

To the best of our knowledge, the concept of a tour-guide robot was first proposed
by Horswill [68,69], who built a robot that guided visitors through the AI Lab at MIT.
This robot, designed to demonstrate Horswill’s fast vision routines, did not require

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 43 (2938-3000)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 43

modifications of the environment, just like RHINO (apart from colored tape at the boundary
of the robot’s operational range). However, it lacked the ability to modify its map; neither
could it avoid collisions with invisible obstacles or recover from global localization
failures. RHINO’s approach relies to a much larger degree on internal state (location, map),
which accounts for its enhanced level of robustness and capability required in environments
such as the one considered here.

Motivated by RHINO, Nourbaksh and colleagues recently installed a similar tour-guide
robot in the Carnegie Museum of Natural History in Pittsburgh, PA [112]. This robot,
called CHIPS, has been operated successfully over a period of several months. CHIPS
differs from RHINO in several aspect. To aid the navigation, CHIPS’s environment is
marked by bright orange-green markers, whose location is known. The robot does not
possess a planner; instead, it closely follows a pre-given path. When the robot’s sensors
are blocked, it typically waits for the blockage to disappear. CHIPS uses high-end multi-
media technology to provide detailed explanations of exhibits, lasting in the order of 3
minutes per exhibits. RHINO, in comparison, provides much shorter explanations. Finally,
CHIPS lacks a Web interface.

Similarly motivated by RHINO’s success, we recently installed a more advanced tour-
guide (called MINERVA) in the Smithsonian’s National Museum of American History in
Washington, DC [148]. This robot was similar to RHINO, in that it shared many of the
basic navigation modules. However, it features an additional module for learning ceiling
maps and using those for localization, and it also possessed a drastically revised user
interface, aimed at providing the robot with a “life-like” character. Further details can be
found in [148].

7.8. Robots on the Web

In recent years, several research teams have connected robots to the Web, enabling
people all over the world to command robots remotely. One of the most prominent
examples is CMU’s XAVIER robot [138], which predates the work reported here. XAVIER
is equipped with an interface similar to the one described here. Web-users can schedule
requests for moving to pre-specified locations where the robot tells a user-selected “joke”,
and they can watch camera images recorded in regular time intervals. RHINO’s interface
offers a choice between JPEG images and Java applets; the latter option enables Web users
to run a robot simulator on their own machine, in which the robot’s location is animated
continuously. Users command both robots at an abstract level, and the low-level navigation
software ensures the robot’s safety.

Others have designed interfaces for the control of robot arms. The MERCURY
system [56], which started its operation in 1994, was one of the first tele-operated
manipulators on the Web. It enabled Web users to excavate artifacts buried in a sand-filled
terrarium. This system required users to assume exclusive control over the manipulator.
The TELE-GARDEN, successor of MERCURY, enabled people to plant flowers [57].
Just like RHINO, this system was able to coordinate requests by multiple users. The
“Mechanical Gaze Project” [115] enables visitors of a museum to examine exhibits from
various viewpoints, and with different distances. Other Web-connected robots include a
tele-operated “Eyebot”, a robot that carries a camera whose pictures are posted on the Web

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 44 (3000-3064)

44 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

(http://www.dma.nl/eyebot), and “KhepOnTheWeb”, a table-top robot that Web
users can manually move through a maze (http://KhepOnTheWeb.epfl.ch).

8. Summary

This article described the software architecture of a fully autonomous mobile robot
designed to interact with people. The robot has been proven to function reliably in
unmodified and densely populated environments, and it has equally been proven to interact
successfully with people. To reach this level of reliability, our approach extends a collection
of well-known algorithms for mobile robot state estimation, control, and user interaction,
and integrates them into a single system. While most of the work reported here is well-
grounded in previously approaches to mobile robotics, some critical innovations were
necessary to provide the robot with the necessary level of robustness.

RHINO’s localization method is based on Markov localization, a popular probabilistic
localization method. Our approach extends the Markov localization paradigm by a method
for filtering out noisy sensor data, which makes it extremely robust in highly dynamic
environments. It also estimates the location of a robot at much higher resolution; a
necessary requirement for navigating close to obstacles that cannot be sensed. The robot
inherits its mapping algorithm from the decade-old literature on occupancy grid maps.
It employs artificial neural networks for sensor interpretation, which allow it to interpret
sensor readings in the context of its neighbors. As argued elsewhere [147], such an
approach improves the robustness of the mapping algorithm to noise (such as spectral
reflection). RHINO also integrates maps from different sensor modalities.

RHINO employs a hybrid collision avoidance method (µDWA), specifically designed
to operate in environments where not all obstacles can be sensed reliably. In addition to
the sensor readings, this approach assembles “virtual” sensor readings using a map of the
environment. A key feature is its ability to generate safe motion even if the robot does not
quite know where it is. This contrasts with previous methods, which are typically purely
sensor-based and would thus fail in an environment as the museum. RHINO’s motion
planner is a version of dynamic programming, which, by spreading activation through free-
space, effectively pre-plans for all possible exceptions. To accommodate the continuous
change of the map, the path planner contains a method for identifying where and when
replanning becomes necessary. Task-level control is performed by GOLOG, an integrated
programming language and theorem prover embedded in the situation action calculus.
While this approach provides a powerful framework for designing high-level controllers,
it alone is inappropriate to deal with various contingencies arising in robot control. We
therefore designed GOLEX, an interface which provides the glue between GOLOG and
the rest of the software. GOLEX provides macros, conditional plans and an execution
monitor.

RHINO exhibits a degree of interactiveness typically not found on other mobile robots.
It reacts to the presence of people in various ways—an aspect that we found to be
essential to spark people’s enthusiasm. Both its command interface and its interface
to the Web was specifically designed to appeal to novices. All these components are
integrated through a modular software architecture, designed to accommodate the various

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 45 (3064-3132)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 45

bottlenecks in distributed computer networks. All computation is carried out completely
asynchronously, and the different modules communicate by sending messages to each
other. Computationally-intense modules were capable of adapting their requirements to the
available resources, which is critical in a communication network that was often subject to
lengthy communication delays.

During its six-day installation period, the robot performed reliably and excited the
visitors. The robot guided thousands of users to exhibits with almost perfect reliability,
traversing more than 18.6 km at an average speed of 35 cm/sec. We did not modify
the museum in any way that would facilitate the robot’s operation; in fact, RHINO’s
software successfully coped with various “invisible” obstacles and the large number of
people. We believe that RHINO’s reliability and effectiveness in complex environments
is unprecedented. The robot also raised the museum’s attendance by more than 50%,
suggesting that robotic applications in the field of entertainment and education might be
commercially viable.

9. Discussion

One of the key limitations of the current approach is its reliance on an accurate map of
the environment. In the Deutsches Museum Bonn, it took us about a week to manually
acquire the map, partially because of the non-orthogonal arrangement of exhibits and
walls. To remedy this problem, we recently devised a family of more powerful mapping
techniques [150,152]. These techniques make it possible to acquire maps of large-scale,
cyclic environments from raw sensor data, collected while joy-sticking the robot through
its environments (see also Section 7.2, Fig. 11, and [148]). Augmenting such maps with
“invisible” obstacles is straightforward, as the robot’s localization methods can be used to
accurately determine its position. These new techniques overcome an important limitation
of the approach described here, effectively reducing the installation time for a robot by
more than an order of magnitude.

Another limitation arises from the fact that the pure entropy gain filter, used to filter out
all corrupted sensor readings, impairs the robot’s ability to recover from global localization
failure. As noted above, once the robot has lost track of its position entirely the entropy
gain filter may filter outall authentic sensor readings, making it impossible for the robot to
re-localize itself. Recently, we proposednovelty filters[53], an extension of entropy gain
filters that takes into account the nature of the surprise in a sensor reading. In a systematic
study using the data collected in the museum we found that novelty filters do not suffer this
limitation, while still retaining the full advantage of the entropy gain filter. We envision that
this new filter will lead to more robust behavior in highly dynamic environments.

Finally, the interactive component of the robot can certainly be considered a first
step only. As reported above, user interaction was essential for the overall validity of
the concept. RHINO’s interaction is quite limited, when compared to ongoing research
on human computer interaction and believable characters. While this paper was under
review, we developed a second generation tour-guide robot, called MINERVA [148], which
exhibited a much richer repertoire of interactive means. MINERVA was equipped with a
face, used a finite state machine to emulate “moods”, and employed reinforcement learning

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 46 (3132-3257)

46 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

[75,142] to learn how to best attract people. In addition, MINERVA possessed a more
effective Web interface, which gave users the freedom to send the robot to arbitrary points
in the environment. Results of this more advanced interface are described in [129,130].
Nevertheless, we believe that the issue of people interaction with service robots in public
places remains an open and promising research issue—which we have barely touched.

RHINO is just one out of a series of recent successful mobile robots [128]. Recent
research in the field of mobile robotics has led to significant progress along various
dimensions. Applications such as robots that guide blind or mentally handicapped people,
robots that clean large office buildings and department stores, robots that assist people
in recreational activities, etc., are clearly in reach, and for many of those target domains
prototypes are readily available [128]. This recent, ongoing revolution has been triggered
by advances along various dimensions. Robotic hardware has steadily become cheaper
and more reliable. Robotic software has matured, reaching critical levels of reliability,
robustness, and flexibility.

We believe that the museum tour-guide is a prototypical example of a new generation of
mobile service robots. Many of the challenges in the museum tour-guide domain apply to a
wide variety of mobile robot applications: the necessity to navigate through highly dynamic
and unstructured environments; the necessity to interact with people; and the necessity
to operate in environments that cannot be modified. It is quite likely that robots similar
to the one described here will soon be deployed in shopping malls, amusement centers,
technology fairs, etc., where they will be receptionists, information kiosks, waiters, guides,
but most of all: magnets that attract people. Similar robots may soon perform janitorial
services, operate at sites too dangerous for humans, or assist people in various aspects of
their lives.

Through developing RHINO’s software and watching it operate in the Deutsches
Museum, we learned more than we can possibly describe in a single article. Among the
most important lessons is the recognition that mobile robot navigation has progressed
to a level at which robots can now navigate reliably even in densely populated spaces.
In most aspects, such robots can now be installed in new sites within days, without
having to modify the environment (see also [150]). We also learned that human robot
interfaces are key prerequisites if robots are to become part of people’s everyday lives.
We found that adaptive mechanisms are essential for operating robots in highly dynamic
and unpredictable environments, as without the capability to revise its maps and its
plans, the robot would often have been stuck. Finally, we learned that entertainment is
a highly promising application domain for mobile robotics. In most envisioned service
robot applications, robots have to compete with human labor, whereas in the entertainment
sector, robots may generate revenue by simply exploiting the fact that they differ.

Acknowledgement

The authors thank Peter Frieß and his staff from the Deutsches Museum Bonn for their
enthusiastic support of this project.

This research is sponsored in part by DARPA via AFMSC (contract number F04701-
97-C-0022), TACOM (contract number DAAE07-98-C-L032), and Rome Labs (contract

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 47 (3257-3411)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 47

number F30602-98-2-0137), and also by the EC (contract number ERBFMRX-CT96-
0049) under the TMR programme. The views and conclusions contained in this document
are those of the author and should not be interpreted as necessarily representing official
policies or endorsements, either expressed or implied, of DARPA, AFMSC, TACOM,
Rome Labs, the United States Government, or the EC.

References

[1] R. Arkin, Behavior-Based Robotics, MIT Press, Boston, MA, 1989.
[2] I. Asimov, Runaround, Faucett Crest, New York, 1942.
[3] I. Asimov, I, Robot, Doubleday, 1950.
[4] H. Asoh, S. Hayamizu, H. Isao, Y. Motomura, S. Akaho, T. Matsui, Socially embedded learning of office-

conversant robot jijo-2, in: Proc. IJCAI-97, Nagoya, Japan, 1997.
[5] C. Baral, G. De Giacomo, K. Konolige, G. Lakemayer, R. Reiter, M. Shanahan (Eds.), AAAI Fall

Symposium, Workshop on Cognitive Robotics, Orlando, FL, AAAI Press, 1998.
[6] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
[7] M. Betke, L. Gurvits, Mobile robot localization using landmarks, Technical Report SCR-94-TR-474,

Siemens Corporate Research, Princeton, 1993. Will also appear in: IEEE Transactions on Robotics and
Automation.

[8] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK, 1994.
[9] A. Blum, T.M. Mitchell, Combining labeled and unlabeled data with co-training, in: Proc. Conference on

Learning Theory (COLT), Madison, WI, 1998.
[10] J. Borenstein, The nursing robot system, Ph.D. Thesis, Technion, Haifa, Israel, 1987.
[11] J. Borenstein, B. Everett, L. Feng, Navigating Mobile Robots: Systems and Techniques, A. K. Peters,

Wellesley, MA, 1996.
[12] J. Borenstein, Y. Koren, Real-time obstacle avoidance for fast mobile robots in cluttered environments, in:

Proc. of the IEEE International Conference on Robotics and Automation, 1990, pp. 572–577.
[13] J. Borenstein, Y. Koren, The vector field histogram—Fast obstacle avoidance for mobile robots, IEEE

J. Robotics and Automation 7 (3) (1991) 278–288.
[14] R.A. Brooks, A robust layered control system for a mobile robot, Technical Report AI memo 864,

Massachusetts Institute of Technology, Cambridge, MA, 1985.
[15] R.A. Brooks, Intelligence without reason, in: Proc. IJCAI-91, Sydney, Australia, 1991, pp. 569–595.
[16] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, S. Thrun, The mobile

robot Rhino, AI Magazine 16 (1) (1995).
[17] W. Burgard, A.B., Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, S. Thrun, The

interactive museum tour-guide robot, in: Proc. AAAI-98, Madison, WI, 1998.
[18] W. Burgard, A. Derr, D. Fox, A.B. Cremers, Integrating global position estimation and position tracking for

mobile robots: The dynamic Markov localization approach, in: Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS-98), 1998.

[19] W. Burgard, D. Fox, D. Hennig, T. Schmidt, Estimating the absolute position of a mobile robot using
position probability grids, in: Proc. AAAI-96, Portland, OR, AAAI Press/MIT Press, Menlo Park, CA,
1996.

[20] W. Burgard, D. Fox, S. Thrun, Active mobile robot localization, in: Proc. IJCAI-97, Nagoya, Japan, Morgan
Kaufmann, San Mateo, CA, 1997.

[21] J. Canny, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1987.
[22] J.G. Carbonell, C.A. Knoblock, S. Minton, Prodigy: An integrated architecture for planning and learning,

in: K. Van Lehn (Ed.), Architectures for Intelligence, Erlbaum, 1990.
[23] G.C. Casella, R.L. Berger, Statistical Inference, Wadsworth & Brooks, Pacific Grove, CA, 1990.
[24] V. Castelli, T. Cover, On the exponential value of labeled samples, Pattern Recognition Letters 16 (1995)

105–111.
[25] V. Castelli, T. Cover, The relative value of labeled and unlabeled samples in pattern recognition with an

unknown mixing parameter, IEEE Trans. Inform. Theor. 42 (6) (1996) 2101–2117.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 48 (3411-3568)

48 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

[26] R. Chatila, J.-P. Laumond, Position referencing and consistent world modeling for mobile robots, in: Proc.
1985 IEEE International Conference on Robotics and Automation, 1985.

[27] H. Choset, Sensor based motion planning: The hierarchical generalized Voronoi graph, Ph.D. Thesis,
California Institute of Technology, 1996.

[28] H. Choset, I. Konuksven, J.W. Burdick, Sensor based planning for a planar rod robot, in: Proc.
IEEE/SICE/RSJ Internat. Conference on Multisensor Fusion and Integration for Intelligent Systems,
Washington, DC, 1996.

[29] H. Choset, I. Konuksven, A. Rizzi, Sensor based planning: A control law for generating the generalized
Voronoi graph, in: Proc. IEEE Int. Advanced Robotics, Washington, DC, 1996 (submitted).

[30] E. Chown, S. Kaplan, D. Kortenkamp, Prototypes, location, and associative networks (plan): Towards a
unified theory of cognitive mapping, Cognitive Sci. 19 (1995) 1–51.

[31] T.S. Collet, B.A. Cartwright, Landmark learning in bees, J. Comparative Physiology, January (1985).
[32] J. Connell, Minimalist Mobile Robotics, Academic Press, Boston, MA, 1990.
[33] I.J. Cox, Blanche—An experiment in guidance and navigation of an autonomous robot vehicle, IEEE Trans.

Robotics and Automation 7 (2) (1991) 193–204.
[34] I.J. Cox, Modeling a dynamic environment using a Bayesian multiple hypothesis approach, Artificial

Intelligence 66 (1994) 311–344.
[35] I.J. Cox, G.T. Wilfong (Eds.), Autonomous Robot Vehicles, Springer, Berlin, 1990.
[36] G. de Giacomo, H.J. Levesque, An incremental interpreter for high-level programs with sensing, in: AAAI

1998 Fall Symposium on Cognitive Robotics, 1998.
[37] G. De Giacomo, R. Reiter, M. Soutchanski, Execution monitoring of high-level robot programs, in: Proc.

6th International Conference on the Principles of Knowledge Representation and Reasoning (KR-98), 1998
(to appear).

[38] T.L. Dean, M. Boddy, An analysis of time-dependent planning, in: Proc. AAAI-92, San Jose, CA, AAAI
Press/MIT Press, Menlo Park, CA, 1988, pp. 49–54.

[39] F. Dellaert, D. Fox, W. Burgard, S. Thrun, Monte Carlo localization for mobile robots, in: Proc. IEEE
International Conference on Robotics and Automation (ICRA), 1999.

[40] A.P. Dempster, A.N. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm,
J. Roy. Statist. Soc. Ser. B 39 (1) (1977) 1–38.

[41] A. Elfes, Sonar-based real-world mapping and navigation, IEEE J. Robotics and Automation RA-3 (3)
(1987) 249–265.

[42] A. Elfes, Occupancy grids: A probabilistic framework for robot perception and navigation, Ph.D. Thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon University, 1989.

[43] H. Endres, W. Feiten, G. Lawitzky, Field test of a navigation system: Autonomous cleaning in
supermarkets, in: Proc. 1998 IEEE International Conference on Robotics and Automation (ICRA-98),
1998.

[44] S. Engelson, Passive map learning and visual place recognition, Ph.D. Thesis, Department of Computer
Science, Yale University, 1994.

[45] H.R. Everett, D.W. Gage, G.A. Gilbreth, R.T. Laird, R.P. Smurlo, Real-world issues in warehouse
navigation, in: Proc. SPIE Conference on Mobile Robots IX, Vol. 2352, Boston, MA, 1994.

[46] C. Fedor, TCX. An interprocess communication system for building robotic architectures. Programmer’s
guide to version 10.xx, Carnegie Mellon University, Pittsburgh, PA, 1993.

[47] R.J. Firby, R.E. Kahn, P.N. Prokopowicz, M.J. Swain, An architecture for active vision and action, in: Proc.
IJCAI-95, Montreal, Quebec, 1995, pp. 72–79.

[48] D. Fox, W. Burgard, F. Dellaert, S. Thrun, Monte Carlo localization: Efficient position estimation for mobile
robots, in: Proc. AAAI-99, Orlando, FL, 1999.

[49] D. Fox, W. Burgard, S. Thrun, Controlling synchro-drive robots with the dynamic window approach
to collision avoidance, in: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-96), 1996.

[50] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics and
Automation 4 (1) 1997.

[51] D. Fox, W. Burgard, S. Thrun, Active Markov localization for mobile robots, Robotics and Autonomous
Systems 25 (3-4) (1998) 195–207.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 49 (3568-3717)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 49

[52] D. Fox, W. Burgard, S. Thrun, A hybrid collision avoidance method for mobile robots, in: Proc. IEEE
International Conference on Robotics and Automation (ICRA), 1998.

[53] D. Fox, W. Burgard, S. Thrun, A.B. Cremers, Position estimation for mobile robots in dynamic
environments, in: Proc. AAAI-98, Madison, WI, 1998.

[54] T. Fukuda, S. Ito, N. Oota, F. Arai, Y. Abe, K. Tanake, Y. Tanaka, Navigation system based on ceiling
landmark recognition for autonomous mobile robot, in: Proc. Internat. Conference on Industrial Electronics
Control and Instrumentation (IECON-93), Vol. 1, 1993, pp. 1466–1471.

[55] E. Gat, Esl: A language for supporting robust plan execution in embedded autonomous agents, in: Working
Notes of the AAAI Fall Symposium on Plan Execution, Boston, MA, 1996.

[56] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley, Desktop tele-operation via the
world wide web, in: Proc. IEEE International Conference on Robotics and Automation, 1995.

[57] K. Goldberg, J. Santarromana, G. Bekey, S. Gentner, R. Morris, J. Wiegley, E. Berger, The telegarden, in:
Proc. ACM SIGGRAPH, 1995.

[58] R. Greiner, R. Isukapalli, Learning to select useful landmarks, in: Proc. AAAI-94, Seatle, WA, AAAI
Press/MIT Press, Menlo Park, CA, 1994, pp. 1251–1256.

[59] J.-S. Gutmann, Vergleich von Algorithmen zur Selbstlokalisierung eines mobilen Roboters, Master’s
Thesis, University of Ulm, Ulm, Germany, 1996 (in German).

[60] J.-S. Gutmann, B. Nebel, Navigation mobiler Roboter mit Laserscans, in: Autonome Mobile Systeme,
Springer, Berlin, 1997 (in German).

[61] J.-S. Gutmann, C. Schlegel, Amos: Comparison of scan matching approaches for self-localization in indoor
environments, in: Proc. First Euromicro Workshop on Advanced Mobile Robots, IEEE Computer Society
Press, 1996.

[62] D. Guzzoni, A. Cheyer, L. Julia, K. Konolige, Many robots make short work, AI Magazine 18 (1) (1997)
55–64.

[63] D. Hähnel, W. Burgard, G. Lakemeyer, GOLEX: Bridging the gap between logic (GOLOG) and a real
robot, in: Proc. 22st German Conference on Artificial Intelligence (KI-98), Bremen, Germany, 1998.

[64] K.Z. Haigh, M.M. Veloso, High-level planning and low-level execution: Towards a complete robotic agent,
in: W. Lewis Johnson (Ed.), Proc. First International Conference on Autonomous Agents, ACM Press, New
York, NY, 1997, pp. 363–370.

[65] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley,
Redwood, CA, 1991.

[66] J. Hertzberg, F. Kirchner, Landmark-based autonomous navigation in sewerage pipes, in: Proc. First
Euromicro Workshop on Advanced Mobile Robots, 1996, pp. 68–73.

[67] R. Hinkel, T. Knieriemen, Environment perception with a laser radar in a fast moving robot, in: Proc.
Symposium on Robot Control, Karlsruhe, Germany, 1988, pp. 68.1–68.7.

[68] I. Horswill, Polly: A vision-based artificial agent, in: Proc. AAAI-93, Washington, DC, MIT Press,
Cambridge, MA, 1993.

[69] I. Horswill, Specialization of perceptual processes, Technical Report AI TR-1511, MIT, AI Lab,
Cambridge, MA, 1994.

[70] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press/Wiley, 1960.
[71] H. Hu, M. Brady, A Bayesian approach to real-time obstacle avoidance for a mobile robot, in: Autonomous

Robots, Vol. 1, Kluwer Academic, Boston, 1994, pp. 69–92.
[72] E. Huber, D. Kortenkamp, Using stereo vision to pursue moving agents with a mobile robot, in: Proc. IEEE

International Conference on Robotics and Automation, 1995.
[73] T. Jaakkola, S.P. Singh, M.I. Jordan, Reinforcement learning algorithm for partially observable decision

problems, in: G. Tesauro, D. Touretzky, T. Leen (Eds.), Advances in Neural Information Processing
Systems 7, MIT Press, Cambridge, MA, 1995.

[74] L.P. Kaelbling, A.R. Cassandra, J.A. Kurien, Acting under uncertainty: Discrete Bayesian models for
mobile-robot navigation, in: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,
1996.

[75] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey, J. Artificial Intelligence
Res. 4 (1996).

[76] R.E. Kahn, M.J. Swain, P.N. Prokopowicz, R.J. Firby, Gesture recognition using the perseus architecture,
in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 1996,
pp. 734–741.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 50 (3717-3873)

50 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

[77] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic
Engineering 82 (1960) 35–45.

[78] M. Khatib, R. Chatila, An extended potential field approach for mobile robot sensor-based motions, in:
Proc. International Conference on Intelligent Autonomous Systems (IAS-4), 1995.

[79] O. Khatib, Real-time obstacle avoidance for robot manipulator and mobile robots, Internat. J. Robotics
Res. 5 (1) (1986) 90–98.

[80] S. King, C. Weiman, Helpmate autonomous mobile robot navigation system, in: Proc. SPIE Conference on
Mobile Robots, Vol. 2352, Boston, MA, 1990, pp. 190–198.

[81] S. Koenig, The complexity of real-time search, Technical Report CMU-CS-92-145, Carnegie Mellon
University, 1992.

[82] S. Koenig, R. Simmons, Passive distance learning for robot navigation, in: L. Saitta (Ed.), Proc. 13th
International Conference on Machine Learning, 1996.

[83] K. Konolige, Colbert: A language for reactive control in saphira, in: KI-97: Advances in Artificial
Intelligence, Lecture Notes in Artificial Intelligence, Springer, Berlin, 1997, pp. 31–52.

[84] Y. Koren, J. Borenstein, Potential field methods and their inherent limitations for mobile robot navigation,
in: Proc. IEEE Internat. Conference Robotics and Automation, 1991.

[85] D. Kortenkamp, R.P. Bonasso, R. Murphy (Eds.), AI-based Mobile Robots: Case Studies of Successful
Robot Systems, MIT Press, Cambridge, MA, 1998.

[86] D. Kortenkamp, E. Huber, P. Bonasso, Recognizing and interpreting gestures on a mobile robot, in: Proc.
AAAI-96, Portland, OR, AAAI Press/MIT Press, Menlo Park, CA, 1996, pp. 915–921.

[87] D. Kortenkamp, I. Nourbakhsh, D. Hinkle, The 1996 AAAI mobile robot competition and exhibition, AI
Magazine 18 (1) (1997) 25–32.

[88] D. Kortenkamp, T. Weymouth, Topological mapping for mobile robots using a combination of sonar and
vision sensing, in: Proc. AAAI-94, Seatle, WA, AAAI Press/MIT Press, Menlo Park, CA, 1994, pp. 979–
984.

[89] B. Kuipers, Y.-T. Byun, A robust qualitative method for spatial learning in unknown environments, in: Proc.
AAAI-88, St. Paul, MN, AAAI Press/MIT Press, Menlo Park, Cambridge, 1988.

[90] B. Kuipers, Y.-T. Byun, A robot exploration and mapping strategy based on a semantic hierarchy of spatial
representations, J. Robotics and Autonomous Systems 8 (1991) 47–63.

[91] G. Lakemeyer, On sensing and off-line interpreting in GOLOG, in: Proc. AAAI 1998 Fall Symposium on
Cognitive Robotics, 1998.

[92] J.-C. Latombe, Robot Motion Planning, Kluwer Academic, Boston, MA, 1991.
[93] J.J. Leonard, H.F. Durrant-Whyte, Directed Sonar Sensing for Mobile Robot Navigation, Kluwer

Academic, Boston, MA, 1992.
[94] J.J. Leonard, H.F. Durrant-Whyte, I.J. Cox, Dynamic map building for an autonomous mobile robot,

Internat. J. Robotics Res. 11 (4) (1992) 89–96.
[95] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. Scherl, GOLOG: A logic programming language for

dynamic domains, J. Logic Programming 31 (1997) 59–84.
[96] F. Lin, R. Reiter, State constraints revisited, J. Logic and Comput. (special issue on actions and processes)

4 (1994) 665–678.
[97] M.L. Littman, A.R. Cassandra, L.P. Kaelbling, Learning policies for partially observable environments:

Scaling up, in: A. Prieditis, S. Russell (Eds.), Proc. 12th International Conference on Machine Learning,
1995.

[98] F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping, Autonomous Robots
4 (1997) 333–349.

[99] F. Lu, E. Milios, Robot pose estimation in unknown environments by matching 2d range scans, J. Intelligent
and Robotic Systems (1998) (to appear).

[100] D.J.C. MacKay, Bayesian methods for adaptive models, Ph.D. Thesis, California Institute of Technology,
Pasadena, CA, 1992.

[101] M.J. Mataríc, A distributed model for mobile robot environment-learning and navigation, Master’s Thesis,
MIT, Cambridge, MA, 1990. Also available as MIT AI Lab Technical Report AITR-1228.

[102] P.S. Maybeck, The Kalman filter: An introduction to concepts, in: Autonomous Robot Vehicles, Springer,
Berlin, 1990.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 51 (3873-4035)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 51

[103] J. McCarthy, Situations, actions and causal laws, in: Semantic Information Processing, MIT Press,
Cambridge, MA, 1968, pp. 410–417.

[104] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
[105] A.W. Moore, C.G. Atkeson, Prioritized sweeping: Reinforcement learning with less data and less time,

Machine Learning 13 (1993) 103–130.
[106] H.P. Moravec, Sensor fusion in certainty grids for mobile robots, AI Magazine (1988) 61–74.
[107] U. Nehmzow, T. Smithers, J. Hallam, Location recognition in a mobile robot using self-organizing feature

maps, in: G. Schmidt (Ed.), Information Processing in Autonomous Mobile Robots, Springer, Berlin, 1991.
[108] H. Neven, G. Schöner, Dynamics parametrically controlled by image correlations organize robot

navigation, Biological Cybernetics 75 (1996) 293–307.
[109] K. Nigam, A. McCallum, S. Thrun, T. Mitchell, Learning to classify text from labeled and unlabeled

documents, Machine Learning (1998).
[110] N.J. Nilsson, Principles of Artificial Intelligence, Springer, Berlin, 1982.
[111] I. Nourbakhsh, R. Powers, S. Birchfield, DERVISH an office-navigating robot, AI Magazine 16 (2) (1995)

53–60.
[112] I.R. Nourbakhsh, The failures of a self-reliant tour robot with no planner, Can be obtained at

http://www.cs.cmu.edu/∼illah/SAGE/index.html, 1998.
[113] J.J. Oliver, D.L. Dowe, Using unsupervised learning to assist supervised learning, in: Proc. 8th Australian

Joint Conference on AI, 1995.
[114] S. Oore, G.E. Hinton, G. Dudek, A mobile robot that learns its place, Neural Computation 9 (1997) 683–

699.
[115] E. Paulos, J. Canny, Delivering real reality to the world wide web via telerobotics, in: Proc. IEEE

International Conference on Robotics and Automation, 1996.
[116] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann, San Mateo, CA, 1988.
[117] L. Peters, H. Surmann, S. Guo, K. Beck, J. Huser, Moria: Fuzzy Logik gesteuertes, autonomes Fahrzeug,

Internal Report, 1994 (in German).
[118] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, in:

Proc. IEEE, IEEE, 1989. (IEEE Log Number 8825949.)
[119] J.H. Reif, Complexity of the mover’s problem and generalizations, in: Proc. 20th IEEE Symposium on

Foundations of Computer Science, 1979, pp. 421–427.
[120] W.D. Rencken, Concurrent localisation and map building for mobile robots using ultrasonic sensors, in:

Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993,
pp. 2129–2197.

[121] J. Rosenblatt, DAMN: A distributed architecture for mobile navigation, Ph.D. Thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, 1997. (Technical Report CMU-RI-TR-97-01.)

[122] J. Rosenblatt, The distributed architecture for mobile navigation, J. Experiment. Theoret. Artificial
Intelligence 9 (2/3) (1997) 339–360.

[123] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in:
D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing. Vols. I, II, MIT Press, Cambridge,
MA, 1986.

[124] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, Englewood Cliffs, NJ,
1995.

[125] B. Schiele, J. Crowley, A comparison of position estimation techniques using occupancy grids, in: Proc.
1994 IEEE International Conference on Robotics and Automation, San Diego, CA, 1994, pp. 1628–1634.

[126] K. Schmidt, K. Azarm, Mobile robot navigation in a dynamic world using an unsteady diffusion equation
strategy, in: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1992.

[127] F.E. Schneider, Sensorinterpretation und Kartenerstellung für mobile Roboter, Master’s Thesis, Department
of Computer Science III, University of Bonn, 53117 Bonn, 1994 (in German).

[128] R.D. Schraft, G. Schmierer, Serviceroboter, Springer, Berlin, 1998 (in German).
[129] J. Schulte, C. Rosenberg, S. Thrun, Spontaneous short-term interaction with mobile robots in public places,

in: Proc. IEEE International Conference on Robotics and Automation (ICRA), 1999.
[130] D. Schulz, W. Burgard, A.B. Cremers, D. Fox, S. Thrun, Web interfaces for mobile robots in public places,

IEEE Magazine on Robotics and Automation (1999) (submitted).

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 52 (4035-4194)

52 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

[131] J.T. Schwartz, M. Scharir, J. Hopcroft, Planning, Geometry and Complexity of Robot Motion, Ablex
Publishing Corporation, Norwood, NJ, 1987.

[132] B. Shahshahani, D. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem
and mitigating the Hughes phenomenon, IEEE Trans. Geoscience and Remote Sensing 32 (5) (1994) 1087–
1095.

[133] H. Shatkay, Learning models for robot navigation, Ph.D. Thesis, Computer Science Department, Brown
University, Providence, RI, 1998.

[134] H Shatkay, L. Kaelbling, Learning topological maps with weak local odometric information, in: Proc.
IJCAI-97, Nagoya, Japan, 1997.

[135] H. Shatkay, L.P. Kaelbling, Learning hidden Markov models with geometric information, Technical Report
CS-97-04, Computer Science Department, Brown University, Providence, RI, 1997.

[136] R. Simmons, Concurrent planning and execution for autonomous robots, IEEE Control Systems 12 (1)
(1992) 46–50.

[137] R. Simmons, The curvature-velocity method for local obstacle avoidance, in: Proc. IEEE International
Conference on Robotics and Automation, 1996.

[138] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, J. O’Sullivan, A layered architecture for office delivery
robots, in: Proc. First International Conference on Autonomous Agents, Marina del Rey, CA, 1997.

[139] R. Simmons, S. Koenig, Probabilistic robot navigation in partially observable environments, in: Proc.
IJCAI-95, Montreal, Quebec, 1995, pp. 1080–1087.

[140] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial relationships in robotics, in: I.J. Cox,
G.T. Wilfong (Eds.), Autonomous Robot Vehnicles, Springer, Berlin, 1990, pp. 167–193.

[141] A. Stentz, The focussed D* algorithm for real-time replanning, in: Proc. IJCAI-95, Montreal, Quebec,
1995.

[142] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
[143] S. Thrun, Exploration and model building in mobile robot domains, in: E. Ruspini (Ed.), Proc. IEEE

International Conference on Neural Networks, IEEE Neural Network Council, San Francisco, CA, 1993,
pp. 175–180.

[144] S. Thrun, To know or not to know: On the utility of models in mobile robotics, AI Magazine 18 (1) (1997)
47–54.

[145] S. Thrun, Bayesian landmark learning for mobile robot localization, Machine Learning 33 (1) (1998).
[146] S. Thrun, Finding landmarks for mobile robot navigation, in: Proc. IEEE International Conference on

Robotics and Automation (ICRA), 1998.
[147] S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, Artificial Intelligence 99

(1) (1998) 21–71.
[148] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg,

N. Roy, J. Schulte, D. Schulz, MINERVA: A second generation mobile tour-guide robot, in: Proc. IEEE
International Conference on Robotics and Automation (ICRA), 1999.

[149] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hofmann, M. Krell, T. Schmidt,
Map learning and high-speed navigation in RHINO, in: D. Kortenkamp, R.P. Bonasso, R. Murphy (Eds.),
AI-based Mobile Robots: Case Studies of Successful Robot Systems, MIT Press, Cambridge, MA, 1998.

[150] S. Thrun, D. Fox, W. Burgard, A probabilistic approach to concurrent mapping and localization for mobile
robots, Machine Learning 31 (1998) 29–53. Also appeared in Autonomous Robots 5, 253–271.

[151] S. Thrun, D. Fox, W. Burgard, Probabilistic mapping of an environment by a mobile robot, in: Proc. IEEE
International Conference on Robotics and Automation (ICRA), 1998.

[152] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, B. Kuipers, Integrating topological and metric maps for
mobile robot navigation: A statistical approach, in: Proc. AAAI-98, Madison, WI, 1998.

[153] M.C. Torrance, Natural communication with robots, Master’s Thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, 1994.

[154] K. Čapek, R.U.R. (Rossum’s Universal Robots), 1921 (out of print).
[155] G. von Randow, Roboter: Unsere Nächsten Verwandten, Rohwolt Verlag, Reinbek, Germany, 1997.
[156] A. Waibel, K.-F. Lee (Eds.), Readings in Speech Recognition, Morgan Kaufmann, San Mateo, CA, 1990.
[157] S. Waldherr, S. Thrun, R. Romero, D. Margaritis, Template-based recognition of pose and motion gestures

on a mobile robot, in: Proc. AAAI-98, Madison, WI, 1998, pp. 977–982.

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 53 (4194-4229)

W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53 53

[158] G. Weiß, C. Wetzler, E. von Puttkamer, Keeping track of position and orientation of moving indoor systems
by correlation of range-finder scans. in: Proc. International Conference on Intelligent Robots and Systems,
1994, pp. 595–601.

[159] E. Wolfart, R.B. Fisher, A. Walker, Position refinement for a navigating robot using motion information
based on honey bee strategies, in: Proc. International Symposium on Robotic Systems (SIR 95), Pisa, Italy,
1995. Also appeared as DAI Research Paper No 751, University of Edinburgh, Department of Artificial
Intelligence, UK.

[160] B. Yamauchi, P. Langley, Place recognition in dynamic environments, J. Robotic Systems (special issue on
mobile robots) (to appear). Also located at http://www.aic.nrl.navy.mil/∼yamauchi/.

[161] B. Yamauchi, P. Langley, A.C. Schultz, J. Grefenstette, W. Adams, Magellan: An integrated adaptive
architecture for mobile robots, Technical Report 98-2, Institute for the Study of Learning and Expertise
(ISLE), Palo Alto, CA, 1998.

[162] S. Zilberstein, S. Russell, Approximate reasoning using anytime algorithms, in: S. Natarajan (Ed.),
Imprecise and Approximate Computation, Kluwer Academic, Dordrecht, 1995.

[163] U.R. Zimmer, Robust world-modeling and navigation in a real world, Neurocomputing 13 (2–4) (1996).

